
 

Dynamic properties of cyclic cosmologies

Petar Pavlović1,* and Marko Sossich2,†
1Department of Physics, Ramashna Mission Vivekananda Educational and Research Institute,

Belur Math 711202, West Bengal, India
2University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Physics,

Unska 3, 10 000 Zagreb, Croatia

(Received 23 September 2020; accepted 17 December 2020; published 22 January 2021)

Our first goal in this work is to study general and model-independent properties of cyclic cosmologies.
The large number of studies of bouncing cosmologies and different cyclic scenarios published recently call
for a proper understanding of the universal properties of cyclic models. We thus first review and further
elaborate the common physical and geometrical properties of various classes of cyclic models and then
discuss how the cyclic Universe can be treated as a dynamic system. We then discuss how two theorems
from dynamic systems analysis can be used to ensure the existence of cyclic cosmological solutions under
certain conditions on the field equations. After this we proceed toward our second goal which is the
application of the obtained results to different frameworks of modified gravity theories: fðRÞ gravity,
dynamic dark energy, and fðTÞ gravity. We discuss the general requirements for the existence of cyclic
solutions in these theories and also obtain various examples of cyclic cosmologies, while discussing their
basic properties.
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I. INTRODUCTION

The idea that our Universe had an origin in the
primordial singularity, usually denoted as the big bang,
is widely accepted both in the physical community,
philosophy of science, and popular science [1–5].
However, this claim is lacking any empirical confirmation
as well as any convincing theoretical justification. It is true
that various independent observations, such as the abun-
dances of chemical elements, growth of cosmological
perturbations, and microwave background measurements
[6] are all consistent with the idea that the Universe evolved
from an earlier state characterized by high temperatures and
densities. However, such picture, also commonly called
“the big bang hypothesis”—an ambiguity which further
supports the confusion over the scientifically established
opinion regarding the origin of the Universe—is in no way
related to the question of the beginning of the Universe.
This is due to the fact that the Universe can be evolving and
changing its temperature, composition, and properties even
if it has no beginning or end. In the same sense, the fact that
the Universe is expanding does not necessarily imply that
the Universe needed to emerge from a single point, since it
could as well be the case that the current state of expansion
emerged from some earlier state of contraction, and not
from a singular beginning. On the other hand, a stronger

reason for the physical existence of the big bang singularity
is given by the singularity theorems of Hawking, which
show that, under the assumption of the validity of general
relativity and the validity of the usual energy conditions for
the matter energy, there will always be geodesics which
are geodesically incomplete; i.e., singularities necessarily
need to appear on such spacetimes [7–9]. But any direct
application of these results to the early physics of our
Universe is not justified, since it is precisely in this
regime that we should assume that Einstein’s general
relativity will become invalid due to the quantum gravity
effects. In fact, it is a well-known result that even some very
simple modifications of the field equations of general
relativity—which could effectively model the quantum
corrections—lead to nonsingular solutions in which the
big bang is replaced with a bounce: a transition from an
earlier phase of contraction to the expansion of the
Universe [10–21]. Therefore, everything that can actually
be stated at this point is only that the early history of the
Universe is still not known and that there are no actual
reasons to assume that the Universe originated from a
primordial singularity. Furthermore, such a sudden creation
of something from nothingness would lead to familiar
philosophical problems of creation ex nihilo, and it would
imply that the Universe essentially cannot be described by
physics—contrary to what has been proven by the develop-
ment of science so far—since at that point all the equations
diverge. There are further reasons to suspect that Einstein’s
general relativity might perhaps not be a proper description
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of gravity even at energies much smaller than the ones
characteristic of the Planck scale. The problem of the
missing mass and missing energy density with negative
pressure, which is stressed by many independent astro-
physical and cosmological observations [22–27], is still
neither solved nor properly understood after many decades
of dedicated research. It is possible that these effects are
not caused by some yet unobserved forms of matter and
energy (called “dark matter” and “dark energy”), but are
the consequence of incomplete validity of the equations of
general relativity.
For the stated reasons it is necessary to discuss physi-

cally viable models of the Universe which are free from the
initial singularity, even if the proper theory of quantum
gravity is still not known. In this respect it is natural to put a
special emphasis on such theories which represent math-
ematical generalizations of general relativity, while keeping
its fundamental physical principles preserved—for such
theories represent the most conservative first steps toward
the new theory of gravity, and at the same time enable us to
effectively introduce quantum corrections. We have already
stated that different theories of such type can lead to a
cosmological bounce. However, the bouncing picture does
not describe the full evolution of the Universe, but just its
transition from contraction to expansion—and the question
remains, how did the Universe reach that state of contrac-
tion before the bounce? To say that the Universe simply
started its existence and contraction from a special value of
the scale factor leads to similar problems as the big bang
idea, and this does not answer the question of which type of
mechanism would actually cause its beginning in such a
state. These issues are simply solved in the cyclic cosmol-
ogy framework. In this paradigm, after the expanding phase
which follows the bounce, the Universe undergoes a
turnaround—a transition from the expansion to contraction,
subsequently leading to a new bounce and beginning of a
new cycle. Since it is now known that the Universe is
dynamic, the only consistent alternative to the idea of the
Universe that had a beginning is the eternal Universe which
undergoes an infinite number of phases of contraction and
expansion. This type of cosmological scenario has many
logical and physical advantages since it gives the natural
and continuous evolution of the Universe without singu-
larities, while at the same time solving additional problems
such as the horizon problem (since the correlation between
spacetime points can now be naturally established during
the previous contraction cycle), and even the magneto-
genesis problem, without any further assumptions and new
theoretical ingredients [28].
During the years many different models of cyclic

cosmology were developed [29–41]. We have also recently
proposed a rather general approach to cyclic cosmology
supported by the quantum inspired higher-order curvature
corrections to the standard Lagrangian of general relativity
[42]. The problem is that all of the models need to assume

some specific framework of modified/alternative theory of
gravity. Moreover, many of them often use additional
theoretical constructions to support the cyclical evolution
(such as scalar fields and their couplings with gravitational
sector, specific functional forms etc.) which mostly do not
have any other theoretical justification or motivation, not to
mention the empirical evidence. Thus the speculative
assumptions taken in particular approaches considerably
differ among each other, and the results obtained are
therefore quite specific and to a high degree dependent
on a chosen framework. Since we still do not know which,
if any, of the alternative gravity models is preferred by
nature, it is very difficult to say which of the cyclic
scenarios would properly describe the Universe in the case
if it is indeed cyclic.
The aim of this work will therefore be, for the first time

according to our knowledge, to discuss general and model-
independent properties of cyclic cosmologies. After pro-
posing a simple mathematical framework suitable to
describe different cyclic cosmological solutions, we obtain
general results characterizing dynamic properties of cyclic
cosmologies and then apply the obtained results to some
concrete examples. We will particularly focus on more
general frameworks, which can furthermore be motivated
as effective approaches to quantum gravity—such as
dynamic dark energy, fðRÞ, and fðTÞ gravity. We show
that cyclic solutions naturally appear in all such theories of
modified gravity if the certain mathematical conditions—
depending on the details of the field equations of the
considered theory—are satisfied.
This paper is organized as follows: In Sec. II we analyze

the general properties of cyclic cosmologies—first by
discussing the general geometrical properties of cyclic
models in Sec. II A, and then approaching the cyclic
Universe as a dynamic system in Sec. II B. In this
subsection we introduce two general claims regarding
the existence of cyclic solutions which are coming as a
consequence of two important theorems regarding the
existence of nonlinear centers. In Sec. III we study the
application of the results obtained in Sec. II to the case of
modified fðRÞ gravity, where we obtain some general
properties of oscillatory solutions and also consider the
specific example obtained by a reconstruction procedure. In
Sec. IV we discuss cyclic cosmological solutions that can
be obtained in certain classes of dynamic dark energy
models. Various necessary conditions for the realization of
cyclic cosmologies in this context are discussed, as well as
some concrete realizations. In Sec. V we investigate the
conditions for the realization of cyclic cosmologies in fðTÞ
gravity. We show that cyclic solutions are possible due to
the double-valued nature of the dependence between the
scale factor and the Hubble parameter and analyze their
dynamic properties in detail. In Sec. VI we briefly discuss
nonperiodic oscillating cosmologies and we finally con-
clude in Sec. VII.

PETAR PAVLOVIĆ and MARKO SOSSICH PHYS. REV. D 103, 023529 (2021)

023529-2



II. GENERAL PROPERTIES OF CYCLIC
COSMOLOGIES

A. Spacetime geometry of cyclic cosmologies

In order to physically describe the eternal oscillating
Universe we assume the standard picture of the Universe as
homogeneous and isotropic and given by the Friedmann-
Lemaître-Robertson-Walker (FLRW) line element in
spherical coordinates:

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; ð1Þ

where aðtÞ is the scale factor and k ¼ �1 describes the
spatial curvature, with k ¼ þ1 corresponding to positive
spatial curvature, k ¼ −1 negative curvature, and k ¼ 0
leading to local flat space. In this work we concentrate on
the flat Universe, k ¼ 0, since it appears to be favored by
observations during the current epoch [43]. Note that the
observations in principle do not exclude the possibility that
the Universe was not flat during the previous cycle.
However, we will—for simplicity and to avoid additional
complications of the considered models—keep the
assumption of the Universe which is flat during its complete
evolution. The content of the Universe is described as a
perfect fluid with the energy-momentum tensor:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð2Þ

where ρ is the density, p is the pressure, and uμ is the four-
velocity which satisfies uμuμ ¼ −1. It is moreover assumed
that the pressures and densities are related by the equation-
of-state parameter w, such that p ¼ wρ. The energy momen-
tum conservation

∇μTμν ¼ 0 ð3Þ

gives the equation for the change in the energy density

_ρþ 3HðtÞðρþ pÞ ¼ 0; ð4Þ

where the dot is the time derivative and HðtÞ ¼ _a
a is the

Hubble parameter.
To study the evolution of cyclic models in general we

propose to use the configuration space consisting of the
following cosmological parameters: a giving the evolution
of the physical distance between spatial points in the
dynamic Universe, H describing the rate of expansion or
contraction, and the Ricci curvature scalar R describing the
curvature of the spacetime. The value of R also describes
the physical regime under study, since for high curvatures
corresponding to the strong gravitational fields we expect
that the proper theory of gravity departs from Einstein’s
general relativity due to quantum effects. We demand that
in cyclic models these parameters containing the full

geometrical description of the Universe always remain
finite and well defined. For this to be possible the
field equations of general relativity Rμν − ð1=2ÞRgμν ¼
8πGTμν þ λgμν (with λ being the cosmological constant)
need to be modified for strong gravitational fields as the
result of quantum gravity corrections. From (1) it then
follows that the equations describing the Universe as an
autonomous dynamic system in the space of parameters
a, R, H are

_a ¼ aH; ð5Þ

_H ¼ 1

6
½R − 12H2�; ð6Þ

_R ¼ gða;H; RÞ; ð7Þ

where gða;H; RÞ is some function given by the concrete
theoretical framework in which the field equations of
general relativity are modified. The only restrictive con-
dition we take is that the alternative theory of gravity leads
to the equation of the form (7), which will indeed be
satisfied for a large group of theories. In order that all
quantities stay well defined in the cyclic Universe, the
scale factor needs to change from aðtÞ ¼ amin > 0 to
aðtÞ ¼ amax, while the trajectories representing the evolu-
tion of the system need to be periodic—and thus given by
closed orbits in the configuration space. An example of
such cyclic Universe is given in Fig. 1.
The two essential points in the cyclic cosmologies are

the bounce where the contraction of the later stage of the
previous cycle is turned into the expansion in the new cycle,
and the turnaround where the Universe enters from the

