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Standard model prediction for cosmological 21 cm circular polarization
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Before cosmic reionization, hydrogen atoms acquire a spin polarization quadrupole through interaction
with the anisotropic 21-cm radiation field. The interaction of this quadrupole with anisotropies in the
cosmic microwave background (CMB) radiation field gives a net spin orientation to the hydrogen atoms.
The 21-cm radiation emitted by these spin-oriented hydrogen atoms is circularly polarized. Here, we
reformulate succinctly the derivation of the expression for this circular polarization in terms of Cartesian
(rather than spherical) tensors. We then compute the angular power spectrum of the observed Stokes-V
parameter in the standard ACDM cosmological model and show how it depends on redshift, or

equivalently, the observed frequency.
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The redshifted 21-cm line of neutral hydrogen provides
the most promising probe of the cosmological “dark ages,”
the epoch after CMB photons are emitted and before the
first stars are formed. While the majority of theoretical
work has focused on intensity fluctuations of the 21-cm
radiation [1-5], there has also been some work on the linear
polarization [6,7].

The circular polarization of the redshifted 21-cm line
was considered in Refs. [8,9]. Reference [8] showed that
circular polarization arises from an interaction between
CMB anisotropies and the atom’s spin polarization induced
by anisotropies in the 21-cm radiation incident on the atom.
Reference [9] then focused on the circular polarization
from the CMB quadrupole induced by primordial gravita-
tional waves and discussed the prospects to detect an
inflationary gravitational-wave background in this way.

In this paper, we translate the central atomic-physics results
of Ref. [8], which were presented in terms of spherical
tensors, in terms of more intuitive Cartesian tensors. We then
calculate the angular power spectrum for the 21-cm polari-
zation that arises at second order in the primordial-density-
perturbation amplitude in the standard ACDM cosmological
model. We employ aspects of the total-angular-momentum
(TAM) formalism [10,11] to derive the results in a relatively
economical fashion. We then evaluate the circular-polariza-
tion angular power spectrum numerically and determine its
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dependence on the observed frequency, or equivalently, the
redshift of the emitter. Throughout this paper we use units in
whichc =#h = 1.

The signal calculated here provides a guaranteed target
that must be detected and observed before the circular
polarization can be used to probe inflationary gravitational
waves. Detection of this signal can also constrain some of
the uncertain 21-cm physics, complementing constraints
from the intensity and linear polarization. Furthermore, this
signal will also probe the CMB quadrupole at redshifts
higher than those proposed in Ref. [12], and so further
reduce the cosmic variance by accessing even more
surfaces of last scattering.

Consider the circular polarization V(y, 1) of the 21-cm
radiation that arrives to us from a comoving distance y and
direction 7. The hydrogen atoms at the point X = yA are
immersed in a 21-cm radiation field that has anisotropies
arising from local gas-density inhomogeneities. This then
induces a spin-polarization tensor with a quadrupole
aligned with the quadrupole of the 21-cm radiation. The
atoms are also immersed in a CMB radiation field that also
has anisotropies, which are mainly determined by the
density fluctuations on the last scattering surface.
Reference [8] shows that a net spin orientation of the
neutral hydrogen arises from the misalignment of the
atomic spin-polarization quadrupole and the CMB quadru-
pole, which leads to spontaneous and stimulated emission
of 21 cm radiation in direction —7 that is circularly
polarized. The spin quadrupole moment of the hydrogen
atoms at comoving position X (at the conformal time
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n = no — y, where 7, is the conformal time today) can be
represented as a rank-2 tensor y,,(X,#) that is symmetric
(Ya» = 71pa) and trace-free (y,, = 0)—it is given explicitly
in Eq. (3) of Ref. [8]. Likewise, the CMB temperature
quadrupole at that point is 1,,(X,n) = [d*2(3d,0,—
8ap)O(X. it,m), where O(X,it,n)=T(X.i.n)/T,(n) -1
with T(X,#,n) the CMB temperature at (X,7) arriving
from direction & and 7', (7) the mean CMB temperature at 7.

