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We extend the work of Contaldi et al. [J. Cosmol. Astropart. Phys. 07 (2003) 002.] and derive analytical
approximations for primordial power spectra arising from models of inflation which include primordial
spatial curvature. These analytical templates are independent of any specific inflationary potential and
therefore illustrate and provide insight into the generic effects and predictions of primordial curvature,
manifesting as cutoffs and oscillations at low multipoles and agreeing with numerical calculations. We
identify through our analytical approximation that the effects of curvature can be mathematically attributed
to shifts in the wave vectors participating dynamically.
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I. INTRODUCTION

The inflationary scenario [1–3] was invoked to resolve
several issues within the basic hot big bang model, and it is
upon this that the current concordance cosmology, Lambda
cold dark matter (ΛCDM) is built. Through a brief period of
rapid expansion at early times, the inflationary framework
successfully predicts the minimal present-day curvature, as
well as the generation and growth of nearly scale-invariant
adiabatic scalar perturbations. These perturbations then
manifest themselves in the cosmic microwave background
(CMB), as anisotropies, giving us the measured spectrum
we observe on the sky today [4,5].
If one is to study inflation in a theoretically complete

manner, one cannot assume that the Universe was flat at
the start of the expansion. Furthermore, the presence of
small discrepancies at low multipoles in the spectrum of
the CMB [6] from those predicted by flat inflationary
dynamics, motivate a study of the effects of primordial
curvature. Typically, the spectra contain generic cutoffs
and oscillations within the observable window for the
level of curvature allowed by current CMB measurements.
Previous numerical calculations [7] of such models have
shown that the primordial power spectra generated for
curved inflating universes provide a better fit to current
data. A Bayesian discussion as to the level of fine-tuning
in these curved inflationary models (or lack thereof) can
be found in detail in [8,9].

Additionally, the introduction of a small amount of late-
time curvature, creating a KΛCDM cosmology [10,11],
has been suggested as a potential resolution to the tensions
observed between data sets probing the early Universe
and those that measure late-time properties [12–19].
Planck 2018 data without the lensing likelihood [20]
presents relatively strong evidence for a closed Universe
[4]. Adding in lensing and Baryon acoustic oscillation
data [21–23] reduces this evidence considerably, but it
remains an open question as to why the CMB alone
prefers universes with positive spatial curvature. While
interpretations of the level of experimental support for a
moderately curved present-day Universe differ [24–26],
Universe models with percent-level spatial curvature
remain compatible with CMB data sets. The appearance
of any present-day curvature is arguably incompatible
with eternal inflation, and strongly constrains the total
amount of inflation, providing a powerful justification for
just-enough-inflation theories [27–33].
In this paper, we generalize the approach of Contaldi

et al. [34] to the curved case, obtaining analytical back-
ground solutions and primordial power spectra for
Universes including spatial curvature. The approximation
models the background Universe as beginning in a kineti-
cally dominated regime, followed by an instantaneous
transition to a regime with no potential dependence, which
we term ultra-slow roll. Despite such an idealized situation,
this simple approximation qualitatively reproduces the
exact spectrum obtained by numerical computation, with
the notable advantage of using this method that the results
are independent of the scalar field potential. The analytic
solutions yield better insight into the physics and effects of
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curvature on the primordial Universe which may potentially
be overlooked through a purely numerical approach.
This paper is organized as follows. In Sec. II, the

conformal time equivalent of the background equations
and general Mukhanov-Sasaki equation for curved inflating
universes is presented. We solve the curved Mukhanov-
Sasaki equation and plot the corresponding spectra for our
potential-independent curved inflationary model in Sec. III.
This is proceeded by a discussion of our results in Sec. IV,
after which we present our conclusions in Sec. V. The
supplementary material, such as PYTHON code for generat-
ing figures and Mathematica scripts for computer algebra,
is found at [35].

II. BACKGROUND

In this section, we establish notation and sketch a
derivation of the background and first-order perturbation
equations in conformal time. Further detail and explanation
may be found in [36–38].
The action for a single-component scalar field minimally

coupled to a curved spacetime is

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
Rþ 1

2
∇μϕ∇μϕ − VðϕÞ

�
: ð1Þ

Extremizing this action generates the Einstein field
equations and a conserved stress energy tensor.
In accordance with the cosmological principle, the

solutions to the Einstein field equations are assumed to
be homogeneous and isotropic at zeroth order. One then
perturbatively expands about the homogeneous solutions to
first order in the Newtonian gauge.
In conformal time and spherical polar coordinates in the

