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If neutrinos have self-interactions, these will induce scatterings between astrophysical and cosmic
neutrinos. Prior work proposed looking for possible resulting resonance features in astrophysical neutrino
spectra in order to seek a neutrino self-interaction which can be either diagonal in the neutrino flavor
space or couple different neutrino flavors. The calculation of the astrophysical spectra involves either a
Monte Carlo simulation or a computationally intensive numerical integration of an integro-partial-
differential equation. As a result, only limited regions of the neutrino self-interaction parameter space
have been explored, and only flavor-diagonal self-interactions have been considered. Here, we present a
fully analytic form for the astrophysical neutrino spectra for arbitrary neutrino number and arbitrary self-
coupling matrix that accurately obtains the resonance features in the observable neutrino spectra. The
results can be applied to calculations of the diffuse supernova neutrino background and of the spectrum
from high-energy astrophysical neutrino sources. We illustrate with a few examples.

DOI: 10.1103/PhysRevD.103.023527

I. INTRODUCTION

While the interactions between neutrinos is extraordi-
narily feeble in the Standard Model, there are a number
of reasons to entertain the possibility that new physics
may introduce stronger neutrino self-interactions [1–4].
Astrophysical neutrinos may provide a powerful probe
in the search for such self-interactions (νSI) [5]. Strong
features, such as dips and enhancements, can be imprinted
on astrophysical-neutrino spectra, which when analyzed
can yield νSI parameter values. In particular, there is the
diffuse supernova neutrino background (DSNB) and a
collection of high-energy astrophysical neutrino (HEAN)
sources. The DSNB is the isotropic time-independent flux
of neutrinos and antineutrinos around tens of MeV emitted

by distant core-collapse supernovae [6]. These diffuse
sources come from distances around 10 Mpc [7,8] up to
a redshift of 5 with a peak around a redshift of 1 [9].
Moreover, the DSNB has a thermal energy spectrum.
In comparison, although HEAN sources have no identified
production mechanism, the neutrino’s energy spectrum is
observed by IceCube to follow a power law [10].
If there are neutrino self-interactions, then interactions

of DSNB and/or HEAN neutrinos with low-energy
(approximately 0.001 eV) cosmic-background neutrinos
can appear in the observed DSNB and/or HEAN spectra as
absorption features or enhancements at lower energies. The
calculation of the observed flux is straightforward but, most
generally, involves solving a series of coupled integro-
differential equations that evolve the energy and flavor
distribution of neutrinos. These equations describe the
injection of neutrinos from sources, the redshifting of
neutrinos, the absorption from self-interactions, and the
reinjection of lower-energy neutrinos after such inter-
actions. The solutions to these equations require either a
Monte Carlo simulation or a straightforward, but computa-
tionally intensive, numerical integration of the equations.
This thus limits the regions of νSI parameter space that
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can be investigated. For example, previous work assumed
a universal self-coupling matrix [11–15], a diagonal [16]
self-coupling matrix, no flavor dynamics [17,18], or
particular values for the mediator mass, coupling constant,
and neutrino mass [19–21].
In this paper, we present an analytic approach to resonant

astrophysical-cosmic-neutrino scattering for arbitrary self-
coupling matrix and neutrino number. Here and onward,
cosmic neutrinos will refer to cosmic-background neutri-
nos. This solution is built on the observation that most of
observable effects explored in DSNB/HEAN studies arise
from resonant neutrino self-interactions. To illustrate the
utility of the approach, we then use this solution to explore
the discovery space for a model of τ self-interactions
(relevant for the DSNB) and another for sterile-neutrino
self-interactions (relevant for the HEAN).
This paper is organized as follows. In Sec. II, we review

the general formalism of neutrino mixing and transport. In
doing so, we present three formal solutions: first in the case
of no interactions, second in the case of only absorption
interactions, and third in the case of both absorption and
reinjection. We formulate explicit solutions in Sec. III
where we specify the nature of neutrino self-interaction.
We begin by considering only a single species of neutrino.
Then, we generalize this result and present a solution
for arbitrary neutrino number and self-coupling matrix.
Finally, in Sec. IV, we use our new solution to identify
regions of parameter space that can be accessed.
Specifically, we consider DSNB probes of self-interactions
with Super-Kamiokande and HEAN probes with IceCube.
We discuss and conclude these results in Secs. V and VI.

II. GENERAL FORMALISM

A. Neutrino mixing

Neutrinos can be represented in either the mass basis or
the flavor basis. In what follows, greek indices are reserved
for flavor states, and latin indices are reserved for mass
states. In order to switch between the two bases, the
neutrino mixing matrix U must be used according to

να ¼
X
i

Uαiνi; ð1Þ

where the sum is over all mass states and with U unitary.
Unitarity implies that for any flavor state α,

P
i jUiαj2 ¼ 1,

and so jUαij2 is interpreted as the probability that flavor α is
observed as mass state i, or vice versa.

