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Galileons are scalar field theories which obey the Galileon symmetry φ → φþ bþ cμxμ and are capable
of self-acceleration if they have an inverted sign for the kinetic term. These theories violate the strong
equivalence principle, such that black holes (BHs) do not couple to the Galileon field, whereas
nonrelativistic objects experience a fifth force with strength ΔG=GN relative to gravity. For galaxies
falling down a gradient in the Galileon field, this results in an offset between the center of the galaxy and its
host supermassive BH. We reconstruct the local gravitational and Galileon fields through a suite of
constrained N-body simulations (which we dub CSiBORG) and develop a Monte Carlo-based forward
model for these offsets on a galaxy-by-galaxy basis. Using the measured offset between the optical center
and active galactic nucleus of 1916 galaxies from the literature, propagating uncertainties in the input
quantities and marginalizing over an empirical noise model describing astrophysical and observational
noise, we constrain the Galileon coupling to be ΔG=GN < 0.16 at 1σ confidence for Galileons with
crossover scale rC ≳H−1

0 .

DOI: 10.1103/PhysRevD.103.023523

I. INTRODUCTION

The end of the 20th century saw the startling discovery
that the Universes expansion is accelerating [1,2]. Since
general relativity (GR) has successfully reproduced a
century’s worth of observations across a wide range of
environments [3], one potential explanation is that this
acceleration is due to a negative pressure component of
stress-energy: dark energy [4]. Our current cosmological
model (ΛCDM) assumes this takes the form of a cosmo-
logical constant,although this has issues with radiative
instability and UV-sensitivity (the cosmological constant
problem [5]). This, coupled with tensions between com-
peting probes of the Universe [6–8], leads us to consider an
alternative explanation, namely that GR may not be the
correct description of gravity on large scales.
Modified gravity theories generically violate the strong

equivalence principle (SEP), which refers to the equiv-
alence of free fall independent of an object’s gravitational
binding energy or composition [9]. Despite little success so
far in explaining cosmic acceleration [10], studies of
modified gravity are essential as they provide consistent,
plausible alternatives to GR and could relieve some of the
current tensions (e.g., [11–14]).
On astrophysical scales, modified gravity theories lead to

a fifth fundamental force [15]. This force is not detected
in laboratory or Solar System experiments, so must be

“screened” to remain hidden in these environments.
The mechanism through which this is achieved falls
into one of three categories (see [10,16–18] for reviews
of screened modified gravity theories). The “thin-shell”
mechanism (e.g., chameleon [19,20], symmetron [21] and
dilaton [22]) is determined by the gravitational potential,
whereas “kinetic” screening (e.g., K-mouflage [23] and
Vainshtein [24]) depends on derivatives of the potential.
The third mechanism depends on interactions between
baryons and dark matter such that the gravitational constant
depends on the local dark matter density [25].
Thin-shell screened theories are relatively well-con-

strained: the chameleon mechanism has been probed with
a wide variety of astrophysical and laboratory signals [26],
and recently [27] astrophysically relevant fðRÞ theories
have been ruled out by galaxy morphology. Vainshtein-
screened theories however have many fewer tests, leading
us to focus on them here. The observational test we
consider was introduced by Hui and Nicolis [28], and is
based on the same physical principle as the test presented in
Sakstein et al. [29] and Asvathaman et al. [30]: we
investigate whether the offset between a galaxy’s center
and its central supermassive black hole (BH) is preferen-
tially aligned along the local gravitational field, as would be
expected by the SEP violation in this class of modified
gravity theories.
The success of Monte Carlo-based forward models to

constrain fundamental physics in the astrophysical regime
[27,31–34] motivates us to adapt this approach for the
BH test of Galileons. Specifically, we forward model the
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magnitude and direction of the BH–galaxy offset for
each galaxy in the samples collated in [35]. The measured
BH–galaxy offset for these galaxies is determined by cross-
matching the optical center to observations at a different
wavelength, which provides the location of the active
galactic nucleus. We introduce a suite of constrained
N-body simulations of the local universe (CSiBORG),
which we use to map out the large-scale Galileon field.
Combining this with models for galaxy and halo structure
allows us to make predictions for the BH–galaxy offsets.
Marginalizing over uncertainties in the Galileon field
and galaxy properties, as well as parameters describing
the noise due to non-fifth-force contributions to the signal,
we compare our predictions to the observed offsets
via a Markov Chain Monte Carlo (MCMC) algorithm.
We find that the strength of the fifth force relative to
gravity, ΔG=GN, is constrained to be <0.16 at 1σ con-
fidence; this bound is applicable to Galileons with cross-
over scales rC ≳H−1

0 .
In Sec. II we discuss this phenomenon in the context

of the cubic Galileon model, although the effect occurs
more generally in Galileon theories due to their BH no hair
theorem [36]. We present the observational data used in
this work in Sec. III. Section IV details our inference
methods and the results are presented in Sec. V. We discuss
systematic uncertainties and compare our constraints to
previous work in Sec. VI and conclude in Sec. VII.

II. GALAXY–BLACK HOLE OFFSETS IN
GALILEON GRAVITY

We consider a theory containing a single scalar field, φ,
which respects the Galileon symmetry φ → φþ bþ cμxμ

[37] and is Vainshtein screened [24] on small scales.
A common example is the cubic Galileon, which has
the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
c2L2 −

1

2
c3L3 − Lm

�
; ð1Þ

where R is the Ricci scalar, g is the determinant of the
metric gμν, c3 and c4 are constants, Lm is the matter
Lagrangian, and

L2 ¼ ∇μφ∇μφ; L3 ¼
2

M3
□φ∇μφ∇μφ; ð2Þ

where M3 ¼ MPlH2
0. There are two branches to the cubic

Galileon, depending on the sign of the kinetic term. If,
using the mostly minus signature, c2 > 0 (normal branch)
we have a scalar field with a canonical kinetic term; these
cannot self-accelerate and are simply models of fifth-forces.
On the other hand, if c2 < 0 (self-accelerating branch) then
the field can self-accelerate and does not necessarily require
a cosmological constant [38].

If we work in the quasistatic approximation and neglect
terms suppressed by the Newtonian potentials and their
spatial derivatives, we obtain [39] the equation of motion
for perturbations, φ, about a background, φ̄,

∇2φþ 1

3β1a2M3
½ð∇2φÞ2 −∇i∇jφ∇i∇jφ�

¼ MPl

3β2
8πGNa2ρ̄Δ; ð3Þ

where i ∈ f1; 2; 3g and

β1 ¼
1

6c3

�
−c2 −

4c3
M3

ð ̈φ̄þ 2H _̄φÞ þ 2κc23
M6

_̄φ4

�
; ð4Þ

β2 ¼ 2
M3MPl

_̄φ2
β1; ð5Þ

with κ ≡ 8πG. Our test will depend only on Eq. (3) which
holds for both signs of c2; our constraints therefore apply to
both branches. We can rewrite Eq. (3) in a more familiar
form,

∇2φþ r2C
3
½ð∇2φÞ2 −∇i∇jφ∇i∇jφ� ¼ 8παGNρ̄Δ; ð6Þ

where α describes the strength of the coupling of the
Galileon to matter, and rC, called the “crossover scale,”
parametrizes the new kinetic terms. We note that, using
Eqs. (4) and (5), these parameters are functions of time. In
this work we use low-redshift observations so will ignore
this temporal evolution and consider only their present day
values. Since the coupling in self-accelerating models tends
to dramatically increase as we approach the present day
[39], the constraints we find imply a bound on α over the
history of the Universe for this branch.
To remain agnostic to the details of the Galileon model,

we assume that α and rC are independent. This is not true
for all models: in the Dvali-Gabadadze-Porrati (DGP)
model [40], for example, α is related to rC and the
Hubble parameter, HðtÞ, as [41]

αDGPðtÞ ¼
1

3

�
1� 2HrC

�
1þ

_H
3H2

��−1
: ð7Þ

An overdot denotes a derivative with respect to cosmic time
t, the þ sign refers to the normal branch and the − sign to
the self-accelerating branch. To test a specific model, one
should compare the model’s trajectory in the α − rC plane
to the constraints obtained in this work.
Far outside the Vainshtein radius, rV, the new kinetic

terms are negligible and we recover Poisson’s equation. For
a source of mass M, this transition occurs at
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rV ¼
�
4