FIG. 1. An example of the cyclic Universe in the configuration
space given by the scale factor, the Hubble parameter, and the
Ricci curvature scalar. The arrows show the direction of the
evolution of the Universe. The dotted line, corresponding to
H ¼ 0, connects the bounce and the turnaround point of the
cosmological evolution.
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expanding to the contracting phase. Both of the points are
characterized by H ¼ 0. While in arbitrary cyclic cosmol-
ogies the number of such points, corresponding to tran-
sitions between expansion and contractions, could be
arbitrarily high, we restrict ourselves to the simplest case
where there is exactly one bouncing and exactly one
turnaround point. In this case, the line connecting those
points and corresponding to H ¼ 0 (the dotted line in
Fig. 1) defines a plane which separates all the points on the
trajectory in this configuration space to the ones corre-
sponding to either the expanding (H > 0) or contracting
(H < 0) phase. It then also follows that the bouncing point
corresponds to amin, while the turnaround point corre-
sponds to amax. Since in Einstein’s general relativity the
bounce is replaced by a curvature singularity it is natural to
infer that in cyclic models the value of the Ricci scalar
would approach its maximum around the bounce. Since at
the bounce _H > 0 from (6) it follows that this value needs
to be positive. If the maximum of R is indeed reached
during the bounce then it also follows that at the bounce
point Ḧ ¼ 0. The evolution of the cyclic Universe in
general looks as follows. Every new cycle in the infinite
history of the Universe begins from a high-curvature phase
of the cosmological bounce at which R ¼ Rbounce > 0,
H ¼ 0, and a ¼ amin. The bounce is then followed by a
phase in which _H > 0, _a > 0, and _R < 0. This phase, like
the bounce itself, needs to be based on the physics beyond
general relativity and it corresponds to the violation of the
effective null energy condition (while the null energy
condition for the fluid components stays satisfied due to
the higher-order corrections to standard general relativity).
The viable models of cyclic cosmology also need to
subsequently lead to such evolution which will be close
to the one predicted by the (Λ) cold dark matter (ΛCDM)
model in the phases of radiation domination, matter
domination, and dark energy domination. After those
phases the Universe needs to enter the phase characterized
by _H < 0 and approach the turnaround point which is
determined by H ¼ 0, a ¼ amax, and R ¼ Rturnaround < 0,
where the last condition follows from Eq. (6). Note that the
condition _H < 0 also characterizes the previous ΛCDM
phase, but unlike this previous phase, here we do not have
any observational constraints on the cosmological evolu-
tion, so the possible evolution of the Universe approaching
the turnaround point stays more general and subject only to
the condition of the decreasing Hubble parameter. It is well
known that the ΛCDM paradigm, which introduces the
small positive constant cosmological term, gives a satis-
factory description of the current accelerated expansion of
the Universe. We can therefore assume that quantum
gravity corrections of the lowest order can, at least at this
scale, be effectively described as an effective cosmological
term. However, such effective cosmological term intro-
duced in the setting of modified gravity [44] or based on
the field theory considerations [45] will no longer be a

constant, but will become a dynamic quantity. This will in
general imply the change of the standard equation of
state for the cosmological constant pΛ ¼ −ρΛ, so that
the equation-of-state parameter will also in general become
dynamic. If this approach is valid at least in the low-
curvature regime, then the corrected first Friedmann
equation can be written as H2ðtÞ ¼ ð8πG=3ÞðρðtÞrad þ
ρðtÞmatÞ þ ΛeffectiveðtÞ. It then follows that the necessary
condition for the turnaround is that the cosmological term
changes from a small positive value, to a small negative
value at the turnaround time tr given by

λeffectiveðt ¼ trÞ ¼ −
8πG
3

ðρ0rada−4max þ ρ0mata
−3
matÞ; ð8Þ

where ρ0rad and ρ0mat are the values of radiation and matter
density today, and we have also assumed that the effective
dark energy is not interacting with the energy-matter
sector, so that the energy-momentum tensor for the matter
and radiation stays conserved. The problem of the
phenomenological dynamics of the cosmological term,
from the perspective of cyclic cosmology, was discussed
in more detail in [42]. Although the question about the
dark energy dynamics is still unsolved from the point of
view of current observations, the recent results suggest
that the evolving dark energy does not contradict the
measurements and even seems to be slightly preferred
with respect to the ΛCDM model [46–50]. After the
turnaround, the Universe enters the contraction phase of
its evolution H < 0, with the curvature scalar which
eventually increases and approaches its maximal value,
until the bounce is again reached and the new cycle
begins. This general pattern of cyclic cosmological
evolution is depicted in Fig. 2.

B. Cyclic Universe as a dynamic system

The fact that the system (5)–(7) represents a set of
autonomous differential equations enables us to use the
methods of dynamic systems in order to understand
the qualitative and global properties of its solutions. The
application of dynamical systems methods in cosmology
was rich and diverse in the past decades [51–62], but
according to our knowledge there was no work focusing on
the analysis of cyclic cosmologies from this perspective.
The central point of the dynamical system approach is to
determine the fixed points of the considered system of
differential equations, as well as their stability. The autono-
mous system of differential equations has the form

_x ¼ fðxÞ: ð9Þ

We can see that the system which we are considering,
(5)–(7), has the appropriate form with
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x ¼

0
B@

a

H

R

1
CA ð10Þ

and

fðxÞ ¼

0
BB@

aH
1
6
ðR − 12H2Þ
gða;H; RÞ

1
CCA: ð11Þ

The system (5)–(7) is very suitable for this approach in
light of cyclic cosmology, since from demanding that
aðtÞ ≠ 0, as discussed previously, it is very easy to see
that the fixed point is given by H� ¼ 0 and R� ¼ 0, while
the a component of the fixed point is determined by the
condition gða�; 0; 0Þ ¼ 0, which needs to lead to the
solution such that amin < a� < amax. The most common
procedure for determining the type and stability of a fixed
point is the linear stability theory in which the system is
linearized around its fixed point. Therefore, in the expan-
sion of a function defining a dynamical system _x ¼ fðxÞ,
we consider only the first partial derivatives:

fiðxÞ ≈ fiðx�Þ þ
Xn
j¼1

∂fiðx�Þ
∂xj ðx − x�Þ; ð12Þ

and the stability of fixed points is thus encoded in the

eigenvalues of the stability matrix J ¼ ∂fiðx�Þ∂xj evaluated at

the fixed points. In our case the stability matrix is given by

J ¼

0
BB@

H a 0

0 −12H 1
6

∂gða;H;RÞ
∂a

∂gða;H;RÞ
∂H

∂gða;H;RÞ
∂R

1
CCA: ð13Þ

Those eigenvalues can be real or complex, and assuming
that their real parts are all different from zero the linear
stability theory will be sufficient to determine the stability
of fixed points, according to Hartman-Grobman theorem.
In this case, the fixed points can be classified on stable
nodes (if all of the eigenvalues have negative real parts),
unstable nodes (if all of the eigenvalues have positive real
parts), and saddle points (if some, but not all, eigenvalues
have positive real values, and others have negative real
values) [63]. However, since we are discussing periodic
cyclic cosmological solutions, all of these mentioned types
of fixed points are not of interest to us, because their
eigenvalues correspond to an attraction or repulsion from a
considered fixed point along some direction in the phase
space. On the other hand, we are interested in very specific
types of fixed points which are corresponding to closed
orbits and are therefore neutrally stable in the sense that
they neither attract nor repel nearby trajectories. Such
fixed points are known as elliptic fixed points or centers
and they correspond to purely imaginary eigenvalues [63].
Therefore, the requirement that the system (5)–(7) leads to
cyclic cosmological solutions, corresponds to the condition

det½J − λ1�

¼

2
6664

−λ a� 0

0 −λ 1
6

∂gða;H;RÞ
∂a

���
a�;0;0

∂gða;H;RÞ
∂H

���
a�;0;0

∂gða;H;RÞ
∂R

���
a�;0;0

− λ

3
7775

¼ 0; ð14Þ

where λ needs to be imaginary. The difficulty here,
however, arises from the fact that the linear stability theory
is inconclusive when it comes to the analysis of elliptic
fixed points. Namely, such fixed points have vanishing real
parts and are therefore violating the conditions of the
Hartman-Grobman theorem. This can be understood from
the fact that elliptic fixed points or centers are not stable
with respect to higher-order nonlinear corrections, which
were neglected in (12), and which can perturb them into
other types of fixed points. The presented condition is thus
not sufficient and linear stability analysis on its own can
lead to wrong conclusions. Further considerations are
therefore necessary in order to discuss the conditions for
the realization of cyclic cosmologies. They are given by
two important theorems related to our cosmological
dynamical system (5)–(7).
We state the following general claim (Claim 1): Suppose

that some gravity theory defining a function gða;H;RÞ in

FIG. 2. The evolution phases of viable cyclic cosmologies.
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the equations for cosmological dynamics and leading to a
continuously differentiable system (5)–(7) has the follow-
ing symmetry gða;H;RÞ ¼ −gða;−H;RÞ. If a�, H� ¼ 0,
and R� ¼ 0 is a center determined by the linear stability
theory [i.e., given by the Eq. (14)] then there exists a
nonvanishing neighborhood around this point such that
all trajectories inside of it will correspond to symmetric
cyclic cosmological solutions. To prove this claim we first
note that, taking the stated assumption on the function
gða;H; RÞ, the system (5)–(7) is invariant under time
inversion t → −t if also H → −H and R → R, while a
can by definition only stay positive. Such solutions are
symmetric cyclic solutions with respect to the origin we
choose to be defined by the bounce, tbounce ¼ 0. Therefore,
the system (5)–(7) is a reversible system in the sense that it
has a reversing symmetry under time inversion. For
reversible dynamic systems the existence of linear centers
is sufficient to guarantee the stability of the center with
respect to nonlinear corrections, and therefore the existence
of closed orbits around the fixed point [64,65].
Such usage of the theorem for nonlinear centers of

reversible dynamic systems is obviously restricted to
symmetric cyclic cosmologies. From the point of view
of physically realistic cyclic models this requirement may
be problematic, since symmetric models can lead to
problems of instabilities and growing vector perturbations
during the contracting phase [66,67], and nonsymmetric
models can be used to solve additional cosmological
problems [28]. Therefore it is of interest to also have some
other general criteria for the existence of cyclic solutions,
not restricted to symmetric cosmological solutions. This
can be achieved by using the theorem on the existence of
closed orbits around the extreme point of the conserved
quantity of the dynamical system.
Claim 2: Let us assume that the modified Friedmann

equation in some theory of gravity, with the matter content
of the Universe given by n different components of energy
density ρi associated with the equation-of-state parameter
for each component given by wi, takes the form
Fða;H;RÞ ¼ P

n
i ρiðtÞ. Then the conserved quantity is

given by

Iða;H; RÞ ¼
Xn
i¼1

Fða;H;RÞa3ð1þwiÞ

−
Xn
ζ¼1

� Xn
i¼1;ζ≠i

ρ0i a
−3ðwi−wζÞ

�
: ð15Þ

If Iða;H; RÞ has a strict local extremum at the fixed point
given by a�, H� ¼ 0, and R� ¼ 0 satisfying (14), then
there exists a nonvanishing neighborhood around this
point such that all trajectories inside of it will correspond
to symmetric cyclic cosmological solutions. Note that in
the case of the Universe filled only with dust and
radiation, the conserved quantity is simply given by