Newtonian gauge, the metric may be written as

ds2 ¼ aðηÞ2½ð1þ 2ΦÞdη2 − ð1 − 2ΨÞðcij þ hijÞdxidxj�;

cijdxidxj ¼
dr2

1 − Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ; ð2Þ

where K ∈ fþ1; 0;−1g denotes the sign of the curvature
of the Universe: flat (K ¼ 0Þ, open (K ¼ −1), and closed
(K ¼ þ1).1 The longitudinal metric perturbation Φ and
curvature metric perturbation Ψ along with the perturbation
to the field δϕ are scalar perturbations, while hij is a
divergenceless, traceless tensor perturbation with two
independent polarization degrees of freedom. The covariant
spatial derivative on comoving spatial slices is denoted with
a Latin index as ∇i.
By taking the (00)-component of the Einstein field

equations and the (0)-component of the conservation of
the stress-energy tensor, one can show that the background

equations for a homogeneous Friedmann-Robertson-
Walker spacetime with material content defined by a scalar
field are

H2 þ K ¼ 1

3m2
p

�
1

2
ϕ02 þ a2VðϕÞ

�
; ð3Þ

0 ¼ ϕ00 þ 2Hϕ0 þ a2
d
dϕ

VðϕÞ; ð4Þ

where H ¼ a0=a is the conformal Hubble parameter, mp is
the Planck mass, ϕ is the homogeneous value of the scalar
field, VðϕÞ is the scalar potential, a is the scale factor, and
primes indicate derivatives with respect to conformal time η
defined by dη ¼ dt=a. A further useful relation to supple-
ment Eqs. (3) and (4) is

H0 ¼ −
1

3m2
p
ðϕ02 − a2VðϕÞÞ; ð5Þ

which is derived from the trace of the Einstein field equations.
For the remainder of this paper, we set the Planck mass
to unity (mp ¼ 1), but note that one may reintroduce mp

at any time by replacing ϕ → ϕ=mp, V → V=m2
p.

Another useful physical perturbation to consider is the
gauge-invariant comoving curvature perturbation

R ¼ ΨþH
ϕ0 δϕ: ð6Þ

The equation of motion for this quantity is termed the
Mukhanov-Sasaki equation. To derive this equation for
curved universes, one can take a direct perturbative
approach as that introduced by Mukhanov et al. [36].
This computation has been performed historically by
[39–45]. One can also arrive at Eq. (7) via the
Mukhanov action, by following the notation of Baumann
[38] [Appendix B] and generalizing the Arnowitt-Deser-
Misner (ADM) formalism [46,47] to the curved case.
Employing both approaches, a general version of the

Mukhanov-Sasaki equation for curved universes was com-
puted by Handley [7] in cosmic time. Extending these
calculations to conformal time, we now show that the
curved Mukhanov-Sasaki equation is given by

ðD2 − KEÞR00 þ
��

ϕ02

H
þ 2ϕ00

ϕ0 −
2K
H

�
D2 − 2KHE

�
R0

þ
�
−D4 þ K

�
2K
H2

− E þ 1 −
2ϕ00

ϕ0H

�
D2 þ K2E

�
R ¼ 0;

D2 ¼ ∇i∇i þ 3K; E ¼ ϕ02

2H2
; ð7Þ

where primes denote derivatives with respect to conformal
time. Equation (7) can be expressed in a more familiar form

1Note this is opposite to the curvature density parameter ΩK,
K ¼ þ1 ⇒ ΩK < 0.
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by Fourier decomposition and a redefinition of variables. In
the flat case, one normally redefines variables in terms of
the Mukhanov variable v ¼ zR, where z ¼ aϕ0=H. In the
curved case, this is impossible, but one can define a wave
vector–dependent Z and v via

v ¼ ZR; and Z ¼ aϕ0

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

D2 − KE

s
: ð8Þ

Fourier decomposition acts to replace the D2 operator
in Eq. (7) with its associated scalar wave vector
expression [37],

D2 ↔ −K2ðkÞ þ 3K; ð9Þ

K2ðkÞ ¼
�
k2; k ∈R; k > 0; K ¼ 0;−1;
kðkþ 2Þ; k ∈ Z; k > 2; K ¼þ1.

ð10Þ

After some algebraic manipulation, the curved
Mukhanov-Sasaki equation may be written as

v00k þ
�
K2 −

�
Z00

Z
þ 2K þ 2KZ0

HZ

��
vk ¼ 0: ð11Þ

III. ANALYTICAL PRIMORDIAL POWER
SPECTRA FOR CURVED UNIVERSES

To obtain spectra for curved inflating cosmologies,
we will now generalize to the curved case an approximate
analytical approach first applied by Contaldi et al. [34]. For
our model, we assume a preinflationary kinetically domi-
nated regime defined by ϕ02 ≫ a2VðϕÞ. We then invoke an
instantaneous transition to a regime where the scalar field
motion has significantly slowed ϕ02 ≪ a2VðϕÞ, and the
standard slow-roll constraints to solve the horizon problem
are satisfied. This rather brutal approximation has the
advantage that it does not depend on a specific potential
choice VðϕÞ and illustrates the effects of curvature on the
primordial power spectrum. Furthermore, this model grants
a framework within which potential dependence can be
added via higher-order terms in the solutions for curved
inflationary dynamics.
In Sec. III A, we provide analytic solutions and power