3
αGNMr2C

�1
3

: ð8Þ

Within the Vainshtein radius the fifth force has magnitude

a5 ¼ −α∇φ ¼ ΔG
GN

GNQM
r2

�
r
rV

�
q

ð9Þ

where q ¼ 3=2 for the cubic Galileon, Q is the scalar
charge of the object given in terms of its stress-energy
tensor as

Q ¼
Z

T0
0d3x; ð10Þ

and

ΔG
GN

≡ 2α2: ð11Þ

The suppression of a5 for r ≪ rV is what constitutes
Vainshtein screening.
For a nonrelativistic object, Q is equivalent to the

object’s mass, but for compact objects Q < m because T
does not include gravitational binding energy. The limiting
case is a black hole, for which Q ¼ 0.
Due to the Galileon symmetry, by adding a term with a

linear gradient, one can always generate a new solution
φ → φþ φext, where ∇φext is a constant. Therefore,
although stars in galaxies tend to reside within their host’s
Vainshtein radius, this does not mean they cannot feel a
fifth force. Rather, they interact with the field sourced by
large scale structure [28], which has a wavelength long
compared to the Vainshtein radius and hence has approx-
imately constant gradient on the scale of the galaxy.
Cosmological simulations have confirmed this prediction
[42] and indicate that φ obeys linear dynamics on scales
≳10 Mpc for rC ≃ 6 Gpc [43–46].
In conjunction with the no-hair theorem described above,

this property of the Galileon symmetry can lead to an offset
between the center of a galaxy and its central BH. This
occurs since, if a galaxy is falling down a scalar field
potential, the nonrelativistic matter feels the attractive fifth
force, whereas the BH does not (Q ¼ 0). Therefore the BH
lags behind the galaxy. The offset is stabilized by the
gravitational force between the BH and the galaxy and its
dark matter halo, which can lead to a constant displacement
in equilibrium.

III. OBSERVATIONAL DATA

In this work we use the four largest datasets collated and
summarized in [35] which contain measurements of the
offsets between an active galactic nucleus (AGN) and its
host galaxy’s center: OF13 [47], O16 [48], SB18 [49] and
B19 [50]. Each of these cross-match the optical centers of
galaxies from the Sloan Digital Sky Survey (SDSS) [51] to
observations at a different wavelength, where the latter

provides the position of the AGN. OF13, O16 and SB18
search for radio counterparts, using the International
Celestial Reference Frame (ICRF2) [52], mJIVE-20 [53]
and the Cosmic Lens All-Sky Survey (CLASS) [54,55]
respectively. In B19 AGN positions are obtained from
Chandra x-ray data [56]. The distributions of offsets from
these samples are dominated by a Gaussian component
describing the spatial resolution of the measurements, with
width σobs ∼ 50 mas for the radio samples and σobs ∼
150 mas for B19. Approximately 10–30 per cent of the
probability density can be attributed to a non-Gaussian
component (e.g., a Laplace distribution) which is dominant
in the tails of the distribution [35]. The degree to which an
AGN is intrinsically offset is given by the ratio of the non-
Gaussian to Gaussian terms.
We plot the physical and angular offsets as a function of

redshift for the galaxies used in this work in Fig. 1. The
galaxies are typically at redshift z ∼ 0.1, such that a 3σobs
offset for a galaxy from the radio samples corresponds to a
physical offset of ∼340 pc.
For information on the halo structures (which determine

the restoring force), we cross-correlate these data with the
Nasa Sloan Atlas (NSA)1 to find the closest source within
0.50. The NSA contains measured and derived quantities for

FIG. 1. Observed BH–galaxy offset as a function of redshift for
the galaxies used in this work. The upper panel gives the physical
offsets and the low panel gives the angular offsets. For redshift we
use zdist from the NSA.

1www.nsatlas.org
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nearby galaxies using state of the art sky subtraction and
photometric determinations [57] in the optical and near-
infrared, largely from the Sloan Digital Sky Survey.
Approximately 10 per cent of galaxies are discarded due
to not having an NSA counterpart, and we retain 144, 1328,
230 and 214 galaxies for the OF13, O16, SB18 and B19
samples respectively.
For distances, we use zdist, which is determined using

the peculiar velocity model of Willick et al. [58]. Since, as
described in Sec. IV D, we use a Sérsic profile to deter-
mine the central baryonic surface density, we use quantities
relevant to such a profile: stellar mass M⋆ ¼ sersic
mass, apparent Sérsic minor-to-major axis ratio ðb=aÞobs ¼
sersic ba, Sérsic index n⋆ ¼ sersic n, and half-light
radius along the major axis reff ¼ sersic th50.

IV. METHODS

Despite the different theoretical background and obser-
vational signals, our approach is similar to [27,31]; we
forward model the offset, r•, for the galaxies in our samples
and, in conjunction with an empirical noise model describ-
ing astrophysical contributions to r•, derive a likelihood
function for the observed offsets for a given ΔG=GN and
rV. For a fixed rV, we then constrain ΔG=GN by Markov
Chain Monte Carlo (MCMC). As detailed in Sec. IV C, we
take rV to be a universal free parameter instead of using a
different Vainshtein radius for each galaxy. This will make
our constraint on ΔG=GN at a given rC conservative as we
will systematically underestimate the magnitude of the
Galileon field.
We derive the offset expected in Galileon gravity in

Sec. IVA and the gravitational field required to determine
this in Secs. IV B and IV C. In Sec. IV D we convert this to
a predicted offset for each galaxy. Using Monte Carlo
sampling, we obtain a distribution of offsets, which is
modeled as in Sec. IV E. We utilize one of the empirical

noise models outlined in Sec. IV F to calculate the like-
lihood function in Sec. IVG. The parameters which are
fixed in this section are summarized in Table I.

A. Offset expected from a fifth force

In this section we briefly summarize the derivation of
[28] for the predicted offset of a BH from the galactic center
in Galileon gravity.
In the rest frame of the galaxy, the black hole equation of

motion is

̈r ¼ −
GNMð<rÞ

r2
þ aBH; ð12Þ

where Mð<rÞ is the mass enclosed at a distance r from the
galaxy’s center. Since the galaxy receives an additional
acceleration from the fifth force, the restoring force on the
BH must be the same for equilibrium. Using Equation (9),
this is

aBH ¼ −α∇φext ¼ −
�
ΔG
GN

�
∇Φlss ¼

�
ΔG
GN

�
glss; ð13Þ

where Φlss and glss are the gravitational potential and
acceleration sourced by large scale structure respectively.
The Galileon force is therefore proportional to the regular
gravitational force. Note that this is only true in the linear
regime of the Galileon, where it satisfies a Poisson equation
identical to the gravitational potential up to a normalization
factor of 2α.
Since the mean predicted offset is Oð10 pcÞ for

ΔG=GN ¼ 1, we are only interested in the very central
regions of our galaxies. We therefore assume a constant
density, ρ0, giving an enclosed mass Mð<rÞ ¼ 4πρ0r3=3.
At equilibrium ̈r ¼ 0, so the offset between the BH and the
center of the galaxy, r•, is

TABLE I. The fixed parameters used to convert dynamical information from the NSA to a predicted offset as described in the text.
Above the horizontal line we give the parameters used in the fiducial analysis, and the remainder are used in Sec. VI A 1 to test for
systematics. In the final column we give the value chosen for each parameter, although we show in Sec. VI that our results are unchanged
for reasonable alternative values.

Parameter Description Value

ba_min The minimum allowed minor-to-major axis ratio. 0.15
σM Scatter (dex) in M⋆ −Mgas relation (Equation (25). 0.3
σR Scatter (dex) in Reff;gas − Reff relation (Equation (26). 0.25
σD Additional scatter (dex) in dynamical surface density. 0.5
ngas Sérsic index for gas component 1
nsim The number of constrained simulations used to reconstruct the gravitational field. 106
N The number of grid points per side length used to reconstruct the gravitational field. 512
l The size of the box used to create artificial long wavelength modes for the gravitational field,

in units of the box length of the constrained simulations.
6

N_MC The number of Monte Carlo runs to get the distribution of offsets for the template signal. 500,000
N_AM The number of abundance matching realizations. 200
n Slope of halo density profile in the central regions of the halos. 0 ≤ n < 1
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r• ¼
3

4π

ΔG
GN

jglssj
GNρ0

: ð14Þ

We define the right ascension (J2000; RA; α) and
declination (Dec; δ) directions on the plane of the sky
and decompose the offset into these components. Since the
observations are two dimensional, from now on we will use
r• to refer to r•;αα̂þ r•;δδ̂ and we define the angular offset

θ• ≡ r•
dA

¼ θ•;αα̂þ θ•;δδ̂; ð15Þ

for angular diameter distance dA.

