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We study the cosmological consequences of a class of Dirac-Born-Infeld models, and assess their
viability as a candidate for the recent acceleration of the Universe. The model includes both the rolling
tachyon field and the generalized Chaplygin gas models as particular limits, and phenomenologically each
of these provides a possible mechanism for a deviation of the value of the dark energy equation of state
from its canonical (cosmological constant) value. The field-dependent potential that is characteristic of the
rolling tachyon also leads to variations of the fine-structure constant α, implying that the model can be
constrained both by standard cosmological probes and by astrophysical measurements of α. Our analysis,
using the latest available low-redshfit data and local constraints from atomic clock and weak equivalence
principle experiments, shows that the two possible deviations of the dark energy equation of state are
constrained to be log10 ð1þ w0ÞV < −7.85 and log10 ð1þ w0ÞC < −0.85, respectively for the rolling
tachyon and Chaplygin components, both being at the 95.4% confidence level (although the latter depends
on the choice of priors, in a way that we quantify). Alternatively, the 95.4% confidence level bound on the
dimensionless slope of the potential is log10 λ < −5.36. This confirms previous analyses indicating that in
these models the potential needs to be extremely flat.
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I. INTRODUCTION

A key goal of contemporary cosmology is the search for
the identification and characterization of the mechanism
responsible for the observed acceleration of the universe. In
a nutshell, the main possibilities are: a cosmological
constant (which has a minimal number of additional
parameters but a value requiring fine-tuning), modifications
of the behavior of gravity (for which there arguably is no
compelling physical evidence), or additional dynamical
degrees of freedom (particularly scalar fields, which are
known to be among Nature’s building blocks) [1–3].
The first of these scenarios is, broadly speaking, in

agreement with the currently available data, but never-
theless there are several observational hints of inconsis-
tencies. While individually none of these seems to be
particularly compelling (or free from caveats), when they
are taken together they certainly provide a robust motiva-
tion for exploring theoretical alternatives and testing them
against the available data [4].
A recent work of our team provided low-redshift

cosmological constraints on rolling tachyon dark energy
models [5]. These are a class of Dirac-Born-Infeld

(hereafter DBI) dark energy models, which are well
motivated in string theory [6,7]. From the observational
point of view, one of the interesting features of these
models is a coupling between gauge fields and the scalar
field responsible for the universe’s acceleration [8]. This
implies that in these models the field dynamics naturally
leads to a time variation of the fine-structure constant, α,
which can be constrained with astrophysical observations
as well as local tests using atomic clocks and weak
equivalence principle experiments [9].
In this work we continue the aforementioned previous

study, specifically by introducing and exploring the con-
sequences of an extended phenomenological class of
generalized DBI models, whose limits include both the
rolling tachyon scenario discussed in [5] and also the
generalized Chaplygin gas [10,11]. This extension is
phenomenologically interesting because the deviations of
the dark energy equation of state from the cosmological
constant can be decomposed into two components, one of
which corresponds to the rolling tachyon limit while the
other corresponds to the Chaplygin limit.
On the other hand, an interesting difference arises when

it comes to the variation of α, since only the rolling tachyon
part contributes to it. This implies that its part of the field
dynamics (and the corresponding equation of state) will be
significantly more constrained than that of the Chaplygin
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component. The model thus serves to illustrate the relative
constraining power of background low-redshift astrophysi-
cal and cosmological observables on the dynamics of non-
canonical DBI-type scalar fields.
The plan of the paper is as follows. In Sec. II we start by

introducing the general formalism used in this work, before
reviewing, for the sake of completeness, its application to
the canonical, rolling tachyon and generalized Chaplygin
gas cases. The generalized class of DBI models is then
presented in Sec. III, where we specifically discuss their
low redshift behavior, which is the focus of our work. In
Sec. IV we use a combination of low-redshift background
cosmology data and astrophysical and atomic clock mea-
surements of α to constrain these models. We discuss the
impact of adding the astrophysical measurements to the
cosmological data, and by considering two alternative
parametrizations we also quantify the sensitivity of our
results on the choice of priors (as well as on the choice of
parametrization itself). Finally, we present our conclusions
in Sec. V.

