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Density perturbations related to structure formations are expected to be different in dissipative and
nondissipative universes, even if the background evolution of the two universes is the same. To clarify the
difference between the two universes, first-order density perturbations are studied, using two types of
holographic cosmological models. The first type is a “ΛðtÞ model” similar to a time-varying ΛðtÞ
cosmology for the nondissipative universe. The second type is a “BV model” similar to a bulk viscous
cosmology for the dissipative universe. To systematically examine the two different universes, a power-law
term proportional to Hα is applied to the ΛðtÞ and BV (bulk-viscous-cosmology-like) models, assuming a
flat Friedmann-Robertson-Walker model for the late universe. Here, H is the Hubble parameter and α is a
free parameter whose value is a real number. The ΛðtÞ-Hα and BV-Hα models are used to examine first-
order density perturbations for matter, in which the background evolution of the two models is equivalent.
In addition, thermodynamic constraints on the two models are discussed, with a focus on the maximization
of entropy on the horizon of the universe, extending previous analyses [Phys. Rev. D 100, 123545 (2019);
Phys. Rev. D102, 063512 (2020)]. Consequently, the ΛðtÞ-Hα model for small jαj values is found to be
consistent with observations and satisfies the thermodynamic constraints, compared with the BV-Hα

model. The results show that the nondissipative universe described by the ΛðtÞ-Hα model similar to lambda
cold dark matter models is likely favored.

DOI: 10.1103/PhysRevD.103.023534

I. INTRODUCTION

A paradigm for the cosmic expansion history, that is, an
accelerated expansion of the late universe [1–5], can be
explained by lambda cold dark matter (ΛCDM) models
[6,7]. The ΛCDM model assumes an extra driving term
related to the cosmological constant Λ and an additional
energy component called “dark energy.” However, it is
well known that the ΛCDM model suffers from several
theoretical difficulties, including the cosmological constant
problem and the cosmic coincidence problem [8]. To
resolve these difficulties, various cosmological models
have been suggested, such as ΛðtÞCDM models [i.e., a
time-varying ΛðtÞ cosmology] [9–22], bulk viscous models
[23–33], creation of CDM (CCDM) models [34–44], and
thermodynamic scenarios [45–64].
Formulations of these cosmological models can be

categorized into several types, and their theoretical back-
grounds are different [61–64]. For example, from a dis-
sipative viewpoint, the formulation should be categorized
into two types in a Friedmann-Robertson-Walker (FRW)
universe. The first type is ΛðtÞ, which is similar to
ΛðtÞCDM models [61–64]. In ΛðtÞ models, an extra
driving term is added to both the Friedmann equation

and the Friedmann-Lemaître acceleration equation. The
second type is bulk viscous (BV), which is similar to both
bulk viscous models and CCDM models [61–64]. In BV-
cosmology-like models, the acceleration equation includes
an extra driving term, whereas the Friedmann equation does
not. It is possible to consider that the ΛðtÞ model is related
to “reversible entropy,” due to, for example, the exchange
of matter (energy) [65,66], whereas the BV model is related
to “irreversible entropy,” due to, for example, gravitation-
ally induced particle creation [34,35]. In this sense, theΛðtÞ
and BV models can describe nondissipative and dissipative
universes, respectively [64].
The background evolution of the universe in theΛðtÞ and

BV models becomes the same when an equivalent driving
term is assumed [64]. However, even in this case, density
perturbations related to structure formations are expected to
be different [61,62]. In fact, the influences of several
driving terms, such as constant, Hubble parameter (H),
and H2 terms, have been examined in the ΛðtÞ and BV
models. For the ΛðtÞ model, Basilakos et al. reported that
theH2 terms in ΛðtÞCDMmodels do not describe structure
formations properly [13,46]. In contrast, Solà et al. showed
that a combination of the constant and H2 terms is favored
[14]. Such a power series of H has been examined in, for
example, the works of Gómez-Valent et al. [15] and Rezaei
et al. [16]. For the BV model, Li and Barrow have reported*komatsu@se.kanazawa-u.ac.jp
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that bulk viscous models with the H term are inconsistent
with observations of structure formations [27]. Barbosa
et al. used bulk and shear viscous models to point out a
similar inconsistency [31]. In addition, Jesus et al. [40] and
Ramos et al. [41] showed that CCDM models with a
constant term are inconsistent with the observed growth
rate for clustering. (In the CCDM model, a negative sound
speed [40] and the existence of clustered matter [41] are
necessary to properly describe the growth rate [48].)
In those works, the ΛðtÞ and BV models are separately

discussed and, therefore, the dissipative and nondissipative
universes have not yet been examined systematically.
Accordingly, it is worthwhile to clarify the difference
between the dissipative and nondissipative universes. To
systematically study the two universes, two types of
holographic cosmological models that include Hα terms
[63,64] are suitable. Here, α is a dimensionless constant
whose value is a real number. The power-law term is
obtained from, for example, Padmanabhan’s holographic
equipartition law [53] with a power-law-corrected entropy
[67], as examined in a previous work [57].
In this context, we study the evolution of the universe in

the ΛðtÞ-Hα and BV-Hα models and discuss observational
constraints on the two models. The universe is expected to
behave as an ordinary isolated macroscopic system [68],
where the entropy of the universe does not decrease and
approaches a certain maximum value in the last stage
[69–71]. In fact, thermodynamic constraints on the two
models have been separately discussed in previous works
[63,64]. Accordingly, we examine the observational con-
straints in combination with the thermodynamic constraints.
The observational and thermodynamic constraints should
provide new insights into a discussion of the dissipative and
nondissipative universes. Note that this discussion is focused
on the late universe and, therefore, the inflation of the early
universe is not discussed here.
The remainder of the present paper is organized as

follows. In Sec. II, cosmological equations and first-order
density perturbations for the ΛðtÞ and BV models are
reviewed. In Sec. III, a power-law term proportional to Hα

is applied to theΛðtÞ and BVmodels. In Sec. III A, theΛðtÞ
and BV models that include the Hα term, that is, the
ΛðtÞ-Hα and BV-Hα models, are formulated. In Sec. III B,
density perturbations in the ΛðtÞ-Hα and BV-Hα models
are derived. Section III C reviews thermodynamic con-
straints on the two models. In Sec. IV, the evolution of the
universe in the two models is examined. In addition, the
observational and thermodynamic constraints on the two
models are investigated. Finally, Sec. V presents the
conclusions of the study.

II. COSMOLOGICAL EQUATIONS AND
FIRST-ORDER DENSITY PERTURBATIONS

We consider a homogeneous, isotropic, and spatially flat
universe and examine the scale factor aðtÞ at time t in the

FRW metric. An expanding universe is assumed from
observations [3].
In this section, we review cosmological equations and

density perturbations in dissipative and nondissipative uni-
verses, according to previous works [61–64]. In Sec. II A,
cosmological equations for the ΛðtÞ and BV models are
presented. Section II B reviews first-order density pertur-
bations in the two models.

A. Cosmological equations

We present formulations of cosmological equations for
ΛðtÞ and BV models in a flat FRW universe [61–64]. The
Friedmann, acceleration, and continuity equations are
written as [61–64]

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð1Þ

äðtÞ
aðtÞ ¼ −

4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ þ hBðtÞ; ð2Þ

_ρþ 3Hð1þ wÞρ ¼ −
3

8πG
_fΛðtÞ þ

3

4πG
HhBðtÞ; ð3Þ

with the Hubble parameter HðtÞ defined as

HðtÞ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ ; ð4Þ

where G, ρðtÞ, and pðtÞ are the gravitational constant, the
mass density of cosmological fluids, and the pressure of
cosmological fluids, respectively [62]. Also, w represents
the equation of the state parameter for a generic component
of matter, which is given as [63]

w ¼ pðtÞ
ρðtÞc2 ; ð5Þ

where c represents the speed of light. For a matter-
dominated universe and a radiation-dominated universe,
the values of w are 0 and 1=3, respectively. Here, we
consider a matter-dominated universe, that is, w ¼ 0, and
we neglect the influence of radiation in the late universe.
In the above formulation, two extra driving terms, fΛðtÞ

and hBðtÞ, are phenomenologically assumed [63]. Speci-
fically, fΛðtÞ is used for ΛðtÞ models and hBðtÞ is used for
BV models. Accordingly, we set hBðtÞ ¼ 0 for the ΛðtÞ
model and fΛðtÞ ¼ 0 for the BV model [63,64].
In a matter-dominated universe (w ¼ 0), coupling Eq. (1)

with Eq. (2) yields [63,64]

_H ¼ −
3

2
H2 þ 3

2
fΛðtÞ þ hBðtÞ; ð6Þ

or equivalently,
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_H ¼
(
− 3

2
H2 þ 3

2
fΛðtÞ ðΛðtÞmodelÞ;

− 3
2
H2 þ hBðtÞ ðBVmodelÞ: ð7Þ

These equations indicate that the background evolution of
the universe in the ΛðtÞ and BV models is equivalent when
the driving terms are equal [64],

3

2
fΛðtÞ ¼ hBðtÞ: ð8Þ

In this study, we set 3
2
fΛðtÞ ¼ hBðtÞ, as shown in Eq. (8),

and therefore, the background evolution of the universe in
the two models is the same. In addition, a power-law term
proportional to Hα is used for the driving term. The power-
law term is discussed in Sec. III.