B. Modeling the gravitational field

In this section we describe how we model the gra-
vitational field using ΛCDM N-body simulations and the
matter power spectrum for a ΛCDM cosmology. Although
for given initial conditions the presence of a Galileon
increases power on large scales [59], our use of concord-
ance cosmological parameters reproduces the observed
matter power spectrum [60], justifying our use of these
as an approximation to the density field for a GRþ
Galileon cosmology. Nevertheless, if the power was
enhanced on large scales then we would be systematically
underestimating the magnitude of the gravitational (and
hence Galileon) field and therefore overestimating the
strength of the coupling. This makes our constraints on
ΔG=GN conservative. This is further justified post hoc by
our tight constraint on fifth-force strength, which ensures
that differences between the ΛCDM and “true” density
fields cannot be large.

1. Constrained simulations of the local volume

We introduce CSiBORG (constrained simulations in
BORG), a suite of constrained N-body simulations of
the local universe. These are based on the inference of
the BORG (Bayesian origin reconstruction in galaxies)
algorithm [61–65], which reconstructs the initial conditions
(ICs) of the local dark matter density field by applying a
Bayesian forward model for the number densities of
observed galaxies in voxels, marginalizing over galaxy
bias parameters. The full CSiBORG suite takes ∼100 sets
of z ¼ 69 ICs from the posterior of the particle-mesh BORG
reconstruction of the 2M++ volume [66,67] separated by
several autocorrelation lengths. These cover a box length of
677.77 Mpc=h with 2563 voxels, yielding a resolution of
2.65 Mpc=h. Within a smaller sphere of radius 155 Mpc=h
centered on the Milky Way we augment the ICs with white
noise to a resolution of 20483, giving a particle mass of
2.2 × 108 M⊙. We then use each set of ICs to run a DM-
only RAMSES [68] simulation to z ¼ 0, refining only in
the higher-resolution central sphere (although keeping
the larger cube to include longer-wavelength modes).
This produces ∼100 N-body realizations of the local

DM structure from which we can calculate both the
magnitude and direction of the g field at any nearby point
in space. By sampling the realizations we marginalize over
both the uncertainties in the constraints on the ICs derived
from 2M++ and the unconstrained smaller-scale modes,
and hence over the local DM density field itself. BORG and
CSiBORG use the cosmology TCMB¼2.728K, Ωm¼0.307,
ΩΛ ¼ 0.693, Ωb ¼ 0.04825, H0 ¼ 70.5 km s−1 Mpc−1,
σ8 ¼ 0.8288, n ¼ 0.9611. We anticipate the CSiBORG
suite to be useful for a range of applications, and we will
make it available upon request.
We model the density fields produced in the simulations,

ΔðxÞ, by applying a cloud-in-cell algorithm to the dark
matter particles and solve Poisson’s equation

ΦðkÞ ¼ −
4πGNρ̄

k2
ΔðkÞ; ð16Þ

on a grid with N ¼ 512 grid points per side, where ΔðkÞ is
the Fourier transform of ΔðxÞ. We have checked that using
a coarser resolution (N ¼ 256) does not affect our results.

2. Adding larger scale modes

Due to the finite size of the box, we do not have
information about the gravitational field all the way down
to k ¼ 0; we can only construct modes with k ≥ π=L for
box length L. To fully reconstruct the gravitational field, we
must therefore add in long wavelength modes. Unlike the
modes captured by the constrained simulation, we have no
constraints on the direction of these, so each mode is added
as a noise term with a random orientation.
We start by generating a continuous matter power

spectrum, PðkÞ, using CLASS [69], assuming a ΛCDM
cosmology with the same parameters as in Sec. IV B 1. We
then construct a grid of size L0 ¼ lL for l > 1with N0 grid
points, such that the maximum k obeys kmax ≥ π=L. This
ensures that the modes added here begin where those in the
simulation boxes end.
A Gaussian random field, ψðkÞ, is generated on the grid,

with the condition ψðkÞ ¼ ψ�ð−kÞ to ensure the density
contrast is real. To determine this, we must adapt the
continuous power spectrum for the discrete case [70,71];
we must account for the normalization in our Fourier
convention, the change in measure and the units of the
power spectrum. After doing this, we can obtain the
potential by solving Eq. (16).
We filter out all modes which overlap between the large

and small boxes to prevent double counting and inverse
Fourier transform to obtain gðrÞ from these large scale
modes. These are added to the field obtained from the
constrained simulation. Since the magnitude and direction
of the modes added in the above procedure are not con-
strained, we must marginalize over the direction and mag-
nitude by incorporating this into our Monte Carlo sampling.
The addition of long wavelength modes increases the root
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mean square of jgj by 5% and scatters each Cartesian
component by ∼17% compared to their uncorrected values.
This process required a further parameter in our infer-

ence: the size of the large box, L0 ¼ lL. In Appendix Awe
show that using l ¼ 6 is appropriate given the uncertainty
on g from the constrained simulations and investigate the
choice of l further in Sec. VI A 3.

C. Modeling the Galileon field

In Eq. (13) we assume that the fifth force is proportional
to the gravitational field sourced by large scale structure,
while on small scales the Galileon is screened. As a model
for this, we take the field calculated in Sec. IV B and apply
a low-pass filter, such that we remove all k modes with
jkj > kV, corresponding to a Vainshtein radius for large
scale structure of

rV ≡ 2π

kV
: ð17Þ

We choose a constant rV for all galaxies, instead of filtering

at the scale of each galaxy’s Vainshtein radius, rðgÞV , as a
function of its mass and rC [Eq. (8)]. This essentially
corresponds to an average over all galaxies, and simplifies
the analysis because we do not have to apply a different
filter for each galaxy or refilter each time we change
ΔG=GN in our inference which would require us to rederive
the likelihood by running the Monte Carlo sampling again.
To convert our constraint on ΔG=GN as a function of rV

to one on α as a function of rC, we require rC as a function
of rV and α. To determine this in a cosmological context,
we consider the mass enclosed within radius r due to
cosmological perturbations:

MðrÞ ¼ ρ̄

Z
jxj<r

ΔðxÞd3x: ð18Þ

We only consider the contribution from perturbations and
not the background because the gravitational effects of the
latter are encoded in the evolution of the Hubble parameter
[72]. The mean square value is determined by the matter
power spectrum,

hM2ðrÞi ¼ ð4πρ̄Þ2
Z

d3k
ð2πÞ3

PðkÞ
k4

ðsin ðkrÞ − kr cos ðkrÞÞ2;

ð19Þ

where we use CLASS to compute the non-linear PðkÞ for a
ΛCDM cosmology. Using Eq. (8), we can thus determine
rC as

rC ≃
1

3

�
3r3V

4αGhM2ðrVÞi12
�1

2

; ð20Þ

where the arbitrary factor of 1=3 is included so that rV ¼
10 Mpc corresponds to rC ∼ 6 Gpc, as found in simula-
tions [46]. We run our inference for a range of rV > 1 Mpc,
with rV ¼ 100 Mpc as our fiducial case.
Using the power spectrum to obtain the covariance of

ΔðkÞ, we can find the expectation value of the square of the
gravitational field from large scale structure,2 δg2cts, by
squaring Eq. (16) and only keeping modes jkj < kV.
Assuming PðkÞ∝k for k<keq where Leq ¼ 2π=keq ≈
450 Mpc, for two values of rV < Leq, r1 and r2, we find
the fractional difference in the field is

ðδgctsðr1Þ2Þ12 − ðδgctsðr2Þ2Þ12
ðδgctsðr1Þ2Þ12

¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ð r2
Leq
Þ2

1 − 1
2
ð r1
Leq
Þ2

vuut : ð21Þ

This fractional difference is only 1 per cent between
rV ¼ 1 Mpc and rV ¼ 100 Mpc or 5 percent between
rV ¼ 1 Mpc and rV ¼ 200 Mpc. This implies that the
calculated field is relatively insensitive to the choice of
rV provided rV < Leq.
In reality the separation between screened and unscreened

modes will be more gradual than this step-function filter.
However, this insensitivity to rV suggests that a smoother
filter will not dramatically change our results.
This model neglects the impact of the nonlinear regime

and requires the Galileon to be linear. This, combined with
the insensitivity of the fifth force field to rV < Leq means
our constraints are valid for 10 Mpc≲ rV ≲ 450 Mpc.