B. Neutrino transport

The specific flux Φiðt; EÞ of astrophysical neutrinos νi
(number of astrophysical neutrinos per unit conformal time
per unit comoving area per unit energy) at cosmic time t
and observed energy E obeys the Boltzmann equation

∂Φi

∂t ¼ HΦi þHE
∂Φi

∂E þ Siðt; EÞ
− Γiðt; EÞΦi þ Stert;iðt; EÞ; ð2Þ

where HðzÞ ¼ H0ẼðzÞ is the Hubble parameter at red-
shift z, with z as a proxy for t, and for a Lambda cold dark
matter ΛCDM cosmology, ẼðzÞ ¼ ½Ωmð1þ zÞ3þ
ð1 −ΩmÞ�1=2, with Ωm the matter-density parameter today.
When an explicit change of variable is necessary, tðzÞ ¼R∞
z dz0jdt=dz0j with dt=dz ¼ −1=½HðzÞð1þ zÞ�. In addi-
tion, Si is the production rate of astrophysical neutrinos νi,
Γi is the absorption rate of astrophysical neutrinos due to
neutrino scatterings, and Stert;i is the tertiary source term
accounting for the possible reinjection of astrophysical
neutrinos postscattering. Note that by this definition of the
specific flux, the comoving number density of astrophysi-
cal neutrinos is ð1=cÞ R dEΦiðt; EÞ, different from
Refs. [22,23] where they considered Φi to be defined to
reproduce the physical number density. Since neutrino
decoherence time scales are smaller than any other relevant
timescale, the transformationΦαðt; EÞ ¼

P
i jUαij2Φiðt; EÞ

can be performed to switch back to the flavor basis at
any point. Moreover, if the source terms are given in the
flavor basis Sα, then the mass basis source term is
Si ¼

P
α jUαij2Sα.

In the absence of interactions, Stert;i ¼ Γi ¼ 0, the
solution of Eq. (2) is obtained by identifying the total
time derivative as d=dt ¼ ∂=∂tþ ðdE=dtÞ∂=∂E, with
dE=dt ¼ −HE, leading to

Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�Sift0; ½aðtÞ=aðt0Þ�Eg; ð3Þ

with aðtÞ the scale factor at time t. The factor of ½aðtÞ=aðt0Þ�
inside the source term accounts for the redshifting of the
energy from t0 to t, while outside the source term, it
accounts for the redshifting of the differential energy from
t0 to t. The addition of a nonzero sink term while neglecting
any reinjection, Γi ≠ 0, Stert;i ¼ 0, does not complicate
things much further as then

Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τiðt0;t;EÞ

× Sift0; ½aðtÞ=aðt0Þ�Eg;

τiðt0; t; EÞ ¼
Z

t

t0
dt00Γift00; ½aðtÞ=aðt00Þ�Eg; ð4Þ

with τiðt0; t; EÞ the optical depth of a neutrino νi of energy
E between times t0 and t. As a result, astrophysical
neutrinos at time t0 not only go through the previous
redshifting but now travel through a medium of optical
depth τi from the emission time t0 to the observed time t.
Formally, if neutrino reinjection is taken into account,

Stert ≠ 0, a solution is easily written down,
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Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τiðt0;t;EÞ

× S̃ift0; ½aðtÞ=aðt0Þ�Eg;

τiðt0; t; EÞ ¼
Z

t

t0
dt00Γift00; ½aðtÞ=aðt00Þ�Eg;

S̃iðt; EÞ ¼ Siðt; EÞ þ Stert;iðt; EÞ: ð5Þ

However, since the tertiary source is a function of the
specific flux itself, the solution is in general not closed.
Therefore, if we are to move forward, a particular model
must be specified.

III. ANALYTICAL RESULTS

A. Single neutrino species

The particular neutrino model we consider at first is
that of a single species of self-interacting neutrinos ν of
mass mν whose self-interactions are mediated by a scalar
particle ϕwith massmϕ and coupling strength g. We ignore
the existence of other neutrino species, and as such, we
suppress any indices present in relevant equations. That is,
we initially consider the interacting Lagrangian,

L1−ν
int ¼ gϕνν: ð6Þ

If this is the case, then astrophysical neutrinos will scatter
with cosmic neutrinos, causing depletion of astrophysical
neutrinos at a resonant energy ER ¼ ½m2

ϕ=ð2mνÞ�c2 at a rate
Γðt; EÞ ¼ nνðtÞσðEÞc. We define nνðtÞ to be the physical
number density of our single cosmic neutrino species, σðEÞ
to be the scattering cross section of the process νν → νν,
and c to be the speed of light. After depletion, neutrinos are
then reinjected at energies E < ER. We take the scattering
cross section to have a Breit-Wigner form,

σðEÞ
ðℏcÞ2 ¼

g4

4π

s
½s − ðmϕcÞ2�2 þ ðmϕc2Þ2Γ2

ϕ

; ð7Þ

where ℏ is Planck’s constant, s ¼ 2Emνc2, and Γϕ ¼
g2mϕc2=ð4πÞ is the decay width. If the width of the
resonance is small enough, resonant scattering can be
approximated by a Dirac delta function. We now quantify
when this occurs. The width of the resonance is where
½s − ðmϕc2Þ2�2 < ðmϕc2Þ2Γ2