B. First-order density perturbations

In this subsection, we present two formulations to
examine density perturbations in the ΛðtÞ and BV models.
In Secs. II B 1 and II B 2, we review density perturbations
in the ΛðtÞ and BV models, respectively. The formulation
for the ΛðtÞ and BV models used in this study is based on
the works of Basilakos et al. [13] and Jesus et al. [40],
respectively. The two formulations were summarized in a
previous report [61], using the neo-Newtonian approach
proposed by Lima et al. [72]. A unified formulation based
on the neo-Newtonian approach is summarized in the
Appendix.
In this paper, we examine first-order density perturba-

tions in the linear approximation by assuming a matter-
dominated universe (w ¼ 0), which is equivalent to a fluid
without pressure (p ¼ 0) [61]. In other words, we focus on
density perturbations for matter and neglect other pertur-
bations, as discussed below.

1. Formulations for the ΛðtÞ model

Density perturbations in ΛðtÞCDM models have been
examined in various studies, including Basilakos et al. [13],
Solà et al. [14], Gómez-Valent et al. [15], and Rezaei et al.
[16]. The formulation for the ΛðtÞ model discussed here is
essentially equivalent to that for the ΛðtÞCDM model,
although the theoretical backgrounds are different.
Therefore, we review density perturbations in the ΛðtÞ
model, according to Ref. [13] and a previous work [61].
In a matter-dominated universe, substituting w ¼ 0 into

Eq. (3) yields

_ρþ 3Hρ ¼ −
3

8πG
_fΛðtÞ; ð9Þ

where fΛðtÞ is a general driving term and hBðtÞ ¼ 0 is used
for the ΛðtÞ model. The right-hand side of Eq. (9) is zero
when fΛðtÞ is constant. (A power-law term is discussed in
Sec. III.)

In Ref. [13], Basilakos et al. focused on models in
which the time dependence of ΛðtÞ appears always at the
expense of an interaction with matter [61]. The model is
considered to be an energy exchange cosmology that
assumes the transfer of energy (matter) between two
fluids [66]. Similarly, in holographic cosmological
models, we assume an interchange of energy between
the bulk (the universe) and the boundary (the horizon of the
universe) [52], as if it is an energy exchange cosmo-
logy [61]. (For example, cosmological equations can be
derived from the expansion of cosmic space due to the
difference between the degrees of freedom on the boundary
and in the bulk by applying the holographic equipartition
law with an associated entropy on the horizon [53].
Interacting holographic dark energy models were examined
in Ref. [11].)
Consequently, the time evolution equation for the matter

density contrast δ≡ δρm=ρm, namely, the perturbation
growth factor, is given by [73]

δ̈þ ð2H þQÞ_δ − ½4πGρ − 2HQ − _Q�δ ¼ 0; ð10Þ
where

ρ ¼ 3

8πG
½H2 − fΛðtÞ�; Q ¼ −

3

8πG

_fΛðtÞ
ρ

; ð11Þ

and ρ is the mass density of matter. Specifically, ρm is
replaced by ρ because a matter-dominated universe is
considered [61]. In addition, ρ in Eq. (10) represents ρ̄,
corresponding to a homogenous and isotropic solution for
the unperturbed equations [61]. Substituting Eq. (11) into
Eq. (9) yields

_ρþ 3Hρ ¼ Qρ: ð12Þ
In this study, for numerical purposes, we use an

independent variable [40] that is defined as

η≡ ln½ãðtÞ�; ð13Þ

where ãðtÞ is the normalized scale factor given by

ã ¼ a
a0

; ð14Þ

and a0 is the scale factor at the present time [64]. From this
definition, _δ and δ̈ are written as

_δ ¼ H
dδ
dη

¼ Hδ0 and δ̈ ¼ H2δ00 þH0Hδ0; ð15Þ

where 0 represents the differential with respect to η, namely
d=dη. Equation (15) can be written as _x ¼ Hx0 and ẍ ¼
H2x00 þH0Hx0 by using an arbitrary variable x. Applying
these equations to Eq. (10) and performing several calcu-
lations, the differential equation is written as
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δ00 þ FΛðηÞδ0 þGΛðηÞδ ¼ 0; ð16Þ

where FΛðηÞ and GΛðηÞ are given by

FΛðηÞ ¼ 2þQþH0

H
ð17Þ

and

GΛðηÞ ¼ −
3

2
þ 2QþQ0

H
þ 3fΛðtÞ

2H2
; ð18Þ

where H ≠ 0 and 4πGρ ¼ 3
2
ðH2 − fΛðtÞÞ, as given by

Eq. (1). We use Eqs. (16)–(18) to examine density
perturbations in the ΛðtÞ model.
It should be noted that it is necessary to define explicitly

the functional form of the fΛðtÞ component to solve the
above differential equation [61]. As described in Ref. [13],
the approach based on Eq. (10) implies that dark energy
perturbations are assumed to be negligible. This assump-
tion is generally justified in most cases [13,74] and has
been most recently examined in the work of Gómez-Valent
and Solà [18]. In this study, we assume that boundary
perturbations are negligible in holographic cosmological
models [61].

2. Formulations for the BV model

BV models assume dissipation processes and therefore,
the formulation for the BV model is essentially equivalent
to that for both bulk viscous and CCDM models [61–64].
For example, density perturbations in the CCDM model
were examined by Jesus et al. [40]. In addition, density
perturbations in the BV model can be derived from a neo-
Newtonian approach [61]. The neo-Newtonian approach
was proposed by Lima et al. [72], following earlier ideas
developed by McCrea [75] and Harrison [76], to describe a
Newtonian universe with pressure [40]. We apply the ideas
in these works to review the density perturbations in the
BV model.
We assume a matter-dominated universe (w ¼ 0) and

model it as a pressureless fluid (p ¼ 0). Substituting w ¼ 0
into Eq. (3) yields [61]

_ρþ 3Hρ ¼ 3

4πG
HhBðtÞ; ð19Þ

where hBðtÞ is a general driving term and fΛðtÞ ¼ 0 is used
for the BV model. (A power-law term is discussed in
Sec. III.) The right-hand side of Eq. (19) is not 0, even
if hBðtÞ is constant. Equation (19) is essentially equivalent
to the model examined in Ref. [40]. To confirm this,
we consider an effective pressure pe due to dissipation
processes [61]. The effective pressure pe is given by
pe ¼ pþ pc, where pc is the creation pressure for constant
specific entropy in CCDM models [40]. In this study, pe is

equivalent to pc, because p ¼ 0. In addition, as examined
in Ref. [40], pc for a CDM component can be written as

pc ¼ −
ρc2Γ
3H

; ð20Þ

where Γ is given by

Γ ¼ 3

4πG
HhBðtÞ

ρ
: ð21Þ

Therefore, Eq. (19) is written as

_ρþ 3Hρ ¼ Γρ; ð22Þ

where Γ is a parameter related to entropy production
processes [64]. In the CCDM model, Γ is considered to
be the creation rate of CDM particles [40].
We note that a perturbation analysis in cosmology

generally requires a full relativistic description, as exam-
ined in Jesus et al. [40]. This is because the standard
nonrelativistic (Newtonian) approach works well only when
the scale of perturbation is much less than the Hubble radius
and the velocity of peculiar motions is small in comparison
with theHubble flow [40]. In fact, Jesus et al.proposed a neo-
Newtonian approximation that circumvents such difficulties.
In this study, we applied a neo-Newtonian approximation to
the BV model, as discussed in Ref. [61].
In our units, c ¼ 1 and the time evolution equation for

the matter density contrast δ is given by [40]