D. Calculating the offset

In order to the calculate the magnitude of the offset, r•,
we need to know the total enclosed mass within separation
r•, Mð<r•Þ. In the absence of central kinematic data in our
observational datasets, we must either attempt to fit a
density profile to the galaxies using empirical methods such
as abundance matching (AM) or employ empirical scalings
between mass and light at the center of the galaxies. Wewill
find that r• ≪ size of the galaxy, so that the latter is more
reliable as the former requires an integral over the galaxy’s
full luminosity profile. We therefore use this method.
Assuming a cored density profile, we wish to find the

(constant) central density, ρ0, using the information
obtained from the NSA. To do this we must determine
the major and minor axis lengths from the observed minor-
to-major axis ratio, ðb=aÞobs, effective radius, reff , and
redshift, zdist. We also use the measured stellar mass, M⋆,
and intensity profile to determine the central surface
density, utilizing observed correlations to estimate the
contributions from dark matter and gas. Combining these
two results gives us ρ0.

2This definition is identical to Eq. (A5) and so δg2cts is given by
Eq. (A9).
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Using the observed minor-to-major axis ratio ðb=aÞobs
from the NSA, we assign a random inclination, i, to the
galaxy and estimate the true axis ratio to be

�
b
a

�
2

¼ 1 −
1 − ðb=aÞ2obs

sin2 i
; ð22Þ

with the condition that ðb=aÞ ≥ ba min, where ba
min ¼ 0.15 since this is the lowest axis ratio recorded
in the NSA.
We use zdist from the NSA catalogue to determine the

angular diameter distance dA to each galaxy and calculate
the major-axis length as Rmaj

eff ≡ dAreff . This is related to
circularized, Reff , and minor-axis, Rmin

eff , half-light radii as

Reff ¼
�
b
a

�1
2

Rmaj
eff ; Rmin

eff ¼
�
b
a

�
Rmaj
eff : ð23Þ

We now deproject the Sérsic profile to find the stellar
surface density [73,74]

Σ⋆ ¼ M⋆
2πb−2n⋆n⋆ Γð2n⋆ÞR2

eff

; ð24Þ

where bn⋆ ≡ 2n⋆ − 1=3þ 0.009876=n⋆. Using the reverse
of the method from [31], we can estimate the gas mass from
the stellar mass using [75]

log10

�
M⋆
M⊙

�
¼ 1.89 log10

�
Mgas

M⊙

�
− 8.12; ð25Þ

with scatter σM ¼ 0.3 dex. Assuming an exponential disk
with effective radius given by

log10

�
Reff;gas

kpc

�
¼ log10

�
0.92Reff

kpc

�
; ð26Þ

with scatter σR ¼ 0.25 dex, we can calculate the central gas
surface density, Σgas, using Eq. (24) with the appropriate
mass and radius and with ngas ¼ 1 instead of n⋆. We now
have the central baryonic surface density

ΣB ¼ Σ⋆ þ Σgas: ð27Þ

To convert this to the central dynamical surface density, ΣD,
we use the empirical relation [76–78]

ΣD ¼ ΣMS
�
ΣB

ΣM

�
; ð28Þ

where

SðyÞ ¼ y
2
þ y

1
2

�
1þ y

4

�1
2 þ 2 sinh−1

�
y
1
2

2

�
; ð29Þ

with ΣM ¼ 1.37 × 108 M⊙ kpc−2. Despite the already large
scatter due to uncertainties on the input quantities, one may
expect the scaling relations to provide good fits only to a
subset of the galaxy population. Therefore, to ensure our
constraints on ΔG=GN are conservative, we impose an
additional scatter of σD ¼ 0.5 dex. For scale height h,
which we assume is equal to Rmin

eff , ΣD is related to the
central density as

ΣD ≡ 2hρ0; ð30Þ
which we can substitute into Eq. (14) to determine r•.

E. Gaussian mixture model

From Eq. (14), we see that the offset is proportional to
ΔG=GN. We therefore construct a template signal with
ΔG=GN ¼ 1 containing NMC realizations of our probabi-
listic model.
For a given rV, we must convert the NMC samples of

predicted θ•;α and θ•;δ for each galaxy into a distribution.
Following [27], we model the samples as a Gaussian
mixture model (GMM) [79] where the likelihood function
for some galaxy g is

Lgðθ•;αjΔG;rVÞ¼
X
i

wðiÞ
g;αffiffiffiffiffiffi

2π
p

σðiÞg;α
exp

�
−
ðθ•;α−μðiÞg;αÞ2

2σðiÞg;α
2

�
; ð31Þ

where X
i

wðiÞ
g;α ¼ 1; wðiÞ

g;α ≥ 0; ð32Þ

and fwðiÞ; σðiÞ; μðiÞg, the weights, standard deviations and
means of the Gaussians, are implicit functions of rV. There
is an analogous definition for the declination component.
The sum runs over the number of Gaussian components.
The number of components is chosen to minimize the
Bayesian information criterion (BIC)

BIC ¼ K logN − 2L̂; ð33Þ
for K model parameters, N ¼ NMC data points, and
maximum likelihood estimate L̂. We find an independent
set of Gaussians for each galaxy and component. For a
different value of ΔG=GN, we must transform the means
and widths of the Gaussians in the GMM

μ̃ðiÞg;α ¼
�
ΔG
GN

�
μðiÞg;α; σ̃ðiÞg;α ¼

�
ΔG
GN

�
σðiÞg;α: ð34Þ

Treating the orthogonal RA and Dec components as
independent, the overall likelihood Lgðθ•;α; θ•;δÞ for a test
galaxy g to have θ• components θ•;α and θ•;δ is

Lgðθ•;α; θ•;δjΔG; rVÞ
¼ Lgðθ•;αjΔG; rVÞLgðθ•;δjΔG; rVÞ: ð35Þ
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F. Modeling the noise

Galileons are not the only type of physics that can lead to
BH–galaxy offsets, requiring us to develop a model for
astrophysical noise. Some examples of other relevant
physics include three-body interactions between BHs
following two successive mergers [80,81]; subhalo accre-
tion, which can cause offsets of tens of parsecs by trans-
ferring energy to the BH by dynamical friction [82]; and
gravitational wave emission from a BH binary at the center
of the galaxy, which, by linear momentum conservation,
causes the center of mass to recoil [83,84]. A population of
offset and wandering BHs [85] is therefore expected even
in the absence of a fifth force.
We must also consider the noise due to observational

errors. Central BHs may appear to be offset due to
misassociation, extended sources, double or lensed quasars,
statistical outliers due to an extended tail [86], the presence
of a jet [87,88] or dust lanes.
Ideally we would construct a model for the observed

offsets in the absence of a fifth force by using cosmological
hydrodynamical simulations. Unfortunately the majority of
these simulations do not include a prescription for dynami-
cal friction on BHs and instead pin the BHs at the center of
the galaxy [89–91]. Those that do allow the BH to move
overpredict the fraction of offset BHs compared to obser-
vations [35]. We therefore must construct an empirical
noise model based on the global distribution of offsets in
the various datasets.
We consider three different noise models: a Gaussian

distribution, the sum of a Gaussian and Laplace distribu-
tion, and an Edgeworth expansion. We outline these below,
before describing how we discriminate between them. In
the following, we define the observed offsets to be θ•;α;obs
and θ•;δ;obs, and the true offsets—which are to be compared
to the fifth force prediction—are θ•;α and θ•;δ.

1. Gaussian noise model

In this model we assume that the observed value is
Gaussian distributed about the predicted value due to a fifth
force, such that the observed value has some uncertainty
σobs. We assume this is equal for both the RA and Dec
components. We therefore have

Lgðθ•;α;obsjθ•;α;ΩÞ ¼ 1ffiffiffiffiffiffi
2π

p
σobs

exp

�
−
ðθ•;α;obs − θ•;αÞ2

2σ2obs

�
;

ð36Þ
with Ω ¼ fσobsg.