II. FORMALISM

Consider the generic action for a classical scalar field,
denoted ϕ,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LðX;ϕÞ; ð1Þ

where

X ¼ −
1

2
∇μϕ∇μϕ: ð2Þ

The proper pressure and energy density of the scalar field
(which reduce to the usual pressure and density in the
field’s rest frame where the momentum density vanishes),
are

p ¼ L ð3Þ

ϵ ¼ 2Xp;X − p; ð4Þ

with the energy-momentum tensor being

Tμν ¼ pgμν þ p;X∇μϕ∇νϕ: ð5Þ

The field equation of state is

w ¼ p
ϵ
¼ p

2Xp;X − p
: ð6Þ

from which we see that w ¼ −1 (vacuum energy) requires
2Xp;X ¼ 0, while the opposite limit w ¼ 1 (known as
kination) requires p ¼ Xp;X (that is, p ∝ X). Finally, the
sound speed is

c2s ¼
p;X

ϵ;X
¼ p;X

2Xp;XX þ p;X
; ð7Þ

from which we see that c2s ¼ 1 requires 2Xp;XX ¼ 0, and
we can write

w;X ¼ ðc2s − wÞ ϵ;X
ϵ
: ð8Þ

Finally, it is also useful to define the slow-roll parameter

s ¼ −
3X
p

∂p
∂X : ð9Þ

For the case of a perfect fluid we can write

_ϵþ 3Hðϵþ pÞ ¼ 0 ð10Þ

or equivalently

_ϵþ 6HXp;X ¼ 0; ð11Þ

which can be expanded and written as follows

2X _Xp;XX þ ð2Xp;Xϕ − p;ϕÞ _ϕþ ð _X þ 6HXÞp;X ¼ 0 ð12Þ

or equivalently

ð _ϕ2p;XX þ p;XÞϕ̈þ 3Hp;X
_ϕþ ð _ϕ2p;Xϕ − p;ϕÞ ¼ 0: ð13Þ

These will be applied to the various models being studied.
In our cosmological setting we will be considering flat

Friedmann-Lemaítre-Robertson-Walker models. The pre-
viously defined energy density ϵ and the mass density ρ are
generically related via ϵ ¼ ρc2; further choosing units with
c ¼ 1 the two can be used interchangeably, and in what
follows we will express relevant quantities in terms of ρ.
Thus the Einstein and continuity equations can be written

H2 ¼ κ2

3
ρ ð14Þ

_H ¼ −
1

2
κ2ðρþ pÞ ð15Þ

_ρ ¼ −3Hðρþ pÞ; ð16Þ

where for convenience we have also defined κ2 ¼ 8πG.
We can also write the overall equation of state

1þ w ¼ −
2

3

_H
H2

: ð17Þ

Since in this work we will be concerned with the recent
dynamics of the universe we will be assuming a universe
with two components, matter (in principle both baryonic
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and dark) and a dark energy fluid with an equation of state
ρ ¼ ρm þ ρϕ which can be explicitly written as

1þ wϕ ¼ −
1

3

d ln ρϕ
d ln a

¼ 1

3

d ln ρϕ
d ln ð1þ zÞ : ð18Þ

This can be constrained through the usual cosmological
probes; in our case we will use Type Ia supernova data and
Hubble parameter measurements, to be further discussed
in Sec. IV.
Our second observational probe of these models will be

the value of the fine-structure constant α, whose possible
variation stems from the coupling of a putative new degree
of freedom (such as a scalar field) to the electromagnetic
sector of the Lagrangian

LF ¼ −
1

4
BFðϕÞFμνFμν; ð19Þ

where the gauge kinetic function can be Taylor-expanded
[12–14]

BFðϕÞ ¼ 1 − ζκðϕ − ϕ0Þ ð20Þ

and therefore the relative variation (using the present-day
value as reference) is given by

Δα
α

¼ α − α0
α0

¼ B−1
F − 1 ¼ ζκðϕ − ϕ0Þ: ð21Þ

Astrophysical measurements of α (to be further discussed
in Sec. IV) constrain its value at various nonzero redshifts,
while its current drift rate is constrained by laboratory
measurements with atomic clocks.
Moreover, since in these models the new degree of

freedom inevitably couples to nucleons (through the α
dependence of their masses), it also leads to violations of
the weak equivalence principle [13,14]. It follows that the
coupling ζ will be related to the Eotvos parameter η, for
which there are local experimental constraints. In what
follows we use the estimate from [13]

η ¼ 10−3ζ2; ð22Þ

though we note that somewhat different estimates exist
[14,15].
We now highlight how this applies to representative

examples, both to establish connections with previously
obtained results and also because they will be the building
blocks for our generalized class of models.