δ̈þ
�
2H þ Γþ 3c2effH −

Γ _H −H _Γ
Hð3H − ΓÞ

�
_δ

þ
�
3ð _H þ 2H2Þ

�
c2eff þ

Γ
3H

�

þ 3H

�
_c2eff − ð1þ c2effÞ

Γ _H −H _Γ
Hð3H − ΓÞ

�

− 4πGρ

�
1 −

Γ
3H

�
ð1þ 3c2effÞ þ

k2c2eff
a2

�
δ ¼ 0: ð23Þ

In this study, the effective sound speed, c2eff ≡ δpc=δρ, is
set to

c2eff ≡ δpc

δρ
¼ 0 ð24Þ

to ensure equivalence between the neo-Newtonian and
general relativistic approaches [77]. In fact, the neo-
Newtonian equation given by Eq. (23) is equivalent to
the general relativistic equation for a single-fluid-
dominated universe only when c2eff ¼ 0, as examined by
Reis [77]. The equivalence is discussed by Ramos
et al. [41].
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For numerical purposes, we use an independent variable
η≡ ln½ãðtÞ�, which is defined by Eq. (13). Therefore, _δ and
δ̈ are given by Eq. (15). Also, the Friedmann equation for
the BV model is written as 4πGρ ¼ 3H2=2. We apply these
equations and c2eff ¼ 0 to Eq. (23) and perform several
operations to obtain

δ00 þ FBðηÞδ0 þGBðηÞδ ¼ 0; ð25Þ

where FBðηÞ and GBðηÞ are given by [40]

FBðηÞ ¼ 2þ ΓþH0

H
−

ΓH0 −HΓ0

Hð3H − ΓÞ ; ð26Þ

GBðηÞ ¼
�
Γ
H

− 1

��
Γ
2H

þ 3

2

�
−
3ðΓH0 −HΓ0Þ
Hð3H − ΓÞ : ð27Þ

Equations (25)–(27) are used to examine density perturba-
tions in the BV model.
In this section, we reviewed density perturbations in the

ΛðtÞ and BV models without using a power-law term
proportional toHα. In the next section, we apply the power-
law term and derive density perturbations in the ΛðtÞ-Hα

and BV-Hα models.

III. ΛðtÞ−Hα AND BV-Hα MODELS

This section discusses two types of cosmological models
with a power-law term proportional toHα. In Sec. III A, the
ΛðtÞ-Hα and BV-Hα models are formulated. In Sec. III B,
density perturbations in the two models are derived.
Finally, Sec. III C uses Refs. [63,64] to review thermody-
namic constraints on the two models.

A. Cosmological equations for the ΛðtÞ-Hα

and BV-Hα models

General formulations of cosmological equations for the
ΛðtÞ and BV models are described in the previous section.
In this section, a power-law term proportional to Hα is
applied to the ΛðtÞ and BV models.
In fact, cosmological equations can be derived from the

expansion of cosmic space due to the difference between
the degrees of freedom on the surface and in the bulk,
using Padmanabhan’s holographic equipartition law with
an associated entropy on the horizon [53]. As examined in a
previous work [57], an acceleration equation that includes
Hα terms is derived using the holographic equipartition
law with entropy corrected by a power law [67]. For the
derivation, see Ref. [57].
The power-law term, namely, the Hα term, was inves-

tigated for a nondissipative universe based on ΛðtÞ
models [57,63] and a dissipative universe based on BV
models [64]. In this paper, the power-law term is applied to
the ΛðtÞ and BV models, which we call the ΛðtÞ-Hα model
and the BV-Hα model, respectively.

For the ΛðtÞ-Hα model, a driving term fΛðtÞ is given by

fΛðtÞ ¼ ΨαH2
0

�
H
H0

�
α

; ð28Þ

and for the BV-Hα model, the driving term hBðtÞ is

hBðtÞ ¼
3

2
ΨαH2

0

�
H
H0

�
α

; ð29Þ

where H0 represents the Hubble parameter at the present
time and α is a dimensionless constant whose value is a
real number [63,64]. Also, Ψα is a density parameter for
effective dark energy and is assumed to be

0 ≤ Ψα ≤ 1: ð30Þ

In this paper, α and Ψα are considered to be independent
free parameters [63,64]. This means that we phenomeno-
logically assume the power-law term for the two models.
In addition, as shown in Eqs. (28) and (29), the two driving
terms are set to 3

2
fΛðtÞ ¼ hBðtÞ so that Eq. (8) can be

satisfied. Substituting Eq. (28) for the ΛðtÞ-Hα model into
Eq. (7) yields

_H ¼ −
3

2
H2

�
1 − Ψα

�
H
H0

�
α−2

�
: ð31Þ

An equivalent equation is obtained by substituting Eq. (29)
for the BV-Hα model into Eq. (7). In this way, the same
background evolution of the universe is established for both
the ΛðtÞ-Hα and BV-Hα models.
Equation (31) has been examined previously [63,64].

The solution for α ≠ 2 is written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞã−
3ð2−αÞ

2 þΨα; ð32Þ

and the solution for α ¼ 2 is

H
H0

¼ ã−
3ð1−ΨαÞ

2 ; ð33Þ

where ã is the normalized scale factor given by Eq. (14).
These solutions can be applied to the ΛðtÞ-Hα and BV-Hα

models. The derivation is summarized in Ref. [63]. (When
α ¼ 0, replacing Ψα by ΩΛ, the density parameter for Λ,
gives a background evolution that is equivalent to that in
ΛCDM models [64]. We neglect the influence of radiation
in a late, flat FRW universe.) In addition, the temporal
deceleration parameter q, defined by q≡ −ð ä

aH2Þ, can be
calculated from the above equations. Using the result of
Refs. [63,64], the deceleration parameter q for the two
models is written as
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q ¼ 1

2
−
3

2
Ψα½ð1 − ΨαÞã−

3ð2−αÞ
2 þ Ψα�−1; ð34Þ

where a positive and negative q represent deceleration and
acceleration, respectively.
In the present study, the background evolution of the

universe in the ΛðtÞ-Hα and BV-Hα models is set to be
the same, as mentioned previously. However, even in this
case, the evolution of density perturbations is expected to
be different. We discuss density perturbations in the next
subsection. Hereafter, we consider α ≠ 2 because the result
for α ≠ 2 reduces to that for α ¼ 2 when α → 2.
It should be noted that a power series of H for ΛðtÞ

models was examined in works such as Solà et al. [14],
Gómez-Valent et al. [15], and Rezaei et al. [16]. For BV
models, a power-law term was examined in, for example,
the works of Freaza et al. [36], Ramos et al. [41], and
Cárdenas et al. [44]. From a microscopic viewpoint, the
driving term for running vacuum models [related to ΛðtÞ
models] can be obtained from various concepts, including
renormalization group equations [20], quantum field
theory in curved spacetime [21], and string theory [22].
In contrast, the driving term for bulk viscous and CCDM
models (related to BV models) is phenomenologically
assumed based on macroscopic properties, such as bulk
viscosity of cosmological fluids [23,24] and matter crea-
tion [34,35], respectively. In this paper, we phenomeno-
logically assume the power-law term for the ΛðtÞ and BV
models and therefore, the theoretical backgrounds are
different from those of the above models. However, the
formulations used here are essentially equivalent to those
for the models.