2. Gaussian plus Laplace distribution

It is known that the distribution of observed BH–galaxy
offsets is non-Gaussian [35], so we should also consider
non-Gaussian noise models. Inspired by [35,49], our first
non-Gaussian model is the sum of a Gaussian and Laplace
distribution,

Lgðθ•;α;obsjθ•;α;ΩÞ ¼ fffiffiffiffiffiffi
2π

p
σobs

exp

�
−
ðθ•;α;obs − θ•;αÞ2

2σ2obs

�

þ 1 − f
2ν

exp

�
−
jθ•;α;obs − θ•;αj

ν

�
;

ð37Þ

with Ω ¼ fσobs; ν; fg. As with the Gaussian model, σobs
describes the uncertainty in the observed value. The
Laplace term dominates in the tails of the distribution,
hence ν tells us about the scale to which offset BHs extend,
while f is the fraction of the probability in the Gaussian
component.

3. Edgeworth expansion

We now consider another way to incorporate non-
Gaussianity, namely through the Edgeworth expansion [92]

Lgðθ•;α;obsjθ•;α;ΩÞ ¼ 1ffiffiffiffiffiffi
2π

p
σobs

exp

�
−
ðθ•;α;obs − θ•;αÞ2

2σ2obs

�

×
XF
n¼0

αnHn

�
θ•;α;obs − θ•;α

σobs
ffiffiffi
2

p
�
; ð38Þ

where HnðxÞ are Hermite polynomials. The parameters
fαng are related, since the probability density must be
non-negative. We express fαng in terms of cumulants
and discuss these constraints in Appendix B. Ω ¼
fσobs; α3; α4;…g in this case, and we consider 3 ≤ F ≤ 8.

4. Physical offsets

So far the assumed noise models only contain contri-
butions due to observational effects, so that all noise
parameters are angular quantities. This corresponds to
the assumption that any noise contribution with a fixed
physical scale is subdominant. To account for this pos-
sibility, for each noise model we consider the correspond-
ing model with

σobs →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2obs þ

�
σint
dA

�
2

s
; ð39Þ

which assumes that BHs are isotropically, Gaussian dis-
tributed with width σint. This adds one more parameter to
the noise model and means that each galaxy has a different
width of its noise Gaussian.

5. Choosing the model

To decide which noise model to use, for each
dataset we find the maximum likelihood estimates,
L̂≡maxLðdjΔG;rV;ΩÞ, for each model. We then choose
the model that minimizes the BIC [Eq. (33)] with N ¼
2N gal for N gal galaxies in the dataset. We find that in all
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cases the sum of the Gaussian and Laplace distribution
without a physical offset best describes the data, so this is
the noise model we use below. In Fig. 1 we see that the
observed angular offsets are independent of redshift,
suggesting that these are dominated by observational
effects. It is therefore unsurprising that the addition of
an intrinsic offset is not required.

G. Likelihood model

Now we have a distribution for obtaining an observed
value given a predicted one, Lgðθ•;α;obsjθ•;α;ΩÞ, after
accounting for the noise contribution to the signal. The
resulting likelihood for an observed offset θ•;α;obs is

Lgðθ•;α;obsjΔG; rV;ΩÞ

¼
Z

Lgðθ•;α;obsjθ•;α;ΩÞLgðθ•;αjΔG; rVÞdθ•;α: ð40Þ

For example, for the Gaussian noise model, this is

Lgðθ•;α;obsjΔG; rV;ΩÞ

¼
X
i

wðiÞ
g;αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðσ2obs þ σ̃ðiÞg;α
2Þ

q exp

�
−
ðθ•;α;obs − μ̃ðiÞg;αÞ2

2ðσ2obs þ σ̃ðiÞg;α
2Þ

�
:

ð41Þ
We treat each galaxy as independent to obtain the like-
lihood of our dataset d to be

LðdjΔG;rV;ΩÞ
¼
Y
g

Lgðθ•;α;obsjΔG;rV;ΩÞLgðθ•;δ;obsjΔG;rV;ΩÞ: ð42Þ

Finally, given some prior on ΔG and rV, PðΔG; rV;ΩÞ, we
use Bayes’ theorem to obtain

PðΔG; rV;ΩjdÞ ¼ LðdjΔG; rV;ΩÞPðΔG; rV;ΩÞ
PðdÞ ; ð43Þ

where PðdÞ is the constant probability of the data for any
fΔG; rV;Ωg. We are now in a position to derive posteriors
on ΔG=GN and the noise model parameters at fixed rV, for
which we use the EMCEE sampler [93]. We impose the
improper prior ΔG ≥ 0, flat in ΔG. The priors for all
inferred parameters are given in Table II.

V. RESULTS

In Fig. 2 we show the corner plot from the inference with
rV ¼ 100 Mpc for each dataset, using the empirical noise
model consisting of a Gaussian plus a Laplace distribution.
We see that each dataset is consistent with ΔG=GN ¼ 0.
Assuming each sample is independent, we multiply the

likelihoods and, giving each dataset a different set of noise
parameters, find the joint constraint of

ΔG
GN

< 0.16 ð44Þ

at 1σ confidence for this value of rV, or <0.36 at 2σ
confidence. We find that the constraint is driven by O16 due
to its large size. If we did not include the O16 data, our
strongest constraint would come from SB18 and would be
ΔG=GN < 0.65 at 1σ confidence.
For the radio samples (OF13, O16 and SB18) we find

that σobs ∼ 50 mas and for B19 we find σobs ∼ 150 mas, as
expected in Sec. III. Further, as in [35], we find that O16
has a much higher contribution from the non-Gaussian
component than the other datasets, as shown by the smaller
value of f.
We repeat the inference at different values of rV >

1 Mpc and plot the 1σ constraint as a function of rV for
each dataset in Fig. 3. As anticipated in Sec. IV C, we find
that the constraint is relatively independent of rV for
rV < Leq, where the level of bumpiness for these rV
indicates the noise level of this method, due to the finite
number of Monte Carlo realizations used to determine the
likelihood. To quantify this, we run the end-to-end infer-
ence a further 6 times for the OF13 data with rV ¼
100 Mpc and find an unbiased sample variance of the
1σ and 2σ constraints of 8% and 7% respectively. This
shows that the number of Monte Carlo realizations is
sufficiently large.
The lack of dependence of the constraint on rV means we

expect our constraints will not change for a broad transition

TABLE II. Inferred parameters describing the predicted signal
and the empirical noise models. In all cases the Gaussian plus
Laplace distribution is the preferred noise model, and the
parameters for this are given in the top part of the table. Below
the horizontal line we give the parameters for the Edgeworth
expansion [Eqs. (38) and (B2)] and the models containing
intrinsic offsets, which we use in Sec. VI A 2. All priors are
uniform in the range given. We fix rV in the inference and allow
all other parameters relevant to the chosen noise model to vary.
The ðp; qÞ values refer to Eq. (B6).

Parameter Prior/Constraint

ΔG=GN ≥0
log10 ðrV=MpcÞ ≥0.5
σobs >0
ν >0
f [0, 1]

σint ≥0
γ � � �
τ p ¼ 1, q ¼ 2
η � � �
ζ p ¼ 2, q ¼ 3
ξ � � �
ι p < q, q ¼ 4
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from screened to unscreened in this regime, as opposed to
the step-function we currently use.
For larger values of rV we find that, although

the posteriors are still consistent with ΔG=GN ¼ 0,
the constraint weakens. The smaller magnitude of
the fifth force field at these rV (more modes of the
g field are excluded) means a given offset requires a
larger value of ΔG=GN [Eq. (14)], and thus a worse
constraint. rV ¼ Leq corresponds to the largest cross-
over scales in Fig. 5, which are already much larger
than H−1

0 .

VI. DISCUSSION

A. Systematic uncertainties

In this section we vary several parameters of the analysis
which could contribute systematic error if kept fixed. For
computational convenience, throughout this section we
use the OF13 data as this is the smallest dataset, although
the conclusions apply equally to all the datasets. Hence
the constraint for the fiducial case in this section is
ΔG=GN < 1.28, as opposed to the full joint constraint
of ΔG=GN < 0.16.