Iða;H;RÞ¼Fða;H;RÞða4þa3Þ−ρ0ma−ρ0r=a. To prove
this claim we note that by (4), by using p ¼ wρ, the
quantity Iða;H; RÞ constructed as the sum of all contri-
butions corresponding to energy densities at a given
moment ρ0i will stay conserved on cosmological trajecto-
ries in the configuration space. Therefore, Iða;H; RÞ is a
first integral of the autonomous system (5)–(7) in the
sense that it is constant on solutions of this system. Now
we can use the dynamical systems theorem which guar-
antees that if a point ða�; H�; R�Þ is a strict local extremum
of a first integral of the autonomous system of differential
equations then this point is a stable equilibrium point of
the system, and thus the center of this system will be
stable [65].
The importance of this claim also comes from the fact

that, even in the case where linear theory does not predict a
center, it can be determined that the fixed point is stable
if the considered integral Iða;H; RÞ has a strict local
extremum there. This is of general interest for dynamical
analysis of cosmological equations, as the discussion on the
nature of fixed points in three or more dimensions with
vanishing real parts of eigenvalues can otherwise become
quite complex.
As there are many possible trajectories in the phase

space, corresponding to different gravitational theories and
initial conditions, it is of interest to somehow compare the
physically relevant quantities characterizing specific mod-
els. One set of such parameters is given by the characteristic
values of coordinates during the bounce (amin,Hbounce ¼ 0,
Rbounce) and turnaround (amax, Htr ¼ 0, Rtr). This type of
information is of course only local and describes only the
two most important points of cosmological evolution. A
global type of characterization of various cyclic cosmol-
ogies is given by the integral in the configuration space,
which is proportional to the period of the cyclic Universe

Γ ¼
Z

amax

amin

Z
Hmax

Hmin

Z
Rmax

Rmin

dadHdR: ð16Þ

III. CYCLIC COSMOLOGIES IN f ðRÞ MODIFIED
THEORY OF GRAVITY

A. A short review of f ðRÞ gravity
One of the first attempts to modify Einstein’s general

relativity was simply to change the Einstein-Hilbert action
to a new more general action as a function of curvature
preserving all the symmetries of a viable general relativity.
The action is given by [68]

S ¼ c4

16πG

Z ffiffiffiffiffiffi
−g

p
fðRÞd4x; ð17Þ

where the Ricci scalar is replaced by some general function,
R → fðRÞ. It was proved that such a theory can be
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renormalized [69–71] from a perspective of a standard
quantum field theory machinery. Another success of fðRÞ
theory was recognized by Starobinsky [72,73] who used it
as a model of inflation in the early stage of the Universe
leading to an effective cosmological constant. In the field of
cosmology the fðRÞ gravity is a very successful theory
which provides a natural explanation for dark energy, dark
matter, cosmic bounce etc., without introducing some new
unknown fields, exotic matter and other speculative notions
[74–76], a brilliant historical review can be found in [77].
The viability of the theory has also been discussed by
several Solar System tests and constraints on the theory
[78,79]. One of the first drawbacks was the discovery of the
Ostrogradsky instabilities and ghost degrees of freedom as
the theory is based on the fourth-order differential equation.
Moreover, to get the unique solution of the Cauchy problem
is extremely difficult [80]. Recently, it was discovered that
with the Lagrange multiplier constraint the theory was
ghost-free [81] and in a nonlocal fðRÞ gravity theory [82]
was found the same conclusion. In the metric fðRÞ the
following conditions must be satisfied so that the theory
becomes free of Ostrogradsky instabilities [83] and ghost-
free [84,85]:

dfðRÞ
dR

> 0;
d2fðRÞ
dR2

≥ 0: ð18Þ

From our point of view we will treat the fðRÞ theory as an
effective toy theory of a quantum theory of gravity which
has yet to be established. We will work in a so-called metric
formalism where the equations of motion are obtained by
varying the action with respect to the metric. By doing so
one obtains the following field equation [74]:

f0ðRÞRμν −
1

2
fðRÞgμν − ð∇μ∇ν − gμν□Þf0ðRÞ ¼ κTμν;

ð19Þ

where κ ¼ 8πG=c4 and as usual the stress-energy tensor is
defined as

Tμν ≡ −2ffiffiffiffiffiffi−gp δSm
δgμν

; ð20Þ

where the prime denotes differentiation with respect to the
argument, ∇μ is the covariant derivative, and □≡∇μ∇μ.
Now turning to the cosmological setting we will use the
FLRWmetric (1) with k ¼ 0, so that the resulting equations
of motion are

3 _H þ 3H2 ¼ −
1

2f0
ðρþ 3pþ f − f0Rþ 3Hf00 _R

þ 3f000 _R2 þ 3f00R̈Þ; ð21Þ

3H2 ¼ 1

f0

�
ρþ 1

2
ðRf0 − fÞ − 3Hf00 _R

�
; ð22Þ

whereH ¼ _a=a is the Hubble parameter, the dot represents
derivative with respect to time, and f0 ¼ ∂f=∂R, f00 ¼
∂2f=∂R2, and f000 ¼ ∂3f=∂R3.

B. Cyclic solutions in f ðRÞ gravity
In order to study the dynamical properties of cyclic

solutions in fðRÞ gravity we should choose one of the
related equations of motion to define a function gða;H; RÞ
appearing in Eq. (7). It seems natural to use Eq. (22), but
the problem arises when one is dividing the whole equation
with 3Hf00 to get _R alone on the left side of the equation, as
H ¼ 0 is actually a turnaround point we are here interested
in. On the other hand, Eq. (21) does not suffer from this
feature, and simply by adding a new equation in the
dynamical analysis in order to take into account that
Eq. (21) is now containing the second time derivative of
the Ricci scalar, while adding a new degree of freedom L,
we get the new set of equations

_a ¼ aH; ð23Þ

_H ¼ 1

6
½R − 12H2�; ð24Þ

_R ¼ L; ð25Þ

_L ¼ R̈ ¼ hða;H;R; LÞ; ð26Þ

where L≡ _R by definition and

hða;H; R; LÞ ¼ 1

3f00
ð6f0H2 − ρ − 3pðρÞ − f

− 3Hf00L − 3f000L2Þ: ð27Þ

We are now ready to perform the linear stability analysis
with the assumption of the fluid equation of state in the
form pðρÞ ¼ wρ, by including the matter (w ¼ 0) and
the radiation (w ¼ 1=3) component of the ideal fluid. The
Jacobian J then reads

J − λ1

¼

0
BBB@

H − λ a 0 0

0 −4H − λ 1
6

0

0 0 −λ 1
∂hða;H;R;LÞ

∂a
∂hða;H;R;LÞ

∂H
∂hða;H;R;LÞ

∂R
∂hða;H;R;LÞ

∂L − λ

1
CCCA:

ð28Þ
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We require det½J − λ1� ¼ 0 elevated at the fixed point a ¼ a�, H� ¼ 0, R� ¼ 0, L� ¼ 0, and this gives us the equation

λ4 þ f00ðRÞð6a4λ2f0ðRÞ − 3aρm − 8ρrÞ − 6λ2f000ðRÞða4fðRÞ þ aρm þ 2ρrÞ
18a4f00ðRÞ2

����
f:point

¼ 0: ð29Þ

With f00ðRÞ ≠ 0, the solution of the eigenvalue problem is

λ21;2 ¼ λ20 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B2

p

36a4f00ð0Þ2 ð30Þ

where

λ20 ¼
1

6

�
2ρrf000ð0Þ
a�4f00ð0Þ2 þ

ρmf000ð0Þ
a�3f00ð0Þ2 þ

fð0Þf000ð0Þ
f00ð0Þ2 −

f0ð0Þ
f00ð0Þ

�
;

ð31Þ

A ¼ −72a�4f00ð0Þ2ð−3aρmf00ð0Þ − 8ρrf00ð0ÞÞ; ð32Þ

B ¼ −6a�4fð0Þf000ð0Þ þ 6a�4f0ð0Þf00ð0Þ
− 6aρmf000ð0Þ − 12ρrf000ð0Þ: ð33Þ

As discussed in Sec. II the linear stability theory is
inconclusive in determining the nature of fixed points,
since centers are not stable with respect to the effects of
nonlinear corrections. Thus, the linear stability analysis
needs to be further supported by reference to Claim 1 or
Claim 2 discussed in Sec. II in order to prove the existence

of nonlinear centers. Then using Claim 2 it follows that the
necessary condition ∇Iða;H; R; LÞ ¼ 0 around the fixed
point ða ¼ a�; H ¼ 0; R ¼ 0; L ¼ 0Þ in the case of dust
and radiation in fðRÞ gravity leads to

1

2
ð4a� þ 3Þa�2fð0Þ þ ρr

a�2
− ρm ¼ 0: ð34Þ

Here we have used the fact that the conserved integral is in
this case, of matter and radiation described by ideal fluid
in fðRÞ gravity given by (see the discussion under Claim 2
in Sec. II)

Iða;H;R;LÞ ¼
�
3H2f0 −

1

2
ðRf0 − fÞ þ 3Hf00L

�
ða4 þ a3Þ

− ρma− ρr=a: ð35Þ

In order to verify that the conserved integral at the
fixed point indeed has an extremal nature, one should in
principle also inspect the behavior of ∇2Iða;H; R; LÞ at
a ¼ a�; H ¼ 0; R ¼ 0; L ¼ 0. In the considered case ∇2I
is at the fixed point equal to

0
BBBBB@

− 2ρr
a�3 þ 3a�fð0Þð2a� þ 1Þ 0 0 0

0 6a�3ða� þ 1Þf0ð0Þ 0 3a�3ða� þ 1Þf00ð0Þ
0 0 − 1

2
a�3ða� þ 1Þf00ð0Þ 0

0 3a�3ða� þ 1Þf00ð0Þ 0 0

1
CCCCCA
: ð36Þ

1. Concrete numerical solutions
of the cyclic f ðRÞ model

As an example one could choose a specific fðRÞ and find
the corresponding eigenvalues. In the following sections we
will consider the polynomial form of the type

fðRÞ ¼ a1Rþ a2R2 þ a3R3 þ a4: ð37Þ

Such polynomial form is both interesting because of its
generality [since it represents the first terms in the Taylor
expansion of any fðRÞ function] and since such form of the
curvature correction to Einstein-Hilbert action will typi-
cally arise when quantum loop corrections coming from the
self-interaction of gravity are considered. First, we will

construct a numerical function of fðRÞ which will lead to a
cyclic universe. By doing so we will approximate this
solution by a series similar to (37) and perform a dynamical
analysis to check the viability and consistency of the two
methods. The most simple example is to start with the scale
factor as

aðtÞ ¼ 1

2Λ
ð1þ c sinð2ωtÞÞ; ð38Þ

where Λ, c, and ω are some real positive constants. If
c ∈ h−1; 1i then the given scale factor corresponds to a
well-defined and regular cyclic solution. On the other hand,
if there is a time at which aðtminÞ ¼ 0 then this scenario
would lead to a singularity in H and therefore in curvature,
R → ∞. In this case the solution would not be strictly
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cyclic but it would lead to a so-called big crunch; i.e., the
oscillation would be interrupted by the singular points
reached in the configuration space a, H, R. Therefore,
the required condition is aðtminÞ > 0 and for this reason
the simpler expressions of the form aðtÞ ¼ ðA sinðωtÞ,
A cosðωtÞ), commonly found in the literature when

discussing cyclic solutions, are not considered here. An
earlier discussion of a reconstruction of such a solution
containing a singularity can be found in [86].
By expressing aðRÞ, the field equations (21) and (22)

become second-order differential equations in f with respect
to R. The required functions expressed in terms of R are

aðRÞ ¼ 18Λω2 � ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48c2Λ2ω4 þ c2Λ2Rω2 þ 6Λ2ω4 − Λ2Rω2

p

48Λ2ω2 þ Λ2R
; ð39Þ

da
dt

¼
cω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−2aðRÞλÞ2

c2

q
λ

; ð40Þ

d2a
dt2

¼ −
2ω2ð2aðRÞλ − 1Þ

λ
; ð41Þ

dR
dt

¼ −
12cω3ð3aðRÞλþ c2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1−2aðRÞλÞ2

c2

q
aðRÞ3λ3 ; ð42Þ

and the field equation (22) can be numerically solved to
reconstruct a specific numerical fðRÞ solving the equation