series expansions for the background variables in the
two regimes. In Secs. III B and III C, we derive analytic
solutions for the mode equations in each regime and match
these together at the transition point. Section III D then uses
the freeze-out values of the ultraslow-roll solution to
produce our analytic template in Eq. (32).
To avoid confusion, note that we work in a convention

where the conformal time η ¼ 0 is at the singularity, i.e.,
aðη ¼ 0Þ ¼ 0, which is different from Contaldi et al. [34],
who place η ¼ 0 at the transition time. Also note that
for our convention the scale factor a has units of length;

we work with a convention where scale factor a ≠ R=R0

and hence does not have the usual normalization to unity at
the present day, i.e., at redshift z ¼ 0, aðz ¼ 0Þ≡ a0 ≠ 1. It
has been shown by Agocs et al. [48] that through this
redefinition of the present-day scale factor, the comoving
wave number and the physical scale of the curvature
perturbation today differ by a factor of a0.

A. Background dynamics

To solve for the background variables a, H, and ϕ, we
can rearrange Eqs. (3) and (5) into two useful forms which
are as follows:

H0 þ 2H2 þ 2K ¼ a2VðϕÞ; ð12Þ

H0 −H2 − K ¼ −
1

2
ϕ02: ð13Þ

In the initial stages of kinetic dominance ϕ02 ≫ a2VðϕÞ,
we can neglect the right-hand side of Eq. (12), and similarly
in the ultraslow-roll stage ϕ02 ≪ a2VðϕÞ we can set the
right-hand side of Eq. (13) similarly to zero.
If we define

SKðxÞ ¼
8<
:

sinðxÞ K ¼ þ1

x K ¼ 0

sinhðxÞ K ¼ −1;
ð14Þ

then solving Eq. (12) with the right-hand side set to zero
yields a ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SKð2ηÞ

p
for the kinetically dominated regime,

and solving Eq. (13) similarly yields a ∼ 1=SKðηÞ for
ultraslow roll. In both cases, these solutions have two free
integration constants corresponding to an additive coor-
dinate shift in η and a linear scaling of a. Matching a and a0
for these two solutions at some transition time ηt gives

a ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SKð2ηÞ
p

∶ 0 ≤ η < ηt

½SKð2ηtÞ�3=2=SKð3ηt − ηÞ ∶ ηt ≤ η < 3ηt;
ð15Þ

with the conformal coordinate freezing out into the infla-
tionary phase as η → 3ηt. The evolution of the scale factor a
is plotted in Fig. 1.
Note that for the closed case (K ¼ þ1), there is a

maximum sensible value of ηt ¼ π=4. At values of ηt
greater than this, the Universe begins collapsing before
the transition is reached and should be regarded as a
breakdown of the approximation.
The remaining background variables may also be solved

in the kinetically dominated regime with curvature and
conformal time [27], but for the purposes of this analysis
we only need power series expansions, which up to the first
curvature terms read
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N ¼ Np þ
1

2
log η −

K
3
η2 þOðη4Þ; ð16Þ

ϕ ¼ ϕp �
ffiffiffi
3

2

r
log η�

ffiffiffi
6

p
K

6
η2 þOðη4Þ; ð17Þ

where N ¼ log a. Other derived series include

ϕ0 ¼ �
ffiffiffi
3

2

r
1

η
�

ffiffiffi
6

p
K

3
ηþOðη3Þ; ð18Þ

H ¼ N0 ¼ 1

2η
−
2K
3

ηþOðη3Þ; ð19Þ

a ¼ eN ¼ eNpη1=2 −
eNpK
3

η5=2 þOðη9=2Þ: ð20Þ

A complete derivation of these series requires a consid-
eration of logolinear power series expansions [11,49],
which we detail further in the Appendix.
The ultraslow-roll regime is defined loosely as

ϕ02 ≪ a2VðϕÞ, but can be more precisely thought of as
the limit where E → 0 but curvature contributions remain.
For our analysis, we only need the analytic form of the scale
factor a found in Eq. (15).