The circular polarization is parity-odd and is thus a
pseudoscalar. We therefore infer that the circular polariza-
tion must be

V(x. 1) = C(no = x)€apcna¥ pa(its o = X )tea(xit o — ).
(1)

as this is the only pseudoscalar that can be constructed from
Ngs Yaps and t,,, and the Levi-Civita symbol €,,.. The
coefficient C can be determined by comparing Eq. (1),
Egs. (4) and (46) in Ref. [8], and the translation [e.g.,
Eq. (3) in that paper] between spherical and Cartesian
tensors. The result is

_ 2 (L4 2)Te(n) Kinag(n)
O=Va anomssm @

where K, = 1.65x 10712 5715 A =286 x 10717 571 is
the Finstein coefficient of the hyperfine transition; z the
redshift at conformal time #; T';(n7) the spin temperature at
that time; and %,(n) the coefficient describing the rate of
dealignment of polarized hydrogen atoms. Here, 7(7) is the
optical depth in the 21-cm line.

The next step is to determine the connection between the
spin-polarization tensor y,,(X,7) and the linear-theory
fractional density perturbation 5(X,#) at that time. This
tensor can again be written in terms of spherical tensors,
and the spherical-tensor components induced by one

Fourier mode S(Iz, n), of wave vector l;, of the density
field are [Eq. (4) in Ref. [8] ],

752)11(7()7 77) =

where Y/, are the spherical harmonics. Here,

1T,
DW=mﬁan‘

ol "

n)
Ts(n)| 1+ X(n) + Xc(n)’

is a I?—independent quantity, where 7, = 68 mK is the
hyperfine splitting in temperature unit, f is the growth rate
of structure (which is unity during the matter domination),
and X.(n) describes the rate of collisions with other
hydrogen atoms. In terms of Cartesian tensors, the relation
must take the form,

falon) = FP) (V9 = 30,7 o). 5)

(where V, = 0/0x,) given that any symmetric trace-free
rank-2 tensor constructed from the scalar 5(X) must be
proportional to [V,V, — (8,,/3)V?]8(X). In Fourier space,
this relation becomes

Falfon) = =F(-12) (koks =5 5 )3(Een). (9

The function F(x) can be determined, for example, by
taking k=k2 (which makes y,;, diagonal) and comparing
Eq. (6) with Eq. (3). Doing so, we find F(—k*) =
-D/(V/2k?), or

ralfon) =20 (b -2 )o(En).

We now review the relation between the CMB-
anisotropy tensor t,,(X,7) and §(X,n). Since 7,,(X,7n) is
the quadrupole moment of the CMB anisotropy observed at
(X,n) during the matter-dominated era, we can obtain it
from the Sachs-Wolfe effect. Thus,

rwzmzjfmwmrwmwzmm

Oy - oA
=- / cﬂﬁ(aaﬁb - Tb>d>[x + (7 = ms)s ms),
(8)

where ®(X,7) is the Newtonian-gauge gravitational
potential [13] at the conformal time #,; of the CMB surface
of last scatter. Using the shift formula, this relation can be
written in Fourier space as

- 7 Io) - IO
tap(k.n) = — {/ d*i (ﬁaﬁb - —;b> elk‘”m_"“)} O (k, 1)
)

The integral over &t can be evaluated by using the
plane-wave expansion and taking k = k2. The gravita-
tional-potential perturbation can be related to the density
perturbation through the (Fourier-space) Poisson equation,
(k/a)*®(k.n) = 4xGp5(k.n), with a the scale factor and
p =3H3Q,,/(87Ga’) the mean density in the maitter
dominated era. Finally, we arrive at
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o) = S0kt = ) (R = 5 ) (Eom)

(10)

where j;(x) are the spherical Bessel functions.

