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Efforts to detect a primordial B-mode of cosmic microwave background polarization generated by
inflationary gravitational waves ought to mitigate the large variance associated with the B-modes produced
by gravitational lensing, a process known as delensing. A popular approach to delensing entails building a
lensing B-mode template by mimicking the lensing operation, either at gradient order or nonperturbatively,
using high-resolution E-mode observations and some proxy of the lensing potential. By explicitly
calculating all contributions to two-loop order in lensing to the power spectrum of B-modes delensed with
such a template in the noise-free limit, we are able to show that: (i) corrections to the leading-order
calculation of the lensing B-mode power spectrum only enter at the Oð1Þ% level because of extensive
cancellations between large terms at next-to-leading order; (ii) these cancellations would disappear if a
gradient-order template were to be built from unlensed or delensed E-modes, giving rise to a residual
delensing floor ofOð10Þ% of the original power; (iii) new cancellations arise when the lensed E-modes are
used in the gradient-order template, allowing for the delensing floor to be as low as Oð1Þ% of the original
power in practical applications of this method; and (iv) these new cancellations would disappear for a
nonperturbative template constructed from the lensed E-modes, reintroducing a residual delensing floor
of Oð10Þ%. We further show that the gradient-order template outperforms the nonperturbative one in
realistic scenarios with noisy estimates of the E-mode polarization and lensing potential. We, therefore,
recommend that in practical applications of B-mode template delensing, where the template is constructed
directly from the (filtered) observed E-modes, the gradient-order approach should be used rather than a
nonperturbative remapping.
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I. INTRODUCTION

The wealth of cosmological data gathered in recent
decades favors models where a period of accelerated
expansion of space took place at very early times: cosmic
inflation. As a general and rather unique feature, infla-
tionary models predict that a background of primordial
gravitational waves would have been generated during
that period along with fluctuations in the density. These
primordial perturbations would have been present
380 000 years later, when the cosmic microwave back-
ground (CMB) was emitted, hence they are expected to
have left an imprint in the temperature and polarization
patterns of this relic light [1–3]. In fact, one can form a curl-
like B-mode component of polarization which, during
recombination and in linear theory, is generated only by
tensor fluctuations. Consequently, a detection of large-scale

primordial B-modes would widely be considered direct
evidence for cosmic inflation.
Unfortunately, the faint primordial signal is obscured

by B-modes generated from primordial E-modes by the
process of gravitational lensing of the CMB as it prop-
agates through the large-scale matter distribution of the
Universe [4]. On large angular scales, where the power
spectrum of primordial B-modes peaks (l < 200), the
lensing power spectrum resembles that of white noise,
comparable in amplitude to the noise power of an experi-
ment with a sensitivity of ΔP ¼ 5 μKarcmin, approxi-
mately that of experiments coming online at the time of
writing. Lensing-induced B-modes are now routinely
observed in high-precision polarization surveys, follow-
ing the first detection (with data from the South Pole
Telescope) by Ref. [5]. In order to be able to detect any
small primordial B-mode signal, the variance associated
with the lensing contribution ought to be mitigated—a
procedure known as delensing, which several groups have
already applied to real data [6–10].
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Since the effect of lensing on the CMB is very well
approximated as a remapping of the unlensed anisotropies
by the gradient of the lensing potential, extensive delensing
can be achieved by reversing these deflections. ForB-modes,
this remapping approximation should be valid until polari-
zation sensitivities become better thanOð0.01Þ μKarcmin,
corresponding to lensing residuals Oð10−4Þ of the original
power, at which point nonremapping effects such as rotation
of the emission angle [11], apparent warping of the last-
scattering surface due to Shapiro time delays [11,12], and
post-Born field rotation [13,14] (dominant only on small
angular scales) will present a source of B-mode noise not
reducible by standard delensing. We shall neglect non-
remapping corrections for the remainder of this work.
For B-mode delensing, the information that is needed to

delens the large angular scales of interest is contained in the
intermediate and small-scale fluctuations [15]. Given that it
is challenging to make stable large-scale measurements
with the large-aperture telescopes needed to access the
small-scale fluctuations, upcoming ground-based observa-
tories will feature one or more large-aperture telescopes
(for lensing and other CMB science needing high angular
resolution) and a set of small-aperture telescopes targeting
the primordial B-mode signal on large angular scales
[16,17]. The two surveys will have different footprints,
with the small-aperture survey contained within the wider
large-aperture one. In this setup, a convenient way to
perform delensing is to form a “template” estimating the
particular realization of lensing B-modes present on the sky
by combining high-resolution E-mode observations with
some proxy of the lensing potential and to subtract this
template from the B-modes observed by the small-aperture
telescopes. The template may be constructed using a linear
expansion in the lensing deflections (which we refer to as a
gradient-order template) or using a nonperturbative remap-
ping scheme. Both approaches have already been success-
fully applied to real data: Ref. [7] used a leading-order
template for a first demonstration of B-mode delensing,
while Refs. [8,9] used nonperturbative templates for their
similarly successful analyses. The gradient-order method
has been particularly popular in the literature for forecasts
of performance (e.g., Refs. [15,18–30]) and charac-
terizations of systematic effects (e.g., Refs. [31–35])
owing, perhaps, to its analytic transparency and ease of