B. Mukhanov-Sasaki solutions under kinetic
dominance

The evolution of the Mukhanov variable vk is defined
by the Mukhanov-Sasaki equation (11). Combining the
results from Eqs. (18) to (20) show that for the kinetically
dominated regime

Z00

Z
þ 2K þ 2K

H
Z0

Z
¼ −

1

4η2
þ 32K

3
−

24K2

K2ðkÞ þOðη2Þ:

ð21Þ
Substituting (21) into (11), we can write the Mukhanov-

Sasaki for the kinetically dominated regime as

v00k þ
�
k2− þ 1

4η2

�
vk ¼ 0;

k2−ðkÞ ¼ K2ðkÞ − 32K
3

þ 24K2

K2ðkÞ : ð22Þ

From Eqs. (10) and (22), we can see that the first-order
effects of curvature on the Mukhanov-Sasaki equation (11)
in the kinetically dominated regime manifest themselves
purely as an effective shift in the wave vector participating
dynamically.
By solving Eq. (22), we find that during the kinetic

dominance regime the Mukhanov variable vk evolves as

vkðηÞ ¼
ffiffiffi
π

4

r ffiffiffi
η

p ½AkH
ð1Þ
0 ðk−ηÞ þ BkH

ð2Þ
0 ðk−ηÞ�; ð23Þ

where Hð1;2Þ
0 are zero-degree Hankel functions of the first

and second kinds,2 and quantum mechanical normalization
requires jBkj2 − jAkj2 ¼ 1 [50]. Following Contaldi et al.
[34] and Sahni [51], we choose initial conditions which
select the right-handed mode,

Ak ¼ 0; Bk ¼ 1; ð24Þ

leaving a consideration of alternative quantum initial
conditions to a future work.

C. Mukhanov-Sasaki solutions under ultraslow roll

For the ultraslow-roll regime (η ≥ ηt), taking the limit
E → 0 shows that up to first order in curvature the relevant
terms in the Mukhanov-Sasaki equation (11) take the form

Z00

Z
þ 2K þ 2KZ0

HZ
→

a00

a
þ 4K

¼ 2

ðη − 3ηtÞ2
−
11K
3

þO½ðη − 3ηtÞ2�: ð25Þ

FIG. 1. Evolution of the scale factor a over conformal time
from the analytical calculation in Eq. (15), where the initial
singularity has been set at η ¼ 0 and the scale factor normal-
ized a ¼ 1 at the transition time ηt for the case of a flat
Universe (K ¼ 0).

2And should not be confused with the present-day Hubble
constant.
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Substituting this result from (25) into (11) allows us to
express the Mukhanov-Sasaki equation for the subsequent
ultraslow-roll regime as

v00k þ
�
k2þ −

2

ðη − 3ηtÞ2
�
vk ¼ 0;

k2þ ¼ K2ðkÞ − 11K
3

: ð26Þ

Note that the shifted dynamical wave vector kþ for
ultraslow roll (η ≥ ηtÞ is distinct from that defined for the
kinetically dominated regime k− (η ≤ ηt).
By solving Eq. (26), we find that during the ultraslow-

roll stage, the Mukhanov variable vk evolves as

vkðηÞ ¼
ffiffiffi
π

4

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ηt − η

p h
CkH

ð1Þ
3=2ðkþð3ηt − ηÞÞ

þDkH
ð2Þ
3=2ðkþð3ηt − ηÞÞ

i
: ð27Þ

One can now invoke the condition of continuity of vk
and v0k at the transition time ηt and match Eqs. (23), (24),
and (27) to show the coefficients of the two modes of the
Mukhanov variable vk in the ultraslow-roll regime which
are as follows:

Ck ¼
iπηt
2

ffiffiffi
2

p
h
kþH

ð2Þ
0 ðk−ηtÞHð2Þ

1=2ð2kþηtÞ

− k−H
ð2Þ
1 ðk−ηtÞHð2Þ

3=2ð2kþηtÞ
i
; ð28Þ

Dk ¼
iπηt
2

ffiffiffi
2

p
h
k−H

ð2Þ
1 ðk−ηtÞHð1Þ

3=2ð2kþηtÞ

− kþH
ð2Þ
0 ðk−ηtÞHð1Þ

1=2ð2kþηtÞ
i
: ð29Þ

This recovers the results obtained by Contaldi et al. [34]
in the limit of zero curvature (K ¼ 0), i.e., k2− → K2 → k2

and k2þ → K2 → k2.