B. First-order density perturbations
in the ΛðtÞ-Hα and BV-Hα models

In this section, we examine first-order density perturba-
tions in the ΛðtÞ-Hα and BV-Hα models. To calculate den-
sity perturbations, H0=H is required. Accordingly, we write
the background evolution again. From Eq. (32), the evolu-
tion of the Hubble parameter for α ≠ 2 can be written as

H
H0

¼ ½ð1 −ΨαÞã−
3ð2−αÞ

2 þ Ψα�
1

2−α

¼ ½ð1 −ΨαÞã−β þ Ψα� 1
2−α

¼ ½ð1 −ΨαÞe−βη þ Ψα� 1
2−α; ð35Þ

where ã−β is replaced by e−βη using η≡ ln½ãðtÞ� given by
Eq. (13). A dimensionless parameter β is used for sim-
plicity and given by

β ¼ 3ð2 − αÞ
2

: ð36Þ

Differentiating Eq. (35) with respect to η yields

H0

H0

¼ d
dη

�
H
H0

�
¼ d

dη
½ð1 − ΨαÞe−βη þ Ψα� 1

2−α

¼ ð−βÞð1 − ΨαÞe−βη
2 − α

½ð1 −ΨαÞe−βη þ Ψα� 1
2−α−1

¼ −3ð1 −ΨαÞe−βη
2

½ð1 −ΨαÞe−βη þΨα�α−12−α: ð37Þ

Dividing Eq. (37) by Eq. (35) yields

H0

H
¼

−3ð1−ΨαÞe−βη
2

½ð1 −ΨαÞe−βη þΨα�α−12−α

½ð1 −ΨαÞe−βη þ Ψα� 1
2−α

¼ − 3
2
ð1 −ΨαÞe−βη

ð1 −ΨαÞe−βη þ Ψα
¼ − 3

2
ð1 −ΨαÞ

ð1 − ΨαÞ þΨαeβη
: ð38Þ

Then, we use the obtained H0=H to derive density pertur-
bations in the ΛðtÞ-Hα and BV-Hα models. Note that α ≠ 2
is considered here because the result for α ≠ 2 reduces to
that for α ¼ 2 when α → 2.

1. Density perturbations in the ΛðtÞ-Hα model

We examine density perturbations in the ΛðtÞ-Hα model.
From Eq. (28), the driving term fΛðtÞ is written as

fΛðtÞ ¼ ΨαH2
0

�
H
H0

�
α

: ð39Þ

We write Eqs. (16)–(18) again as

δ00 þ FΛðηÞδ0 þGΛðηÞδ ¼ 0; ð40Þ

FΛðηÞ ¼ 2þQþH0

H
; ð41Þ

GΛðηÞ ¼ −
3

2
þ 2QþQ0

H
þ 3fΛðtÞ

2H2
; ð42Þ

where Q and ρ given by Eq. (11) are written as

Q ¼ −
3

8πG

_fΛðtÞ
ρ

; ð43Þ

ρ ¼ 3

8πG
½H2 − fΛðtÞ�: ð44Þ

We now calculate FΛðηÞ and GΛðηÞ. To this end, we
require three terms, namely, Q=H, Q0=H, and fΛðtÞ=H2.
First, we calculate Q to obtain Q=H. Substituting Eq. (44)
into Eq. (43) and applying Eq. (39) yield
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Q ¼ −
3

8πG

_fΛðtÞ
ρ

¼ −
3

8πG

_fΛðtÞ
3

8πG ðH2 − fΛðtÞÞ

¼ −
αΨαH0ðHH0

Þα−1 _H
H2 −ΨαH2

0ðHH0
Þα ¼ −

αΨαðHH0
Þα−2 _H

H

1 −ΨαðHH0
Þα−2

¼ −
αΨαH0

ðHH0
Þ2−α − Ψα

; ð45Þ

where _H ¼ HH0 is also used. In addition, substituting
Eq. (35) into Eq. (45) yields

Q ¼ −
αΨαH0

ð1 −ΨαÞe−βη þ Ψα − Ψα
¼ −

αΨαeβηH0

1 −Ψα
: ð46Þ

Dividing Eq. (46) by H allows us to write Q=H as

Q
H

¼ −
αΨαeβη

1 − Ψα

H0

H
: ð47Þ

Second, we calculate Q0 to obtain Q0=H. Differentiating
Eq. (46) with respect to η yields

Q0 ¼ dQ
dη

¼
�
−

αΨα

1 − Ψα

�
ðβeβηH0 þ eβηH00Þ

¼
�
−

αΨα

1 − Ψα

�
eβηðβH0 þH00Þ: ð48Þ

Dividing Eq. (48) by H gives

Q0

H
¼

�
−

αΨα

1 − Ψα

�
eβη

�
β
H0

H
þH00

H

�
: ð49Þ

To calculate this equation, H0=H and H00=H are required.
The first term H0=H is given by Eq. (38), and the second
term H00=H can be calculated as follows. After differ-
entiating H0=H0 [Eq. (37)] with respect to η, dividing the
resultant equation by H=H0 [Eq. (35)], and performing
several calculations, we have

H00

H
¼ 9ð1 − ΨαÞ½ð1 − ΨαÞ þ ð2 − αÞΨαeβη�

4½ð1 −ΨαÞ þ Ψαeβη�2
: ð50Þ

Thus, Q0=H is calculated from Eq. (49) by applying
Eqs. (38) and (50). Third, we calculate fΛðtÞ=H2.
Substituting Eq. (39) into fΛðtÞ=H2 and applying
Eq. (35) gives

fΛðtÞ
H2

¼
ΨαH2

0ðHH0
Þα

H2
¼ Ψα

�
H
H0

�
α−2

¼ Ψα

ð1 −ΨαÞe−βη þ Ψα
¼ Ψαeβη

ð1 − ΨαÞ þΨαeβη
: ð51Þ

In this way, the three terms Q=H, Q0=H, and fΛðtÞ=H2 are
obtained.
Substituting Eqs. (38) and (47) into Eq. (41) yields

FΛðηÞ ¼
ð1 − ΨαÞ þ ð4þ 3αÞΨαeβη

2½ð1 −ΨαÞ þΨαeβη�
: ð52Þ

Substituting Eqs. (47), (49), and (51) into Eq. (42) and
applying Eqs. (38) and (50), we have

GΛðηÞ ¼ −
3

2
þ 3½αð2þ βÞ þ 1�Ψαeβη

2½ð1 −ΨαÞ þ Ψαeβη�

−
9αΨαeβη½ð1 −ΨαÞ þ ð2 − αÞΨαeβη�

4½ð1 −ΨαÞ þ Ψαeβη�2
: ð53Þ

Here, β is 3ð2−αÞ
2

given by Eq. (36) and α is treated as a real
number. When α was an integer, such as 0 or 1, ΛðtÞ-Hα

models were examined although they were considered to
be different models. For example, ΛðtÞ-H0 models (i.e.,
ΛCDM models) and ΛðtÞ-H1 models were examined as
two different models in a previous work [61]. In the present
study, we systematically examine the ΛðtÞ-Hα model
through the free parameter α. (We have confirmed that
the above equations are equivalent to results examined in
the previous work, when α ¼ 0 and α ¼ 1.)
Using FΛðηÞ and GΛðηÞ, we numerically solve the

differential equation [Eq. (40)] for the ΛðtÞ-Hα model.
To solve this, we use the initial conditions of the Einstein–
de Sitter growing model [40]. The initial conditions are
given by

δðãiÞ ¼ ãi and δ0ðãiÞ ¼ ãi; ð54Þ

where ãi is set to 10−3 [40,61]. Note that the initial
conditions are applied to BV-Hα models as well.

2. Density perturbations in the BV-Hα model

Here, we examine density perturbations in the BV-Hα

model. The driving term hBðtÞ given by Eq. (29) is
written as

hBðtÞ ¼
3

2
ΨαH2

0

�
H
H0

�
α

: ð55Þ

Then, we rewrite Eqs. (25)–(27),

δ00 þ FBðηÞδ0 þGBðηÞδ ¼ 0; ð56Þ

FBðηÞ ¼ 2þ ΓþH0

H
−

ΓH0 −HΓ0

Hð3H − ΓÞ ; ð57Þ

GBðηÞ ¼
�
Γ
H

− 1

��
Γ
2H

þ 3

2

�
−
3ðΓH0 −HΓ0Þ
Hð3H − ΓÞ ; ð58Þ
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where, from Eq. (21), Γ=H can be written as

Γ
H

¼ 3

4πG
hBðtÞ
ρ

; ð59Þ

and ρ is given by

ρ ¼ 3H2

8πG
: ð60Þ

Equation (60) is obtained from the Friedmann equation by
substituting fΛðtÞ ¼ 0 into Eq. (1).
We now calculate FBðηÞ and GBðηÞ. To this end, we

require three terms, namely, Γ=H, Γ0=H, and ΓH0−HΓ0
Hð3H−ΓÞ. The

second term is required for calculating the third term. First,
we calculate Γ=H. Substituting Eqs. (55) and (60) into
Eq. (59) yields