A. Canonical scalar field

The simplest case is that of a canonical quintessence
field, for which we have

p ¼ X − VðϕÞ; ð23Þ

from which we easily recover the Klein-Gordon equation

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0: ð24Þ

The slow-roll parameter is

s ¼ −
3

2

_ϕ2

X − V
; ð25Þ

confirming that a slowly moving field is slow-rolling. Then
from

2Xp;X ¼ ð1þ wϕÞϵ ð26Þ

we successively have

1þ wϕ ¼
_ϕ2

ϵ
¼ ðκϕ0Þ2H2

κ2ρϕ
¼ ðκϕ0Þ2ðρm þ ρϕÞ

3ρϕ
¼ ðκϕ0Þ2

3Ωϕ
;

ð27Þ

and assuming that the field is rolling down the potential
(thus ϕ0 < 0) we end up with the following expression for
the evolution of α

Δα
α

¼ ζ

Z
z

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ωϕðz0Þð1þ wϕðz0ÞÞ

q dz0

1þ z0
: ð28Þ

Its present-day drift rate is

1

H0

�
_α

α

�
0

¼ −ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ωϕð1þ w0Þ

q
: ð29Þ

These have been previously discussed, inter alia, in
[16,17], and analogous results exist for phantom fields [18].

B. Tachyon field

These models were introduced in [6,7], and their
cosmological consequences have been previously studied
in detail in [5]. The Lagrangian of the tachyon part of the
DBI action can be written

Ltac ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂aϕ∂aϕ

p
; ð30Þ

with the energy density and pressure being given by

ρϕ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂aϕ∂aϕ

p ð31Þ

pϕ ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ∂aϕ∂aϕ

p
ð32Þ

which implies that
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p ¼ −
V2ðϕÞ
ρ

: ð33Þ

The dynamical equation for the tachyon field is

ϕ̈

1 − _ϕ2
þ 3H _ϕþ 1

V
dV
dϕ

¼ 0: ð34Þ

For a homogeneous field, the tachyon field equation of state
and sound speed are

wϕ ¼ _ϕ2 − 1 ≥ −1; ð35Þ

c2s ¼ 1 − _ϕ2 ≤ 1; ð36Þ

with the equation of state and density evolving as

_wϕ ¼ 2wϕ

�
3Hð1þ wϕÞ þ

1

V
dV
dϕ

_ϕ

�
; ð37Þ

_ρϕ ¼ −3Hð1þ wϕÞρϕ ¼ −3Hρϕ _ϕ
2: ð38Þ

In these models the slow-roll parameter is

s ¼ 3

2

_ϕ2

1 − _ϕ2
; ð39Þ

and clearly the field is constrained to be slow-rolling,
even more so than in canonical models, given the strong
constraints from α variations as shown in [5] and further
confirmed below. Therefore the scalar field equation can be
approximated to

3H _ϕ ∝ −
d lnV
dϕ

: ð40Þ

This leads to the following Friedmann equation

H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 −ΩmÞ
�
1þ λ2

9
fVðΩm; zÞ

�
; ð41Þ

where we have defined the dynamically relevant dimen-
sionless parameter (the slope of the potential function)

λ ¼ 1

H0

�
V 0

V

�
0

; ð42Þ

and the redshift-dependent function fVðz;ΩmÞ is1

fVðΩm;zÞ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−Ωm
p ln

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Ωm

p Þð1þzÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Ωm

p þEΛ
; ð43Þ

where for convenience we also defined

E2
ΛðΩm; zÞ ¼ Ωmð1þ zÞ3 þ 1 −Ωm: ð44Þ

The dark energy equation of state in these models has the
form

1þ wϕ ¼ _ϕ2 ¼ λ2

9þ λ2fV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ωm

p þ EΛ

E2
Λ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −ΩmÞ

p
EΛ

: ð45Þ

In physical terms, the field speed parametrizes the deviation
of the dark energy equation of state from the cosmological
constant value, and the equation of state ð1þ wϕÞ tends to
zero at high redshifts—in other words, these are thawing dark
energy models. Its present-day value is

1þ w0 ¼ _ϕ2
0 ¼

λ2

9
: ð46Þ

Starting with Eq. (38) and using _ϕ ¼ −λ=3 we can approx-
imately write

ρϕ
ρcrit

∝ ð1þ zÞλ2=3 ∼ ð1þ zÞ3ð1þw0Þ ð47Þ

which in the low-redshift limit yields

ρϕ
ρcrit

∝ ½1þ 3ð1þ w0Þz�: ð48Þ

The α variation in these models was first considered
by [8] who have shown that the fine-structure constant is
inversely proportional to the tachyon potential. This was
further explored in [5], where it has been shown that the
redshift evolution of α can be written

Δα
α

¼ −
λ2

9
fVðΩm; zÞ; ð49Þ

implying that in these models the fine-structure constant is
always smaller in the past. In this case the present-day rate
of change of the fine-structure constant is

1

H0

�
_α

α

�
0

¼ 1

3H2
0

�
V 0

V

�
2

0

¼1

3
λ2¼3 _ϕ0

2¼3ð1þw0Þ: ð50Þ

The work of [5] further shows that in these models w0 is
effectively indistinguishable from a cosmological constant,
although they can have a distinctive astrophysical variation
of α. This also implies that the field speed today must be tiny

1Note that this fV differs from the analogous function f
previously defined in [5] by a factor of two. The convenience of
this choice will become clearer in what follows.
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_ϕ0 ≤ 10−3; ð51Þ

which further justifies our slow-roll approximation.