D. The primordial power spectrum

With these complete solutions of the Mukhanov variable,
we have the means to compute a primordial power
spectrum. By extending the analysis of Contaldi et al.
[34] and generalizing to the curved case, we derive the
curved primordial power spectrum of the comoving curva-
ture perturbation R under our approximation to be3

PRðkÞ≡ k3

2π2
jRkj2

→ lim
η→3ηt

1

8a2Eπ2ð3ηt − ηÞ2
k3

k3þ
jCk −Dkj2;

¼ As
k3

k3þ
jCk −Dkj2; ð30Þ

where we have used that Rk ¼ vk=Zk, and Z → aϕ0=H ¼
a

ffiffiffiffiffiffi
2E

p
where the transition time parameter ηt, slow-roll

parameter E, and formally diverging parameters can be
absorbed into the usual scalar power spectrum amplitude
As. At short wavelengths, where k− → kþ → k ≫ 1=ηt,
one recovers the standard result of a scale-invariant
spectrum

jCkj ≃ 1; jDkj ≪ jCkj; PR ≃ As: ð31Þ

It should be noted that as we are working in the ultraslow-
roll regime, as in Contaldi et al. [34] there is no tilt ns to this
power spectrum. Whilst there exist more sophisticated ways
to incorporate higher-order terms and hence recover the tilt,
in this work we insert this by replacing As with the standard
tilted power spectrum parametrization.
Our analytical form of the primordial power spectrum

for each curvature K ∈ fþ1; 0;−1g therefore is parame-
trized by an amplitude As, spectral index ns, and transition
time ηt,

PRðkÞ ¼ As

�
k
k�

�
ns−1 k3

k3þ
jCkðηtÞ −DkðηtÞj2; ð32Þ

where Ck and Dk are defined by Eqs. (28) and (29),
using Hankel functions and wave vectors k� defined in
Eqs. (23) and (26).
The spectra of PR generated by our analytical calcu-

lation are plotted in Fig. 2. We note that they reproduce the
spectra obtained by Contaldi et al. [34] in the case of zero
curvature (K ¼ 0).

IV. DISCUSSION

Upon review of the calculations presented in Sec. III, we
see that when applying a purely analytical approach to
solve curved inflationary dynamics, the effects of curvature
can be mathematically attributed to shifts in the wave
vectors participating dynamically, Eqs. (22) and (26).
Further inspection of the curved Mukhanov-Sasaki equa-
tion in Eq. (7) provides a sanity check of this mathematical
result, as we see that, within Fourier space, the differential
operator is replaced by a scalar wave vector shifted by a
curvature term. At a dynamic level, we see that this shifted
wave vector manifests itself in the spectra of PR as phase-
based ringing effects for large enough values of the
transition time, ηt. This gives us a physical intuition of

3Contaldi et al. [34] considered the spectrum of a uniquely
defined variable Q in the limit where it becomes constant at
late time.
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the oscillations seen in the numerically generated curved
primordial power spectra for closed inflating universes [7].
Furthermore, we have shown through our generally

curved approach that curvature also manifests itself as a
shifted wave vector in the open case, and thus these phase-
based ringing effects are present in open inflating uni-
verses. Unlike the open case, for the closed case, we do not

obtain a sensible spectrum for all values of the transition
time, ηt; for large ηt, we observe a natural breakdown of the
approximation at low k at the limit of k ¼ 3 for comoving
k. This is in agreement with the constraint k ∈ Z > 2 for
closed universes, below which the frequency of the
oscillatory solutions become imaginary. In the spectrum
of Contaldi et al. [34] generated for flat ΛCDM, there is

FIG. 2. Left: primordial power spectra PR corresponding to the range of allowed values of the transition time ηt for open and closed
universes K ∈ f−1;þ1g. Oscillations and a generic suppression of power are visible at low-k. For K ¼ þ1, only integer values of
comoving k with k ≥ 3 are allowed. Dots indicate the first 100 comoving k. For clarity, we include the continuous spectrum. Right: the
corresponding low-l effects on the CMB power spectrum. The power law KΛCDM spectrum is highlighted in gray along with Planck
data. There is no appreciable deviation from the traditional power spectrum at higher k and l values. Note that the spectra ofPR andDTT

l
qualitatively reproduce those found numerically in [7]. Multipole l and comoving and physical k are related by the conversions
presented in Agocs et al. [48].
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also a ringing effect sourced by the instantaneous transition
which causes a discontinuity in the Mukhanov-Sasaki
fraction z00=z. The flat (K ¼ 0) spectra generated by our
general curved approach also demonstrate these effects,
but in the curved case there is a discontinuity in
Z00=Z þ 2K þ 2KZ0=HZ, which in the flat case (K ¼ 0)
reduces to a discontinuity of z00=z.
KΛCDM is a commonly considered extension to stan-

dard flat ΛCDM, where there is an additional degree of
freedom of spatial curvature ΩK. In KΛCDM, an almost
flat power spectrum is assumed,