FIG. 2. Corner plot of the constraints on the strength of the coupling to the Galileon field, ΔG=GN, and the noise parameters at
rV ¼ 100 Mpc. The contours show the 1 and 2σ confidence intervals. Each dataset is consistent with ΔG=GN ¼ 0, with ΔG=GN > 0.16
ruled out at 1σ confidence when we combine the datasets. Note that while ΔG=GN is assumed universal, σobs, ν and f are sample-specific.
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1. Density profile

Although halos in N-body simulations are typically well
fit by NFW profiles, the situation is less clear observatio-
nally and in the presence of baryons. While the process of
adiabatic contraction steepens the central DM density
during the process of galaxy formation [94,95], subsequent
stellar feedback can inject energy into the halo and cause it
to expand (e.g., [96,97]). Previously we assumed that this
results in an approximately uniform density at the center of
the halo, however this need not be true.
To test whether our constraints are sensitive to the

assumed density profile, we now suppose that the inner
density can be described by a power law. To remain
agnostic as to the slope of the DM density profile over
the extent of the galaxy, we parametrize it as

ρðrÞ ¼
8<
:

ρsðrsr Þn; r ≤ rs
4ρs

r=rsð1þr=rsÞ2 ; r > rs;
ð45Þ

with n a free parameter that would equal 1 for NFW. With
most observational evidence favoring profiles somewhat
shallower than NFW (e.g., [98–100]) we take a fiducial
value for n of 0.5, although we will check explicitly the
result of varying it within the a priori plausible range
0 ≤ n < 1. rs is the scale radius of the halo, while ρs is the
density at that radius.
For n ¼ 0.5, the mean predicted offset is ∼50 pcÞ for

ΔG=GN ¼ 1. This is much less than rs so that the relevant
profile is the power law, and the NFW profile is only
required to determine ρs. We therefore do not need to
consider the case where the restoring force is too small to
balance the fifth force, which could lead to the BH being
ejected from the galaxy [29].

Within the power-law region the enclosed mass is

Mð<rÞ ¼ 4π

3 − n
ρsr3

�
rs
r

�
n
; r < rs: ð46Þ

Substituting this into Eq. (12), the equivalent of Eq. (14) is

r• ¼
�
ΔG
GN

� 1
1−n
�
3 − n
4π

jglssj
GNρs

1

rns

� 1
1−n
: ð47Þ

Note that this offset diverges for an NFW profile (n ¼ 1).
We also clearly need n < 3, however this is already
required for the halo to have a finite mass within any
finite radius. If n < 1, then the largest offsets will be for the
least dense galaxies, whereas the converse is true if n > 1.
The case n > 1 is interesting in that a larger ΔG=GN will
actually shrink the offset between the BH and galactic
center. However we do not consider this case further since,
by considering small perturbations about r•, the equilib-
rium offset is found to only be stable for n < 1. As
mentioned above, n < 1 is often a better fit for the density
profile, so it is not unreasonable to only consider these
values.
The values of rs and ρs for each test galaxy are estimated

using the technique of halo abundance matching (AM)
[101,102]. The technique assumes a near-monotonic rela-
tion between the absolute magnitude of a galaxy and a
halo “proxy,” typically a combination of virial mass and
concentration. We use the best-fit AM model of [103]
applied to the ROCKSTAR halo catalogue of the DARKSKY-400

N-body simulation [104] and the Sérsic r-band luminosity
function of [105]. We generate N AM ¼ 200 mock galaxy
catalogues, where each catalogue is a different random
realization of the noise from the intrinsic scatter in the
galaxy–halo connection implied by the model. We draw
values of rs and ρs for each galaxy from a randomly chosen
catalogue for each Monte Carlo realization of our model,
wherewe use the halo from that cataloguewhich is closest in
magnitude to that galaxy. By iterating this procedure many
times, we marginalize over the stochasticity in the galaxy–
halo connection. We rerun the end-to-end inference with
n ¼ 0.5 and only 100 catalogues and find the constraint to be
unchanged (Fig. 4), indicating thatN_AM is sufficiently large
to sample the distributions of ρs and rs.
As before, we obtain NMC samples from our model

of offsets in Galileon gravity and convert this into a GMM
for the caseΔG=GN ¼ 1. For a power law profile, the offset
is no longer proportional to ΔG=GN, and instead the
relation is

r• ∝
�
ΔG
GN

� 1
1−n
: ð48Þ

Thus, to convert the GMM to a different value of ΔG=GN,
Eq. (34) is changed to

FIG. 3. 1σ constraint on ΔG=GN as a function of average
Vainshtein radius, rV. We expect rV ∼ 10 Mpc for crossover
scales ∼H−1

0 . rV > Leq corresponds to crossover scales much
larger than the observable universe (see Fig. 5).

CONSTRAINTS ON GALILEONS FROM THE POSITIONS OF … PHYS. REV. D 103, 023523 (2021)

023523-11



μ̃ðiÞg;α ¼
�
ΔG
GN

� 1
1−n
μðiÞg;α; σ̃ðiÞg;α ¼

�
ΔG
GN

� 1
1−n
σðiÞg;α; ð49Þ

with the rest of the analysis unchanged from Sec. IV. We
again use the Gaussian plus Laplace distribution for our
noise model.
In Fig. 4 we plot the 1σ constraints on ΔG=GN for

different power law indices. Fitting the constraint to an
exponential, as would be expected from Eq. (47), we find
the constraint weakens like eβn where β ≈ 4.3. Increasing n
increases the density at a given radius which increases the
restoring force and thus a larger ΔG=GN is necessary for a
given offset.
Comparing to Fig. 2, we see that the constraint using a

power law profile is an order of magnitude tighter than
when we use the scaling relations from Sec. IV D for the
smallest values of n, and comparable when n≲ 1. The
stronger constraints can be understood in terms of the pivot
scale at which the density profile changes from NFW to a
power law. In Eq. (45) we chose rs as the pivot scale
however, since we use n < 1, if this transition occurred at a
smaller radius, the density at a given radius in the power
law region would be greater. Changing the pivot scale to
∼0.01rs (∼360 pc for a typical galaxy from OF13) would
provide constraints similar to our previous prediction.
There is no reason a priori why we would choose
0.01rs as a pivot scale, but it is reassuring that it is not
an unreasonable choice.
Our fiducial case is the halo density profile which gives

the most conservative constraint of those considered, hence
we report the value derived from scaling relations with a
cored profile as our final constraint.

We also assumed that the gas density profile has a Sérsic
index ngas ¼ 1, i.e., an exponential disk. We repeated the
inference with ngas ¼ 0.5 and 2.0. Increasing ngas slightly
widens the posterior on ΔG=GN. This is expected as
increasing ngas increases the central gas density, which
decreases the predicted offset for a given ΔG=GN so
slightly larger values of ΔG=GN are permitted. Given that
the gas mass is sub-dominant compared to the other mass
components, we would expect the change in the constraint
to be small, as indeed it is.

2. Noise model

Our previous work on BH offsets [35] demonstrated that
the distribution of offsets is non-Gaussian for these data, so
it is unsurprising that the addition of a Laplace distribution
is favored by the BIC. To ensure that our results are
insensitive to our choice of non-Gaussianity, we rerun the
inference using an Edgeworth expansion for our empirical
noise mode, truncating the sum at F ¼ 4 in Eq. (38) as this
has the minimum BIC for 3 ≤ F ≤ 8. Using the OF13 data,
we find that the Edgeworth noise model gives a result
which is consistent with zero, with ΔG=GN < 1.89 at 1σ
confidence, compared to ΔG=GN < 1.28 for the Gaussian
plus Laplace distribution with this data.
Although disfavored by the BIC, we now explore

the effect of adding a contribution from physical offsets
to the Gaussian plus Laplace distribution noise model
(Sec. IV F 4). We find that our constraint is slightly
tightened to ΔG=GN < 1.23 for the OF13 data. As the
difference is within the uncertainty on our constraint of 8%
(see Sec. V), we conclude that our constraint is insensitive
to this change. We find that σint < 22 pc at 1σ confidence,

FIG. 4. Constraints onΔG=GN at rV ¼ 100 Mpc at 1σ confidence using the OF13 data. Left: a power law halo density profile of index
n is assumed. To determine the density profile, we use N AM ¼ 200 mock catalogues obtained through abundance matching. We re-run
the analysis at n ¼ 0.5 with N AM ¼ 100 and see that the constraint is unchanged. Right: using our fiducial density profile, we vary the
box size, L0, used to add in long wavelength modes when reconstructing the Galileon field. L0 ∼ 1 Gpc corresponds to no extra long
wavelength modes. We also show the constraints from different noise models at L0 ∼ 6 Gpc, and if we reduce the number of constrained
simulations to 50.
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showing that this contribution is small if it exists at all. We
plot the constraints from both of these alternative noise
models in Fig. 4.
We conclude that our results are not sensitive to the noise

model, provided that we include non-Gaussianity.