computation. A further reason for the ubiquity of the
gradient-order template method is that it is assumed to
track the true lensing B-modes very accurately.
In this work, we put the last statement to the test, aiming

to quantify and understand the intrinsic limitations on the
residual B-mode power after delensing with gradient-order
and nonperturbative templates. We begin, in Sec. II, with
a brief introduction to template delensing. Then, in Secs. III
and IV we calculate the power spectrum of delensed
B-modes to Oðϕ4Þ (i.e., two-loop order in the power
spectrum of the lensing potential, ϕ) for the gradient-order
and nonperturbative templates, respectively. We demonstrate
that the former has better performance due to cancellations
between the lensing corrections to the E-modes used in the
template, and the Oðϕ2Þ contributions to the lensed
B-modes, which do not arise in the nonperturbative case.
We also point out similar calculations in the lensed B-mode
power spectrum itself at Oðϕ4Þ in Sec. III. Much of our
discussion concerns the fundamental limitations of template
methods, which we illustrate by considering the idealized
case of noise-free E-mode measurements and access to the
true lensing potential. However, we show in Sec. IV that our
conclusion regarding the relative performance of gradient-
order and nonperturbative templates still holds, albeit with
more marginal differences, in the practical case of noisy
observations and an imperfectly correlated lensing proxy.

II. TEMPLATE DELENSING

We work in the flat-sky limit throughout for simplicity.
While differences do exist at the percent level between
flat-sky and spherical results, for example, in the lensed
B-mode power spectrum [36], our findings on the limi-
tations of template delensing should hold similarly in the
spherical case. We follow the notation of [37] so that
the Stokes parameters defined on the global x–y basis are
related to the E- and B-modes in Fourier space as

ðQ� iUÞðxÞ ¼ −
Z

d2l
2π

½EðlÞ � iBðlÞ�e�2iψ leil·x; ð1Þ

where ψ l is the angle between l and the x-direction.
Ignoring primordial B-modes, the B-modes generated from
E-modes by lensing are, up to second order in lensing
displacements,

B̃ðlÞ ¼ −
Z

d2l1
2π

sin 2ðψ l1 − ψ lÞl1 · ðl − l1ÞEðl1Þϕðl − l1Þ

þ 1

2

Z
d2l1
2π

Z
d2l2
2π

sin 2ðψ l1 − ψ lÞl1 · l2l1 · ðl − l1 − l2ÞEðl1Þϕðl2Þϕðl − l1 − l2Þ þ � � � : ð2Þ

Here, ϕ is the lensing potential so the lensing displacements are α ¼ ∇ϕ. We denote lensed fields with a tilde. In particular,
we write the contribution to the lensed B-mode at nth order in ϕ as B̃ðnÞ. Further introducing the linear functional Bl½P�,
which extracts the B-modes at l from the real-space polarization field P ¼ Qþ iU, we can write
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B̃ðnÞðlÞ ¼ 1

n!
Bl½αi1…αin∇i1…∇inP

E�; ð3Þ

where PE is the unlensed polarization field constructed
from EðlÞ.
Given the observed noisy E-mode polarization after

beam deconvolution, EobsðlÞ, and some proxy for the
lensing potential ϕproxy, we can form a leading-order
template (which we shall refer to as the gradient-order
template) for the lens-induced B-modes:

B̃tempðlÞ ¼ −
Z

d2l1
2π

sin 2ðψ l1 − ψ lÞl1 · ðl − l1ÞWE
l1
Eobsðl1Þ

×Wψ
jl−l1jϕ

proxyðl − l1Þ: ð4Þ
Here, the Wiener filters

WE
l ≡ C̃EE

l

CEE;tot
l

and Wϕ
l ≡ C

ϕϕproxy

l

C
ϕproxyϕproxy

l

; ð5Þ

are chosen to minimise the residual power in B̃ðlÞ −
B̃tempðlÞ at leading order (note that CEE;tot

l includes noise).
A template that is nonperturbative in the lens remapping
can also be constructed:

B̃temp
non−pertðlÞ ¼ BlðPWE�Eobs ½xþ ∇ðWϕ � ϕproxyÞ�Þ; ð6Þ

where, for example, WE � Eobs are the Wiener-filtered
E-modes. Taylor expanding at gradient order recovers
the gradient-order template in Eq. (4).
For most of this work, we shall assume that the

polarization measurements are noise free and that we have
access to the true lensing potential, in which case both
Wiener filters in Eq. (5) equal one. However, we relax these
assumptions in Sec. IV, where we compare the performance
of gradient-order and nonperturbative templates in a more
practical context.

III. DELENSING WITH A
GRADIENT-ORDER TEMPLATE

It is sometimes argued, e.g., Ref. [7], that delensing with
a gradient-order template constructed from ideal (lensed)
E-modes and the true ϕ is very accurate since the non-
perturbative lensed B-mode power differs only at the
percent level from the power spectrum of B̃ð1Þ [36]. As
we shall see, the conclusion is correct that the residual
power after template delensing can be at the percent level.
However, the logic above is somewhat flawed since:
(1) the template is constructed from the lensedE-modes,

not the unobservable unlensed ones; and
(2) the power spectrum of the residuals after template

delensing is not simply related to the difference
between the power spectra of the template and B̃ðlÞ.