3

� _aðRÞ
aðRÞ

�
2

¼ 1

f0

�
ρ0

aðRÞ3 þ
1

2
ðRf0 − fÞ − 3

_aðRÞ
aðRÞ f

00 _R
�
:

ð43Þ

By choosing ρ0 ¼ 1, c ¼ 0.8, ω ¼ 2, and Λ ¼ 0.01 with
the initial conditions

fð0Þ ¼ a4 ¼ 1.5 × 10−6; f0ð0Þ ¼ a1 ¼ −10−8; ð44Þ

we obtain the solution which is depicted in Fig. 3. By using
the following values

a1 ¼ −10−8; a2 ¼ −2.5 × 10−10;

a3 ¼ −1.7 × 10−13; a4 ¼ 1.5 × 10−6 ð45Þ

in expression (37), it is obvious that the numerical fðRÞ can
be approximated with (37) within the error of magnitude

of the order of 10−5. For larger values of R the error is
increasing, which does not come as a surprise, since in the
high-curvature regimes the higher orders of R determining
the further features of the full numerical solution not
contained in the approximated solution will become im-
portant and need to be included to effectively mimic the
quantum effects of gravity.

2. Dynamical analysis of the f ðRÞ third-order
polynomial model

Now we are ready to analyze the cyclic solutions in the
fðRÞ gravity given by (37), and we expect that with the
same parameters the dynamical analysis should be con-
sistent with the existence of cyclic solutions. Considering
the same fðRÞ as discussed earlier,

fðRÞ ¼ a1Rþ a2R2 þ a3R3 þ a4; ð46Þ

with

a1 ¼ −10−8; a2 ¼ −2.5 × 10−10;

a3 ¼ −1.7 × 10−13; a4 ¼ 1.5 × 10−6; ð47Þ

for the choice of parameters w ¼ 0, ρr ¼ 0, and ρm ¼ 1,
one can calculate a� from the necessary condition for the
existence of a nonlinear center (34) at the fixed point
ða ¼ a�; H ¼ 0; R ¼ 0; L ¼ 0Þ, using the requirement that
at this fixed point the conserved integral has an extremal
value. This yields

a� ¼ 1

4

�
fð0Þffiffiffi

3
p

4
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8fð0Þ4ρ2m−fð0Þ5ρm

p
þ 16fð0Þ2ρm−fð0Þ3þ

ffiffiffi
3

p
4

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8fð0Þ4ρ2m−fð0Þ5ρm

p
þ 16fð0Þ2ρm −fð0Þ3

fð0Þ − 1

�

≃ 69.09: ð48Þ

By comparing the value of the scale factor at the resulting extremal point of Iða;H; RÞ with the value of the scale factor at
the fixed point given by analytical approximation (39)

aðR ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8c2 þ 1Þλ2ω4

p
þ 3λω2

8λ2ω2
≃ 68.4; ð49Þ
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one can conclude that the two fixed points are in excellent
agreement given the involving approximation. Conse-
quently, the numerical fðRÞ can be effectively modeled
as a shift from the (37)

fðRÞnumerical ¼ fðRÞ þ ΔfðRÞ; ð50Þ

which corresponds to a shift in the a�ðR ¼ 0Þ → a� þ Δa�.
In order to inspect the cyclic solution within the linear
analysis we need to find the eigenvalues from (29) for the
specific fðRÞ model. Using the same values as in the
numerical procedure we get that the eigenvalues are
λ1;2 ≈ 25.4i and λ3;4 ≈ 1.29i. We see that in the considered
example such type of fixed point containing imaginary
eigenvalues and being stable by virtue of the extremal
nature of Iða;H; RÞ at this point, leads to a cyclic solution.
Similar to Fig. 1 the phase portrait of this solution is given
in Fig. 4.

IV. CYCLIC COSMOLOGIES WITH DYNAMIC
DARK ENERGY

A. Introduction

The usual assumption invoked in the standard cosmo-
logical model to solve the contradiction between the
observed accelerated expansion of the Universe and the
attractive nature of gravity in general relativity, is to
introduce a small constant term (the cosmological constant)
into the field equations. The standard interpretation of this
constant is that it represents the vacuum energy contribu-
tion, an interpretation which—as it is well known—opens
new severe problems due to its small observed value
compared to the huge value predicted by the quantum
field theory order of magnitude estimate [87,88]. At the
same time, the standard cosmological model gives a
currently satisfactory fit to the empirical data related to
the cosmological evolution, which is—together with its
simplicity—the main reason for its popularity. However,
introducing a constant cosmological term represents only
one among several other related possibilities. Specifically,
there are no reasons against a much more general option
that the cosmological term is not a constant but a dynamic
quantity. Moreover, such an option can be motivated by
additional theoretical considerations. If the cosmological
term is understood as coming directly from the vacuum
energy density, then quantum field theory considerations on
curved spacetime can motivate the running vacuummodels,
in which its energy becomes dynamic [89,90]. On the other
hand, if the cosmological term is understood as a lower-
curvature effective contribution coming from some new
theory of (quantum) gravity then it can also be expected
that this contribution would in general be dependent on the
considered energy regime. In connection with this reason-
ing, it is worth to note that a running nature of the couplings
of the theory is something that comes as a usual conse-
quence of effective field theories, as it is for instance also
discussed in the asymptotically safe gravity approaches
[91]. All these reasons speak strongly in favor of the need to
analyze the cosmological consequences and models in the
framework of dynamic cosmological term, which was
recently discussed in various works. These works demon-
strated that some of the dynamic energy models are in a
very good agreement with the empirical data [92–95].
Basing ourselves on this motivation, we want to apply our
general discussion of cyclic cosmologies to the models of
dynamic dark energy and for the first time present some
models of cyclic cosmology in this framework.
The cosmological term considered as an explicit function

of time ΛðtÞ, in general gives rise to a nonautonomous set
of differential equations, which cannot be analyzed using
the discussed techniques, and is therefore outside the scope
of this work. The assumption we take in this section is that
the dynamics of the cosmological term can be expressed as
a dependence on the scale factor, curvature, and Hubble

FIG. 4. Phase portrait (a,R,H) of the numerical solution of (43)
with the values Λ ¼ 0.01, ω ¼ 1, c ¼ 0.8, and ρ0 ¼ 1. The dot
corresponds to the center point a� ¼ 69, H ¼ 0, R ¼ 0. The
orange and blue lines represent two different branches as H ¼
_a=a is quadratic in (43), they collide at the maximum and the
minimum value of the scale factor a taking place at H ¼ 0.

FIG. 3. The numerical solution of Eq. (43) with the scale factor
evolution given by (38), and the initial conditions given by (44)
(orange line) compared to analytical approximation (37) with the
parameters given by (45) (blue line).
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parameter, Λða;H; RÞ. Under this assumption the cosmol-
ogy with dynamic dark energy can be put in the form given
by Eqs. (5)–(7), with

gða;H; RÞ ¼ 1
∂Λ
∂R

�
1

3
ðR − 12H2ÞH −

1

3

dρðaÞ
da

H

−
∂Λ
∂a H −

1

6

∂Λ
∂H ðR − 12H2Þ

�
: ð51Þ

Now we can simply apply the theorem for the existence of
nonlinear centers on such theory where the cosmological
term is given by Λða;H; RÞ.
Claim 3: If dynamic dark energy is a function with the

following property, Λða;H;RÞ ¼ Λða;−H;RÞ, and the
system of equations describing the cosmological evolution
in such theory of dynamic dark energy has a center at some
value a ¼ a� with H� ¼ 0 and R� ¼ 0 determined by the
linear stability theory from the stability matrix (13), then
there exists a nonvanishing neighborhood around this
point such that all trajectories inside of it will correspond
to symmetric cyclic cosmological solutions. Proof: If
Λða;H; RÞ ¼ Λða;−H;RÞ and its corresponding function
gða;H; RÞ is determined by Eq. (51), then the system of
equations describing such cosmological evolution is a
reversible dynamic system. Then, according to the pre-
sented Claim 1, sufficiently close to the linear center of this
system of equations all trajectories will correspond to cyclic
cosmological solutions.

B. ΛðaÞ dynamic dark energy model

We will now consider a specially convenient form of
simple dynamic dark energy models where the cosmologi-
cal term—absorbing all contributions modifying the
standard Friedmann equations whatever their cause (for
instance, modified gravity or new types of cosmological
fluid)—can be expressed as a function only of the scale
factor, ΛðaÞ. Furthermore, here and in the following
sections we will assume that dynamic dark energy can
be treated as noninteracting with matter fields, so that the
evolution of energy density and pressure still has the
standard form. It then follows that in this case the problem
can be reduced to a one-dimensional system of the
following form:

a0ðtÞ
H0

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωrad

0 a−2 þΩmat
0 a−1 þ ΛðaÞa2

q
; ð52Þ

where for the convenience we introduced the radiation and
matter densities today Ωrad

0 and Ωmat
0 , as well as the dark

energy assumed to be expressed with respect to the critical
density, viz. ΛðaÞ≡ ρΛ=ð3H2

0=8πGÞ.
Although this is a first-order autonomous system, the

existence of cyclical solutions is possible by virtue of the
existence of two branches of solutions, corresponding to

expansion (positive branch) and contraction (negative
branch). In order to enable both the transition from the
contracting to expanding phase (the cosmological bounce)
and vice versa (the cosmological turnaround) these
branches need to connect at two different fixed points
of Eq. (52). These fixed points in the case of cyclic
solutions correspond to the minimal and maximal values
of the scale factor, amin and amax. For this reason the
solutions of Eq. (52) need to be constrained to the region
amin ≤ a ≤ amax and outside this region it follows:

Ωrad
0 a−2 þ Ωmat

0 a−1 þ ΛðaÞa2 < 0: ð53Þ

Regarding the stability of solutions in the case of the
positive branch, corresponding to expansion, the points in
the nearby region of amin need to be repelled from the fixed
point, while they need to be attracted toward it in the case of
the negative branch, which is corresponding to the con-
tracting phase of the Universe. The reverse if true for
the second fixed point at amax. In this way both fixed
points need to act as semistable fixed points enabling the
transition from the contraction to expansion and vice versa.
Therefore, considering the linear stability for the positive
branch it follows

2aminΛðaminÞ þ a2min
dΛðaÞ
da

����
a¼amin

− 2a−3minΩrad
0 − a−2minΩmat

0 > 0 ð54Þ

and

2amaxΛðamaxÞ þ a2max
dΛðaÞ
da

����
a¼amax

− 2a−3maxΩrad
0 − a−2maxΩmat

0 < 0; ð55Þ

while the opposite inequalities need to hold for the negative
branch of Eq. (52).
As a very simple example of cyclic cosmology in ΛðaÞ

let us consider the following function:

ΛtrigðaÞ ¼
1 − ðk − aÞ2

a
− ðΩmat

0 þ Ωrad
0 Þ; ð56Þ

where k is a constant. In this case the modified
Friedmann equation (52) simply reduces to _a ¼ fðaÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ðk − aÞ2Þa

p
, and has two fixed points correspond-

ing to amin and amax given by amin;max ¼ k ∓ 1 at which the
positive and negative branch meet. Demanding that the
scale factor always stays positive, we have clearly k > 1
and it is straightforward to check that under this condition
df=da > 0 at amin for the positive branch of the solution,
and df=da < 0 at amin for the negative branch of the
solution; i.e., the points on the positive branch will be
repelled from this fixed point, while the points on the
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negative branch will be attracted toward it, enabling the
transition of the Universe from the contracting into the
expanding phase. Conversely, at amax it simply follows that
df=da < 0 for the positive branch and df=da > 0 for the
negative branch so that the late time expansion of the
Universe changes into a contracting phase leading to a new
cosmological bounce. The model (56) can be criticized due
to the fact that the energy densities enter the functional
dependence of ΛðaÞ, which may be viewed as not natural.
However, this could be understood simply in terms of
modeling a situation in which, in a given regime, the
contributions of matter and radiation densities are compen-
sated by the opposite contribution of the dynamic dark
energy. As we will discuss in the following, the matter and
radiation can in a more general scenario be introduced as a
perturbation around this solution.
In fact, the model described by (56) leads to the

analytical oscillating solutions for the scale factor given
by aðtÞ ¼ k − cosðtÞ, and its discussed dynamic properties
therefore do not come as a surprise. In order to study more
general and realistic scenarios we can consider adding
arbitrary correction terms containing powers of the scale
factor to model (56): ΛðaÞ ¼ ΛtrigðaÞ þ

P
n cna

n. The
considerations of dynamic properties of such ΛðaÞ model
following the general discussion given earlier will then lead
to constraints on the coefficients cn in order to lead to cyclic
cosmologies. Considering the corrections to the first order,
the fixed points of Eq. (52) will then be given by the
solution of the associated third-order algebraic equation. In
order to have cyclic cosmologies there need to exist two
real and positive solutions of this equation, corresponding
to amin and amax. Since one of the solutions a ¼ 0 can be
discarded as the physical solution of interest, we are left
with the following two solutions:

amin;max ¼
−ðc0 þ 2kÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc0 þ 2kÞ2 − 4ðc1 − 1Þð1− k2Þ

p
2ðc1 − 1Þ ;

ð57Þ

where it needs to be demanded that both solutions are real
and positive, which constrains the values of parameters c0
and c1.
There is also a different and more general class of ΛðaÞ

models we can construct in order to obtain cyclic cosmol-
ogies which also approach the ΛCDM model in the period
between the bounce and turnaround. To fulfill the discussed
conditions for cyclic evolution the value of dynamic dark
energy needs to become negative while approaching both
the bounce and turnaround fixed points, at amin and amax
respectively, while to reproduce the ΛCDM evolution it
needs to approach approximately constant and positive
values during the radiation-, matter-, and dark-energy-
dominated phase. One possible class of such functions is
given by

ΛðaÞ ¼ Λ0

�
1 −

gðaÞ
ak

− hðaÞam
�
; ð58Þ

where m > 0, while the function hðaÞ needs to satisfy
hðaÞam ≈ 0 for a ≪ amax and be consistent with the
existence of a fixed point at amax, while k ≥ 4 and the
function gðaÞ needs to satisfy gðaÞ=ak ≈ 0 for amin ≪ a
and it moreover needs to be consistent with the existence of
a fixed point at amin. We plot the phase portraits of one
example of this class of models in Fig. 5, together with
examples for other types of models discussed in this
section.

C. ΛðRÞ model

One could also inspect the specific case where dark
energy is a function only of the Ricci scalar, namely ΛðRÞ.
In this approach the action of the theory can be simply
thought of as a specific example of an fðRÞ theory:

fðRÞ ¼ −2ΛðRÞ þ FðRÞ: ð59Þ

Therefore the techniques presented in Sec. III can be
applied in the setting of ΛðRÞ dark energy. As an example
we will refer to the article [42] where a specific ΛðRÞ was
discussed in connection with cyclic cosmological solutions.
Here we will show that using a different approach, namely a
dynamical analysis, the same conclusion follows. The
specific fðRÞ chosen in [42] is given by

fðRÞ ¼ −2ΛðRÞ þ Rþ a2R2 þ a3R3; ð60Þ

where

a2 ¼
3Λ0 þ 36Λ0R2 − 2

1 − 12R2

; a3 ¼
−2Λ0 − 12Λ0R2 þ 1

1 − 12R2

;

ð61Þ

and ΛðRÞ is given by

ΛðRÞ ¼ Λ0 −
Að1 − R−Rmin

B Þ
ðR−RminÞ2

B2 þ 1
: ð62Þ

From Eq. (29) without matter fields ρr;m ¼ 0 the eigen-
values are

λ1;2 ¼ 0; λ2;3 ¼ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðRÞf00ðRÞ − fðRÞf000ðRÞp

ffiffiffi
3

p
f00ðRÞ :

ð63Þ

It is easy to see that the solutions leading to a cyclic
universe must satisfy the condition

fðRÞf000ðRÞ > f0ðRÞf00ðRÞ: ð64Þ
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Using the same parameters as in [42] A ¼ 0.5,
Rmin ¼ −0.5, B ¼ −0.1, Λ0 ¼ 0.0005, and R2 ¼ −2 the
resulting eigenvalues equal λ ≈�0.582i. Evidently the
linear stability test is not conclusive due to the fact that
two eigenvalues are equal to zero.
The conserved quantity in the ΛðRÞ model can be

expressed as

IðH;R; LÞ ¼ 3H2f0 −
1

2
ðRf0 − fÞ þ 3Hf00L: ð65Þ

The conserved quantity IðH;R; LÞ must satisfy

∇IðH;R; LÞ ¼

0
BB@

3Lf00ðRÞ þ 6Hf0ðRÞ
3HLfð3ÞðRÞ þ ð3H2 − R

2
Þf00ðRÞ

3Hf00ðRÞ

1
CCA ¼ 0;

ð66Þ

which is evidently satisfied at H ¼ 0, R ¼ 0, and L ¼ 0.

V. CYCLIC COSMOLOGIES IN MODIFIED
TORSION-BASED f ðTÞ THEORIES OF GRAVITY

A. A short review of f ðTÞ gravity
It is a well-known concept to introduce torsion in a

theory of gravity. In fact, one can construct a theory of
gravity equivalent to general relativity (GR) by replacing
the description of spacetime which is curved with space-
time that has a nonvanishing torsion. The equivalent
theory is called teleparallel equivalent to general relativity
(TEGR). In contrast to GR, where the curvature scalar R is
contained in the Einstein-Hilbert action, in TEGR the
curvature scalar is replaced with the so-called torsion
scalar, T. The action in TEGR is given by [96]

STEGR ¼ c4

16πG

Z
hTd4x; ð67Þ

where h is the determinant of the tetrad field haμ, which is
the dynamical degree of freedom and is related to the metric
tensor (metric compatibility condition) haμhbνgμν ¼ ηab,
where ηab is the Minkowski metric with the signature
ηab ¼ diagð1;−1;−1;−1Þ. The torsion scalar T is a rather
special scalar constructed in such a way to lead to a
relationship with R in a way that they differ only by a total
divergence

R ¼ −T − 2∇μTν
μν; ð68Þ

where Tρ
μν is the torsion tensor defined as an antisymmetric

part of an arbitrary affine connection Γρ
νμ − Γρ

μν. The torsion
scalar is obviously always zero if Γρ

μν is a standard curvature
Levi-Civita connection. From this construction it is easy to
see that the resulting equations of motion from action (67)

are equivalent to those of GR. Good reviews of TEGR can
be found in [97–100]. In the same spirit as in fðRÞ theories,
one could replace the torsion scalar with an arbitrary
function fðTÞ in the action integral. The resulting class
of theories is then called the fðTÞ theories of gravity. The
fðTÞ theories are drastically different from those of fðRÞ
gravity, with one of the most striking problems given by the
apparent break of local Lorentz invariance [101,102]. The
recent development of the theory found some interesting
aspects of the structure of theory [103–109] but the
problem is still not well understood. Nevertheless, the
fðTÞ theories are very successful in the cosmological
setting as dark energy models and inflationary models in
strong gravity regimes, and are able to ensure the con-
sistency with the Solar System test [110–112]. For this
reason the cosmological behavior of solutions is worth
investigating in the context of the bouncing and cyclic
cosmology [113]. One of the main differences with respect
to fðRÞ is that remarkably the equations of motion are of
the second order only, the same order as in GR, which
could simplify considerably the dynamical system analysis.
Recently, a “no go” theorem appeared in [114] where it was
claimed that it leads to the impossibility of a cyclic
Universe in fðTÞ gravity. We will inspect this problem
further in the following section.
The action in fðTÞ gravity is

S ¼ c4

16πG

Z
hfðTÞd4x: ð69Þ

By varying the action with respect to the tetrad field the
field equations of motion are obtained [107]:

h−1fT∂νðhSμνa Þ þ fTTS
μν
a ∂νT − fTTb

νaS
νμ
b

þ 1

4
fðTÞhμa þ fTAb

aνS
νμ
b ¼ κΘμ

a; ð70Þ

where fT ¼ dfðTÞ=dT and fTT ¼ d2fðTÞ=dT2, the tor-
sion tensor is defined as the antisymmetric part of an
arbitrary connection Γρ

μν.

Tρ
μν ¼ Γρ

νμ − Γρ
μν; ð71Þ

the superpotential is

Sρμν ¼ Kμνρ − gρνTλμ
λ þ gρμTλν

λ ; ð72Þ

with the contorsion tensor defined as

Kρ
μν ¼

1

2
ðTμ

ρ
ν þ Tν

ρ
μ − Tρ

μνÞ; ð73Þ

the spin connection is

Aa
bμ ¼ haν∂μhbν þ haνΓν

ρμhbρ ≡ haν∇μhbν; ð74Þ
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and finally the torsion scalar is given by

T ¼ Ta
μνSaμν: ð75Þ

The stress-energy tensor is commonly

Θa
ρ ¼ −1

h
δðhLmatterÞ

δhaρ
: ð76Þ

In the cosmological setting we will use the tetrad field
metric compatible with the FLRW spacetime

haμ ¼

0
BBB@

1 0 0 0

0 aðtÞ
0 0 aðtÞr 0

0 0 aðtÞr sin θ

1
CCCA:

For this tetrad choice the corresponding spin connection
is [107]

A1
2θ ¼ −1; A1

3ϕ ¼ − sin θ; A2
3ϕ ¼ − cos θ: ð77Þ

With T ¼ −12H2, the Friedmann equations of motion in
fðTÞ gravity turn out to be [107]

6H2fT þ fðTÞ
4

¼ 4πρ; ð78Þ

2 _Hð24H2fTT − fTÞ ¼ 4πðρþ pÞ: ð79Þ

From the perspective of a dynamical analysis, the
equations of motion in the covariant fðTÞ gravity are
much simpler than those of fðRÞ gravity, as they are of
the second order in contrast to the fourth order in fðRÞ.
Therefore it is not a surprise that the fðTÞ gravity is
frequently explored as a dynamical system [100,115].