ϕ, or stated in terms of
energies when jE − ER½1� Γϕ=ðmϕc2Þ�j < 0, so that
the width is 2ERΓϕ=ðmϕc2Þ. For a detector with resolution
ΔE, a width cannot be resolved and thus is a delta function
if 2ERΓϕ=ðmϕc2Þ≲ ΔE. Therefore, the coupling must
satisfy

g≲ ffiffiffiffiffiffi
2π

p
ðΔE=ERÞ1=2 ≲ 0.5

�
ΔE=ð1 MeVÞ
ER=ð25 MeVÞ

�
1=2

; ð8Þ

where ΔE ≈ 1 MeV for a detector such as Super-K [24]
and ER ≈ 25 MeV for masses mϕc2 ¼ 1 keV, mνc2 ¼
2 × 10−2 eV. We conclude that, unless the coupling is of
order unity, which is most of the available parameter space
[17], a detector will not be able to resolve the resonance,
and we approximate the cross section as a delta function.
A nascent delta function in the Breit-Wigner form is
δðxÞ ¼ limϵ→0ð1=πÞϵ=ðϵ2 þ x2Þ, so that the resulting cross
section is

σðEÞ ¼ σREδðE − ERÞ; ð9Þ

with σR ¼ ðℏcÞ2πg2=ðmϕc2Þ2. Note that Eqs. (7) and (9)
will only yield exactly the same expression once integrated.
Resonant scattering is isotropic when the mediator is a
scalar field, and therefore the differential cross section
dσðE1; E3Þ=dE3, where an incoming neutrino with energy
E1 scatters to an outgoing neutrino of energy E3, has a flat
distribution dσðE1; E3Þ=dE3 ¼ σðE1Þ=E1. With this form,
we now evaluate the tertiary source for neutrino production
in Eq. (2).
In our case of cosmic neutrino upscattering, two neu-

trinos are reinjected after an initial neutrino is taken from
the sink term, and cosmic neutrinos have energies much
smaller than supernova neutrinos, so their relative velocity
is the speed of light. Thus, the tertiary term takes the
following expression, converting our initial differential
equation into an integro-differential equation:

Stertðt; EÞ ¼ nνðtÞc
Z

∞

E
dE1Φðt; E1Þ

×

�
dσðE1; EÞ

dE
þ dσðE1; E1 − EÞ

dE

�
: ð10Þ

With our delta-function approximation, this term is now
evaluated as

Stertðt; EÞ ¼ 2ΓRðtÞΦðt; ERÞΘðER − EÞ; ð11Þ

with ΓRðtÞ ¼ nνðtÞσRc and ΘðxÞ the Heaviside function
with Θð0Þ ¼ 0. Moreover, we simplify the optical
depth as

τðt0; t; EÞ ¼ τRðt; EÞΘ½zRðt; EÞ − z�Θ½z0 − zRðt; EÞ�; ð12Þ

with z0 a proxy for t0, τRðt; EÞ ¼ ½ΓRðzRÞ=HðzRÞ�×
½ð1þ zÞ=ð1þ zRÞ�, and zR ¼ ð1þ zÞER=E − 1 the absorp-
tion redshift of a neutrino with energy E. Plugging these
expressions into Eq. (5) leads to

Φðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τðt0;t;EÞS̃ft0; ½aðtÞ=aðt0Þ�Eg;

S̃ðt; EÞ ¼ Sðt; EÞ þ 2ΓRðtÞΦðt; ERÞΘðER − EÞ: ð13Þ

RESONANT NEUTRINO SELF-INTERACTIONS PHYS. REV. D 103, 023527 (2021)

023527-3



Thus, for E ≥ ER, the spectrum is the same as a no-
interaction Boltzmann equation and so is solved in the same
manner. However, whenE < ER, neutrinos are reinjected at
twice the rate of their depletion at the resonant energy. As
such, the expression for neutrino reinjection still requires
solving for the specific flux at E ¼ ER and plugging it back
in for evaluation at lower energies, which at first makes
Eq. (13) seem not closed. However, Eq. (2) has a delta
function via the absorption term Γðt; EÞΦ ¼ nνðtÞσðEÞcΦ
at the resonant energy, and so we must obey the boundary
condition at this point. In order to satisfy this condition,
we integrate Eq. (2) around the resonant energy from below
the resonance E−

R ≡ ER − ϵ=2 to above the resonance
Eþ
R ≡ ER þ ϵ=2 and take the line width Eþ

R − E−
R ¼ ϵ to

zero. Explicitly, this results in

HðtÞ½Φðt; Eþ
R Þ −Φðt; E−

RÞ� ¼ ΓRðtÞΦðt; ERÞ: ð14Þ

Again, above the resonant line, the optical depth of free-
streaming with no interactions is zero, while below, it is
τðt0; t; E−

RÞ, so that the resulting expression for Φðt; ERÞ is

Φðt; ERÞ ¼
HðtÞ
ΓRðtÞ

Z
t

−∞
dt0½aðtÞ=aðt0Þ�½1 − e−τRðt;EÞ�

× Sft0; ½aðtÞ=aðt0Þ�ERg: ð15Þ

As a result, Eq. (13) has a closed form expression. Since
cosmic neutrinos are low energy, astrophysical-cosmic
neutrino scattering does not add nor remove energy from
the astrophysical neutrino spectra but only redistributes it.
We have checked both analytically and numerically that
Eq. (13) obeys this condition.
There are two differences in the expression for Φ

between Eqs. (13) and (15). First is the presence of the
factor 1 − e−τ rather than e−τ. This factor can be understood
as follows: after an astrophysical neutrino redshifts through
a resonance over a short period of time, the specific flux at
the resonant energy only has a fraction e−τ remaining of the
original flux. It follows then that the amount that is injected
at lower energies must be the complementary fraction,
1 − e−τ. The second difference is the factor of HðtÞ=ΓRðtÞ,
which changes the rate of injection from ΓRðtÞ in Eq. (5)
to HðtÞ. This change in the rate of injection is due the
resonance line redshifting in time. If the scattering rate is
faster than Hubble, then the flux of neutrinos at the resonant
energy is suppressed. Conversely, if the rate is slower, then
the scatterings have little effect.