To see some of the subtleties, consider forming a
gradient-order template with the unlensed E-modes, which

might seem a desirable thing to be able to do. Of course, if
we made a nonperturbative template this would be perfect,
but we are interested in this section in a gradient-order
template of the form in Eq. (4). If we subtract this template,
then the residual B-modes are B̃ð2ÞðlÞ þ B̃ð3ÞðlÞ þ � � �. The
power spectrum of these residuals is much larger than the
percent-level difference between the power spectra of
the template and B̃ðlÞ.
The difference between the power spectra of the template

(constructed at gradient order with the unlensed E-modes)
and of B̃ðlÞ at second order in Cϕϕ

l is of the form

ΔCBB
l ¼ 2hB̃ð1ÞðlÞB̃ð3Þðl0Þi0 þ hB̃ð2ÞðlÞB̃ð2Þðl0Þi0; ð7Þ

where the primes on the expectation values denote that the
delta-functions δð2Þðlþ l0Þ are removed. This is simply the
contribution to the lensed B-mode power at second order in
Cϕϕ
l . However, the power spectrum of the residual B-modes

after gradient-order template delensing with the unlensed
E-modes is

CBB;resid
l ¼ hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 ð8Þ

to the same order in Cϕϕ
l . There turns out to be a strong

cancellation between the two terms on the right-hand side
of Eq. (7), each of which are separately at theOð10Þ% level
of the lensed B-mode power; see Fig. 1.

FIG. 1. Power spectrum of B̃ð1ÞðlÞ estimated from a single flat-
sky simulation (black points) compared to the nonperturbative
spherical calculation of the lens-induced B-mode power from
CAMB [36,38] (black solid). The leading-order difference between
these spectra involves the sum of hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 (blue) and
2hB̃ð1ÞðlÞB̃ð3Þðl0Þi0 (with minus this shown in dashed orange).
Separately, these two spectra are large in magnitude, of Oð10Þ%
of the lensed B-mode spectrum on large scales, but they cancel
rather precisely to leave only sub-percent-level corrections to the
lensed B-mode power spectrum (red solid for positive values, red
dashed for negative). For reference, the thin grey line shows the
nonperturbative lensing power spectrum, scaled to 1% of its
original amplitude. Analytic evaluations are shown as solid lines
and estimates derived from a single flat-sky simulation as points.
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We first calculate hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 from Eq. (2); we find

hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 ¼ 1

2

Z
d2l1
ð2πÞ2

Z
d2l2
ð2πÞ2 sin

22ðψ l1 − ψ lÞ

× ðl1 · l2Þ2½l1 · ðl − l1 − l2Þ�2
× CEE

l1
Cϕϕ
l2
Cϕϕ
jl−l1−l2j: ð9Þ

For hB̃ð1ÞðlÞB̃ð3Þðl0Þi0, it is simplest to make use of Eq. (3),
so that

hB̃ð1ÞðlÞB̃ð3Þðl0Þi0

¼ 1

3!
hBl½α · ∇PE�Bl0 ½αi1αi2αi3∇i1∇i2∇i3P

E�i0

¼ 3

2 × 3!
hα2ihBl½α · ∇PE�Bl0 ½α · ∇∇2PE�i0; ð10Þ

where we have used hαiαji ¼ δijhα2i=2 at a point. It
follows that the calculation of this “1–3” term is simply
related to the power spectrum of B̃ð1Þ, and we have

2hB̃ð1ÞðlÞB̃ð3Þðl0Þi0 ¼ −
hα2i
2

Z
d2l1
ð2πÞ2 sin

22ðψ l1 − ψ lÞ

× ½l1 · ðl − l1Þ�2l21CEE
l1
Cϕϕ
jl−l1j: ð11Þ

On large scales, the integral on the right of Eq. (11) is
dominated by small-scale E-modes and similarly small-
scale lenses, as for the power spectrum of B̃ð1ÞðlÞ, making
hB̃ð1ÞðlÞB̃ð3Þðl0Þi approximately constant. (Indeed, the
additional factor of l21 in the integrand compared to the
power spectrum of B̃ð1ÞðlÞ accentuates this coupling to
smaller-scale lenses and E-modes.) On the other hand, the
mean-squared deflection angle hα2i preferentially receives
contributions from degree-scale lenses (i.e., the coherence
length of the deflections). Physically, the large-scale modes
of B̃ð3Þ that correlate with the large-scale modes of B̃ð1Þ are
mostly sourced by the action of one small-scale lens
and two larger-scale lenses on the small-scale (unlensed)
E-modes. Roughly, this can be thought of as the small-scale
lens linearly producing B-modes from the small-scale
E-modes and then these being displaced rigidly by lenses
on larger scales, preserving the B-mode character.
A similar thing happens for B̃ð2Þ: the dominant contri-

bution on large scales is from one small-scale lens acting
on small-scale unlensed E-modes, followed by displace-
ment by one large-scale lens. Equivalently, the integral
in Eq. (9) is dominated on large scales by modes with
l ≪ l1 and l2 ≪ l1, with an equal contribution (by sym-
metry of the integrand) from the disjoint region with
l2 → l − l1 − l2. The two contributions correspond to the
two orderings of the large- and small-scale lenses in

B̃ð2ÞðlÞ ¼ Bl½αiαj∇i∇jPE�=2. Evaluating the integral in
these limits, we find

hB̃ð2ÞðlÞB̃ð2Þðl0Þi0

≈
1

2

�Z
d2l2
ð2πÞ2 l

2
2C

ϕϕ
l2

�Z
d2l1
ð2πÞ2 sin

22ðψ l1 − ψ lÞl61CEE
l1
Cϕϕ
l1
;