C. Generalized Chaplygin gas

The distinguishing phenomenological feature of the
generalized Chaplygin gas is its equation of state2

p ¼ −
A
ρβ

; ð52Þ

the original Chaplygin gas has β ¼ 1, and in the limit
β → 0 we recover ΛCDM. A noncanonical isentropic
perfect fluid description can be obtained from a generalized
Born-Infeld-type action [10,11], with

pðϕ; XÞ ¼ −A1=ð1þβÞ½1 − ð2XÞð1þβÞ=2β�β=ð1þβÞ: ð53Þ

Since p ¼ pðϕ; XÞ this is a perfect fluid; furthermore, since
p ¼ pðXÞ, it is also an adiabatic fluid.
For the case β ¼ 1 some motivation for the above

equation of state can be found in terms of a gas of
(dþ 2) branes in d dimensions, but no similar motivation
exists for the case β ≠ 1. In any case, one may think of the
generalized Chaplygin gas as a phenomenological toy
model with which to study some features that may also
apply to other models. The model has been observationally
constrained under various different approximations and
assumptions [19–24].
The original motivation of the generalized Chaplygin gas

was as a unified dark energy fluid, simultaneously replac-
ing dark matter and dark energy. Thus the only component
apart from it, in the low-redshift universe, should be
ordinary baryonic matter. In the background, it behaves
as normal matter at early times but as a cosmological
constant at sufficient late times. From Eq. (18), one finds
that its energy density behaves as

ρChðaÞ
ρcrit

¼ ΩCh

�
−w0 þ

1þ w0

a3ð1þβÞ

�
1=ð1þβÞ

; ð54Þ

it is worthy to note that in the low-redshift limit this
behaves as

ρCh
ρcrit

¼ ΩCh½1þ 3ð1þ w0Þz�; ð55Þ

which matches the result for rolling tachyons in the
previous subsection.
The generalized Chaplygin gas equation of state can be

written

1þ w ¼ ð _ϕ2Þ1þβ
2β ; ð56Þ

or equivalently

1þ w ¼ ð1þ w0Þð1þ zÞ3ð1þβÞ

ð1þ w0Þð1þ zÞ3ð1þβÞ − w0

ð57Þ

which can also be used to rewrite

ρCh
ρcrit

¼ ΩCh

�
w0

w

�
1=ð1þβÞ

; ð58Þ

and finally the slow-roll parameter has the following form

s ¼ 3

2

ð _ϕ2Þ1þβ
2β

1 − ð _ϕ2Þ1þβ
2β

; ð59Þ

both of these coincide with those for the rolling tachyon
when one chooses β ¼ 1. The reason why the equations of
statew are the same (when expressed in terms of _ϕ) is that p
has the same dependence on X, while the fact that V is
constant (or not) is not relevant for this particular purpose.
It is also useful to note that from the equation of state

definition we have

A ¼ −w0ðΩChρcritÞ1þβ; ð60Þ

which fixes the value of the constant parameter A. At early
times the total (effective) matter density is

Ωm ¼ Ωb þ ΩChð1þ w0Þ1=ð1þβÞ ð61Þ

and for β → 0 the background evolution approaches that of
the standard ΛCDM model, with

ΩΛ ¼ −w0ΩCh ð62Þ

Ωm ¼ Ωb þ ð1þ w0ÞΩCh: ð63Þ

Moreover, as w0 → −1 the generalized Chaplygin gas
evolution approaches that of a cosmological constant,
regardless of the value of β. From the Raychaudhuri
equation one also finds that in the background the accel-
eration starts at

a3ð1þβÞ⋆ ¼ −
1þ w0

2w0

; ð64Þ

in particular this occurs today (a⋆ ¼ 1) for w0 ¼ −1=3.
Note that if one takes the standard (physically motivated)

approach and sees the generalized Chaplygin gas as
the result of a particular class of Born-Infeld-type action
with a constant potential, then according to the results
of [6–8] there will be no variation of α in these models.

2In most of the previous literature, the exponent in the density
is denoted α; in what follows we denote it β to avoid confusion
with the fine-structure constant.
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Some authors have nevertheless considered possible var-
iations of α in these models by making various nonstandard
assumptions [25–27]; we will not follow this ad hoc
approach here.