Next, we relate the matter perturbation 5(X,#7) at con-
formal time 1 = 5y — y and 7, to the primordial curvature
perturbation R(X) generated during inflation. Since both
times are within the matter dominated era, the relation in
Fourier space takes the form [13]

<= 2k?

(k1) = 53p- (mR(E). (1)

T(k)D,

Here D_ () is the linear structure growth function and 7'(k)
is the matter transfer function normalized to unity at large
scales.

We now expand the primordial curvature perturbation

RE) = Y Rouldni’®h,, B (12)

kIM

in terms of scalar TAM waves ‘I"(‘JM) (X) = j;(kx)Y ().

Here ), is a shorthand for [ k’dk/(2z)3. We assume that
R(X) is a statistically homogeneous and isotropic random
field in which case,

<(RkJM)*Rk’J’M’> = 5kk’511’5MM’PR(k)’ (13)

where the angle brackets denote an average over all
realizations of the random field. Here 0y, is a shorthand
for (27)36p(k —k')/k*, and Pr(k) is the primordial
curvature power spectrum.

Likewise, a symmetric trace-free tensor field /,;,(X) can
be expanded in much the same manner

hap(B) =Y > b x5, (B (14)

a kIM

where the sum on a is over the five types (@=L
VE, VB, TE, TB) of tensor TAM waves. Given that we
are here concerned only with primordial density perturba-
tions, we will require only the longitudinal (L) mode which
can be obtained from the scalar TAM wave from

1 -
lPkaab() kz\/<v v, - 6ubV2>‘P’(‘JM)(x). (15)

These tensor TAM waves can be written in terms of radial
functions R’ (kx) and tensor spherical harmonics

5
Y(JM)ab( X) as,

\PkL

L .
(JM)ab ZR ’ (k) (JM)ab(x) (16)

Here, the sum on f is over f = {L, VE, TE}, the radial
eigenfunctions can be inferred from Eq. (94) in Ref. [10],
and the tensor spherical harmonics are defined in Eq. (91)
in that paper.

Thus, we can write

ZT (ko) Rga[4i’ lP(_]M) ®)].  (17)
kM

Yab(¥.1)

and similarly for 7., in terms of a temperature transfer
function T,(k,n). The transfer functions T,(k,n) and
T,(k,n) can be determined by combining Egs. (7) and
(10) with Eq. (11), then using Egs. (8) and (104) of
Ref. [10] to convert the Fourier amplitudes to TAM
coefficients. Doing so, we find

2k*D(n)
T, (k) = ————L_T(K)D, (). 18
o) =~ TODL). (18)
ko) = =22 k=m0 2. (19

In 21-cm measurements, the light received in a given
frequency band corresponds to light emitted over a corre-
sponding range of redshifts or, equivalently, comoving
distances. Here we surmise that the circular polarization is
measured in a frequency interval that corresponds to
emission from a shell of comoving-distance width Ay
centered at y. The observed circular polarization in direc-
tion 7 will then be

20712 dy’
V= [
¥—Ax/2 A)(

=~ C(no

VY, i)
= X)€abelaYba (it o = X )tea(xt o — ).
(20)

The approximation in the second equality will hold as long
as the redshift evolution of ¢,, y,, and C is relatively slow
over the integration interval. This approximation is valid
when discussing circular polarization on angular scales 0
larger than Ay/y (or multipole moments [ < y/Ay), as
perturbations contributing to these angular scales (those
with comoving wave number k < 1/Ay) will be slowly
varying in the integral in Eq. (20).