≈
hα2i
2

1

4π

Z
dl1
l1

l41C
ϕϕ
l1
l41C

EE
l1
; ð12Þ

which is independent of l. Here, we have used

hα2i ¼
Z

d2l
ð2πÞ2 l

2Cϕϕ
l : ð13Þ

Evaluating Eq. (11) in the large-scale limit, we see that

hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 ≈ −2hB̃ð1ÞðlÞB̃ð3Þðl0Þi0; ð14Þ

and so the two terms approximately cancel in Eq. (7).
This result is validated numerically in Fig. 1, showing that
the Oðϕ4Þ contribution to the lensed B-mode spectrum is
below 1% of the total lensing power, despite the power
spectrum of B̃ð2Þ being around 10% of the lensing power.
The approximate cancellation between the “1–3” and

“2–2” terms arises since displacing the B-modes, which are
produced by the action of the small-scale lens on the small-
scale unlensed E-modes, with large-scale lensing deflec-
tions has a relatively minor effect on their power spectrum
due to statistical anisotropy (only relative displacements
matter). However, there can still be significant changes in
the B-mode fields themselves if the size of the displace-
ments are comparable to the coherence scale of the field
being displaced. In this way, B̃ð2Þ can have power that is a
sizable fraction of B̃ð1Þ (i.e., around 10% here), but the
correction to the total lensed B-mode power at second order
in Cϕϕ

l remains small (around 1%). Similar cancellations
are also the reason why the lensing correction to the
temperature power spectrum remains small on the inter-
mediate scales of the acoustic peaks.
We now consider the physically more relevant case of

delensing with a gradient-order template constructed with
the lensed E-modes. Fortunately, cancellations also occur
in this case, leaving the power spectrum of the delensed
B-modes at the 1% level of the lensed B-mode power.
Here, the dominant cancellation is between B̃ð2Þ and the
contribution to the template of the leading-order change in
the E-modes due to lensing (although we verify using
simulations that similar cancellations also occur at higher
orders). In Ref. [39], it was argued that this cancellation is
responsible for the lack of bias seen in their recovery of the
tensor-to-scalar ratio r across simulations of the delensing
process, but no quantitative details were given. Here, we fill
in these details.
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If we construct the B-mode lensing template at gradient
order using the lensed E-modes, then the leading-order
correction to the template is

ΔB̃tempðlÞ

¼ −
Z

d2l1
2π

sin 2ðψ l1 − ψ lÞl1 · ðl − l1ÞẼð1Þðl1Þϕðl − l1Þ;

ð15Þ
where Ẽð1ÞðlÞ is the first-order change in E-modes due to
lensing:

Ẽð1ÞðlÞ ¼ El½α ·∇PE�

¼−
Z

d2l1
2π

cos2ðψ l1 −ψ lÞl1 · ðl− l1ÞEðl1Þϕðl− l1Þ;

ð16Þ
where El½P� extracts the E-modes at wave vector l from P.
The residual B-modes after delensing with such a template
become B̃ð2ÞðlÞ − ΔB̃tempðlÞ to second order in ϕ. A
simulated realization of the fields B̃ð2ÞðlÞ and ΔB̃tempðlÞ
are shown in Fig. 2. The fields are clearly very similar, and
so we expect the residual B-mode power after delensing
to be much smaller than the power of either field alone
(which, recall, for B̃ð2ÞðlÞ isOð10Þ% of the power of B̃ð1ÞðlÞ
on large scales). To understand the similarity of B̃ð2ÞðlÞ and
ΔB̃tempðlÞ, we note that

Bð2ÞðlÞ ¼ 1

2
Bl½αiαj∇i∇jPE�

≈ Bl½αishortαjlong∇i∇jPE� ðlarge scalesÞ; ð17Þ

where the approximation, valid on large scales, is that B̃ð2Þ
is dominated by a large-scale deflection, αlong, and a

small-scale deflection, αshort, as discussed above. For the
leading-order correction to the template from the lensed
E-modes, we have

ΔBtempðlÞ ¼ Bl½αi∇iPẼð1Þ �
≈ Bl½αi∇iðαjlong∇jPEÞ�
≈ Bl½αishort∇iðαjlong∇jPEÞ� ðlarge scalesÞ
≈ Bl½αishortαjlong∇i∇jPE�: ð18Þ

Here, the approximation in the second line ignores the
B-modes in α · ∇PE, i.e.,

PẼð1Þ ¼ α · ∇PE − PB̃ð1Þ ≈ α · ∇PE; ð19Þ

which is valid since the power spectrum of B̃ð1Þ is only
Oð1Þ% of the power spectrum of Ẽð1Þ on the small scales
(l ∼ 1500) where the power in the latter peaks. In the second
and third lines of Eq. (18), we have used the fact that it is
mostly large-scale (i.e., degree-scale) lenses that contribute
to Ẽð1Þ while smaller-scale lenses displace this to produce
large-scale B-modes. In the final line, we have ignored the
derivative of αlong compared to that of the small-scale ∇PE.
With these approximations, we see that ΔBtempðlÞ ≈ B̃ð2ÞðlÞ.
We now calculate the power spectrum of residualB-modes

after delensing, with a gradient-order template formed using
lensed E-modes, correct to second order in Cϕϕ

l :