B. Multiple neutrino species

In the presence of multiple neutrino species, the previous
equations do not hold. Here, we present the analogous
calculation with additional neutrinos, taking the mass of
each neutrino species to be mj with corresponding cosmic
physical number density nj. The interaction Lagrangian

term for the most general mass-basis interaction with a
scalar mediator ϕ of mass mϕ is given by

Lmass
int ¼ ϕ

X
ij

gijνiνj; ð16Þ

with gij the self-coupling matrix. In this model, astrophysi-
cal neutrinos scatter off of one of any of the cosmic neutrino
species, causing depletion of astrophysical neutrinos at
corresponding resonant energies Ej ¼ ½m2

ϕ=ð2mjÞ�c2 at a
rate Γi ≡P

j njσijc. The cross section σij ≡P
kl σijkl is

the sum of scattering cross sections for the processes
νiνj → νkνl. We take σijkl to have the Briet-Wigner form

σijklðEÞ
ðℏcÞ2 ¼ jgijj2jgklj2

4π

sj
½sj − ðmϕcÞ2�2 þ ðmϕc2Þ2Γ2

ϕ

ð17Þ

with sj ¼ 2Emjc2 and Γϕ ¼ ðPij jgijj2Þmϕc2=ð4πÞ the
decay width. Note that the decay width has changed since
there now exists multiple decay branches for ϕ. After
depletion, the neutrinos are reinjected at a rate according to

Stert;iðt; EÞ ¼
X
jkl

nkðtÞc
Z

∞

E
dE1Φjðt; E1Þ

×

�
dσjkilðE1; EÞ

dE
þ δil

dσjkilðE1; E1 − EÞ
dE

�
;

ð18Þ
with δil the Kronecker delta function that accounts for the
possibility of upscattering into two astrophysical neutrinos
of the same state rather than just one. That is, compared to
the single neutrino species case, this expression accounts
for production of neutrinos of type i from an astrophysical
flux Φj hitting a cosmic neutrino density nk, with i, j, k not
necessarily all being the same. Once again, the differential
cross section takes a flat distribution dσijklðE1; E3Þ=dE3 ¼
σijklðE1Þ=E1. Moreover, using our delta function limit, the

cross section takes the form σijklðEÞ ¼ σijklR EδðE − EjÞ
with σijklR ¼ ðℏcÞ2jgijj2jgklj2=½4ðmϕc2ÞΓϕ�. As a result, the
tertiary source term is

Stert;iðt; EÞ ¼
X
jkl

ð1þ δilÞΓjkil
R ðtÞΦjðt; EkÞΘðEk − EÞ;

with Γjkil
R ðtÞ ¼ nkðtÞσjkilR c. In addition, the optical depth is

τiðt0; t; EÞ ¼
X
j

τijRðt; EÞΘ½zjðt; EÞ − z�Θ½z0 − zjðt; EÞ�;

ð19Þ

with τijRðt; EÞ ¼ ½Γij
RðzjÞ=HðzjÞ�½ð1þ zÞ=ð1þ zjÞ�, Γij ¼P

kl Γ
ijkl
R , and zj ¼ ð1þ zÞEj=E − 1. Analogous to before,

we satisfy the boundary condition around each resonance
by the conditions
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HðtÞ½Φiðt; Eþ
j Þ −ΦiðE−

j Þ� ¼ Γij
RðtÞΦiðt; EjÞ: ð20Þ

Now, it is true that only above the highest resonant line, the
optical depth is zero. Thus, the general solution is

Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τiðt0;t;EÞ

× S̃ift0; ½aðtÞ=aðt0ÞE�g;
S̃iðt; EÞ ¼ Siðt; EÞ þ

X
jkl

ð1þ δilÞΓjkil
R ðtÞ

×Φjðt; EkÞΘðEk − EÞ;

Φiðt; EjÞ ¼
HðtÞ
Γij
RðtÞ

Z
t

−∞
dt0

aðtÞ
aðt0Þ e

−τiðt0;t;EÞ½1 − e−τ
ij
R ðt;EÞ�

× S̃ift0; ½aðtÞ=aðt0Þ�Ejg: ð21Þ

Then, when we want to convert back to the flavor basis we
use the neutrino mixing matrix once again. Equation (21) is
our main result that describes the propagation of multiple
astrophysical neutrinos species that self-interact arbitrarily
with cosmic neutrinos. If a flavor self-coupling matrix is
given instead, the identification gij ¼

P
αβ UiαUjβgαβ leads

to an easy substitution. We present the analogous equations
with this substitution in Appendix.
Note, however, that in order to solve Eq. (21) in a closed

manner, the highest resonant boundary condition must be
solved for first, as it is a function of only the source Si
and scattering rate Γi. This is to be contrasted with the
boundary conditions for lower resonant energies, which
depend not only on these quantities but also the flux at
higher resonances. This dependence arises because a
neutrino can be absorbed at a resonance Ej, downscattered
to an energy E > Ek, with Ek < Ej some other resonance,
and then be redshifted down to Ek. In this way, astro-
physical neutrinos may cascade down the resonance
pipeline until they reach energies below the lowest
resonant energy.