Γ
H

¼ 3

4πG

3
2
ΨαH2

0ðHH0
Þα

3H2

8πG

¼ 3Ψα

�
H
H0

�
α−2

; ð61Þ

or equivalently,

Γ ¼ 3ΨαH0

�
H
H0

�
α−1

: ð62Þ

Substituting Eq. (35) into Eq. (61) yields

Γ
H

¼ 3Ψα

�
H
H0

�
α−2

¼ 3Ψα

ð1 −ΨαÞe−βη þΨα

¼ 3Ψαeβη

ð1 −ΨαÞ þ Ψαeβη
: ð63Þ

Second, we calculate Γ0=H, which is used for determining
the third term. After differentiating Eq. (62) with respect to
η, applying Eq. (63), and dividing the resultant equation by
H, we write Γ0=H as

Γ0

H
¼ ðα − 1Þ Γ

H
H0

H
: ð64Þ

Third, we calculate ΓH0−HΓ0
Hð3H−ΓÞ. Reformulating this term and

substituting Eq. (64) into the resultant equation yields

ΓH0 −HΓ0

Hð3H − ΓÞ ¼
Γ
H

H0
H − Γ0

H

3 − Γ
H

¼
Γ
H

H0
H − ðα − 1Þ Γ

H
H0
H

3 − Γ
H

¼ ð2 − αÞ Γ
H

H0
H

3 − Γ
H

: ð65Þ

Substituting Eqs. (38) and (63) into Eq. (65) gives

ΓH0 −HΓ0

Hð3H − ΓÞ ¼
− 3

2
ð2 − αÞΨαeβη

ð1 −ΨαÞ þ Ψαeβη
: ð66Þ

From these results, we can calculate FBðηÞ and GBðηÞ.
Substituting Eqs. (38), (63), and (66) into Eq. (57) yields

FBðηÞ ¼
ð1 −ΨαÞ þ ð16 − 3αÞΨαeβη

2½ð1 −ΨαÞ þΨαeβη�
: ð67Þ

Substituting Eqs. (63) and (66) into Eq. (58) yields

GBðηÞ ¼ −
3

2
þ ð24 − 9αÞΨαeβη

2½ð1 −ΨαÞ þ Ψαeβη�

þ 9Ψ2
αe2βη

2½ð1 − ΨαÞ þ Ψαeβη�2
: ð68Þ

Here, β is 3ð2−αÞ
2

given by Eq. (36), and α is treated as a real
number. Using FBðηÞ, GBðηÞ, and the initial conditions
given by Eq. (54), we can numerically solve the differential
equation [Eq. (56)] for the BV-Hα model.
When α was an integer, such as 0 or 1, the BV-Hα

models were examined, although they were considered
to be different models. For example, BV-H0 and BV-H1

models were examined as two different models [61]. We
have confirmed that Eqs. (67) and (68) are equivalent to
those in Ref. [61] when α ¼ 0 and α ¼ 1. Cosmological
models similar to the BV-H0 and BV-H1 models were
investigated in, for example, Refs. [27,40], respectively.
In this study, α is a free parameter and a real number.
Therefore, we can systematically examine the BV-Hα

model, which was not possible in previous works.

C. Thermodynamic constraints

Ordinary, isolated macroscopic systems spontaneously
evolve to equilibrium states that maximize the entropy
consistent with their constraints [78]. In other words, the
entropy of such systems does not decrease (i.e., the second
law of thermodynamics) and approaches a certain maxi-
mum value at the last stage (i.e., the maximization of
entropy) [63]. In fact, a certain type of universe is expected
to be constrained by thermodynamics as if it behaves as the
macroscopic system [68].
In this subsection, we use the results of previous works

[63,64] to review such thermodynamic constraints on
the ΛðtÞ-Hα and BV-Hα models. In fact, the two models
always satisfy the second law of thermodynamics, whereas
they satisfy the maximization of entropy only under
specific conditions [63,64]. In particular, the maximization
of entropy depends almost entirely on the constraints on
S̈BH < 0, where SBH is the Bekenstein-Hawking entropy
[64]. Therefore, to discuss the thermodynamic constraints,
we examine S̈BH < 0. For this purpose, we present the
Bekenstein-Hawking entropy on the horizon of the
universe.
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The Bekenstein-Hawking entropy SBH is written as

SBH ¼ kBc3

ℏG
AH

4
; ð69Þ

where ℏ is the reduced Planck constant, defined as ℏ≡
h=ð2πÞ using the Planck constant h [57,59,63] and AH is
the surface area of a sphere with a Hubble horizon rH,
which is given by c=H. In a flat FRW universe, the Hubble
horizon is equivalent to the apparent horizon. Substituting
AH ¼ 4πr2H into Eq. (69) and applying rH ¼ c=H yield

SBH ¼
�
πkBc5

ℏG

�
1

H2
: ð70Þ

This equation indicates that SBH depends on the back-
ground evolution of the universe. Therefore, the evolution
of SBH in the two models is equivalent when their back-
ground evolution is the same.
Substituting Eq. (32) into Eq. (70) and performing several

calculation, we can obtain SBH, _SBH, and S̈BH. The result of
Ref. [64] is used to write the normalized S̈BH as

S̈BH
SBH;0H2

0

¼ 9

2

ð1 −ΨαÞã−β½ð1 −ΨαÞã−β þ ðα − 2ÞΨα�
½ð1 −ΨαÞã−β þ Ψα�2

;

ð71Þ

where SBH;0 is the current Bekenstein-Hawking entropy and

β is 3ð2−αÞ
2

given by Eq. (36). Equation (71) indicates that
S̈BH < 0 should be satisfied at least in the last stage, that is,
ã → ∞, when α < 2 [63]. In other words, a region that
satisfies S̈BH < 0 in the ðΨα; αÞ plane varies with time before
the last stage. To study such a relaxationlike process, we use
the boundary required for S̈BH ¼ 0, which is given by [63]

Ψα ¼
ã−β

2 − αþ ã−β
: ð72Þ

From this equation, we can plot the boundary of S̈BH ¼ 0 in
the ðΨα; αÞ plane. Here Ψα corresponds to a density
parameter for effective dark energy.
To examine the evolution of the boundary, typical

boundaries for ã ¼ 0.5, 1, and 10 are shown in Fig. 1.
The boundary for the ΛðtÞ-Hα and BV-Hα models is the
same because the background evolution of the universe in
both models is equivalent. The arrow on each boundary
indicates a region that satisfies S̈BH < 0. (Similar bounda-
ries are examined in Refs. [63,64].) As shown in Fig. 1, this
region gradually extends and approaches α ¼ 2 with
increasing ã. When α < 2, maximization of the entropy,
S̈BH < 0, should be satisfied, at least in the last stage of the
evolution of an expanding universe [63]. In this way,
thermodynamic constraints on the two models can be
discussed in the ðΨα; αÞ plane. In the next section, we

examine observational constraints in combination with the
thermodynamic constraints shown here.
It should be noted that cosmological adiabatic particle

creation results in the generation of irreversible entropy [34].
The irreversible entropy Sm due to adiabatic particle creation
was examined in a previous work [64]. Consequently,
S̈m < 0 is found to be always satisfied when α < 2. That
is, constraints on S̈m < 0 are slightly looser than those on
S̈BH < 0. In addition, it is well known that SBH is extremely
large in comparison with the other entropies [79]. These
results indicate that the maximization of entropy depends
almost entirely on the constraints on S̈BH < 0, as examined in
Ref. [64]. Accordingly, we use S̈BH < 0 to discuss the
thermodynamic constraints in this study.

IV. EVOLUTION OF THE UNIVERSE IN THE
ΛðtÞ-Hα AND BV-Hα MODELS

In this section, we examine the evolution of the universe
in the ΛðtÞ-Hα and BV-Hα models. In Sec. IVA, the
evolution of the universe for Ψα ¼ 0.685 is discussed as a
specific case. In Sec. IV B, the observational and thermo-
dynamic constraints on the two models are investigated
with chi-squared functions in the ðΨα; αÞ plane. Here, Ψα

and α are treated as free parameters. Note that we do not
discuss the significant tension between the Planck
results [4] and the local (distance ladder) measurement
from the Hubble Space Telescope [5].