CBB;resid
l ¼ hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 − 2hB̃ð2ÞðlÞΔB̃tempðl0Þi0

þ hΔB̃tempðlÞΔB̃tempðl0Þi0: ð20Þ

The first of these terms was already calculated in Eq. (9). On
the other hand, the cross term is given by

FIG. 2. Real-space scalar fields derived from B̃ð2ÞðlÞ (left) and the contribution to the gradient-order B-mode template from the linear
lensing correction to E-modes, ΔB̃tempðlÞ (right). The plotted intensity ranges from −0.5 μK (dark blue) to 0.5 μK (yellow). The
similarity of these fields and their non-Gaussian nature are clearly apparent.
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hB̃ð2ÞðlÞΔB̃tempðl0Þi0 ¼
Z

d2l1
ð2πÞ2

d2l2
ð2πÞ2 sin 2ðψ l2 − ψ lÞ sin 2ðψ l1 − ψ lÞ cos 2ðψ l1 − ψ l2Þ

× ½ðl2 − lÞ · l1�½ðl2 − lÞ · l2�½ðl2 − l1Þ · l1�2CEE
l1
Cϕϕ
jl−l2jC

ϕϕ
jl2−l1j; ð21Þ

and the last term, hΔB̃tempðlÞΔB̃tempðl0Þi0, receives contributions from the following two couplings:

Ul ¼
Z

d2l1
ð2πÞ2

d2l2
ð2πÞ2 sin

22ðψ l2 − ψ lÞcos22ðψ l1 − ψ l2Þ½l2 · ðl − l2Þl1 · ðl2 − l1Þ�2CEE
l1
Cϕϕ
jl−l2jC

ϕϕ
jl2−l1j; ð22Þ

and

Vl ¼
Z

d2l1
ð2πÞ2

d2l2
ð2πÞ2 sin 2ðψ l2 − ψ lÞ cos 2ðψ l1 − ψ l2Þ sin 2ðψ l−l2þl1 − ψ lÞ cos 2ðψ l1 − ψ l−l2þl1Þ

× l2 · ðl − l2Þl1 · ðl2 − l1Þðl − l2 þ l1Þ · ðl2 − l1Þl1 · ðl − l2ÞCEE
l1
Cϕϕ
jl−l2jC

ϕϕ
jl2−l1j: ð23Þ

The first, Ul, arises from correlating the (large-scale) lenses
in each Ẽð1Þ; it is expected to dominate over Vl, which
arises from correlations between the large- and small-scale
lenses.
As expected from the similarity of the two fields

highlighted in Fig. 2, an explicit numerical evaluation of
all these terms1 reveals that hΔB̃tempðlÞΔB̃tempðl0Þi0 ≈
hB̃ð2ÞðlÞB̃ð2Þðl0Þi0 ≈ hB̃ð2ÞðlÞΔB̃tempðl0Þi0 (with Vl ≪ Ul by
approximately two orders of magnitude). Consequently,
there is extensive cancellation between leading-order con-
tributions, and the residual lensing B-mode power spectrum
after delensing with a gradient-order template built from
lensed E-modes has an amplitude of Oð1Þ% of the lensing
B-mode power spectrum; see Fig. 3. This is in good
agreement with simulations2 on large angular scales up
to the accuracy afforded by our numerical integration and
field remapping codes. On small scales, l > 1000, the
simulated and analytic spectra diverge somewhat, likely
due to the significance of higher-order contributions miss-
ing from the analytic expressions.
We can also recover the approximate cancellation

between the terms in Eq. (20) by approximating the
integrands in Eqs. (21)–(22). The first of these is dominated
by large-scale lenses in the construction of Ẽð1Þ correlating
with the large-scale lens in B̃ð2Þ and the smaller-scale lens
remapping Ẽð1Þ to the large-scale ΔB̃temp correlating with

the small-scale lens in B̃ð2Þ. This corresponds to jl2−l1j≪l1
in the integrand of Eq. (21). In the large-scale limit, we
therefore have

hB̃ð2ÞðlÞΔB̃tempðl0Þi0

≈
Z

d2l1
ð2πÞ2 sin

22ðψ l1 − ψ lÞ½l1 · ðl1 − lÞ�2

× CEE
l1
Cϕϕ
jl−l1j

Z
d2l2
ð2πÞ2 ½l1 · ðl2 − l1Þ�2Cϕϕ

jl2−l1j

≈
1

2
hα2i

Z
d2l1
ð2πÞ2 sin

22ðψ l1 − ψ lÞl61CEE
l1
Cϕϕ
l1

≈ hB̃ð2ÞðlÞB̃ð2Þðl0Þi0: ð24Þ

FIG. 3. Analytic (solid lines) versus simulated (dots) lensing
B-mode residual spectra after delensing by: (i) building a gradient-
order template fromunlensed (blue) or lensed (grey)E-modes; and
(ii) forming a nonperturbative template involving lensed E-modes
(orange).We also show the simulated residualB-mode power after
antilensing polarization fields containing lensed E- and B-modes
(red dots). Noiseless polarization fields and perfectϕ are used in all
cases. Also shown is the lensing B-mode power spectrum (black
solid line) and a primordial B-mode spectrum for r¼0.001
(dashed) generated using CAMB [38].