B. On the existence of cyclic solutions
in f ðTÞ cosmologies

An extensive dynamical analysis of fðTÞ cosmologies
was earlier conducted in [114] where it was concluded that
cyclic solutions are prohibited in fðTÞ gravity since the
conditions for a bounce and turnaround are mutually
contradictory and thus cannot be at the same time realized
for a single fðTÞ function. In the present study we have
reached the opposite conclusion: that cyclic cosmological
solutions are actually possible in fðTÞ theories of gravity.
The first type of proof for this claim is simply given by
constructing the specific counterexamples. Namely, in
order to prove that cyclic solutions are possible in fðTÞ
gravity, assuming the stress-energy tensor to be given by
dust and radiation, it is sufficient to find an fðTÞ function
which leads to cyclic solutions in aðtÞ and HðtÞ when
Eqs. (78) and (79) are solved. We reconstruct such

functions in the following Sec. V D and thus demonstrate
the existence of cyclic solutions. Furthermore, by carefully
inspecting the arguments used against the existence of
cyclic cosmologies in fðTÞ gravity elaborated in [114] we
will try to show that the earlier conclusion on impossibility
of cyclic solutions was not justified.
The earlier conclusion on the impossibility of cyclic

solutions was derived as a consequence of Statement 3
presented in [114]. If we introduce W ¼ fðTÞ − T þ
6H2 þ 12H2ðdfðTÞ=dT − 1Þ andWH ¼ dW=dH, WHH ¼
dWH=dH, then this statement reads as follows [114]: At
H ¼ 0 we have H0ðtÞ ≠ 0 if and only if W > 0, WH ¼ 0,
and WHH ≠ 0, where

(i) for WHH < 0 we have H0ðtÞ > 0 and thus a bounce,
(ii) while for WHH > 0 we have H0ðtÞ < 0 and thus a

turnaround.
This statement can be directly derived if one inspects the
modified Friedmann equation in fðTÞ gravity. It was then
concluded that since these two conditions are mutually
exclusive, they cannot be simultaneously realized in any
fðTÞ theory. It is at this specific point of the argument that
the problem in the conclusion arises. It is true that the
above-stated conditionsWHH < 0 andWHH > 0 are mutu-
ally exclusive, but these two conditions are not realized at
the same point of the cosmological time, but at different
time points during the cyclic cosmological evolution. The
difficulty in seeing this clearly comes from the fact thatH is
by definition not a uniquely determined parameter in cyclic
cosmology. The value H ¼ 0 corresponds both to bounce
and turnaround, while if the cyclic solutions are symmetric
with respect to the bounce, the values of H2 will be equal
for the symmetric points in the phases of contraction and
expansion. Since in the FLRW spacetime the torsion, which
is a fundamental dynamical degree of freedom, is given by
T ¼ −12H2, this double-valued nature of H will also be
reflected in the structure of field equations and properties of
solutions. Due to this, the nature of dependence between a
and H will be double valued, as will be seen for instance
in Eq. (84). For this reason, there will actually exist two
different fðTÞ functions which are leading to the same
oscillatory aðtÞ solutions, as will be demonstrated in
Sec. V D by a reconstruction. Therefore, if one of these
fðTÞ functions is used in the Friedmann equation, and the
problem is analyzed from the point of view of change of the
scale factor in time, the complete cyclic solution will be
obtained. However, if one wants to analyze the problem
from the point of view of a −H dependence, for instance
employingWðHÞ as in the presented Claim 3 in [114], then
the whole range of this dependence needs to be taken into
account, and one needs to consider both branches of
solutions, corresponding to both branches of fðTÞ, to
cover the full phase plane. As those functions lead to
the same aðtÞ when the Friedmann equation is solved, they
are in this sense dynamically indistinguishable. On the
other hand, from the point of view of the a −H phase
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plane, one branch will fulfill the conditions for a bounce
and other for a turnaround and, due to the double-valued
nature of this dependence, they both need to be taken into
account. We will try to demonstrate the properties of the
solutions in detail in Sec. V E, and they are also clearly
visible in Fig. 6.

C. Vacuum cosmology

A simple example of fðTÞ cosmology can be the case
where the matter field energy-density contributions are
negligible with respect to torsion. As a result the matter
fields are zero in the field equations in this regime:

6H2fT þ fðTÞ
4

¼ 0; ð80Þ

2 _Hð24H2fTT − fTÞ ¼ 0: ð81Þ

By analyzing the first equation of this system (80) one
can obtain a remarkable result that with a specific fðTÞ all
scale factor functions aðtÞ—and thus all kinds of possible
oscillatory functions—are the solutions of the field equa-
tions. Namely, the equation can be written as

fðTÞ
4

−
1

2
Tf0ðTÞ ¼ 0; ð82Þ

and can be thought of as a first-order differential equation in
fðTÞ, whose solution is

fðTÞ ¼ C
ffiffiffiffiffiffiffi
−T

p
: ð83Þ

It is straightforward to show that this specific fðTÞ ¼
C

ffiffiffiffiffiffiffi
−T

p
is also a solution to the second field equation (81).

As a consequence of this, for an arbitrary aðtÞ the field
equations are automatically solved; i.e., the contribution offfiffiffiffiffiffiffi
−T

p
in the fðTÞ Lagrangian does not change the equations

of motion that result from the Friedmann equations.
Therefore, we can conclude that the fðTÞ Lagrangians
with the transformation of the type

fðTÞ → fðTÞ þ C
ffiffiffiffiffiffiffi
−T

p
ð84Þ

are all symmetric and the equations of motion remain the
same under this transformation when the FRLW geometry
is assumed. Then a question of potential generalization
arises: Does such kind of transformation, for which
all functions describing the spacetime geometry are sat-
isfying the gravitational field equations, also exist for
other spacetime geometries apart from FRWL spacetime?
If this is true then all these contributions cannot by
themselves be a viable fðTÞ modification. This is a strong
restriction of fðTÞ gravity as the only viable fðTÞ’s are
those excluded from all this symmetric contribution
fðTÞ → fðTÞ þ fðTÞsymm: contr:, fðTÞ ≠ fðTÞsymm: contr:.
Further investigation on this problem is necessary which
is beyond the scope of this paper.

D. Matter and radiation era

When the matter contribution is included then the field
equations have the full form given by (78) and (79). From a
simple relation between the torsion scalar and the Hubble
parameter T ¼ −12H2, Eq. (78) can be expressed in terms
of the Hubble parameter

fðHÞ
4

−
1

4
H
dfðHÞ
dH

¼ 4πρðHÞ; ð85Þ

which is a convenient form in order to reconstruct a specific
fðTÞ function. Again in order to find an oscillatory solution
we will demand the form of aðtÞ:

a ' H0

5 10 15 20
a

5

5

FIG. 5. Various models of ΛðaÞ dynamic dark energy leading to

cyclic cosmologies: ΛtrigðaÞ ¼ 1−ðc−aÞ2
a − ðΩmat

0 þΩrad
0 Þ (black

dotted line), λðaÞ ¼ ΛtrigðaÞ þ c0aþ c1a2 (blue thick line),

ΛðaÞ ¼ Λ0ð1 − gðaÞ
ak

− hðaÞamÞ (red full line). Here the parame-
ters are chosen to be c ¼ 2, Ωmat

0 ¼ 0.3, Ωrad
0 ¼ 10−5, Λ0 ¼ 0.69,

c0 ¼ 0.1, c2 ¼ 0.01, gðaÞ ¼ 0.1, k ¼ 4, m ¼ 4, hðaÞ ¼ 10−5.

FIG. 6. Phase portrait aðHÞ from (87) with parameters ω ¼ 1,
A ¼ 1, and c ¼ 0.8.
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aðtÞ ¼ Að1þ c sinðωtÞÞ: ð86Þ

The formula can be inverted to get aðHÞ:

aðHÞ ¼ 2Aω2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2ðc2 − 1Þω2ðH2 þ ω2Þ þ 4A2ω4

p
2ðH2 þ ω2Þ :

ð87Þ

Then in the matter- and radiation-dominated era the field
equation becomes

fðHÞ
4

−
1

4
H
dfðHÞ
dH

¼ 4π

�
ρm

aðHÞ3 þ
ρr

aðHÞ4
�
: ð88Þ

For simplicity let us start by taking the parameters
ω ¼ 1, ρr ¼ 0, and c ¼ 1 together with (87). The big
crunch [i.e., oscillations in aðtÞ with a singularity in HðtÞ
and RðtÞ] periodic scenario solution is then given by

fðHÞ ¼ constH −
2πHðH5

5
þH3 þ 3H − 1

HÞρm
A3

; ð89Þ

fðTÞ ¼ 2πρm
5A3

�
T3

1728
−
5T2

144
þ 5T

4
þ 5

�
þ const

ffiffiffiffiffiffiffi
−T

p
;

ð90Þ

where in the radiation case ρm ¼ 0:

fðTÞ ¼ ρrπ

35A4

�
−

5T4

20736
þ 7T3

432
−
35T2

72
þ 35T

3
þ 35

�

þ const
ffiffiffiffiffiffiffi
−T

p
: ð91Þ

Those are the solutions with aðtÞ ¼ Að1þ sinðωtÞÞ, where
const

ffiffiffiffiffiffiffi
−T

p
is again the symmetric part of the Lagrangian

and in this case is the homogeneous solution. Interestingly,
the cosmological constant is needed to satisfy the oscil-
latory solution, while the higher-order terms are suppressed
with respect to the linear term, which must be the case
in order to be consistent with the observations—as the
hypothetical corrections to the teleparallel Einstein-Hilbert
action must be small from the observational point of view.
Another important solution is the true cyclic solution
containing no singularities in HðtÞ and RðtÞ. Again we
will use similar parameters as in the fðRÞ analysis, and
therefore we set c ¼ 0.8, ω ¼ 1, and ρr ¼ 0 (matter-
dominated era) assuming A > 0 and consider the positive
sign case in Eq. (87). The solution appears to be rather
complicated, but can still be tracked analytically. The
reconstructed fðHÞ and fðTÞ for this case are

fðHÞ ¼ 1000

729A3
πρm

�
270H2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
ð9H2 þ 182Þ

− 594H arcsin
3H
4

þ 730

�
þ constH; ð92Þ

fðTÞ ¼ 1000

729A3
πρm

�
−
45T
2

þ 1

8
ð3T − 728Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3T þ 64
p

− 99
ffiffiffi
3

p ffiffiffiffiffiffiffi
−T

p
arcsin

�
1

8

ffiffiffi
3

p ffiffiffiffiffiffiffi
−T

p �
þ 730

�

þ const
ffiffiffiffiffiffiffi
−T

p
: ð93Þ

The alternative solution with the negative sign case (87)
assuming A > 0 gives the solution

fðHÞ ¼ 1000

729A3
πρm

�
270H2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
ð9H2 þ 182Þ

þ 594H arcsin
3H
4

þ 730

�
þ constH: ð94Þ

One of the important properties of these solutions is
the symmetric nature of cases assuming A < 0 with the
negative sign in (87), and A > 0 with the positive sign in
(87), as well as vice versa, which are equivalent to each
other. This property comes from the time inversion sym-
metry t → −t contained in the corresponding aðtÞ form,
since from _a ¼ aH it follows thatH → −H if a → a, under
the time inversion. Then, under this inversion, the left side
of (85) leads to

fðHÞ −HfH ¼ fð−HÞ −H
dfð−HÞ
dH

; ð95Þ

which comes from the fact that T ¼ −12H2. Therefore all
fðTÞ theories leading to such solutions are even functions
in H. This is an important property of cyclic solutions with
a symmetric aðtÞ, since there must always exist two
connected branches in the dynamical analysis of aðHÞ,
as will be discussed later. The two fðTÞ actions for two
different scenarios with c ¼ 0.8 and c ¼ 1 can seem rather
similar, but at the qualitative level the difference is con-
siderable. The crucial point is that the scenario with c ¼ 1
is not a true cyclic universe but at some point the Hubble
parameter becomes infinite, resulting in a future singularity,
while for c ¼ 0.8 < 1 the scale factor undergoes a smooth
transition between eternally oscillating phases. This ana-
lytic results for fðTÞ gravity will serve as guidance in
deriving and analyzing the cyclic behavior in the context of
dynamical system analysis in fðTÞ cosmology.