FIG. 1. Thermodynamic constraints on the ΛðtÞ-Hα and
BV-Hα models in the ðΨα; αÞ plane. The boundary of
S̈BH ¼ 0 for ã ¼ 0.5, 1, and 10 is shown. The boundary for
the two models is the same because the same background
evolution is used for both models. The arrow on each boundary
indicates a region that satisfies S̈BH < 0. All the boundaries
intersect at the point ðΨα; αÞ ¼ ð1; 2Þ. The horizontal dashed line
represents α ¼ 2. The region below the dashed line should satisfy
S̈BH < 0, at least in the last stage [63]. In the last stage, the region
should also satisfy observational constraints on an initially
decelerating and then accelerating universe [64]. Similar thermo-
dynamic constraints have been examined in Refs. [63,64].
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A. Evolution of the universe for Ψα = 0.685

We examine the typical evolution of the universe in the
ΛðtÞ-Hα and BV-Hα models. To this end,Ψα is set to 0.685,
which is equivalent to ΩΛ for the standard ΛCDM model
from the Planck 2018 results [4]. (Ψα corresponds to a
density parameter for effective dark energy.) Therefore, the
following result for α ¼ 0 of the ΛðtÞ-Hα model is
equivalent to that for the ΛCDM model.

1. Background evolution of the universe
for Ψα = 0.685

To examine the background evolution of the universe, we
use the luminosity distance dL [80,81], which is written as�

H0

c

�
dL ¼ ð1þ zÞ

Z
1þz

1

dy
FðyÞ ; ð73Þ

where the redshift z is given by

z ¼ ã−1 − 1: ð74Þ

The integrating variable y and the function FðyÞ are
given by

y ¼ ã−1 and FðyÞ ¼ H
H0

: ð75Þ

For the ΛðtÞ-Hα and BV-Hα models, H=H0 is given by
Eq. (32). The background evolution of the universe in the
ΛðtÞ-Hα and BV-Hα models is equivalent and therefore, dL
for the two models is the same. Similarly, the temporal
deceleration parameter q for the two models is the same,
where q is given by Eq. (34).
Figure 2 shows the background evolution of the universe

for Ψα ¼ 0.685. To examine typical results, α is set to 0,
0.5, and 1. In Fig. 2(a), the observed data points are the
Union 2.1 set of 580 type Ia supernovae [2]. As shown in
Fig. 2(a), the luminosity distance dL for α ¼ 0, 0.5, and 1 is
likely consistent with the supernova data. The luminosity
distance dL for α ¼ 0.5 and 1 deviates from dL for α ¼ 0.
Note that the deviation looks small because a logarithmic
scale is used for the vertical axis in this figure. From
Fig. 2(b), we can confirm that α affects the evolution
of the deceleration parameter q. Of course, both Ψα and α
affect the background evolution of the universe. We
examine this influence later using chi-squared functions
in the ðΨα; αÞ plane.

2. Evolution of density perturbations for Ψα = 0.685

In this study, the background evolution of the universe is
the same in both models. However, even with this sim-
ilarity, the density perturbations are expected to be differ-
ent. In this subsection, we examine first-order density
perturbations in the ΛðtÞ-Hα and BV-Hα models
for Ψα ¼ 0.685.

We first examine the evolution of the perturbation
growth factor δ for the two models. In this study, δ is
numerically solved using the initial conditions given by
Eq. (54). To examine typical results, α is set to 0, 0.5, and 1.
Accordingly, the background evolution considered here is
the same as that shown in Fig. 2. A previous work [61]
investigated similar density perturbations using the
ΛðtÞ-H0, ΛðtÞ-H1, BV-H0, and BV-H1 models. In this
study, α is a free parameter that can be treated as a real
number. Therefore, we can systematically examine the
difference between the ΛðtÞ-Hα and BV-Hα models.
For ã ⪅ 0.1, δ increases with ã, as shown in Fig. 3.

Thereafter, the increase of δ tends to be gradually slow.
For ã⪆ 1, δ for α ¼ 0 of the ΛðtÞ-Hα model does not
decrease, whereas δ for the others decreases. In this way, α
and the type of model affect the density perturbations. In
particular, the decrease in δ for the BV-Hα model is
significant, in comparison with the ΛðtÞ-Hα model. As
expected, density perturbations in the two models are
greatly different even if the background evolution is
the same.

0.0 0.5 1.0 1.5 2.0
z

Observed data points

-1.5

-1.0

-0.5

0.0

0.5

1.0

-2.0

lo
g 1

0
[(
H

0/
c)

 d
L
]

(a)

-1.0

-0.5

0.0

0.5

1.0

1=

0.50=
(b)

q

q = 0

0=

1=

0.5

FIG. 2. Background evolution of the universe in the ΛðtÞ-Hα

and BV-Hα models for Ψα ¼ 0.685. (a) Luminosity distance dL.
(b) Deceleration parameter q. The background evolution of the
universe in the two models is the same. In (a), the symbols with
error bars are observed supernova data points taken from Ref. [2].
To normalize the data points, H0 is set to 67.4 km=s=Mpc from
the Planck 2018 results [4]. In (b), the horizontal dashed line
represents q ¼ 0.
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Next, we use the obtained δ to calculate an indicator of
clustering, namely, the growth rate fðzÞ of clustering [82]
given by

fðzÞ ¼ d ln δ
d ln a

¼ −ð1þ zÞ d ln δ
dz

: ð76Þ

In addition, we calculate a combination value fðzÞσ8ðzÞ.
Here σ8ðzÞ is the redshift-dependent root-mean-square
(rms) fluctuations of the linear density field within a sphere
of radius R ¼ 8h−1 Mpc [83] (where h is the reduced
Hubble constant defined by h ¼ H0=100). The redshift-
dependent rms fluctuations σ8ðzÞ can be written as [49]

σ8ðzÞ ¼ σ8

�
δðzÞ

δðz ¼ 0Þ
�
; ð77Þ

where σ8 is σ8ðzÞ at redshift z ¼ 0. We set σ8 ¼ 0.811 from
the Planck 2018 results [4]. Note that more exact formal-
isms are examined elsewhere, such as Refs. [14–16].
The evolution of fðzÞ and fðzÞσ8ðzÞ is shown in Figs. 4

and 5, respectively. As shown in Fig. 4, fðzÞ for α ¼ 0 of
the ΛðtÞ-Hα model agrees with the observed data points,
whereas fðzÞ for the other cases does not. Similarly,
fðzÞσ8ðzÞ for α ¼ 0 of the ΛðtÞ-Hα model agrees with
the observed data points (Fig. 5). In contrast, at low z, fðzÞ
and fðzÞσ8ðzÞ for the BV-Hα model disagree with the data
points, in comparison with the ΛðtÞ-Hα model. This is
because, as shown in Fig. 3, δ for the BV-Hα model decays
at large ã, corresponding to low z.
A previous work [61] discussed similar results using four

different models, corresponding to the ΛðtÞ-H0, ΛðtÞ-H1,
BV-H0, and BV-H1 models. In the present study, we can
systematically examine the ΛðtÞ-Hα and BV-Hα models
using the free parameter α. We discuss the systematic study
in the next subsection.

B. Constraints on the ΛðtÞ-Hα and BV-Hα models

So far, we have considered the specific case of
Ψα ¼ 0.685. In this subsection, we examine constraints
on theΛðtÞ-Hα and BV-Hα models in the ðΨα; αÞ plane and
discuss the question, “Which model is favored?” To this
end, we provide an overview of the observational and
thermodynamic constraints on the two models. In this
analysis,H0 is set to 67.4 km=s=Mpc from the Planck 2018
results [4].
To examine observational constraints on the two models,

we perform a chi-squared analysis using a distance modu-
lus μ and a combination value fðzÞσ8ðzÞ. The distance
modulus μ is defined as

μ ¼ 5 log dL þ 25; ð78Þ
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where the luminosity distance dL is given by Eq. (73). The
observed distance modulus μ is obtained from the super-
nova data [2]. The chi-squared function χ2SN for the
supernovae is given by

χ2SNðΨα; αÞ ¼
X580
i¼1

�
μobsðziÞ − μcalðzi;Ψα; αÞ

σSNi

�
2

; ð79Þ

where μobsðziÞ and μcalðzi;Ψα; αÞ are the observed and
calculated distance moduli, respectively, and σSNi is the
uncertainty in the observed distance modulus. The Union
2.1 set of 580 type Ia supernovae [2] is used for the
observed data points (numbered i ¼ 1 to 580), which are
shown in Fig. 2. Using a combination value fðzÞσ8ðzÞ, the
chi-squared function χ2GR for the growth rate is given by