1In order to deal appropriately with the highly oscillating,
multidimensional integrands at hand, we employ a Monte Carlo
approach combining importance sampling with globally-adaptive
subdivision of the integration domain, as implemented in the code
Suave, part of the publicly available Cuba library [40].

2We use 200 flat-sky simulations on a square grid with
1024 pixels per side and a pixel width of 1 arcmin. To do this,
we use the publicly available code QuickLens (https://github
.com/dhanson/quicklens, though an amended and extended
version can be found at https://github.com/abaleato/Quicklens-
with-fixes).
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Similarly, Ul is dominated by jl2 − l1j ≪ l1, and in the
large-scale limit it is straightforward to show that
Ul ≈ hB̃ð2ÞðlÞB̃ð2Þðl0Þi0.
For reference, the residual power obtained after dele-

nsing with a gradient-order template constructed from the
lensed E-modes is one order of magnitude smaller than
what can be attained by antilensing in the idealized case of
perfect polarization observations and access to the true ϕ;
see Fig. 3 and Ref. [41]. Antilensing attempts to remap the
observed (possibly filtered) polarization field directly,
approximating the inverse-remapping operation PðxÞ ¼
P̃ðxþ α−1Þ with PdelðxÞ ¼ P̃ðx − αÞ, where α is evaluated
at x. This incurs an error of Oðα · ∇αÞ [42] since

PdelðxÞ ¼ PEðx − αþ αðx − αÞÞ
≈ PEðx − α · ∇αÞ
≈ PEðxÞ − ðα · ∇αÞ · ∇PEðxÞ; ð25Þ

where, in the first line, αðx − αÞ denotes α evaluated at
x − αðxÞ. Extracting the B-modes gives

BdelðlÞ≈−Bl½ðα ·∇αÞ ·∇P�¼−
1

2
Bl½ð∇α2Þ ·∇PE�; ð26Þ

where the relation α · ∇α ¼ ∇α2=2 follows from α being a
gradient. We see that the leading-order B-mode residuals
after antilensing are the same as the B-modes produced
by lensing E with a lensing potential −α2=2. Simulated
residuals after antilensing noise-free polarization with the
true ϕ are shown in Fig. 4, along with the residuals for
template delensing. The power spectrum of the antilensing
residuals on large scales is very similar to the power
spectrum after gradient-order template delensing with the
unlensed E-modes (i.e., approximately the power spectrum
of B̃ð2Þ); see Fig. 3. This is because

−
1

2
ð∇α2Þ · ∇PE ¼ −

1

2
∇ · ðα2∇PEÞ þ 1

2
α2∇2PE; ð27Þ

and the first term on the right is a total divergence, which is
suppressed on large scales compared to the second term.
The power spectrum of Bl½α2∇2PE�=2 evaluates to

1

4
hBl½α2∇2PE�Bl0 ½α2∇2PE�i0

¼ 1

2

Z
d2l1
ð2πÞ2

Z
d2l2
ð2πÞ2 sin

22ðψ l1 − ψ lÞ

× l41½l2 · ðl − l1 − l2Þ�2CEE
l1
Cϕϕ
l2
Cϕϕ
jl−l1−l2j; ð28Þ

the same as for B̃ð2Þ, Eq. (9), but with ðl1 · l2Þ2½l1 · ðl −
l1 − l2Þ�2 replaced by l41½l2 · ðl − l1 − l2Þ�2. However,
both of these geometric couplings become equal in the
limit l ≪ l1 and l2 ≪ l1 (and the disjoint region with

l2 → l − l1 − l2), which dominate the integral on large
scales.
We end this section by noting a further apparent benefit

of delensing with a gradient-order template constructed
from the lensed E-modes. When adjusted to an appro-
priate color scale, the residuals shown in Fig. 4 for the
noise-free case appear to the eye to be significantly more
Gaussian than for either antilensing, a gradient-order
template made from the unlensed E-modes, or a non-
perturbative template with the lensed E-modes (which we
discuss in detail in the next section). In the future, when
noise levels permit very aggressive delensing, having
more Gaussian residuals may simplify the subsequent
likelihood analysis, e.g., by reducing the covariance
between power spectrum estimates at different scales.
We defer a more quantitative analysis of the statistics of
these residuals to future work.

IV. DELENSING WITH A NONPERTURBATIVE
TEMPLATE

We now consider the case of B-mode delensing with a
template constructed from the lensed E-modes but with the
lens remapping handled nonperturbatively (Eq. (6). This
was the approach adopted in Refs. [8,9], for example. As
we shall see, this case performs similarly badly in the noise-
free limit to the gradient-order template constructed from
unlensed E-modes.
Expanding the nonperturbative template to second order

in ϕ, we have

B̃temp
non‐pertðlÞ ¼ Blðαi∇iPEÞ þ Blðαi∇iPẼð1Þ Þ

þ 1

2
Blðαiαj∇i∇jPEÞ þOðϕ3Þ

¼ B̃ð1ÞðlÞ þ∇B̃tempðlÞ þ B̃ð2ÞðlÞ þOðϕ3Þ:
ð29Þ

It follows that the leading-order residuals after delensing
with such a template are −ΔB̃tempðlÞ. Notice now how the
term B̃ð2ÞðlÞ is absent from the residuals, in contrast to
the case of the gradient-order template. It follows that the
residual power after delensing with the nonperturbative
template is Oð10Þ% of the original lensing power in the
noise-free limit, reintroducing this delensing floor; see
Fig. 3. Furthermore, the residuals, a simulation of which
are shown in Fig. 4, appear to the eye to be less Gaussian
for the nonperturbative template than those obtained for
the gradient-order template. We see that for templates
constructed directly from the observed E-modes, it is
preferable to construct the template at gradient order rather
than with nonperturbative remapping. In the case of non-
perturbative templates built from antilensed E-modes, there
would be no delensing floor of this nature since antilensing
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removes Ẽð1Þ and consequently ΔB̃tempðlÞ would be absent
from Eq. (29).3