3. Galileon field

When reconstructing the Galileon field, one should
check that the resolution is sufficiently high such that
the maximum k is determined by rV and not the resolution,
i.e., that L=N < rV.
Our minimum rV equals L=N for N ¼ 512. We have

checked that our constraints are unchanged if we use
N ¼ 256 for rV ≥ 10 Mpc (where we require N > 100).
Repeating the analysis with 34 constrained simulations

did not change the constraint (see Fig. 4), indicating that we
have a sufficient number of constrained simulations to
sample the distribution of the Galileon field at each galaxy.
In Sec. IV B 2 we discussed how we should add Fourier

modes to the Galileon field with wavelengths longer than
the box length, L, of our constrained simulations. This was
achieved by creating unconstrained Gaussian random fields
in a box of side length L0 ¼ lL. We chose l ¼ 6 (see
Appendix A), however to check that our constraints are
independent of this choice, we re-run the inference with
different values of l and plot the results in Fig. 4.
Comparing l ¼ 6 to l ¼ 14 for the OF13 data, we find
the results are consistent, justifying our choice of l ¼ 6.
We also find the constraint if we do not include this
additional long wavelength information (l ¼ 1) and find
that it is weakened fromΔG=GN < 1.28 toΔG=GN < 3.36
at 1σ confidence for the OF13 data. This is to be expected
as adding in long wavelength modes increases the magni-
tude of the Galileon field, which tightens the ΔG=GN
constraint.
Removing all of the modes from the constrained sim-

ulations is equivalent to setting rV ∼ 1 Gpc. We do this in
Fig. 3 and find little change in our constraints. This is to be
expected since the main contributors to the magnitude of
the Galileon field are modes with k ∼ 2π=Leq, so the
majority of the modes from the constrained simulation
have a negligible impact on this. Even though the con-
strained simulations turn out to be relatively unimportant in
setting our constraints, they would be necessary to obtain a
detection because they contain the information on the
direction of g. In the future it will be interesting to repeat
the inference using simulations with initial conditions
constrained in the much larger SDSS volume [106].

4. Other potential systematics

Although we use the BIC to determine how many
components to fit in the GMM (Sec. IV E), which should
penalize components which fit outliers of the distribution, it
is important to check that our constraints are not driven by
unlikely realizations in our Monte Carlo sampling. Still

minimizing the BIC, but restricting ourselves to no more
than 15 Gaussian components, we find that our constraints
are unchanged. We find that all galaxies across all runs
require ∼10 GMM components even without a maximum
number of components, showing that the imposed maxi-
mum is not important.
We rerun the end-to-end inference with σD ¼ 1.0, 2.5

and 5.0 dex, and find little variation of the constraint with
this parameter for the smaller values of σD. To understand
why increasing the scatter in all of the quantities has little
impact on our ΔG=GN constraint, we fit a single Gaussian
instead of a GMM to the distribution of offsets for each
galaxy. As expected, the log-normal scatter increases the
magnitude of the mean and the width of the Gaussian.
Increasing the mean and the covariance have competing
effects in logL and, until we reach relatively large values of
scatter, the two effects cancel and thus the constraint on
ΔG=GN has little dependence on σD. Increasing σM to 0.6
or σR to 0.5 also has a negligible impact on our constraint.
The final parameter in the inference is ba_min, the

minimum allowed minor-to-major axis ratio allowed. We
set this to 0.15 as this is the lowest axis ratio recorded in
the NSA. Changing this to 0.20 was found not to change
the constraint.

B. Comparison with the literature

Previous attempts to constrain Galileons using the
polarization of BH–galaxy offsets relative to the direction
of a partially unscreened Galileon field have targeted
galaxies in massive galaxy clusters. Since Eq. (6) is a total
derivative for a spherically symmetric mass distribution,
this equation becomes a modified nonlinear Gauss’ law;
only the mass within some radius sources the field at that
point. This results in the Vainshtein mechanism being less
efficient inside extended mass distributions, hence why
Galileons with sub- Gpc values of rC can be constrained in
these environments. Constraints α≲Oð1Þ were obtained
[29,30] using the central BH in M87 for Galileons
with rC ≲ 1 Gpc.
By considering galaxies in more rarefied environments,

we study the situation where the Galileon field is sourced
by large scale structure as opposed to a cluster. This allows
us to probe larger values of rC, since we no longer require
that the mass in the vicinity of the BH sources a partially
unscreened Galileon field.
Constraints on Galileons can also be found using the

technique of lunar laser ranging [107], which currently sets
the bound [108,109]3

rCα−
3
2 ≳ 150 Mpc: ð50Þ

3Note that this constraint is sensitive to the rotation vector of
the Moon [110], which is set to its GR value. This could introduce
some model dependence in the result.
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Slightly weaker constraints are obtained by studying the
precession of planetary orbits in the Solar System [111].
In Fig. 5 we plot the constraints on α as function of rC for

the cubic Galileon from the literature and compare to
the constraints obtained in this work. As discussed in
Sec. IV C, we convert rV to rC by using Eqs. (19) and (20).
From this we see that our constraints are applicable to the
region rC ≳H−1

0 . As anticipated, this is complementary to
previous work, which constrains rC ∼ 0.01–1 Gpc, and is
comparable in strength.
Our conversion from rV to rC in a cosmological context

is based on the nonlinear matter power spectrum from
CLASS; for smaller values of rV within the 1-halo term this
approximation breaks down and an alternative conversion
would be required. We anticipate that if we were to improve
the modeling of the Galileon field to incorporate the
nonlinear regime, our constraint on α would remain
relatively unchanged as we moved to smaller rC. Our test
will then become competitive with lunar laser ranging and
constrain self-accelerating Galileons, providing an alter-
native to the integrated Sachs-Wolfe probe [112].
We note that the strength of our constraints are similar to

those from M87 [29], despite our sample containing 1916
galaxies and their one. This is due to the interplay of three
effects. First, the observations used in this work have lower
resolution, with σ ∼ 50 mas for the radio data, whereas the
galaxy–BH offset for M87 is measured to be <30 mas.
Second, we marginalize over an empirical noise model,
whereas [29] assume that the entire offset is due to a fifth
force, which would make their constraint tighter but also
more prone to systematics to do with astrophysical con-
tributions to the offset. Finally, we only consider the
Galileon field sourced by large scale structure, which is

smaller than that near a massive cluster and hence allows
larger ΔG=GN values for a given offset. Combining cosmic
and cluster fields in future work will therefore afford much
tighter constraints.
To enable easy comparison to the literature, we also

convert our constraint on rV and ΔG=GN to one on the
Horndeski parameters c2 and c3. To do this, we consider the
tracker solution [113]

_̄φH ¼ ξH2
0 ¼ constant; ð51Þ

where ξ is related to the dimensionless Horndeski param-
eters for cubic Galileons as

ξ ¼ −
c2
6c3

: ð52Þ

From Eqs. (3)–(6) we see that today

β1 ¼
ξ

3

�
c3ξ3 − 1þ 2

_H
H2

0

�
; β2 ¼

2

ξ2
β1; ð53Þ

where

β1 ¼ ðH0rCÞ−2; β2 ¼
1

3α
: ð54Þ

From this conversion and Eq. (20), we see that lines of
constant rV are transformed to lines of constant c3ξ3, where
ξ is proportional to α on these curves. In Fig. 6 we plot our
constraints in the c3 − ξ plane. In this plot we demonstrate
the regions of parameter space that can be probed by our

FIG. 6. Constraints on the Horndeski parameters c2 and c3
for the cubic Galileon tracker solution _̄φH ¼ ξH2

0 at 1σ con-
fidence. The blue region corresponds to ξ > 0 and the orange
region is for ξ < 0. Lines of constant rV are given by the curves
ξ3c3 ¼ constant, where ξ is proportional to α along these curves.
Probing smaller rV in future work will push the constraint to the
upper right, as shown by the arrows.