E. Dynamical system analysis in f ðTÞ cosmology

Generally, by exploring the fðTÞ equations in cosmol-
ogy with matter fields, it follows that they appear as first-
order differential equations since the energy-density and
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pressure contributions contain explicitly the scale factor
as a variable. Similar to already discussed dynamic dark
energy models, cyclic solutions are still possible in fðTÞ
cosmology, even if they represent only a first-order differ-
ential system, by virtue of the existence of two connected
branches of the phase portrait. Thus the only equation
needed is

fðHÞ
4

−
1

4
H
dfðHÞ
dH

¼ 4πρðaÞ; ð96Þ

where the Hubble parameter is determined by

_a ¼ aH: ð97Þ

The second equation

_H ¼ 1

2

4πρðaÞð1þ wÞ
24H2fTT − fT

¼ 12
4πρðaÞð1þ wÞ

fHH
ð98Þ

can also be obtained from the gravitational field equations,
where the fact that w ¼ p=ρ was exploited. However, this
equation is simply a time derivative of (96). By dividing
Eqs. (96) and (98) one can obtain a new resulting equation

_H ¼ 3ð1þ wÞ f −HfH
fHH

; ð99Þ

which is a one-dimensional differential system in terms
of the Hubble paramter. However, we will not inspect this
equation as it does not contain the information of the
dynamics of the scale factor and the interplay between the
scale factor and the Hubble parameter, which is the crucial
point in the whole story of the cyclic cosmology. The
simple reason for this is that the fixed point corresponding
to _H ¼ 0 is not of primary importance in the cyclic
evolution, but such points are rather given by the minima
and maxima of the scale factor, which makes Eq. (96) more
appropriate for the analysis in such context. Equation (96)
is in fact directly determining a phase portrait of aðHÞ. First
we are interested in finding the extremal points of aðHÞ,
i.e., the points at which the condition da=dH ¼ 0 must be
fulfilled. By differentiating equation (96) with respect to a
we get

da
dH

¼ −16πHfHH

�
dρ
da

�
−1

¼ 0; ð100Þ

which is fulfilled only if H ¼ 0 or fHHðH�Þ ¼ 0. As
discussed earlier in detail, in cyclic cosmology there must
exist two points in time corresponding to the minimum and
maximum of the scale factor—the bounce and the turn-
around, which are both characterized by H ¼ 0. Therefore,
while discussing cyclic cosmologies the fixed points
corresponding to H ¼ 0 are of central interest. Going to
the second derivative we get

d2a
dH2

¼ −16π
�
dρ
da

�
−1
�
fHH þHfHHH −HfHH

da
dH

�
;

ð101Þ

where the last term is by definition zero in a fixed point.
Since the cyclic Universe needs to have both minimum and
maximum points of the scale factor at H ¼ 0, the right-
hand side of Eq. (101) needs to be both positive at the time
of the cosmological bounce, and negative at the time of
turnaround. This means that there should exist two different
branches of the fðHÞ function, and having different signs
of the second derivative with respect to H at H ¼ 0. This
can also be understood from Eqs. (96) and (97) as those
equations will lead to different fðHÞ branches whenH < 0
and H > 0. To conclude, we thus have

d2a
dH2

¼ −16π
�
dρ
da

�
−1
fHHð0Þ > 0 ð102Þ

at the bounce, and

d2a
dH2

¼ −16π
�
dρ
da

�
−1
fHHð0Þ < 0 ð103Þ

at the turnaround.
The similar logic can then also be applied for another

fixed point, H�:

d2a
dH2

¼ −16π
�
dρ
da

�
−1
H�fHHHðH�Þ≷0: ð104Þ

It is thus obvious that there should exist two different
solutions of fðHÞ, where each one must represent a
different branch in the phase portrait with the property

f1HHð0Þ ¼ −C1f2HHð0Þ; ð105Þ

or

H�f1HHHðH�Þ ¼ −C2H�f2HHHðH�Þ; ð106Þ

where C1 and C2 are positive constants given by the
specific model function fðTÞ.
Let us assume that for some matter fields the energy

density can be represented as ρðaÞ ∼ 1=an, then the phase
portrait can be written in the following form:

aðHÞ ¼ c
ffiffiffiffiffiffi
−n

p
f −HfH: ð107Þ

The extremal points are

da
dH

¼ HfHH

n
ðf −HfHÞ−1

n−1 ¼ 0; ð108Þ

and the second derivative

DYNAMIC PROPERTIES OF CYCLIC COSMOLOGIES PHYS. REV. D 103, 023529 (2021)

023529-17



d2a
dH2

¼ 1

n
ðf −HfHÞ−1

n−1ðHfHHH þ fHHÞ: ð109Þ

In this specific framework of matter fields [which
assumes ρðaÞ ∼ 1=an and thus also covers the cases of
matter and radiation described as the ideal fluid] it appears
that H ¼ H� where the property fðH�Þ ¼ H�fHðH�Þ
cannot be a solution as the second derivative vanishes,
but it will be demonstrated later that this point has another
physical meaning. The only fixed point in this scenario is
with H ¼ 0. Then the condition (105) reads

f1ð0Þ−1
n−1f1HHð0Þ ¼ −C1f2ð0Þ−1

n−1f2HHð0Þ: ð110Þ

To conclude, in the case of fðTÞ gravity we can then
establish the following claim: If fðTÞ is a differentiable
function at T ¼ 0, if aðtÞ is symmetric in the expanding and
contracting phase [i.e., if by choosing the bounce as the
origin of time, tbounce ¼ 0, aðtÞ ¼ að−tÞ], and if H� ¼ 0 is
a fixed point of the system then there always exists a second
branch of the fðTÞ function which gives a symmetric
solution in the sense that these two functions are dynami-
cally indistinguishable. This claim can be proven by noting
that if there exists an fðTÞ function for which aðtÞ is an
oscillatory solution of the modified Friedman equation in
the fðTÞ theory, then from (102) at the same point the fðTÞ
function must have a maximum and minimum. This can
only be satisfied if there is another function f2ðTÞ satisfy-
ing the property given by (105). From the dynamical
perspective those functions are indistinguishable as they
give the same aðtÞ as a solution, even if the phase portraits
are different.

1. Concrete examples and applications
in f ðTÞ cosmology

As a starting point, the analytical solutions (92) and
(112), corresponding to solutions aðtÞ ¼ Að1þ c sinωtÞ,
can be used to explore the consistency of the dynamical
system analysis. We will assume that we know nothing
about the solution of this system; the only information we
are given is the concrete type of the fðTÞ or simply fðHÞ
theory, in this case

fþðHÞ ¼ f1ðHÞ

¼ 1000

729A3
πρm

�
270H2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
ð9H2 þ 182Þ

− 594H arcsin
3H
4

þ 730

�
þ constH ð111Þ

and the symmetric part

f−ðHÞ ¼ f2ðHÞ

¼ 1000

729A3
πρm

�
270H2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
ð9H2 þ 182Þ

þ 594H arcsin
3H
4

þ 730

�
þ constH; ð112Þ

with A > 0, ρm > 0 and the matter field guided by the
evolution with n ¼ 3.
The first derivatives are

fþHðHÞ ¼ 1000πρm

27A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p

×

�
H
�
9H2 þ 20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
− 16

	

− 22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
arcsin

�
3H
4

��
þ const;

ð113Þ

f−HðHÞ ¼ 1000πρm

27A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p

×
�
H
�
−9H2 þ 20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
þ 16

	

þ 22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
arcsin

�
3H
4

��
þ const:

ð114Þ

Going to the second derivative

fþHHðHÞ ¼
2000πρm

�
9H2 þ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
− 41

	

27A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p ;

ð115Þ

f−HHðHÞ ¼
2000πρm

�
−9H2 þ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p
þ 41

	

27A3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 9H2

p ;

ð116Þ

now it is straightforwardly visible that the condition (110)
is fulfilled:

fþHHð0Þ ¼ −
500πρm
27A3

∼ −f−HHð0Þ ¼ −
1500πρm

A3
: ð117Þ

By improving the understanding of this problem let us
plot the phase portrait aðHÞ in Fig. 6. It is clear that the
maximum and minimum are given at H ¼ 0, the turn-
around points. However, the interesting detail is also given
by the interception point where aþ and a− are equal. This is
achieved when dH=da¼0¼dH=dt _a−1 or the point where
_H ¼ 0. Then from (99) follows the condition
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fþðH�Þ −H�fþHðH�Þ
fþHHðH�Þ ¼ f−ðH�Þ −H�f−HðH�Þ

f−HHðH�Þ ¼ 0;

ð118Þ

withH� ¼ Hða�Þ, where a� satisfies dHða�Þ=da ¼ 0. As it
was pointed out before, H� is exactly the point where
fHHðH�Þ → ∞ but fðH�Þ −H�fHðH�Þ must be constant
(energy density at a specific H) with the property

fþðH�Þ −H�fþHðH�Þ ¼ f−ðH�Þ −H�f−HðH�Þ
¼ 16πρðH�Þ ¼ const:; ð119Þ

where H� is the point where aþ and a− meet each other.
In this concrete example from the second derivative in
(115) and (116) follows H� ¼ �4=3, and by combining
Eqs. (111)–(116) the conditions (118) and (119) are simple
to check.

VI. NONPERIODIC OSCILLATING
COSMOLOGIES

A natural generalization of the models so far considered
in this work is given by the case in which the Universe
undergoes phases of contraction and expansion, but is not
periodic in some or all of the parameters chosen to define a
configuration space: a, H, and R. Of course, when the
departure from periodic evolution stays small the periodic
analysis can still be used as a suitable approximation. For
instance, in such types of nonperiodic scenarios the values
of amin and amax can change during different cosmological
cycles. The evolution of such cyclic universe in the
configuration space would not be given by closed trajecto-
ries, and would—from the point of view of dynamical
system analysis—in the simplest case lead to a fixed points
given by spirals, rather than centers. This corresponds to
oscillating evolution where the system asymptotically
either approaches or is being repelled from a given fixed
point. For instance, the value of amax can increase during
each cycle and be repelled from an unstable spiral fixed
point a�min. From the mathematical point of view, the
analysis is in this case made simpler, since such fixed
points have nonvanishing real parts and are thus covered by
the Hartman-Grobman theorem. In other words, in such
types of scenarios it is sufficient to use the linear dynamical
analysis given by (14), where λ needs to be complex with
nonvanishing real parts. There is then no need to use claims
similar to Claims 1–3 in order to ensure the character of
solutions. The analysis of physically viable nonperiodic
oscillatory cosmological solutions certainly requires a new
detailed study in the future. Here we limit ourselves to only
few preliminary remarks. Such types of oscillatory solu-
tions, where amax grows significantly in each cycle during
time, could in principle very effectively solve the problems
of the growth of density perturbations and dramatic growth
of entropy in the contracting phase, as was recently

discussed in [42,116]. Namely, if there is a substantial
growth of the scale factor prior to contraction, which is only
slightly diminished during the period of contraction, then
the Universe can be treated as approximately empty during
contraction, which naturally solves the usual problems of
the contracting phase. Likewise, although the total entropy
of the Universe would be growing between the cycles, the
entropy that can be measured within the physical horizon
of an observer can stay approximately the same or even
decrease in time due to the large growth of the scale factor
which leaves only a small fraction of the Universe in the
previous cycle within the horizon of an observer during the
new cycle. We leave a general analysis of such models as a
goal of a future work.