So far we have considered the idealized case of noiseless
E-modes and access to the true ϕ. We now demonstrate that
the conclusion that a gradient-order template is preferable
over a nonperturbative one still holds in the practical case
of noisy E-modes and a lensing proxy ϕproxy that is only
partially correlated with the true ϕ, albeit with more
marginal benefits. The residuals after delensing are more
complicated in this case, in part, because the term that is
first order in ϕ no longer vanishes. The gradient-order and
nonperturbative templates share the same OðϕÞ residuals

B̃temp
res ðlÞ¼−

Z
d2l1
2π

sin2ðψ l1 −ψ lÞl1 · ðl− l1ÞðEðl1Þϕðl− l1Þ

−WE
l1
½Eðl1ÞþnEðl1Þ�Wψ

jl−l1jϕ
proxyðl− l1ÞÞ; ð30Þ

where nE is the noise on the observed E-modes. Indeed,
it is the power spectrum of this term that is usually
assumed to dominate the B-mode signal power after
delensing:

C̃BB;res
l ¼

Z
d2l1
ð2πÞ2 ½l1 · ðl − l1Þ sin 2ðψ l1 − ψ lÞ�2CEE

l1
Cϕϕ
jl−l1j

× ð1 −WE
l1
Wϕ

jl−l1jÞ: ð31Þ

FIG. 4. Residual B-mode maps after delensing in the limit of noiseless CMB fields and access to the true ϕ and using either a gradient-
order template built from unlensed E-modes (top left), a gradient-order template built from lensed E-modes (top right), a nonperturbative
template built from lensed E-modes (bottom left), or by antilensing polarization maps containing both E- and B-modes (bottom right).
The plotted intensity ranges from −0.5 μK (dark blue) to 0.5 μK (yellow).

3This is in agreement with what was seen in simulations by
Ref. [41].

BALEATO LIZANCOS, CHALLINOR, and CARRON PHYS. REV. D 103, 023518 (2021)

023518-8



For sufficiently low E-mode noise levels and a highly
correlated lensing proxy, the residual power after delensing
may instead be dominated by terms that are second order in
Cϕϕ
l , particularly for the case of a nonperturbative template.

Now, there will be contributions from both 2–2 and 1–3
terms (which may partially cancel, as for the lensed
B-mode spectrum), although as the ideal limit is
approached the former will dominate.
Although the residual power at second order in Cϕϕ

l
could be calculated along similar lines to the calculations
for the ideal cases in Sec. III, instead we shall estimate the
residual power from simulations. We simulate the observed
lensed E-modes by remapping a realization of unlensed
E-modes with a Gaussian realization of ϕ and, subsequently,
add white noise with variance Δ2

P. For the lensing proxy, we
add white noise to the lensing convergence (κ ¼ −∇2ϕ=2),
with variance Δ2

κ . This mimics the statistical noise that
arises when reconstructing ϕ internally from the CMB4

(e.g., Ref. [43]). Such reconstruction noise is approximately
white on large scales and, generally, remains so on all scales
where the reconstruction is signal dominated. For reference,
white noise with (constant) power equal to the peak power
in the convergence power spectrum, Cκκ

l ≈ 2.2 × 10−7 at
l ≈ 30, corresponds to Δκ ¼ 1 arcmin (i.e., the standard
deviation of the white noise averaged in a pixel of side 1.6
arcmin is 1.6). In addition, the large-scale white noise level
for a (noniterative) reconstruction from a CMB survey with
ΔP ¼ 1 μKarcmin (and using multipoles up to l ¼ 3000) is
0.26 arcmin. Gradient-order and nonperturbative templates
are constructed from the Wiener-filtered observed
E-modes and lensing proxy, and delensed fields are obtained
by subtracting these from simulated noiseless lensed
B-modes. In this way, we can isolate the change in B-mode
power due to delensing.
The results of these simulations are given in Fig. 5. The

left panel shows the ratio of the delensed power using the
nonperturbative template to the original lensing B-mode
power. For sufficiently low noise levels (top-left corner),
we recover the Oð10Þ% floor in the delensed power that
we uncovered in the idealized case. The right panel shows
the ratio of the residual powers after delensing with the
gradient-order template and the nonperturbative template.
The former gives lower residual power for all noise levels.
As the ideal limit is approached, we recover the ratio of
Oð0.1Þ seen earlier for the ideal case. In the opposite limit,
where noise is significant in either the observed E-modes or
the lensing proxy, the ratio tends to one with the delensed