IV. NUMERICAL RESULTS

Given these analytic results, a wealth of neutrino self-
interactions can be explored and constrained. However,
due to the large dimensionality of the general problem, we
narrow our scope to two specific models. Moreover, many
factors aside from neutrino self-interactions can affect
the resulting spectrum, such as detector backgrounds
and energy thresholds. Such a detailed analysis, however,
is outside the scope of this paper. That is, we consider
only a single source of neutrinos with shot-noise error.
Specifically, first we consider the standard three-neutrino
model, adjoined with a τ self-interaction coupling constant
gττ. Interactions of this form have been proposed to resolve
the Hubble tension [25,26], although our analysis does not
rely on this explanation.

Second, we add a sterile neutrino to the three-neutrino
model, along with a sterile s self-interaction coupling
constant gss. This case is motivated by the LSND,
MiniBooNE and reactor anomalies which suggest mixing
with eV-scale sterile neutrinos [27–35]. While such mixing
would be in tension with Planck, self-interactions of the
sterile neutrino by a mediator of mass mϕ ≲MeV would
bring results back into harmony [36,37]. In both models,
we consider all other neutrino self-coupling constants are
taken to be zero.
In order to apply Eq. (21) to the four-neutrino case,

we need to choose definite values for the mixing matrix
elements. We use a standard parametrization [38],

U ¼ R1ð3; 4ÞR0ð2; 4ÞR1ð1; 4ÞR0ð2; 3ÞR1ð1; 3ÞR0ð1; 2Þ;
ð22Þ

with Rcða; bÞ a 4 × 4 rotation matrix with matrix elements
Rcða; bÞij and a mixing angle θab. The matrix elements
are those of the 4 × 4 identity except for the following
submatrix,

�
Rcða; bÞaa Rcða; bÞab
Rcða; bÞba Rcða; bÞbb

�
¼

�
cab sabe

−icδCPab

−sabeicδ
CP
ab cab

�
;

ð23Þ

where sab ¼ sinðθabÞ and cab ¼ cosðθabÞ, and δCPab is a
complex CP violating phase. In general, there are also
Majorana phases associated with the mixing matrix, but
since we considering lepton-conserving processes, we
neglect them [39].
In the limiting case of no mixing between active

and sterile neutrino states, θ14 ¼ θ24 ¼ θ34 ¼ 0, each of
R1ð3; 4Þ, R0ð2; 4Þ, and R1ð1; 4Þ is the identity, and we
obtain the standard three-neutrino mixing matrix [40] plus a
decoupled sterile state. Note that in this model, we consider
self-interactions only among sterile neutrinos, so in this no-
mixing limit, our astrophysical spectra will return to the
standard expectation, regardless of the value of gss.
Motivated by the short-baseline anomalies, we take
θ14 ¼ θ34 ¼ 0 and sin2ðθ24Þ ¼ 0.1, so θ24 ¼ 0.161.
In addition to the mixing matrix, the neutrino mass

spectrum m⃗ is also constrained. We first review the
constraints on the lightest three neutrinos. Oscillation
experiments give the value of two mass-squared differences
[41]. As a result, it is unclear whether the neutrino mass
spectrum follows a normal hierarchy (NH) m1 < m2 < m3

or inverted hierarchy (IH) m3 < m1 < m2. However, a
lower bound on the neutrino masses is obtained by setting
m1 ¼ 0 in the NH and m3 ¼ 0 in the IH. In addition,
an upper bound is obtained from Planck [42], as it
constrains the sum of neutrino masses to be such that
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P
j mjc2 < 0.12 eV. As a result, the following table of

neutrino mass constraints can be made:

m1c2 (eV) m2c2 (eV) m3c2 (eV)

NH [0, 0.030] [0.0087, 0.031] [0.050, 0.059]
IH [0.050, 0.052] [0.051, 0.053] [0, 0.015]

This table implies that, no matter the hierarchy, we know
there exists a neutrino with mass mc2 ∈ ½0.050; 0.059� eV.
Thus, there is at least one cosmic neutrino that is cold
today. As an exemplar case of multiple resonances, we
choose our three-neutrino mass spectrum to be the
heaviest normal hierarchy allowed m⃗HNHc2 ¼ ½0.030;
0.031; 0.059� eV. When considering sterile self-
interactions, we add to the heaviest normal hierarchy an
eV-mass neutrino, leading to a sterile normal hierarchy
m⃗SNHc2 ¼ ½0.03; 0.031; 0.059; 1.0� eV.
The mass of the mediator is chosen to correspond to the

energy ranges dictated by the sources we choose. That is,
for an experiment that measures spectra between neutrino
energy ranges ½Emin; Emax�, the range of mediators that can
be probed is Emin ≤ ½m2

ϕ=ð2mjÞ�c2 ≤ Emax for each neu-
trino mass mj ∈ m⃗. In order to simplify our analysis, we
only compare the null hypothesis with our model at the
resonant energies, and not the entire spectrum. Finally, we
choose a fixed bin size for each constraint.
We denote the event count under the null hypothesis

gij ¼ 0 by Nnull. Thus, assuming only Poisson shot noise
error, we find that the number of events Nevents in each bin
can be measured away from the null hypothesis with a
signal to noise