VII. DISCUSSION AND CONCLUSION

As there is still no direct empirical evidence, or complete
theories to properly address the issue of the origin of the
Universe, since general relativity blows up at the initial
singularity it predicts, there are two open alternatives
answering this fundamental question. The first one simply
assumes that the singularity predicted by general relativity
is not a pathological result of a theory which is not properly
suited for high-curvature and high-energy regimes of the
very early Universe, but a real physical beginning of our
Universe. The second one, avoiding the physical and
philosophical problems of the singular beginning of the
Universe, assumes that the initial singularity will be
removed in the full theory of quantum gravity yet to be
developed. Since the manifold observations have confirmed
that the Universe is not static but expanding, the alternative
of the eternal Universe needs to describe the Universe in
which the present epoch of expansion is resulting not from
a singular beginning, but from a previous phase of con-
traction. If this picture is extended to have a complete
description of the cosmological history, we naturally arrive
at the paradigm of the perpetually oscillating Universe. In
the course of time many concrete models of cyclic and
bouncing cosmologies were developed assuming specific
modifications of general relativity, specific types of addi-
tional entities—like various scalar fields, or specific new
theoretical frameworks—like string theory. Many features
of the proposed models strongly depend on these concrete
(and often quite hypothetical) theoretical assumptions on
which they rest. It is therefore not straightforward to see
which properties describing the dynamics of these cyclic
models are general and more robust and which are just
consequences of some potentially very specific and hypo-
thetical theoretical assumptions.
The objective of this work was to start the investigation

of model-independent and general dynamic properties of
cyclic cosmological solutions. In other words, we were
interested in properties of oscillating solutions which are
universal for large classes of gravity theories. After a more
general discussion in the first part of the paper, the
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presented analysis was then implemented on several types
of modified gravity frameworks: fðRÞ gravity, dynamic
dark energy, and fðTÞ gravity. Our interest in these types of
theories in this paper comes from several reasons: (i) They
come as a rather direct and conservative extension of
standard general relativity [in the case of fðRÞ and fðTÞ
gravity by a direct generalization of the Lagrangian
density]. (ii) Because of the previous reason these frame-
works are very suitable as effective and toy-theory
approaches to quantum gravity (i.e., for the regimes where
we expect that higher-order corrections in curvature, or
alternatively torsion, will start to play a significant role],
and (iii) despite the fact that the physical extensions of
standard general relativity are minimal in such theories, at
the same time they have a rich structure and it is possible to
develop various concrete models within them.
We started our analysis by reviewing the typical proper-

ties of spacetime geometries shared by different models of
cyclic cosmologies. While doing so we proposed the
analysis in the configuration space of a, H, and R (which
can be suitably extended with other coordinates if required
by the structure of field equations) as a particularly
convenient way of describing the evolution of the cyclic
Universe. It turns out that this approach was general enough
for the application in the cases of fðRÞ, fðTÞ, and dynamic
dark energy models. The discussion in the latter part of the
paper was even simpler for some specific cases of dynamic
dark energy and for fðTÞ cosmologies in general, due to
the fact that the field equations could be cast in the form of
a one-dimensional system of differential equations, thus
making a and H sufficient variables for the complete
description of the phase space.
In order to obtain general and qualitative conclusions

regarding the dynamics of cyclic cosmologies, a very
efficient approach was given by the analysis of the fixed
points of the system of equations guiding the cosmological
dynamics. The difficulty in applying the linear stability
analysis in this type of problem comes from the fact that
we are interested in oscillating solutions, corresponding to
closed orbits in the phase plane, while fixed points
associated with such solutions, i.e., elliptic fixed points
or centers, are not stable with respect to nonlinear correc-
tions. We thus discussed how the linear stability analysis
can be supported by the two theorems regarding the
existence of nonlinear centers, in order to be used in the
analysis of cyclic cosmologies. We applied these theorems
to the cosmological context given by Eqs. (5)–(7) and
demonstrated that the centers found by the linear stability
theory will be stable under nonlinear corrections if the
symmetry condition gðA;H; RÞ ¼ −gða;−H;RÞ is satis-
fied in the case of symmetric cyclic cosmologies with
respect to the bounce, or if the conserved quantity
Iða;H; RÞ, which we introduced and discussed how to
construct in the same section, has a local extremum at the
fixed point. These results are of interest even in the case

where the linear stability analysis is not at all applicable, as
can often happen in the modified cosmological equations
leading to the systems of three or more dimensions
including eigenvalues of the stability matrix with vanishing
real parts. This is due to the fact that the existence of the
extremal point of the conserved integral Iða;H; RÞ at the
fixed point of the system is sufficient to guarantee that
the fixed point is stable.
After the general discussion in the first part of the paper,

we first focused on discussion of oscillatory solutions in
fðRÞ gravity. We obtained the solutions to the eigenvalue
problem for the linear stability analysis in general fðRÞ
theory, also discussing the form of the conserved integral
Iða;H; RÞ and the condition for its extremum. In order to
analyze a typical example of cyclic solutions in this type of
gravity theory, we numerically obtained an fðRÞ function
leading to a simple cyclic and nonsingular form of aðtÞ,
HðtÞ, and RðtÞ and then approximated it with a power-law
solution. We then compared the value of the scale factor
corresponding to the fixed point of the system of differ-
ential equations with the value of the scale factor at which
the conserved integral Iða;H; RÞ has an extremum and
found that those values are in an excellent agreement.
Furthermore, the oscillatory nature of the considered
cosmological solution was manifested in the imaginary
eigenvalues of the stability matrix for the linear analysis.
We next discussed the application to dynamic dark

energy models. We first considered how such problems
can be cast in the form of the system of differential
equations (5)–(7), assuming that the cosmological term
can be written as Λða; R;HÞ. Then the already discussed
application of the theorem on nonlinear centers ensures that
in such case a center at the point a ¼ a�,H ¼ 0, and R ¼ 0
predicted by the linear theory will be sufficient to guarantee
the existence of a nonlinear center, and thus symmetric
cyclic cosmological solutions sufficiently close to this
point, if Λða;H; RÞ ¼ Λða;−H;RÞ. Next, we discussed
in detail the properties of cyclic models realized in a simple
toy theory of dynamic dark energy given by Λ ¼ ΛðaÞ. We
discussed how it is possible to realize oscillatory solutions
in this setting, even though the corresponding system is
only the first-order differential system. The existence of
cyclic cosmological solutions is possible due to the
existence of two branches of solutions in the a0 − a phase
space, corresponding to the expansion (positive branch)
and contraction (negative branch). These branches need to
connect at two distinct fixed points of the modified
Friedmann equation written in the form a0ðtÞ ¼ fðaÞ,
which corresponds to the minimal and maximal value of
the scale factor. Under these requirements it is possible to
have both the transition from the contracting to the
expanding phase (the bounce), and the transition from
the expanding to the contracting phase (the turnaround).
We further discussed that, from the point of view of
stability of these fixed points, they need to behave as
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semistable fixed points, so that for the positive branch, the
phase points in the nearby region of the minimum of the
scale factor are repelled from that fixed point, while they
need to be attracted toward it in the case of the negative
branch, and the reverse being true for the second fixed point
at the maximum of a. Under these conditions, if the state of
the contraction is chosen as the initial condition of the
evolution of the Universe, the Universe will tend to turn
from contraction into expansion in the course of its
evolution, while shortly after entering into the expanding
phase it will tend to continue the expansion and move away
from the region of the phase space corresponding to the
contraction until it approaches the second fixed point in the
future, leading to a new entering into the contraction phase.
This configuration can thus enable solutions which are
perpetually oscillating between the contracting and expand-
ing phases of the cosmological evolution. After this general
discussion, we demonstrated and confirmed our conclu-
sions discussing several concrete realizations of ΛðaÞ
cosmologies. After this, we also considered an example
of ΛðRÞ cosmology, which can naturally be discussed from
the perspective of fðRÞ cosmology. We revisited the
functional form reconstructed in our previous work on
cyclic cosmology in fðRÞ and demonstrated that at the
fixed point of the system the condition of the extremum of
the conserved integral Iða;H; RÞ is satisfied. Further cases,
including dynamic dark energy interacting with the matter
sector, as well as ΛðHÞ and Λða;H; RÞ models, should be
addressed in future studies.
Finally, we studied the possibility of cyclic solutions

in fðTÞ gravity. Here, as already pointed out by earlier
studies, the conditions for realization of bounce and turn-
around are mutually exclusive when investigated through
the a −H functional dependence. However, we argued that
this does not prevent the existence of oscillatory solutions
due to the fact that the nature of this dependence is in fact
double valued. Due to this, there will be two branches of the
function HðaÞ which both need to be included for the
proper analysis of the phase plane, and thus the dynamics
of the Universe. One branch will contain the description of
the bounce and the other one of the turnaround. From the
point of view of the fðTÞ functional form this means that
there will, for a single oscillatory solution of aðtÞ, exist two
different branches of fðTÞ. Both of them lead to the same
form of cyclic aðtÞ when the modified Friedmann equation
is solved, and they are in this sense dynamically indis-
tinguishable. However, to have a full description of the
phase portrait of the cyclic Universe both branches need to
be included, due to the already mentioned double-valued
nature of aðHÞ dependence. We discussed these necessary
properties of fðTÞ cyclic cosmological solutions both in
general, where we derived various conditions that need to

be satisfied in order to have cyclic solutions, and also
using concrete examples. We first reconstructed the fðTÞ
functional forms leading to cyclic solutions for the vacuum
and matter radiation era, and then analyzed their dynamics
in the following sections, thus confirming our general
conclusions.
As both our theoretical and observational knowledge

related to very strong gravitational fields necessary for the
proper understanding of the origin of the Universe currently
remains incomplete, we believe that a preferred research
program in the cosmology of the early Universe consists of
investigating the consequences of general types of theories
which represent a minimal and logical extension of
currently tested general relativity being suitable for effec-
tively taking into account quantum corrections. Our aim in
this paper was the application of this research program to
the problem of cyclic cosmology as an alternative to the
idea of a singular beginning of the Universe. We demon-
strated that cyclic cosmological solutions naturally appear
in such broad frameworks of modified gravity theories and
analyzed their general properties. In this sense, our work is
complementary with respect to most of earlier studies,
which focused on realizing a specific type of a cyclic
cosmology within a concrete theory. Such earlier approach
has a clear disadvantage in that it depends on the concrete,
mostly untested and hypothetically assumed ingredients
and modifications of gravity theory, and it is therefore not
easy to see which properties of cyclic cosmologies are
universal and which are particular.
One of the necessary future steps in the further develop-

ment of the described research program of cyclic cosmol-
ogy would be to focus on the detailed analysis of the special
class of viable cyclic models and their properties. This
should especially be oriented toward such frameworks
where the ΛCDM phase can be naturally incorporated
within the cyclic evolution (see Fig. 2), and the stability
issues of the contracting phase can be solved. Furthermore,
it would be necessary to systematically confront general-
ized classes of cyclic models with observations and
predictions of standard cosmology. This could also be
done in a more general setting, as the theoretical analysis—
like the one presented in this work—could be used to obtain
the corrections to the standard cosmology supporting cyclic
solutions. The parameters describing such corrections
should then be systematically confronted with the range
of parameters allowed by the available data.
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