Inserting Eq. (17) and the similar one for ¢,, into
Eq (20) the spherical-harmonic expansion coefficients

= [d*aY;,(7)V,(7) then evaluate to
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0D D Ry, R

(kJ M (kIM),

x(im) =

x [Rﬁ(k,z)Ry,E(k,x)KWﬁ) v

where R)(x) = 47i/ R}’ (x). Here, K\ and K>

(JM) (JM),

(/M) (/M)

(kIM), (kyv’/l() —)()Tt(knﬂo —)()

my, T R}f(kyZ)R;F(ktX)K?”?(;E) (JM),L (21)

involve Wigner-3; symbols and can be inferred from the

integrals in Egs. (64) and (66), respectively, of Ref. [11]; they are nonzero only for /4 J, +J, = odd. Using Wick’s
theorem and Eq. (13) for the primordial power spectrum, plus the summation properties of the K-factors, the angular

. o v,V .
circular-polarization power spectrum C,” * = <|V;((lm)|2> is found to be

v,V
C" " =1Clno—x)

P2 2 Prk)

Ji(odd) k&,

8 (2Jy + 1)(2], +1)
4

Here “J,J,(odd)” means the sum of all terms where J, +-
J; 4 [ is an odd number for a given /, and the combination
of transfer functions in the curly brackets should be
evaluated at n = 110 . The all-sky mean-square signal
is V2= [dh|V,(7)]/ j_zr) By Parseval’s theorem, it has
the expectatlon Value (V) =3,2L+1)C, c)Vxy (4r).
Evaluations of the angular power spectrum Eq. (22) for
the circular polarizations emitted at three redshifts z = 17,
24, 80 [redshifted frequencies v, = 1420/(1 + z) MHz]
are shown in Fig. 1. The three redshifts correspond roughly
to the times when X-rays from stellar remnants starts to
heat the gas (z ~ 17), when the Lyman-a photons from the
first stars start to heat the hydrogen atoms (z ~ 24), and
when the spin temperature begins to approach the CMB
temperature (z ~ 80). The functions C() and D(#) depend
on the details of the ionization history and heating of the

10—21 .
10-22 4

10728

1024

")

10725 4

Vx
1

1026
1027

10728

T
100 10t 102 108
l

FIG. 1. Angular power spectra CY’V* of the 21-cm circular
polarization sourced by scalar perturbation at redshifts z = 17,
24, and 80, corresponding to the redshifted frequencies v, =
1420/(1 + z) MHz = 78.9 MHz, 56.8 MHz, 17.5 MHz. The
signals peak around / ~ 400, corresponding to an angular scale
6 ~180°/1~0.5°

- - [
R DR )

{T( ) ( )[Ty(ky)Tt(kt)_Ty(kr)Tt(ky)]}n:no_X
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|
IGM and are quite uncertain, particularly at the lower
redshifts (z < 20) associated with the epoch of reionization.
To illustrate, we use here the model detailed in Appendix B
of Ref. [14], with one modification A, — 8 so that 7| ~
—100 mK at z = 17. For low multipoles (I < 30), Eq. (22)
is evaluated exactly using WIGXJPF [15] to evaluate the
Wigner-3j symbols. For high multipoles (/ > 30), we use
the flat-sky approximation [16,17]. Also, we have numeri-
cally confirmed that the angular power spectrum is domi-
nated by the autocorrelation term in the Wick expansion
[i.e., the first term in the square brackets in Eq. (22)].
The numerical results indicate that the angular power
spectra at different redshifts differ primarily in their
magnitude, while the angular (/) dependence is similar
(though not exactly). The power is spread over a wide range
of angular scales but peaks at / ~ 400 corresponding to an
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FIG. 2. The mean-square signal (V_§> 1<1000 100021 +
I)CZV” Vs /(4z) as a function of the redshift. The three vertical
lines correspond the power spectra plotted in Fig. 1. The strongest
signal is sourced around z = 17, corresponding to a redshifted
frequency vy, = 78.9 MHz
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angular scale ~0.5°. This is roughly the angular scale
corresponding to the transition scale in the matter transfer
function T'(k) for those redshifts. We indicate the redshift
dependence of the signal through the mean-square circular
polarization, (V2),<1000= }2%0(21+1)C;/*V1 /(4x) shown
as a function of redshift in Fig. 2. Again, there are
considerable uncertainties in this calculation, primarily at
lower redshifts, although the gross features should be
reliable. We see that the signal strength can vary quite
rapidly with frequency at frequencies v ~ 80 MHz corre-
sponding to the beginning of the x-ray heating. The detailed
frequency dependence here is, however, uncertain. There is
a more robust prediction for a second, wider, peak
at v~ 20 MHz.