III. A GENERALIZED DBI MODEL

We will now discuss a generalized DBI-type model,
which includes both the rolling tachyon and the generalized
Chaplygin gas as particular cases. We have seen in the
previous section that the rolling tachyon case corresponds
to the equation of state

p ¼ −
V2ðϕÞ
ρ

; ð65Þ

so we can envisage further generalizing Eq. (53) by making
the constant A depend on the scalar field—in other words,
making it the field potential. In this case we will no longer
have an adiabatic fluid, but will still have a perfect one.
Specifically we need to make the identification

A → V2ðϕÞ; ð66Þ

and naturally the constant-potential limit takes us back to
the generalized Chaplygin gas limit, while the β ¼ 1 limit
takes us back to the rolling tachyon.
Clearly, the field pressure and density now have the form

pðϕ; XÞ ¼ −VðϕÞ2=ð1þβÞ½1 − ð2XÞð1þβÞ=2β�β=ð1þβÞ: ð67Þ

ρðϕ; XÞ ¼ VðϕÞ2=ð1þβÞ½1 − ð2XÞð1þβÞ=2β�−1=ð1þβÞ: ð68Þ

In this case the slow-roll parameter has exactly the same
form as the Chaplygin one, that is Eq. (59), so the slow-roll
approximation will be adequate for any model that aims to
account for dark energy and the recent acceleration of the
universe.
The background equation of state itself can be written

w ¼ −
V2ðϕÞ
ρ1þβ ¼ _ϕ1þ1=β − 1 ¼ −ξ; ð69Þ

which is again identical to the Chaplygin case, cf. Eq. (56).
For later convenience we also defined the parameter ξ,
and as expected we see that the equation of state can evolve
from w ∼ 0 at early times to w ∼ −1 at late times.
Differentiating we get

_w ¼ ð1þ βÞw _ϕ1=β
�
3H _ϕþ 2

1þ β

_ϕ2

1 − ξ

V 0

V

�
: ð70Þ

while the sound speed has the simple form

c2s ¼ β½1 − _ϕ1þ1=β�; ð71Þ

note that since w is always negative, the sound speed is
well-behaved for 0 ≤ β ≤ 1. It is also possible to write

ρCh
ρcrit

¼ ΩCh

�
w0VðϕÞ2
wVðϕ0Þ2

�
1=ð1þβÞ

: ð72Þ

Now, for the generalized DBI we can write

pðXÞ ¼ −
V2

ρβ
¼ −½V2ξβ�1=1þβ ð73Þ

where

ξ ¼ V2

ρ1þβ ¼ 1 − ð2XÞð1þβÞ=2β ¼ −w: ð74Þ

and therefore the previously introduced generic
Eqs. (12)–(13) become

1 − ξ

βξð2XÞ
_X þ 3ð1 − ξÞH þ 2

1þ β
_ϕ
V 0

V
¼ 0 ð75Þ

or equivalently

ϕ̈

βξ
þ 3H _ϕþ 2

1þ β

_ϕ2

1 − ξ

V 0

V
¼ 0: ð76Þ

In the limit V ¼ const. we recover the generalized
Chaplygin gas case

_X þ 6βHXξ ¼ 0 ð77Þ

ϕ̈þ 3βHξ _ϕ ¼ 0: ð78Þ

On the other hand, for β ¼ 1 we have the rolling tachyon
case

_X þ 6HXξþ V;ϕ

V
ξ _ϕ ¼ 0 ð79Þ

ϕ̈

1 − _ϕ2
þ 3H _ϕþ 1

V
dV
dϕ

¼ 0: ð80Þ

A. Low-redshift evolution

For the purpose of our comparison to low-redshft
cosmological and astrophysical observations, it is sufficient
to consider the slow-roll limit

3H _ϕ1=β þ 2

1þ β

V 0

V
¼ 0: ð81Þ

Thus a simple generalization of the previous analysis leads
to a Friedmann equation
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H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 − ΩmÞ½−w0 þ ð1þ w0Þð1þ zÞ3ð1þβÞ�1=ð1þβÞ
�
1þ

�
2λ

3

�
1þβ fVðΩm; zÞ

2ð1þ βÞβ
�
; ð82Þ

with λ and fV defined as before, cf. Eqs. (42) and (43)
respectively. Note that this includes both the Chaplygin and
potential corrections to the canonical ΛCDM model, with
the caveat that in this general case w0 is no longer the
present-day dark energy equation of state. Instead we can
define an effective equation of state with two different
contributions, coming from the Chaplygin and potential
terms