PKΛCDM
R ðkÞ ¼ As

�
k
k�

�
ns−1

; ð33Þ

where k� corresponds to the pivot perturbation mode
and by convention is set to have a length scale today
of 0.05 Mpc−1.
The Planck 2018 results including CMB lensing give

the curved universes (TTTEEE+lowl+lowE+lensing)
best-fit data as As ¼ 2.0771� 0.1017 × 10−9 and
ns ¼ 0.9699� 0.0090. Hence, the observations support a
weak power law decay of the primordial power spectrum.
Handley [7] showed that relative to Eq. (33), including

the exact numerical calculation for curved universes,
introduces oscillations and a suppression of power at
low k, independent of initial conditions, and hence deviates
from the form of Eq. (33). It has been shown in previous
work that the ðk=k�Þns−1 tilt is a higher-order effect
manifested from the nature of the scalar field potential
chosen for the slow-roll regime. To compute such effects,
one can determine the higher-order terms of the logolinear
expansions listed in the Appendix.
As a good phenomenological approximation for a

general inflationary setting, we scale our normalized PR
with the best-fit scalar power spectrum amplitude As and
manually add in the tilt, we present our analytical primor-
dial power spectrum PR for varying values of the transition
time ηt, which we then follow through to the CMB, in Fig. 2
[52]. The CMB spectra, corresponding to these primordial
power spectra, are generated using parameters values set in
accordance with the best-fit data for each curved scenario.
For the closed case, we use the Planck 2018 TTTEEE+lowl+
lowE+lensing best-fit parameters. For the flat case, we work
with the best-fit parameters for a flat ΛCDM cosmology. For
the open case, we calculate the mean posterior distribution of
all lensing data using the anesthetic package, subject to the
constraint that Ωk > 0 (K ¼ −1) [53].
The requirement that the horizon problem is solved, i.e.,

that the amount of conformal time during inflation ηi is
greater than the amount of conformal time before ηt and
afterward η↑, bounds the transition time ηt from above. The
condition of the amount of conformal time during inflation
ηi being greater than the conformal time in the kinetically
dominated regime preceding inflation ηt is naturally

satisfied by the ultraslow-roll solution of (15), since
ηi ¼ 2ηt. The additional condition regarding the conformal
time after inflation η↑ places the constraint that (η↑ < 2ηt).
The implications of these constraints on exact numerical
integration methods for computing curved primordial
power spectra are discussed in more detail in Handley
(Sec. IV) [7].
Figure 2 demonstrates how the computed spectra vary

for different values of the transition time ηt. The location
of the cutoff, suppression of power, and oscillations are
changed by adjusting the transition time, and as expected
[11] the depth of the suppression in closed universes
(K ¼ þ1) is greater for the case when primordial curvature
has a larger magnitude (corresponding to a higher transition
time). Interestingly, we find that for large enough values of
the transition time, a suppression of power is also seen in
open universes (K ¼ −1).
Overall, we demonstrate that our analytical calculations

reproduce very well the spectra obtained with the exact
numerical evolution reported in [7], as well as the spectrum
obtained by the analytical approximation of Contaldi et al.
[34], i.e., the case of zero curvature (K ¼ 0). With this
work, we have not only developed an analytical framework
to solve curved inflationary dynamics, but a means to study
curvature in isolation, without complicating factors, such as
the choice of the scalar field potential.

V. CONCLUSIONS

The inflationary scenario addresses the initial value
problem of the hot big bang, but provides us with no
insight into the Universe’s state preinflation. Therefore, in
order to truly understand the physics of inflation, we must
study it with no bias toward the conditions of the Universe
at inflation start; more specifically, we cannot infer the
shape of the Universe prior to inflation from the observed
flatness seen at recombination through the CMB.
In [7], it was shown through exact numerical calculations

of curved inflating universes generated spectra with generic
cutoffs and oscillations within the observable window for
the level of curvature allowed by current CMB measure-
ments and provide a better fit to current data. In this work,
we have used the formalism popularized by [36–38] and
subsequent manipulation to write the Mukhanov-Sasaki
equation for curved universes in conformal time. This has
allowed us to derive analytical solutions of the Mukhanov-
Sasaki equation for a generally curved Universe scenario,
which show that curvature mathematically manifests itself
as a shifted dynamical wave vector, and physically at low k
as a suppression of power and oscillations in the primordial
power spectra, which then follow through to the CMB.
The main emphasis of our paper was related to mod-

ifications of the simple model utilized by Contaldi et al.
[34], which invokes an instantaneous transition between
an initial kinetic stage (when the velocity of the scalar
field was not negligible) and an approximate de Sitter
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inflationary stage, to generate the significant suppression of
the large scale density perturbations. Through the appli-
cation of logolinear series expansions and a newly defined
inflationary regime, we generalize this model to the curved
inflating case, to introduce oscillations and a suppression of
power at low k, as well as generic cutoffs, which is in
agreement with exact numerical calculations. Varying the
remaining degree of freedom, specifically the amount of
primordial curvature (provided through the transition time),
alters the oscillations and level of suppression in a non-
monotonic manner, while there is a consistent lowering
in the position of the cutoff at low k with increasing
transition time.
The addition of an extra curvature parameter in the