FIG. 5. Constraints on the coupling of a cubic Galileon to
matter, α, as a function of the crossover scale, rC, from lunar laser
ranging (LLR) [108], the BH at the center of M87 [29,30] and this
work. The shaded regions are excluded at 1σ confidence. We also
plot the α − rC curves for the normal and self-accelerating
branches of the DGP model [Eq. (7)].
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test, and ways of further constraining this region. It is clear
from the plot that further work should target smaller rV, as
our constraint already lies close to the line corresponding
to rV → ∞.
We also plot the α − rV curves in Fig. 5 for the normal

and self-accelerating branches of the DGPmodel, evaluated
using Eq. (7) and assuming the matter density and H0 is
the same as in the constrained simulations. We see that
the normal branch is not yet constrained by our test. For
our smallest value of rV, we would require a constraint
α < 0.04 to do this, corresponding to an improvement of a
factor of ∼7.
Due to the assumption of linearity, our constraints are

insensitive to the specific Galileon model; using the
Vainshtein radius for a quartic Galileon in Fig. 5 changes
the conversion to rC by a numerical factor of Oð1Þ [10].
Our bounds are therefore equally applicable to quartic and
quintic Galileons. The results of GW170817 [114] already
severely constrain the self-accelerating branches of these
models, with constraints on the Horndeski parameters [115]

jc4j≲2.8×10−17
�
2

ξ

�
4

; jc5j≲3.8×10−17
�
2

ξ

�
5

; ð55Þ

where ξ ¼ HðtÞ _φ=H2
0. To convert these to bounds on α and

rC using variants of Eqs. (4) and (5) relevant to these
models, one would also need to know c3. Since this is not
constrained by GW170817, we do not perform this
comparison explicitly, but note that our results provide
independent stringent constraints on the quartic and quintic
models.

VII. CONCLUSIONS

Galileons are scalar field theories which obey the
Galileon symmetry φ → φþ bþ cμxμ [37] and are para-
metrized by their crossover scale, rC, and coupling to
matter, α. If rC ∼H−1

0 then the Galileon is said to be
cosmologically relevant and could explain the late-time
accelerated expansion of the Universe. Here we present a
test of Galileon gravity by comparing the predicted
equilibrium offsets between the center of a galaxy and
its central supermassive BH to observational data.
In a similar manner to recent work which ruled out

astrophysically relevant fðRÞ theories [27], we construct a
galaxy-by-galaxy Bayesian forward model of these offsets
based on dynamical information about these galaxies, a
reconstruction of the local gravitational field and a non-
Gaussian empirical noise model. In doing so we introduced
CSiBORG, a suite of constrained N-body simulations of
the local Universe using initial conditions from the BORG
algorithm. Marginalizing over noise parameters and propa-
gating uncertainties on input quantities via Monte Carlo
sampling, we derive constraints on the magnitude of the
fifth force arising from cosmologically relevant Galileons,
ΔG=GN ≡ 2α2.

We rule out ΔG=GN > 0.16 at 1σ confidence for
rC ≳H−1

0 . We find our constraints to be robust to the
assumed halo density profile, the choice of empirical noise
model and parameters used to infer physical properties
from the dynamical information available on these galaxies.
These constraints are complementary to previous con-
straints from galaxy–BH offsets [29,30]: we probe larger
values of rC because we consider the Galileon field sourced
by large scale structure as opposed to a massive galaxy
cluster.
Improved modeling of the Galileon field to enter the

nonlinear regime should make our constraints competitive
with lunar laser ranging (LLR) [108] at smaller values of
rC. Our approach necessarily requires a large number of
galaxies to fit the parameters of the empirical noise model
accurately, so targeted observations at a small number of
galaxies would not be particularly useful in tightening our
constraints. Improved modeling of dynamical friction in
future cosmological hydrodynamical simulations [35]
could remove our reliance on an empirical noise model,
making such simulations useful for future constraints on
Galileons and similar theories.
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APPENDIX A: BOX SIZE FOR LONG
WAVELENGTH MODES

When adding in long wavelength modes to account for
scales not captured by the constrained simulations, we
should ensure that the size of our larger box, L0 ¼ lL, is
sufficiently large to accurately capture all small-k modes.
To find a suitable value for this, for simplicity we assume
that the modes are continuous (so we are integrating rather
than summing on a grid) and denote these by the subscript
“cts.” In this case, the expectation value of the square of the
gravitational field at the origin is

CONSTRAINTS ON GALILEONS FROM THE POSITIONS OF … PHYS. REV. D 103, 023523 (2021)

023523-15



hjgctsj2i ¼ ð4πGρ̄Þ2lim
r→0

Z
d3k
ð2πÞ3

PðkÞ
k4

e2ik·r

¼ ð2Gρ̄Þ2lim
r→0

Z
∞

0

PðkÞ sin ð2krÞ
kr

dk; ðA1Þ

since the power spectrum is defined to be

hΔctsðkÞΔ�
ctsðk0Þi≡ ð2πÞ3PðkÞδDðkþ k0Þ; ðA2Þ

where δD is the Dirac delta function. For simplicity, we
assume the matter power spectrum can be described by a
broken power law

PðkÞ ≈
8<
:

Peqð k
keq
Þ; k < keq

Peqð k
keq
Þ−3; k > keq:

ðA3Þ

For a finite box size, we cannot calculate the integral in
Eq. (A1), since we can only integrate from some finite k0 to
obtain hjgctsj2i0, such that

hjgctsj2i ¼ hjgctsj2i0 þ δg2ctsðk0Þ; ðA4Þ
where our correction from long wavelength modes is

δg2ctsðk0Þ≡ ð2Gρ̄Þ2lim
r→0

Z
k0

0

PðkÞ sin ð2krÞ
kr

dk: ðA5Þ

In the case where k0 < keq we have

δg2cts ¼ ð2Gρ̄k0Þ2
Peq

keq
; ðA6Þ

whereas for k0 > keq we have

δg2cts ¼ δg2ctsðkeqÞ þ ð2Gρ̄Þ2lim
r→0

Z
k0

keq

PðkÞ sin ð2krÞ
kr

dk

¼ ð2Gρ̄Þ2Peqkeq

�
2 −

�
keq
k0

�
2
�
: ðA7Þ

By sending k0 → ∞, we see that

hjgctsj2i ¼ 8ðGρ̄Þ2Peqkeq; ðA8Þ
and so we arrive at, defining L0 ≡ 2π=k0 and Leq ≡ 2π=keq,

δg2ctsðL0Þ
hjgctsj2i

¼
8<
:

1
2
ðLeq

L0
Þ2; L0 > Leq

1 − 1
2
ðL0

Leq
Þ2; L0 < Leq:

ðA9Þ

Using Leq ≈ 450 Mpc, we find that for L0 ¼ 6 Gpc (l ≈ 6),

the correction is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δg2cts=hjgctsj2i

p
≈ 0.05, or for L0 ¼

14 Gpc (l ≈ 14), this is ≈0.02. This is small compared

to the ∼30 per cent variation in jgj across the constrained
simulations, so using either of these values is acceptable.

APPENDIX B: COEFFICIENTS IN THE
EDGEWORTH EXPANSION

The nonzero coefficients αn in the Edgeworth expansion
[Eq. (38)] are (up to F ¼ 8)

α0 ¼ 1; α3 ¼
κ3

23=2 × 3!
; α4 ¼

κ4
22 × 4!

;

α5 ¼
κ5

25=2 × 5!
; α6 ¼

10κ23 þ κ6
23 × 6!

α7 ¼
35κ3κ4 þ κ7
27=2 × 7!

; α8 ¼
35κ24 þ 56κ3κ5 þ κ8

24 × 8!
; ðB1Þ

where κn is the nth cumulant. The powers of 2n=2 are due to
us using the physicist’s and not the statistician’s Hermite
polynomials. For notational convenience, we define the
following parameters

γ ≡ κ3
23=2

; τ≡ κ4
22

; η≡ κ5
25=2

ζ ≡ κ6
23

; ξ≡ κ7
27=2

; ι≡ κ8
24

; ðB2Þ

so the coefficients are

α0 ¼ 1; α3 ¼
γ

3!
; α4 ¼

τ

4!
; α5 ¼

η

5!
;

α6 ¼
1

6!
ðζ þ 10γ2Þ; α7 ¼

1

7!
ðξþ 35γτÞ

α8 ¼
1

8!
ðιþ 56γηþ 35τ2Þ: ðB3Þ

We need to impose restrictions on the parameters since they
must describe a probability distribution. Following [116],
we define

ha; bi≡ habi − haihbi; ðB4Þ
and, since the probability density is non-negative, we use
the Cauchy-Bunyakovskii inequality

ha; bi2 ≤ ha2ihb2i; ðB5Þ
which for some random variable x gives

hxp; xqi2 ≤ hxp; xpihxq; xqi: ðB6Þ
These can be trivially expressed in terms of cumulants, and
thus we have necessary conditions for the parameters Ω ¼
fσobs; γ; τ; η; ζ; ξ; ιg to describe a probability distribution.
We impose this constraint for all p < q ≤ 4 and consider
the cases 3 ≤ F ≤ 8.
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