ð1þ weffÞ ¼ ð1þ w0ÞC þ ð1þ w0ÞV; ð83Þ

where

ð1þ w0ÞV ¼
�

2

1þ β

�
β
�
λ

3

�ð1þβÞ
; ð84Þ

which manifestly has the appropriate behavior in the two
limiting cases. We can also rewrite the Friedmann equa-
tion as

H2

H2
0

¼ Ωmð1þ zÞ3 þ ð1 − ΩmÞ½1þ ð1þ w0ÞCfCðβ; zÞ�1=ð1þβÞ½1þ ð1þ w0ÞVfVðΩm; zÞ�; ð85Þ

where, by analogy with the fVðΩm; zÞ term, we have
defined

fCðβ; zÞ ¼ ð1þ zÞ3ð1þβÞ − 1: ð86Þ

For the α variation, for the aforementioned reason we
will only have the contribution of the changing potential
(but not that of the Chaplygin part) and therefore we have
an extension of the rolling tachyon behavior

Δα
α

≃ −
�
V 0

V

�
0

ðϕ − ϕ0Þ ¼ −
�
2λ

3

�
1þβ fVðΩm; zÞ

2ð1þ βÞβ
¼ −ð1þ w0ÞVfVðΩm; zÞ: ð87Þ

Finally, for the present-day drift rate of α, which is
constrained by atomic clocks, we find

1

H0

�
_α

α

�
0

¼
�

2

3ð1þ βÞ
�

β

λ1þβ ¼ 3ð1þ w0ÞV; ð88Þ

while for the effective coupling, relevant for the Eotvos
parameter constraints, we have

ζ2 ¼ ½3ð1þ w0ÞV �2=ð1þβÞ
�

2

3ð1þ βÞ
�

−2β=ð1þβÞ
¼ λ2: ð89Þ

Again, one can easily confirm that the previous models are
recovered in the appropriate limits.
Overall, this parametrization makes it explicit that the α

variations are driven by the potential term, while the
cosmological evolution is driven by it but also by the
Chaplygin part. This is observationally interesting, since
the astrophysical measurements of α will strongly constrain

ð1þ w0ÞV , leaving the ð1þ w0ÞC to be constrained by
cosmological data.

IV. OBSERVATIONAL CONSTRAINTS

We constrain this class of models using a combination of
low-redshift background cosmological and astrophysical
observations. The cosmology data consists of the
Pantheon3 catalogue of Type Ia supernovas [29] (including
its covariance matrix), and a compilation of 38 Hubble
parameter measurements [30]. Together, these include
measurements up to redshift z ∼ 2.36. The Hubble constant
is analytically marginalized using the prescription of [31].
Our astrophysical data consists of high-resolution spec-

troscopy tests of the stability of α. We use a total of 319
measurements, of which 293 come from the analysis of
archival data [32] and the remaining 26 are dedicated
measurements [9,33–35]. These include measurements up
to redshift z ∼ 4.18; the latter subset contains more strin-
gent measurements, so overall the archival and dedicated
subsets have comparable constraining power [36].
Additionally we use the geophysical constraint from the

Oklo natural nuclear reactor [37]

Δα
α

¼ ð0.5� 6.1Þ × 10−8; ð90Þ
at an effective redshift z ¼ 0.14, though we note that
underlying this bound is the simplifying assumption that
α is the only parameter that may have been different and all
the remaining physics is unchanged. As we have already
mentioned, the current drift rate of α is constrained by local

3We note that the reliability of this dataset has recently been
questioned [28].
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comparison experiments between atomic clocks, with the
most stringent bound being [38]

1

H0

�
_α

α

�
0

¼ ð1.4� 1.5Þ × 10−8: ð91Þ

Last but not least, we use the recent MICROSCOPE bound
on the Eotvos parameter [39]

η ¼ ð−0.1� 1.3Þ × 10−14; ð92Þ

FIG. 1. Constraints on generalized DBI models from our cosmological data, using the equation of state focused parametrization. The
black contours denote the one, two, and three sigma confidence levels, and the color map depicts the reduced χ2 of the fit for each set of
model parameters (the white color corresponds to a reduced χ2 of 1.5 or higher, and the black one to a reduced χ2 of 0.5 or lower).
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which as previously discussed constrains the model’s
coupling to the electromagnetic sector.
We now use this data to constrain the model, using

standard statistical analysis techniques. We consider two
different parametrizations introduced in the previous sec-
tion: the first focuses on the deviations of the equation of
state from its cosmological constant value (and is therefore
observationally motivated), while the second retains the
theoretical model parameters, including the slope of the
potential. The comparison of the two serves to probe
the sensitivity of the obtained constraints to our choices
of priors. Before this comparison, we start with an analysis
including only the cosmological data, which serves as a
benchmark for the constraining power of the astrophysi-
cal data.