To close, we have evaluated the circular polarization of
the 21-cm radiation from the dark ages and epoch of
reionization that arises at second order in the primordial-
density-perturbation amplitude. We leave a detailed explo-
ration of the detectability of the signal, and strategies for

detection, to future work. Still, the estimates of the signal
from the gravitational-wave induced CMB quadrupole [9]
suggest that the signal may be within reach of an ambitious
lunar radio base [18]; if so, the density-perturbation signal
considered here, which is at least 1/r (214, r: tensor-to-
scalar ratio [19]) times bigger, should also be within reach.
The techniques described here can also be generalized to
models with primordial gravitational waves or vector
perturbations. It will also be interesting in future work to
investigate the dependence of the signal on the detailed
physics of reionization and to consider cross-correlations of
this signal with other observables [20-23].

We thank E. D. Kovetz, J. L. Bernal, and K. Boddy for
useful discussions and B. Wang for providing an ioniza-
tion-history code. L.J. and M. K. were supported by NSF
Grant No. 1519353, NASA Grant No. NNX17AK38G, and
the Simons Foundation and K. I. was supported by JSPS
KAKENHI Grants No. 15H02082 and No. 20H05248.

[1] A. Loeb and M. Zaldarriaga, Measuring the Small—Scale
Power Spectrum of Cosmic Density Fluctuations Through
21 cm Tomography Prior to the Epoch of Structure
Formation, Phys. Rev. Lett. 92, 211301 (2004).

[2] S. Furlanetto, S.P. Oh, and F. Briggs, Cosmology at low
frequencies: The 21 cm transition and the high-redshift
Universe, Phys. Rep. 433, 181 (2000).

[3] A. Lewis and A. Challinor, The 21 cm angular-power
spectrum from the dark ages, Phys. Rev. D 76, 083005
(2007).

[4] J.R. Pritchard and A. Loeb, 21-cm cosmology, Rep. Prog.
Phys. 75, 086901 (2012).

[5] M.F. Morales and J.S.B. Wyithe, Reionization and
cosmology with 21 cm fluctuations, Annu. Rev. Astron.
Astrophys. 48, 127 (2010).

[6] D. Babich and A. Loeb, Polarization of 21 cm radiation
from the epoch of reionization, Astrophys. J. 635, 1
(2005).

[7] S. De and H. Tashiro, Galactic Faraday rotation effect on
polarization of 21 c¢m lines from the epoch of reionization,
Phys. Rev. D 89, 123002 (2014).

[8] C.M. Hirata, A. Mishra, and T. Venumadhav, Detecting
primordial gravitational waves with circular polarization of
the redshifted 21 cm line. I. Formalism, Phys. Rev. D 97,
103521 (2018).

[9] A. Mishra and C. M. Hirata, Detecting primordial gravita-
tional waves with circular polarization of the redshifted
21 cm line. II. Forecasts, Phys. Rev. D 97, 103522
(2018).

[10] L. Dai, M. Kamionkowski, and D. Jeong, Total angular
momentum waves for scalar, vector, and tensor fields, Phys.
Rev. D 86, 125013 (2012).

[11] L. Dai, D. Jeong, and M. Kamionkowski, Wigner-
Eckart theorem in cosmology: Bispectra for total-angular-
momentum waves, Phys. Rev. D 87, 043504 (2013).

[12] M. Kamionkowski and A. Loeb, Getting around cosmic
variance, Phys. Rev. D 56, 4511 (1997).