�
S
N

�
2

¼ ðNevents − NnullÞ2
Nevents þ Nnull

: ð24Þ

Therefore, the number of events needed to distinguish from
the null hypothesis Nevents ¼ Nnull is

N� ¼ Nnull þ ðS=NÞ2=2þ ðS=NÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nnull þ ðS=NÞ2=4

q
;

ð25Þ

with ðS=NÞ� ¼ �jðS=NÞj. N� is also known as the
ðS=NÞ-σ uncertainty in the measurement of Nnull, with
Nþ the upper and N− the lower uncertainty. Again, for our
analysis, we only use N− when looking for depletions.

A. DSNB

The production rate of neutrinos per comoving area
per unit time per unit energy from core-collapse supernovae
(CCSN) is Siðt; EÞ ¼ cRCCSNðzÞdNiðEÞ=dE [43], with
RCCSN the CCSN rate per comoving volume and
dNi=dE the number spectrum of neutrinos of type i emitted
by one supernova explosion. For RCCSN, we use the

parametrization of Ref. [9] with the lower bound
of the Salpeter initial mass function. Moreover, we
assume equipartition of energy among neutrino species
and thus approximate the spectrum of one neutrino
species by a Fermi-Dirac distribution with zero chemical
potential [44],

dNi

dE
¼ 120

7π4
Etot

6

E2

ðkBTSNÞ4
1

1þ eE=ðkBTSNÞ ; ð26Þ

with Etot ¼ 3 × 1046 J the total energy in neutrinos emitted
by the supernova and 4 MeV ≤ kBTSN ≤ 8 MeV the super-
nova temperature [6]. We plot two possible flux spectra Φe
of electron antineutrinos from the DSNB in Fig. 1 for T.
While a supernova temperature kBTSN ¼ 8 MeV is disfa-
vored, it does not heavily alter our conclusions. For the
heaviest normal neutrino mass hierarchy, three resonances
are potentially observable when flavor self-interactions are
considered. While not observed yet, the addition of
gadolinium sulfate to large water Cerenkov detectors
would allow for the discrimination, and thus detection,
of DSNB events from spallation and atmospheric neutrino
events [45,46].
Electron antineutrinos in the DSNB are in the correct

energy regime to be detected through inverse beta
decay scattering at Super-Kamiokande [24]. Specifically,
through the process ν̄ep → eþn, DSNB antineutrinos
collide with water molecules in Super-Kamiokande,

FIG. 1. The DSNB specific flux of electron antineutrinos
Φe. The forest green line indicates the minimum energy Emin

ν ¼
1.806 MeV needed for neutrinos to undergo inverse beta decay.
The black line gij ¼ 0 has no self-interactions. For τ self-
interactions gττ, three resonances are visible, while for s self-
interactions gss, four are visible. In both cases, there is a nearly
degenerate pair of resonances. In addition to the dips, an
enhancement is present for energies Eν≲4MeV for gττ¼0.01,
as there is no dip from a fourth neutrino. The mass spectrum is
m⃗HNH (m⃗SNH) for the three-(four-)neutrino model. The mediator
mass is mϕc2 ¼ 1 keV, and the supernova temperature is
kBTSN ¼ 8 MeV.
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producing a positron that emits Cherenkov radiation that
is detectable. As a result, the colliding antineutrino must
have minimum energy Emin

ν ¼ mec2 þ Δ ¼ 1.806 MeV,
with Δ ¼ ðmn −mpÞc2. In the following, we use
Eq. (25) of Ref. [47] for the inverse beta decay cross
section σIBD. The number Nevents of events detected in a
positron energy bin ½Eeþ ; Eeþ þ δE� is then

Nevents ¼ TNp

Z
EeþþδE

Eeþ
dEΦeðEþ ΔÞσIBDðEÞ; ð27Þ

with T the time of observation and Np the number of
scattering targets. Note that in this expression, Eþ Δ is the
neutrino energy, while E is the positron energy.
We show the event counts and uncertainties correspond-

ing to Fig. 1 in Fig. 2. Comparing our null hypothesis to our
model at the resonant energies, we obtain the forecasted 1σ
constraints in Fig. 3.

B. High-energy astrophysical neutrinos

The production rate of high-energy astrophysical neu-
trinos per comoving area per unit time per unit energy is
Lðz; EÞ ¼ WðzÞL0ðEÞ, with L0 the differential number
luminosity for each source and W the redshift evolution of
the source density. We take the redshift evolution to follow
the star-formation rate, WðzÞ ¼ RCCSNðzÞ. Moreover,
following IceCube’s 6 year data analysis [10], we take
the differential number luminosity to be a power law
L0 ∝ ðE=E0Þ−γ . We plot two possible flux spectra Φe of

electron antineutrinos in Fig. 4. The number of events
observed by IceCube is [48]

Nevents ¼ T
Z

EcascþδE

Ecasc

dEΦeðEÞAeffðEÞ; ð28Þ

with T the time of observation, Ecasc the cascade energy,
and AeffðEÞ the IceCube effective area, which we take from
Ref. [49]. When a neutrino hits a nucleon in IceCube,
the relevant process is via charged current interactions
whereby a hadronic cascade and an electron or positron are
produced. The produced lepton then leads to an electro-
magnetic cascade. Both of these cascades approximately
have a spherical distribution and are detected by phototubes
in IceCube. IceCube can then recover the initial neutrino

FIG. 2. tDSNB event counts Nevents vs positron energy Eeþ at
Super-K with gadolinium after T ¼ 10 years with δE ¼ 1 MeV
energy bins. The upper and lower uncertainties on the gij ¼ 0

event count are shown for ðS=NÞ� ¼ �1. In both alternative
models, self-interactions are ruled out as the resonant energy
count is below the 1σ uncertainty. However, they cannot be
distinguished from one another due to their similar profiles. The
model parameters are the same as in Fig. 1.