χ2GRðΨα; αÞ

¼
X18
i¼1

�
fobsðziÞσobs8 ðziÞ − fcalðzi;Ψα; αÞσcal8 ðzi;Ψα; αÞ

σGR8;i

�
2

;

ð80Þ

where fobsðziÞσobs8 ðziÞ and fcalðzi;Ψα; αÞσcal8 ðzi;Ψα; αÞ are
the observed and calculated values, respectively, and σGR8;i is
the uncertainty in the observed value. The observed data
points (numbered i ¼ 1 to 18) are taken from the summary
in Ref. [83] and are shown in Fig. 5. Each original data
point is given in Refs. [91–104].
In addition, a joint chi-squared analysis is performed

using the two chi-squared functions. For the joint chi-
squared analysis, the combined chi-squared function χ2total
is defined by

χ2total ¼ χ2SN þ χ2GR: ð81Þ

For these analyses, Ψα and α are treated as free parameters.
Ψα is sampled in the range from 0 to 1 in steps of 0.005 and
α is sampled in the range from −2 to 3 in steps of 0.025. In
the present study, α ¼ 2 − ϵ is sampled instead of α ¼ 2, to
avoid a division by zero, where ϵ ¼ 10−7. Also, Ψα ¼ 1 is
not sampled.
We now provide an overview of the observational and

thermodynamic constraints on the ΛðtÞ-Hα and BV-Hα

models. Figure 6 shows the contours of χ2SN and χ2GR in the
ðΨα;αÞ plane. In addition, the boundary of S̈BH ¼ 0 for
ã ¼ 1 and 10 shown in Fig. 1 is plotted again in this figure.
First, we focus on the contours of χ2SN for the supernovae,
which is related to the background evolution of the uni-
verse. Small-χ2SN regions corresponding to χ2SN < 640 are
displayed in Fig. 6. The contours of χ2SN for the two models
are the same because the background evolution for both
models is equal. The region surrounded by the contours
indicates a favored region. For χ2SN, Ψα ≈ 0.4–0.7 is likely
favored. (We note that α > 2 should not satisfy an initially
decelerating and then accelerating universe, as examined
in Ref. [64].)
Next, we focus on the contours of χ2GN for the growth

rate, which is related to density perturbations. Small-χ2GR
regions corresponding to χ2GR < 80 are displayed in Fig. 6.
The regions surrounded by contours for the two models are
different from each other. For the ΛðtÞ-Hα model, Ψα ≈
0.1–1 is likely favored [Fig. 6(a)]. In contrast, for the
BV-Hα model, a low-Ψα region, specifically Ψα ≈ 0.1–0.2,
is likely favored [Fig. 6(b)]. In particular, for the ΛðtÞ-Hα

model, the regions surrounded by contours of χ2GR and χ2SN
partially overlap each other [Fig. 6(a)]. However, for the

FIG. 6. Contours of χ2SN for supernovae and χ2GR for the growth rate in the ðΨα; αÞ plane. (a) ΛðtÞ-Hα model. (b) BV-Hα model. The
color scale bars for χ2SN and χ2GR are given at the upper and lower sides, respectively. Small-χ2SN regions (χ2SN < 640) and small-χ2GR
regions (χ2GR < 80) are displayed. The boundary of S̈BH ¼ 0 for ã ¼ 1 and 10 is plotted from Fig. 1. The arrow on each boundary
indicates a region that satisfies the maximization of the entropy, that is, S̈BH < 0. The contours of χ2SN and the boundary of S̈BH ¼ 0 in (a)
are the same as those in (b). The x’s mark the location of the minimum value of each chi-squared function. The minimum values are
summarized in Table I.
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BV-Hα model, the contours of χ2GR and χ2SN do not overlap
[Fig. 6(b)]. Accordingly, the ΛðtÞ-Hα model is expected to
agree more closely with the combined observation data,
compared with the BV-Hα model. In addition, we discuss
thermodynamic constraints on the two models. As shown in
Fig. 6(a), for the ΛðtÞ-Hα model, the above-mentioned
overlapped region currently satisfies S̈BH < 0, that is, ã ¼ 1.
In contrast, for the BV-Hα model, the region surrounded
by the χ2GN contours does not currently satisfy S̈BH < 0

[Fig. 6(b)]. These results imply that the ΛðtÞ-Hα model
should agree with observations and satisfy the thermody-
namic constraints. That is, the ΛðtÞ-Hα model for a non-
dissipative universe is expected to be favored. To confirm this
expectation, we examine a combined chi-squared function
χ2total, which is calculated from Eq. (81).
Figure 7 shows contours of χ2total in the ðΨα; αÞ plane.

Small-χ2total regions corresponding to χ2total < 900 are dis-
played in this figure. The region surrounded by contours for
the ΛðtÞ-Hα model is wide in comparison with that for the
BV-Hα model. In addition, the minimum value of χ2total for
the ΛðtÞ-Hα model is smaller than that for the BV-Hα

model. The minimum value is summarized in Table I. (An
overview of the constraints is examined here; therefore, the
best-fit value is not discussed.)
As shown in Fig. 7(b), the region surrounded by contours

for the BV-Hα model does not satisfy S̈BH < 0 for both
ã ¼ 1 and 10. In fact, even in the last stage, the region for the

BV-Hα model does not satisfy S̈BH < 0 because the region is
outside α < 2. In contrast, most of the region surrounded by
contours for the ΛðtÞ-Hα model currently satisfies S̈BH < 0,
especially for small values of jαj, as shown in Fig. 7(a).
Accordingly, the ΛðtÞ-Hα model in this region should
be favored over the BV-Hα model. The small jαj region
includes a point ðΨα; αÞ ¼ ð0.685; 0Þ, which corresponds to
the standard ΛCDM model [Fig. 7(a)]. (The location for
χ2total;min slightly deviates from the point. The small jαjmaybe
related to a weak entanglement of quantum fields between
the inside and outside of the horizon.)
Finally, a joint likelihood analysis is performed. For the

joint likelihood analysis, a combined likelihood function
Ltotal is defined by [48]

Ltotal ¼ LSN × LGR; ð82Þ

where LSN and LGR are given by

LSN ∝ exp

�
−χ2SN
2

�
and LGR ∝ exp

�
−χ2GR
2

�
: ð83Þ

In this study, Eq. (82) is normalized by the maximum value
of Ltotal, namely, Ltotal;max. The normalized Ltotal for the
ΛðtÞ-Hα and BV-Hα models can be calculated from the
results shown in Figs. 7(a) and 7(b), respectively. Using the
normalized Ltotal, the contours of the 1σ, 2σ, and 3σ

FIG. 7. Contours of χ2total in the ðΨα; αÞ plane. (a) ΛðtÞ-Hα model. (b) BV-Hα model. Small-χ2total regions ðχ2total < 900Þ are displayed.
The boundary of S̈BH ¼ 0 shown in Fig. 6 is also plotted. For the boundary, see the caption of Fig. 6. In (a), the point labeled ΛCDM
represents ðΨα; αÞ ¼ ð0.685; 0Þ, corresponding to that model. The x’s mark the locations of the minimum value of χ2total. The minimum
values are summarized in Table I.

TABLE I. Minimum values of chi-squared functions for the ΛðtÞ-Hα and BV-Hα models. The location for the
minimum value, ðΨα; αÞ, is also shown. Ψα and α are sampled in steps of 0.005 and 0.025, respectively. The
locations for χ2SN;min and χ2GR;min are plotted in Fig. 6 and the location for χ2total;min is plotted in Fig. 7.