FIG. 5. Left: Fraction of lensing power remaining after delensing noiselessB-modes with a nonperturbative template built from (Wiener-
filtered) noisy lensed E-modes and noisy ϕ. Right: Ratio of residual power after delensing with a gradient-order template to that after
delensing with a nonperturbative template, in both cases, using filtered, noisy, lensed E-modes and ϕ to delens noiseless B-modes. When
computing the ratios,we first average spectra over themultipole range l ∈ ½25; 325� and over 20 simulations. In all cases,we addwhite noise
to the simulated lensed E-modes used to construct the templates with variance Δ2

P (and ignore the effects of finite instrumental angular
resolution). For the lensing proxy, we add white noise to the true lensing convergence (κ ¼ −∇2ϕ=2) with variance Δ2

κ per arcmin2 pixel.
Note theOð10Þ% floor in delensed power when using the nonperturbative template in the ideal limit (top-left corner) and how the gradient-
order template consistently outperforms the nonperturbative one, even before the latter has hit its delensing floor. The improvementwill start
to be significant for noniterative lensing reconstructions in the era of CMB-S4 [44] (marked with stars).

4We choose not to use the usual quadratic estimator noise
power because this would detract from the pedagogical value of
this exercise without necessarily making it more realistic. The
reason is that quadratic estimators will be superseded by iterative
delensing before the lower range of κ sensitivities considered
here—those that unveil the delensing floors—can be reached. For
higher noise levels and instrument resolutions of Oð1Þ arcmin,
we find the quadratic estimator noise power for κ to be quite well
approximated as white noise on the relevant scales, such that the
different treatments produce only percent-level differences on the
spectrum of delensed B-modes on scales l < 300.
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power given by Eq. (31) for both templates. For the
specifications of a nominal Stage-4 CMB experiment
(ΔP ¼ 1 μKarcmin and Δκ ¼ 0.26 arcmin) [44], the
residual power after gradient-order delensing is approxi-
mately 80% of that obtained using a nonperturbative
template. This translates to the removal of an additional
4.5% of the lensing power originally in the maps.

V. CONCLUSIONS

The variance associated with lensing B-modes ought to
be mitigated in order to optimize searches for the primor-
dial signal associated with a stochastic background of
gravitational waves that may have been produced during
cosmic inflation. The partial removal of lensing, known
as delensing, is often carried out by combining high-
resolution E-mode observations with some proxy of the
lensing potential to produce a template estimate of the
lensing B-modes, which can then be subtracted from
observations on large angular scales. This was the approach
followed by the Planck [8], SPT [7], and POLARBEAR [9]
collaborations in their successful demonstrations of dele-
nsing on real B-mode data.
In this paper, we have considered the limitations of this

template method that arise from lensing of the E-modes
used in the template and the remapping approximations
made in its construction. Gradient-order templates, where
the lensing action on the E-mode observations is approxi-
mated by the gradient term in a Taylor expansion, are often
used, particularly in forecasting work given their analytic
simplicity. Such templates are usually presumed to be
highly accurate in tracking the true lensing B-modes if the
polarization measurements are of sufficient precision and
an estimate of the lensing deflections is available that is
highly correlated with the true lensing. This accuracy is
often assumed to follow from the fact that higher-order
corrections to the leading-order calculation of the lensing
B-mode spectrum are very small, at the Oð1Þ% level.
However, we showed that in the case of the lensed B-mode
spectrum, the small contribution from terms beyond gra-
dient order is a result of cancellations between terms that
are separately relatively large (around 10%), and that these
cancellations are not necessarily relevant for the delensed
spectrum. In particular, a gradient-order template con-
structed from the unlensed (or, more realistically, the
delensed or antilensed) E-modes introduces a floor in
the residual power of around 10% of the original lensing
B-mode power, due to unsubtracted terms in the lensing
B-modes that are second order in the lensing deflections.

Fortunately, in the case of a gradient-order template
constructed from the lensed E-modes, cancellations appear
at higher order which reduce the floor in the residual power
to theOð1Þ% level. The dominant cancellations in this case
are between the second-order term in the lensing B-modes
and that in the template arising from the first-order lensing
correction to the E-modes. The larger 10% residual-power
floor also arises in antilensing, where one displaces the full
lensed polarization field using minus the lensing deflec-
tions as an approximation to the true inverse remapping.
Nonperturbative templates are also sometimes consid-

ered, in which a template is made by directly deflecting
the (filtered) observed E-modes by the lensing proxy,
rather than relying on the gradient-order approximation.
Importantly, we showed that such templates are also
fundamentally limited, reintroducing a floor of Oð10Þ%
in the delensed power. This behavior arises since the first-
order lensing correction to the E-modes used in the
template are no longer approximately canceled. We further
showed that in practical applications of delensing, where
noisy E-modes and a partially correlated lensing proxy are
used, the benefits of the gradient-order template persist,
albeit with more marginal gains. Indeed, the better perfor-
mance of the gradient-order template become significant
well before the nonperturbative template has hit its dele-
nsing floor: for an experiment with characteristics similar to
CMB-S4, this would enable the removal of an additional
5% of lensing power, reducing the lensing-related uncer-
tainty on the tensor-to-scalar ratio r by a factor of around
1.2 in the limit r ¼ 0. We, therefore, recommend that in
practical applications of B-mode template delensing, where
the template is constructed directly from the (filtered)
observed E-modes, the gradient-order approach should
be used rather than a nonperturbative remapping. This
work made use of Mathematica [45], NUMPY [46], and
MATPLOTLIB [47].
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