theory to obtain a better fit with data comes with costs, but
given the recent discrepancies that have arisen with the
standard ΛCDMmodel, this is something that now requires
strong consideration. A natural extension is KΛCDM. Our
work has now shown, both analytically and numerically,
that for all allowed values of initial primordial curvature,
incorporating the exact solutions for closed universes
results in observationally significant alterations to the
power spectrum. Furthermore, the data are capable of
distinguishing a preferred vacuum state, with the best fit
preferring renormalized-stress-energy-tensor (RSET) initial
conditions over the traditional Bunch-Davies vacuum.
Future work will involve extending our analytical approach
to RSET and other initial conditions.
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APPENDIX: LOGOLINEAR EXPANSIONS
IN CONFORMAL TIME

Logolinear series expansions [49] for a general function
xðηÞ have the form

xðηÞ ¼
X
j;k

½xkj �ηjðlog ηÞk; ðA1Þ

where ½xkj � are twice-indexed real constants defining the
series, with square brackets used to disambiguate powers
from superscripts.

We begin with Eqs. (5) and (4),

N00 þ N02 þ 1

3
ðϕ02 − a2VðϕÞÞ ¼ 0; ðA2Þ

ϕ00 þ 2N0ϕ0 þ a2
d
dϕ

VðϕÞ ¼ 0: ðA3Þ

Here N ¼ log a has been used rather thanH as it restates
Eqs. (4) and (5) in the form of second order differential
equations, which we can then in turn convert to a first order
system of equations

_N ¼ h; _ϕ ¼ v;

_h ¼ h −
1

3
v2 þ a2

1

3
η2VðϕÞ;

_v ¼ v − 2vh − a2η2
d
dϕ

VðϕÞ; ðA4Þ

where dots indicate derivatives with respect to logarithmic
conformal time log η, i.e., _x ¼ d

d log η x.
To analytically determine approximate solutions for

curved cosmologies, we will consider series expansions
for a general function xðηÞ of the form4

xðηÞ ¼
X
j

xjðηÞηj ⇒ _xðηÞ ¼
X
j

ð_xj þ jxjÞηj: ðA5Þ

Substituting in our series definition from Eq. (A5) and
equating coefficients of ηj, we find that Eq. (A4) becomes

_Njþ jNj ¼ hj; _ϕjþ jϕj ¼ vj;

_hjþ jhj ¼ hjþ
1

3
VðϕÞe2Npe

P
q>0

NqðηÞηq
			
j−3

−
X

pþq¼j

vpvq
3

;

_vjþ jvj ¼ vj−
dVðϕÞ
dϕ

e2Npe
P

q>0
NqðηÞηq

			
j−3

−2
X

pþq¼j

vphq:

ðA6Þ

One should also consider the equivalent of Eq. (3),

1

3
VðϕÞe2Npe

P
q>0

NqðηÞηq
				
j−3

þ
X

pþq¼j

1

6
vpvq−hphq ¼K

				
j−2

;

ðA7Þ

where exponentiation of logolinear series was discussed
in [49].

4Note that this indexing convention differs from that adopted
in [11], which also utilized series expansions to solve cosmo-
logical evolution equations. For our purposes, an expansion in η
was required, hence the unique convention used in our series
definitions.
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We may solve for the j ¼ 0 case of Eq. (A6) using the
kinetically dominated solutions, as it is equivalent to
Eq. (A4) with V ¼ 0,

N0 ¼ Np þ
1

2
log η; h0 ¼

1

2
;

ϕ0 ¼ ϕp �
ffiffiffi
3

2

r
log η; v0 ¼ �

ffiffiffi
3

2

r
; ðA8Þ

where Np and ϕp are constants of integration. As men-
tioned previously, we expect there to be four constants of
integration a priori. One of the missing constants is fixed
by defining the singularity to be at η ¼ 0, while the other is
effectively set by the curvature. Hence, Eq. (A8) represents
a complete solution to j ¼ 0 for only the flat case (K ¼ 0).
Nevertheless, we may still adopt Eq. (A8) as the base term
for the logolinear series. The final constant of integration
will then effectively emerge from a consideration of higher-
order terms.
For j ≠ 0, we can rewrite Eq. (A6) in the form of a first