A. Constraints from cosmological data

We assume that the four independent parameters are
ðlog10 ð1þ w0ÞV; log10 ð1þ w0ÞC;Ωm; βÞ. We choose the
following four uniform priors log10 ð1þ w0ÞV ¼ ½−3; 0�,
log10 ð1þw0ÞC ¼ ½−3;0�, Ωm ¼ ½0.15;0.40� and β ¼ ½0; 1�.
The results of the analysis including only the aforementioned

supernova and Hubble parameter data are depicted in Figs. 1
and 2. The reduced chi-square at the four-dimensional best fit
model is χ2ν ¼ 0.67, which (unsurprisingly) indicates that the
data is overfitting this four-parameter model. Nevertheless,
for the purpose of comparison with the analysis of the full
datasets, we note that the posterior likelihood for the matter
density is

Ωm ¼ 0.27þ0.04
−0.06 ð93Þ

while for the equation of state parameterswe obtain the upper
bounds

log10 ð1þ w0ÞV < −0.59 ð94Þ

log10 ð1þ w0ÞC < −1.01 ð95Þ

all of the above are given at the two sigma (95.4%)
confidence level.
For the parameter β we can only get the weak one sigma

(68.3%) confidence level bound

FIG. 2. One-dimensional (marginalized) posterior likelihoods for the model parameters corresponding to the analysis in Fig. 1.
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β < 0.28; ð96Þ

but the parameter is unconstrained at the two sigma level.
A low value of β is preferred since it leads to a weaker
redshift dependence of the dark energy component in the

Friedmann equation. In this case, the model’s dark energy
equation of state ð1þ weffÞ is therefore allowed significant
deviations from the cosmological constant behavior which
may come from both the tachyon and the Chaplygin
mechanisms.

FIG. 3. Constraints on generalized DBI models, using the equation of state focused parametrization. The black contours denote the
one, two, and three sigma confidence levels, and the color map depicts the reduced χ2 of the fit for each set of model parameters (the
white color corresponds to a reduced χ2 of 1.5 or higher).
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B. Constraining the dark energy equation of state

Here we assume that the four independent parameters are
the same as in the previous subsection, but change the priors
in the two dark energy parameters to log10 ð1þ w0ÞV ¼
½−10;−4� and log10 ð1þ w0ÞC ¼ ½−4; 0�, while those onΩm
and β remain unchanged.Note that sincewe are including the
astrophysical (and local) data in the analysis it is obvious
a priori that the α constraints will require the value of
log10 ð1þ w0ÞV to be significantly negative,while there is no
equally stringent constraint for log10 ð1þ w0ÞC.
The results of this analysis are depicted in Figs. 3 and 4.

The reduced chi-square at the four-dimensional best fit
model is now χ2ν ¼ 0.98, corresponding to a very reason-
able fit. As for the posterior likelihoods for the individual
model parameters, the matter density is now constrained
to be

Ωm ¼ 0.28� 0.04; ð97Þ

while for the equation of state parameters we obtain

log10 ð1þ w0ÞV < −7.85 ð98Þ

log10 ð1þ w0ÞC < −0.85 ð99Þ

all of these are still at the two sigma (95.4%) confidence level.
As expected, the rolling tachyon (i.e., potential slope)
contribution is constrained to be extremely close to a
cosmological constant (in other words, a flat potential) due
to the astrophysical and atomic clock measurements, while
the cosmological data constrains the remaining parameters.
The constraint to the Chaplygin part is slightly weakened,
while the preferred matter density constraint is slightly
changed. The first of these shifts is due to the correlation
of this parameter with β (whose likelihood changes, as
discussed in the next paragraph) while the second is due
to the breaking of the degeneracy for low values of this
densitywhich existswhen only the cosmological data is used.
The parameter β is now more constrained, particularly at

high values, and now we do get a two sigma bound

β < 0.58: ð100Þ

Again the low β is preferred due to its weaker redshift
dependence of the dark energy component in the

FIG. 4. One-dimensional (marginalized) posterior likelihoods for the model parameters corresponding to the analysis in Fig. 3.
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Friedmann equation—recall that in this parametrization the
fine-structure constant α does not depend on β. Moreover,
larger values of β are more sensitive to the Eotvos parameter
constraint: in theβ ¼ 0 limit one has η ∝ ð1þ w0Þ2V , while in
the β ¼ 1 limit one has η ∝ ð1þ w0ÞV Thus the main

outcome of the analysis for this parametrization is that
the model’s dark energy equation of state is effec-
tively given by ð1þ weffÞ ≃ ð1þ w0ÞC, since the astro-
physical measurements tightly constrain the rolling
tachyon part.