[13] S. Dodelson, Modern Cosmology (Academic Press,
Amsterdam, Netherlands, 2003), p. 440.

[14] E.D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R.
Barkana, and M. Kamionkowski, Tighter limits on dark
matter explanations of the anomalous EDGES 21 cm signal,
Phys. Rev. D 98, 103529 (2018).

[15] H. T. Johansson and C. Forssn, Fast and accurate evaluation
of Wigner 3j, 6j, and 9j symbols using prime factorisation
and multi-word integer arithmetic, SIAM J. Sci. Stat.
Comput. 38, A376 (2016).

[16] K. Inomata and M. Kamionkowski, Circular polarization of
the cosmic microwave background from vector and tensor
perturbations, Phys. Rev. D 99, 043501 (2019).

[17] W. Hu, Weak lensing of the CMB: A harmonic approach,
Phys. Rev. D 62, 043007 (2000).

[18] S. Jester and H. Falcke, Science with a lunar low-frequency
array: From the dark ages of the Universe to nearby
exoplanets, New Astron. Rev. 53, 1 (2009).

[19] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[20] S. Alexander, E. McDonough, A. Pullen, and B. Shapiro,
Physics beyond the standard model with circular polariza-
tion in the CMB and CMB-21 cm cross-correlation,
J. Cosmol. Astropart. Phys. 01 (2020) 032.

[21] M. A. Alvarez, E. Komatsu, O. Dore, and P.R. Shapiro,
The cosmic reionization history as revealed by the

023516-5


https://doi.org/10.1103/PhysRevLett.92.211301
https://doi.org/10.1016/j.physrep.2006.08.002
https://doi.org/10.1103/PhysRevD.76.083005
https://doi.org/10.1103/PhysRevD.76.083005
https://doi.org/10.1088/0034-4885/75/8/086901
https://doi.org/10.1088/0034-4885/75/8/086901
https://doi.org/10.1146/annurev-astro-081309-130936
https://doi.org/10.1146/annurev-astro-081309-130936
https://doi.org/10.1086/497297
https://doi.org/10.1086/497297
https://doi.org/10.1103/PhysRevD.89.123002
https://doi.org/10.1103/PhysRevD.97.103521
https://doi.org/10.1103/PhysRevD.97.103521
https://doi.org/10.1103/PhysRevD.97.103522
https://doi.org/10.1103/PhysRevD.97.103522
https://doi.org/10.1103/PhysRevD.86.125013
https://doi.org/10.1103/PhysRevD.86.125013
https://doi.org/10.1103/PhysRevD.87.043504
https://doi.org/10.1103/PhysRevD.56.4511
https://doi.org/10.1103/PhysRevD.98.103529
https://doi.org/10.1137/15M1021908
https://doi.org/10.1137/15M1021908
https://doi.org/10.1103/PhysRevD.99.043501
https://doi.org/10.1103/PhysRevD.62.043007
https://doi.org/10.1016/j.newar.2009.02.001
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1088/1475-7516/2020/01/032

JI, KAMIONKOWSKI, and INOMATA PHYS. REV. D 103, 023516 (2021)

CMB Doppler-21-cm correlation, Astrophys. J. 647, 840 [23] H. Tashiro, N. Aghanim, M. Langer, M. Douspis, and S.

(2006). Zaroubi, The cross-correlation of the CMB polarisation and
[22] P. Adshead and S. Furlanetto, Reionization and the the 21 cm line fluctuations from cosmic reionisation, Mon.
large-scale 21 cm-cosmic microwave background cross Not. R. Astron. Soc. 389, 469 (2008).

correlation, Mon. Not. R. Astron. Soc. 384, 291 (2008).

023516-6


https://doi.org/10.1086/504888
https://doi.org/10.1086/504888
https://doi.org/10.1111/j.1365-2966.2007.12681.x
https://doi.org/10.1111/j.1365-2966.2008.13606.x
https://doi.org/10.1111/j.1365-2966.2008.13606.x