FIG. 3. Forecasted 1σ constraints on flavor self-interactions
from a cosmic neutrino mass spectrum (a) m⃗HNHc2 ¼ ½0.030;
0.031; 0.059� eV and (b) m⃗SNHc2 ¼ ½0.031; 0.031; 0.059; 1.0� eV
interacting with the DSNB observed at Super-K with gadolinium
for T ¼ 10 years. Each neutrino mass mj corresponds to a
different constraint region, denoted by the filled in regions.
The jagged edges are due to numerical error.
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energy with high accuracy. Therefore, we approximate the
cascade energy to be the neutrino energy.
We show the event counts and uncertainties correspond-

ing to Fig. 4 in Fig. 5. Comparing our null hypothesis to our

model at the resonant energies, we obtain the forecasted 1σ
constraints in Fig. 6.

V. DISCUSSION

Several points are worth examining in further depth.
First, Eq. (21) only holds when each cosmic neutrino
species is cold. However, we know there exists at least one
cold neutrino species. Therefore, in the case where one or
more cosmic neutrino species are not cold, this equation is
modified so that any sum over neutrino scattering cross
sections is only over all cold species. Moreover, inter-
actions with the lower-mass neutrinos should be suppressed
relative to that of the heavier cold species due to thermal
broadening.
Second, the spectra shown all have three resonances, and

this not need be the case. The heaviest allowed normal

FIG. 4. The specific flux per steradian Φe=ð4πÞ of high-energy
astrophysical electron antineutrinos. The forest green line in-
dicates the minimum energy Emin

casc ¼ 105 GeV needed to be
above the atmospheric neutrino background. The black line
gij ¼ 0 has no self-interactions. For the τ self-interactions gττ,
two resonances are visible, while for s self-interactions gss, one is
visible. In the gττ case, there is a degenerate pair of resonances that
cannot be resolved. For gss ¼ 0.01, three resonances are below the
threshold for strong absorption. No enhancement is present for low
energies as the spectrum monotonically decays. The mass spec-
trum is m⃗HNH (m⃗SNH) for the three-(four-)neutrino model. The
mediator mass is mϕc2 ¼ 10 MeV. We take the power law index
to be γ ¼ 2.53 and E0 ¼ 100 TeV. In addition, we normalize the
final flux at energy E0 so that E2

0ΦeðE0Þ=ð4πÞ ¼ C0Φ0, with
C0 ¼ 3 × 10−18 GeV−1 cm−2 s−1 sr−1 and Φ0 ¼ 1.66 in accor-
dance with IceCube [10].

FIG. 5. High-energy astrophysical neutrino event counts Nevents
vs cascade energy Ecasc at IceCube after T ¼ 988 days with
δlog10½E=ð1 GeVÞ� ¼ 0.1 log-energy bins. The upper and lower
uncertainties on the gij ¼ 0 event count are shown for
ðS=NÞ� ¼ �1. The gττ ¼ 0.01 self-interaction model is ruled
out as the resonant energy count is below the 1σ uncertainty. The
model parameters are the same as in Fig. 4.

FIG. 6. Forecasted 1σ constraints on flavor self-interactions
from a cosmic neutrino mass spectrum (a) m⃗c2 ¼ ½0.030;
0.031; 0.059� eV and (b) m⃗c2 ¼ ½0.031; 0.031; 0.059; 1.0� eV in-
teracting with HEAN observed at IceCube for T ¼ 988 days.
Each neutrino mass mj corresponds to a different constraint
region, denoted by the filled in regions. The jagged edges are due
to numerical error.
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neutrino mass hierarchy is special in this case, since the
nearly degenerate pair have masses much larger than any
neutrino mass splitting. In the inverted scenario, this cannot
be the case, and so at most, two resonances could be seen in
any spectrum that does not have a large energy range. If a
single resonance is seen, it is unclear how to disentangle the
two scenarios, but such distinction is outside the scope of
this work.
Third, while we made our constraints by looking for

absorption features, one in principle could also look for
enhancements in spectra. In experiments, it is simple as one
needs to look for when the signal surpasses some threshold
for statistical significance, Nevents > Nþ. However, it is less
obvious theoretically what bins or how many bins one
should look at in order to create a forecasted constraint
from enhancements in a time-efficient manner. It depends
on the number of resonances, the shape of the null
hypothesis spectrum, and the detection method. For exam-
ple, in the DSNB, the enhancements are much more
pronounced at low energy compared to HEAN sources,
since at low energies the DSNB spectrum falls off while the
HEAN source spectrum grows.
Fourth, we wrote down our formulas assuming a single