FIG. 5. Constraints on generalized DBI models, using the potential slope parametrization. The black contours denote the one, two, and
three sigma confidence levels, and the color map depicts the reduced χ2 of the fit for each set of model parameters (the white color
corresponds to a reduced χ2 of 1.5 or higher).
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C. Constraining the potential slope

Here, we assume that the four independent parameters
are ðlog10 λ; log10 ð1þ w0ÞC;Ωm; βÞ. For the potential
slope we choose the uniform prior log10 λ ¼ ½−10;−4�,
while the priors for the other three parameters are the same
as in the previous subsection. As before, it is a priori clear
that the dimensionless slope of the potential must be
significantly smaller than unity—if nothing else, from
the previous results in [5].
Note that we expect significant differences between this

parametrization and the previous one. The main reason is
that the relation between ð1þ w0ÞV and λ also involves β,
cf. Eq. (84). Thus when replacing ð1þ w0ÞV by λ in our
analysis we are affecting the structure of the degeneracies
between the remaining parameters in the corresponding
parameter spaces, which will be reflected in the constraints
on the common model parameters.
The results of this analysis are depicted in Figs. 5 and 6.

The reduced chi-square at the four-dimensional best fit
model is χ2ν ¼ 0.98, as in the previous subsection. In this
case we find the same two sigma constraint for the matter
density

Ωm ¼ 0.28� 0.04 ð101Þ

at the two sigma (95.4%) confidence level, together with
the two sigma upper bounds

log10 λ < −5.36 ð102Þ

log10 ð1þ w0ÞC < −1.21; ð103Þ

note that the latter stronger than the one in the previous
subsection. Conversely, the constraint on β is weakened,
and as in the cosmology-only case it is unconstrained at the
two sigma level, but one does get a one sigma upper bound

β < 0.67: ð104Þ

Again it is worthy of note that according to Eq. (84) the
relation between the equation of state and the dimension-
less potential slope is ð1þ w0ÞV ¼ λ=3 when β ¼ 0 and
ð1þ w0ÞV ¼ λ2=9 when β ¼ 1. In this case λ is directly
constrained by the Eotvos parameter limit, which also leads

FIG. 6. One-dimensional (marginalized) posterior likelihoods for the model parameters corresponding to the analysis in Fig. 5.
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to a stronger constraint on ð1þ w0ÞC, and together, given
the degeneracies between the parameters, these imply that
constraints on β are slightly relaxed.

V. CONCLUSIONS

We have explored the low-redshift cosmological conse-
quences of a new class of DBI models, which includes both
the rolling tachyon field and the generalized Chaplygin gas
models as particular limits. Each of these limiting models
effectively provides a mechanism for a deviation of the
value of the dark energy equation of state from its canonical
(cosmological constant) value, which can be separately
constrained. The main phenomenological difference
between the two mechanisms is that the field dependence
of the potential, which is characteristic of the rolling
tachyon, also leads to variations of the fine-structure
constant. The latter can be constrained through high-
resolution astrophysical observations as well as local
laboratory tests, and both of these provide key constraints.
Indeed, by using cosmological data alone (cf. Sec. IVA)

one gets relatively mild constraints on both mechanisms,
although these could be improved by including additional
cosmological data sets, most notably from the cosmic
microwave background—a task that is left for future work.
On the other hand, including the astrophysical and local
measurements improves constraints on the rolling tachyon
sector by about seven orders of magnitude (cf. Sec. IV B),
at least if this is parametrized as a deviation of the dark
energy equation of state from its ΛCDM behavior.
Nevertheless, it should be noticed that these constraints
have some dependence on the choice of explicit

parametrization and of priors on the model parameters,
as illustrated by our constraints on the potential slope
(cf. Sec. IV C).
Our results confirm and strengthen the earlier analysis in

[5] indicating that in these models the potential is con-
strained to be extremely flat. From an observational point
of view, the most interesting consequence of these results
is that any rolling tachyon contribution to dark energy,
described by the usual parameter ð1þ w0ÞV, is constrained
to be so small as to be effectively indistinguishable from a
cosmological constant, if one relies only on cosmological
observations—and this is the case both for current facilities
and for any foreseeable ones. However, such a component
could in principle be identified through astrophysical tests
of the stability of the fine-structure constant, for which the
model predicts a specific redshift dependence. Our analysis
therefore highlights both the intrinsic constraining power of
astrophysical and local tests of the stability of α, and their
synergies with traditional cosmological observables, in
probing fundamental cosmology and the mechanisms
underlying the recent acceleration of the universe.
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