Model χ2SN;min ðΨα; αÞ χ2GR;min ðΨα; αÞ χ2total;min ðΨα; αÞ
ΛðtÞ-Hα 597.2 (0.415, 3.000) 11.5 (0.775, 0.000) 630.2 (0.580, 0.250)
BV-Hα 597.2 (0.415, 3.000) 11.7 (0.160, 0.900) 786.8 (0.310, 3.000)

EVOLUTION OF DISSIPATIVE AND NONDISSIPATIVE … PHYS. REV. D 103, 023534 (2021)

023534-13



confidence levels are plotted in Fig. 8. Here, 1σ, 2σ, and
3σ correspond to the normalized Ltotal ¼ 3.17 × 10−1,
4.60 × 10−2, and 2.73 × 10−3, respectively [15,48].
Accordingly, the region surrounded by the contour for
the 3σ is narrow, compared with the region for χ2total < 900

shown in Fig. 7. In particular, the region for the BV-Hα

model is very small, as shown in Fig. 8, although the
location for Ltotal;max is the same as that for χ2total;min. From
Fig. 8, we can confirm that the region surrounded by the
contour for the ΛðtÞ-Hα model currently satisfies S̈BH < 0,
whereas the region for the BV-Hα model does not.
This section examines the observational and thermody-

namic constraints on the ΛðtÞ-Hα and BV-Hα models.
Consequently, the ΛðtÞ-Hα model is found to be favored,
compared with the BV-Hα model considered here. In other
words, the nondissipative universe described by the
ΛðtÞ-Hα model is likely consistent with our Universe. It
should be noted that BV-Hα models for α ¼ 0, namely, the
BV-H0 models, agree with the observed supernova and
growth-rate data, if negative c2eff [40] and clustered matter
[41] can be assumed. However, these assumptions were not
used in this study, and detailed analyses are left for future
research.

V. CONCLUSIONS

Cosmological models can be categorized according to
how they handle energy dissipation: ΛðtÞ models are used

for a nondissipative universe, and BV models are used for a
dissipative universe. To clarify the difference between the
two universes, we have examined density perturbations
using two types of holographic cosmological models. A
power-law term proportional to Hα is applied to the ΛðtÞ
and BV models to systematically examine the two different
universes. In this study, an equivalent background evolu-
tion of the universe was set for both the ΛðtÞ-Hα and
BV-Hα models. Based on the background evolution, we
derived first-order density perturbations in the two models.
In the derived formulation, α is a free parameter and
therefore, the difference in density perturbations between
the two models can be systematically examined.
Using the formulation, we examined the evolution of the

universe in the ΛðtÞ-Hα and BV-Hα models. A growth rate
fðzÞ and a combination value fðzÞσ8ðzÞ for the ΛðtÞ-Hα

model are found to agree with observed data points when
Ψα ¼ 0.685 (which is equivalent to ΩΛ from the Planck
2018 results), in contrast with the BV-Hα model. In
addition, we systematically examined the observational
and thermodynamic constraints on the two models by using
chi-squared functions in the ðΨα; αÞ plane. Consequently,
the ΛðtÞ-Hα model for small jαj values was found to be
consistent with the combined observation data, that is, a
distance modulus μ and fðzÞσ8ðzÞ, and satisfies the
maximization of entropy on the horizon of the universe.
This result implies that a ΛðtÞ-Hα model similar to ΛCDM
models is favored, compared with the BV-Hα model
examined here. In other words, the nondissipative universe
described by models like the ΛðtÞ-Hα model is found to be
consistent with our Universe.
Through the present study, we have revealed fundamen-

tal properties of the two types of holographic cosmological
models in dissipative and nondissipative universes. Similar
models, including CCDMmodels for a dissipative universe
and ΛðtÞCDM models for a nondissipative universe,
have been separately examined. The present results should
promote the development of a deeper understanding of
these cosmological models and bridge the gap between
them.
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APPENDIX: UNIFIED FORMULATION
FOR THE ΛðtÞ AND BV MODELS

In Sec. II B, first-order density perturbations in the ΛðtÞ
and BV models are separately presented. In this Appendix,
we review a unified formulation for the ΛðtÞ and BV
models using the neo-Newtonian approach proposed by
Lima et al. [72]. The unified formulation has been
examined previously [61] and should be suitable for

FIG. 8. Contours of the normalized Ltotal in the ðΨα; αÞ plane
for the ΛðtÞ-Hα and BV-Hα models. The contours of the 1σ, 2σ,
and 3σ confidence levels are plotted. The horizontal dashed line
represents α ¼ 2. The boundary of S̈BH ¼ 0, which is shown in
Figs. 6 and 7, is also plotted. For an explanation of this boundary,
see the caption of Fig. 6. The point labeled ΛCDM represents
ðΨα; αÞ ¼ ð0.685; 0Þ for that model. The x within the contours
marks the location for Ltotal;max, which is equivalent to that for
χ2total;min shown in Fig. 7 and Table I. Note that the region
surrounded by contours for the BV-Hα model is very small (see
the text for further discussion).
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describing density perturbations in both models system-
atically. We review the unified formulation in accordance
with the previous work [61]. In this Appendix, general
driving terms for the two models, namely, fΛðtÞ and hBðtÞ,
are considered without using a power-law term.
In this study, the Friedmann, acceleration, and continuity

equations are given by Eqs. (1), (2), and (3), respectively. In
a matter-dominated universe, the continuity equation for a
unified formulation can be written as [61]

_ρþ 3Hρ ¼ Uρ; ðA1Þ

where U is given by

U ¼
�
Q ðΛðtÞmodelÞ;
Γ ðBVmodelÞ: ðA2Þ

Q [Eq. (11)] and Γ [Eq. (21)] are written as

Q ¼ −
3

8πG

_fΛðtÞ
ρ

; ðA3Þ

Γ ¼ 3

4πG
HhBðtÞ

ρ
: ðA4Þ

Basic hydrodynamical equations for the neo-Newtonian
approach are given in Refs. [40,72]. In fact, for the
BV model, the hydrodynamical equations are used in
Sec. II B 2. For the ΛðtÞ model, we use the fundamental
equations examined by Arcuri and Waga [73]. Con-
sequently, the basic hydrodynamical equations for the
unified formulation can be written as [61]�∂u

∂t
�

r
þ ðu · ∇rÞu ¼ −∇rΦ −

∇rpc

ρþ pc
c2
; ðA5Þ

�∂ρ
∂t
�

r
þ∇r · ðρuÞ þ Θ ¼ 0; ðA6Þ

∇2
rΦ ¼ 4πGðρþ lÞ; ðA7Þ

where u is the velocity of a fluid element of volume and Φ
is the gravitational potential. For the unified formulation, Θ
and l are given as [61]

Θ ¼
(
−Qρ ¼ 3_fΛðtÞ

8πG ðΛðtÞmodelÞ;
pc
c2 ∇r · u ðBVmodelÞ;

ðA8Þ

l ¼
(
− 3fΛðtÞ

4πG ðΛðtÞmodelÞ;
3pc
c2 ðBVmodelÞ:

ðA9Þ

Equations (A5), (A6), and (A7) are the Euler, continuity,
and Poisson equations, respectively. Using the basic hydro-
dynamical equations, we can calculate the time evolution
equation for the matter density contrast δ. Setting c ¼ 1,
using the linear approximation, and neglecting extra terms,
we can write the time evolution equation for δ as [61]

δ̈þ
�
Hð2þ 3c2eff − 3uÞ − _wc

1þ wc

�
_δ

þ
�
3ð _H þ 2H2Þðc2eff − uÞ

þ 3H

�
_c2eff − _u −

_wc

1þ wc
ðc2eff − uÞ

�

− 4πGρð1þ wcÞð1þ 3c2effÞ þ
k2c2eff
a2

�
δ ¼ 0; ðA10Þ

where u, wc, and c2eff are defined by

u≡ −
U
3H

¼
(
− Q

3H ðΛðtÞmodelÞ;
− Γ

3H ð¼ wcÞ ðBVmodelÞ; ðA11Þ

wc ≡ −
Γ
3H

¼
(
0 ðΛðtÞmodelÞ;
− Γ

3H ðBVmodelÞ; ðA12Þ

c2eff ≡ δpc

δρ
¼

(
0 ðΛðtÞmodelÞ;
δpc
δρ ðBVmodelÞ: ðA13Þ

In Eq. (A10), ρ represents ρ̄, that is, a homogenous and
isotropic solution for the unperturbed equations. The
derivation of the above equation is essentially the same
as that shown by Jesus et al. [40]. Note that they assumed
c2eff ¼ c2effðtÞ and that the spatial dependence of δ is
proportional to eik·x, where the comoving coordinates x
are given by x ¼ r=a using the proper coordinates r [40].
Equation (A10) is the unified equation for the ΛðtÞ and

BV models. This equation reduces to Eq. (10) in the ΛðtÞ
model. In the BV model, Eq. (A10) reduces to Eq. (23), as
examined in Ref. [61].
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