scalar ϕ; however, it is straightforward to generalize to
multiple scalars ϕk with self-coupling matrices gkij. The
only possible subtlety is if degeneracies in the resonances
occur, in which case the resonant condition needs to be
altered accordingly by a sum over degenerate resonances.
Fifth, while this paper is focused on neutrino self-

interactions, it is also straightforward to incorporate arbi-
trary resonant scattering between any species. The most
obvious other cold species to generalize to would be cold
dark matter.
Sixth, when constraining self-interactions, we only took

information about the shape of the flux of one neu-
trino flavor at a time. Combining multiple flavors will
lead to stronger constraints if the detection of them is
feasible.
Finally, we took the noise to be only Poissonian and

assumed fiducial astrophysical parameters. In a realistic
experiment, other backgrounds must be taken into account
as well as degeneracies with their parameters. However,
such a proper treatment, similar to Refs. [18,50,51], is
outside the scope of this work.

VI. CONCLUSION

In this paper, we have considered the consequence of
beyond the Standard Model neutrino self-interactions on
various astrophysical neutrino spectra. We began by pre-
senting the necessary formalism for neutrino mixing and
transport. We did this not only to establish notation but also
in order to demonstrate that neutrino reinjection is a
problem that is generally not closed.

In order to overcome this hurdle, we then took the limit
where the scattering cross section goes to a delta function
and found that the former partial integro-differential equa-
tions turn into a standard partial differential equation with
simple boundary conditions. As a result, we then presented
the solution for astrophysical neutrino spectra for a single
neutrino species, following with one for an arbitrary
number of neutrino species. These solutions were specified
in either the mass basis or the flavor basis.
From this, we then demonstrated the utility of the

analytic solution by considering our astrophysical sources
to be either the diffuse supernovae background or high-
energy astrophysical neutrinos. From there, we established
forecasts and constraints on a normal three-neutrino hier-
archy with τ self-interactions, as well as a four-neutrino
hierarchy with sterile self-interactions. None of these
calculations took a significant amount of time, and they
were routine in their implementation.
It will be interesting to implement this calculation in

future work to explore the effects of neutrino self-inter-
actions on DSNB and HEAN spectra for a wider range of
models that involve new neutrino interactions.
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APPENDIX: FLAVOR BASIS INTERACTIONS

We consider the most general flavor interaction for a
single scalar mediator ϕ of mass mϕ,

Lflavor
int ¼ ϕ

X
αβ

gαβνανβ ¼ ϕ
X
αβij

gαβUαiUβjνiνj: ðA1Þ

The identification of gij ¼
P

αβ UiαUjβgαβ allows us to use
Eq. (21). We reparametrize the scattering rate

Γjkil
R ¼

X
αβγδ

jUγij2jUαjj2jUδlj2Γk;αβγδ
R ; ðA2Þ

with Γk;αβγδ
R ¼ jUβkj2nkðtÞσαβγδR c and σαβγδR ¼ jgαβj2jgγδj2=

½4ðmϕc2ÞΓϕ�. We choose such a reparametrization in order
to separate the neutrino conversion probabilities from the
scattering cross sections. In doing so, and invoking uni-
tarity, we obtain the result
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Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τiðt0;t;EÞ × S̃ift0; ½aðtÞ=aðt0ÞE�g;

S̃iðt; EÞ ¼ Siðt; EÞ þ
X
γδ

jUγij2ð1þ jUδij2Þ ×
X
αβk

Γk;αβγδ
R ðtÞΦαðt; EkÞΘðEk − EÞ;

Φiðt; EjÞ ¼
HðtÞ
Γij
RðtÞ

Z
t

−∞
dt0

aðtÞ
aðt0Þ ½e

−τiðt0;t;Eþ
j Þ − e−τiðt

0;t;E−
j Þ� × S̃ift0; ½aðtÞ=aðt0Þ�Ejg; ðA3Þ

with Γij
RðtÞ ¼

P
α jUαij2ð

P
βγδ Γ

j;αβγδ
R Þ. While we have presented here these equations in the flavor basis for analytic insight,

we note that in general it is easier numerically to use Eq. (21) with the appropriate substitution, as it contains fewer
summations.
However, for a single-flavor α interaction, where the flavor self-coupling matrix is gμν ¼ gδμαδνα, there is a decidedly

simpler form in the flavor basis,

Φiðt; EÞ ¼
Z

t

−∞
dt0½aðtÞ=aðt0Þ�e−τiðt0;t;EÞS̃ift0; ½aðtÞ=aðt0ÞE�g;

S̃iðt; EÞ ¼ Siðt; EÞ þ jUαij2ð1þ jUαij2Þ
X
k

Γk;α
R ðtÞΦαðt; EkÞΘðEk − EÞ;

Φαðt; EjÞ ¼
HðtÞ
Γj;α
R ðtÞ

Z
t

−∞
dt0

aðtÞ
aðt0Þ

h
e−τiðt

0;t;Eþ
j Þ − e−τiðt

0;t;E−
j Þ
i
S̃ift0; ½aðtÞ=aðt0Þ�Ejg; ðA4Þ

with Γj;α
R ðtÞ ¼ jUαkj2nkðtÞσRc and σR ¼ ðℏcÞ2πg2=ðmϕc2Þ2.
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