order linear inhomogeneous vector differential equation

_xj þ Ajxj ¼ Fj; ðA9Þ

where x ¼ ðN;ϕ; h; vÞ, Aj is a (constant) matrix,

Aj ¼

0
BBB@

j 0 −1 0

0 j 0 −1
0 0 j − 1 2

3
v0

0 0 2v0 j − 1þ 2h0

1
CCCA;

¼

0
BBBBB@

j 0 −1 0

0 j 0 −1

0 0 j − 1 �
ffiffi
2
3

q
0 0 � ffiffiffi

6
p

j

1
CCCCCA; ðA10Þ

and Fj is a vector polynomial in log η depending only on
earlier series xp<j,

Fj ¼

0
BBBBBBBBB@

0

0

1
3
VðϕÞe2Npe

P
q>0

NqðηÞηq jj−3 −
P

pþq¼j
p≠j;q≠j

1
3
vpvq

− dVðϕÞ
dϕ e2Npe

P
q>0

NqðηÞηq jj−3 − 2
P

pþq¼j
p≠j;q≠j

vphq

1
CCCCCCCCCA
:

ðA11Þ

At each j, the linear differential Eq. (A9) may be
solved in terms of a complementary function (xcfj ) with

four free parameters and a particular integral (xpij ), i.e.,

xj ¼ xcfj þ xpij . These free parameters correspond to the
degrees of gauge freedom mentioned in [49].
We may solve the homogeneous version of Eq. (A9)

exactly, since Aj is a constant matrix,

dxcfj
d log η

þ Ajxcfj ¼ 0 ⇒ xcfj ¼ e−Aj log η½x0j �; ðA12Þ

where ½x0j � is a constant vector parametrizing initial
conditions. To compute the matrix exponential, we first
compute eigenvectors and eigenvalues of Aj,

eβ ¼


1 � ffiffiffi

6
p ð ffiffi

6
p

−18Þ
12

∓ ffiffiffi
6

p �
; Ajeβ ¼ ðjþ 1Þ · eβ;

eb ¼


1 ∓ ffiffi

6
p
2

ð ffiffi
6

p þ18Þ
12

∓ ffiffiffi
6

p �
; Ajeb ¼ ðj− 2Þ · eb;

en ¼ ð1 0 0 0 Þ; Ajen ¼ j · en;

eϕ ¼ ð0 1 0 0 Þ; Ajeϕ ¼ j · eϕ: ðA13Þ

Parametrizing initial conditions ½x0j � using the eigenbasis
in Eq. (A13) with parameters Ñ; ϕ̃; b̃; β̃, yields

xcfj ¼ e−Aj log ηðÑen þ ϕ̃eϕ þ b̃eb þ β̃eβÞ
¼ ðÑen þ ϕ̃eϕ þ b̃ebη2 þ β̃eβη−1Þη−j: ðA14Þ

We may absorb all Ñ and ϕ̃ into our definitions of Np

and ϕp. Choosing β̃ ¼ 0 amounts to setting the singularity
to be at η ¼ 0 as an initial condition without loss of
generality, as it grows faster than our leading term as η → 0.
The only remaining undetermined integration constant is b̃,
which amounts to the integration constant that was missing
from Eq. (A8). The constant b̃ is controlled by the curvature
of the Universe via Eq. (A7),

b̃ ¼ −
1

3
K: ðA15Þ

Applying the standard definition of conformal time
dη ¼ dt=a shows a clear equivalence between Eq. (A15)
and the cosmic time version found in the series solutions
derived in [49]. We can now exchange K for b̃ via this
relation, and for the proceeding analysis in the main body
of the paper, we shall drop the notation of b̃ and explicitly
denote curvature terms with K in the series solutions. We
also note from (A14) that the curvature of the Universe
depends on a term in η2.
All that remains to be determined is a particular integral of

Eq. (A9), given that one has the form of Fj at each stage of

recursion. The trial solution is xjðηÞ ¼
PNj

k¼0½xkj �ðlog ηÞk.
Defining Fj ¼

PNj

k¼0½Fk
j �ðlog tÞk and equating coefficients

of ðlog ηÞk gives
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ðkþ 1Þ½xkþ1
j � þ Aj½xkj � ¼ ½Fk

j �; ðA16Þ

giving a descending recursion relation in k,

½xNjþ1

k � ¼ 0; ½xk−1j � ¼ A−1
j ð½Fk−1

j � − k½xkj �Þ: ðA17Þ

The recursion relation in Eq. (A17) fails when Aj is
noninvertible, which occurs when any of the eigenvalues
in Eq. (A13) are zero (j ¼ −1, 0, 2). For these cases, the
system is underdetermined, with an infinity of solutions

parametrized along the directions of relevant eigenvectors.
This infinity of solutions can therefore be carefully
absorbed into a corresponding constant of integration.
Similarly, if we were to define an alternative base to the

recursion in Eq. (A17), then infinite series would be
generated. However, all but a finite number of terms would
merely contribute to a redefinition of constantsNp, ϕp, b̃, or
an introduction of nonzero β̃, which we disallow due to the
consequent shift of the singularity to a nonzero conformal
time η.
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