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Before cosmic reionization, hydrogen atoms acquire a spin polarization quadrupole through interaction
with the anisotropic 21-cm radiation field. The interaction of this quadrupole with anisotropies in the
cosmic microwave background (CMB) radiation field gives a net spin orientation to the hydrogen atoms.
The 21-cm radiation emitted by these spin-oriented hydrogen atoms is circularly polarized. Here, we
reformulate succinctly the derivation of the expression for this circular polarization in terms of Cartesian
(rather than spherical) tensors. We then compute the angular power spectrum of the observed Stokes-V
parameter in the standard ΛCDM cosmological model and show how it depends on redshift, or
equivalently, the observed frequency.
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The redshifted 21-cm line of neutral hydrogen provides
the most promising probe of the cosmological “dark ages,”
the epoch after CMB photons are emitted and before the
first stars are formed. While the majority of theoretical
work has focused on intensity fluctuations of the 21-cm
radiation [1–5], there has also been some work on the linear
polarization [6,7].
The circular polarization of the redshifted 21-cm line

was considered in Refs. [8,9]. Reference [8] showed that
circular polarization arises from an interaction between
CMB anisotropies and the atom’s spin polarization induced
by anisotropies in the 21-cm radiation incident on the atom.
Reference [9] then focused on the circular polarization
from the CMB quadrupole induced by primordial gravita-
tional waves and discussed the prospects to detect an
inflationary gravitational-wave background in this way.
In this paper,we translate the central atomic-physics results

of Ref. [8], which were presented in terms of spherical
tensors, in terms of more intuitive Cartesian tensors. We then
calculate the angular power spectrum for the 21-cm polari-
zation that arises at second order in the primordial-density-
perturbation amplitude in the standard ΛCDM cosmological
model. We employ aspects of the total-angular-momentum
(TAM) formalism [10,11] to derive the results in a relatively
economical fashion. We then evaluate the circular-polariza-
tion angular power spectrum numerically and determine its

dependence on the observed frequency, or equivalently, the
redshift of the emitter. Throughout this paper we use units in
which c ¼ ℏ ¼ 1.
The signal calculated here provides a guaranteed target

that must be detected and observed before the circular
polarization can be used to probe inflationary gravitational
waves. Detection of this signal can also constrain some of
the uncertain 21-cm physics, complementing constraints
from the intensity and linear polarization. Furthermore, this
signal will also probe the CMB quadrupole at redshifts
higher than those proposed in Ref. [12], and so further
reduce the cosmic variance by accessing even more
surfaces of last scattering.
Consider the circular polarization Vðχ; n̂Þ of the 21-cm

radiation that arrives to us from a comoving distance χ and
direction n̂. The hydrogen atoms at the point x⃗ ¼ χn̂ are
immersed in a 21-cm radiation field that has anisotropies
arising from local gas-density inhomogeneities. This then
induces a spin-polarization tensor with a quadrupole
aligned with the quadrupole of the 21-cm radiation. The
atoms are also immersed in a CMB radiation field that also
has anisotropies, which are mainly determined by the
density fluctuations on the last scattering surface.
Reference [8] shows that a net spin orientation of the
neutral hydrogen arises from the misalignment of the
atomic spin-polarization quadrupole and the CMB quadru-
pole, which leads to spontaneous and stimulated emission
of 21 cm radiation in direction −n̂ that is circularly
polarized. The spin quadrupole moment of the hydrogen
atoms at comoving position x⃗ (at the conformal time
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η ¼ η0 − χ, where η0 is the conformal time today) can be
represented as a rank-2 tensor γabðx⃗; ηÞ that is symmetric
(γab ¼ γba) and trace-free (γbb ¼ 0)—it is given explicitly
in Eq. (3) of Ref. [8]. Likewise, the CMB temperature
quadrupole at that point is tabðx⃗; ηÞ≡

R
d2ûð3ûaûb−

δabÞΘðx⃗; û; ηÞ, where Θðx⃗; û; ηÞ≡ Tðx⃗; û; ηÞ=TγðηÞ − 1

with Tðx⃗; û; ηÞ the CMB temperature at ðx⃗; ηÞ arriving
from direction û and TγðηÞ the mean CMB temperature at η.
The circular polarization is parity-odd and is thus a

pseudoscalar. We therefore infer that the circular polariza-
tion must be

Vðχ; n̂Þ ¼ Cðη0 − χÞϵabcnaγbdðχn̂; η0 − χÞtcdðχn̂; η0 − χÞ;
ð1Þ

as this is the only pseudoscalar that can be constructed from
na, γab, and tab, and the Levi-Civita symbol ϵabc. The
coefficient C can be determined by comparing Eq. (1),
Eqs. (4) and (46) in Ref. [8], and the translation [e.g.,
Eq. (3) in that paper] between spherical and Cartesian
tensors. The result is

CðηÞ≡
ffiffiffiffiffiffi
2

3π

r ð1þ zÞTsðηÞKmagτðηÞ
A½1þ 0.75x̃αðηÞ�

; ð2Þ

where Kmag ¼ 1.65 × 10−12 s−1; A ¼ 2.86 × 10−15 s−1 is
the Einstein coefficient of the hyperfine transition; z the
redshift at conformal time η; TsðηÞ the spin temperature at
that time; and x̃αðηÞ the coefficient describing the rate of
dealignment of polarized hydrogen atoms. Here, τðηÞ is the
optical depth in the 21-cm line.
The next step is to determine the connection between the

spin-polarization tensor γabðx⃗; ηÞ and the linear-theory
fractional density perturbation δðx⃗; ηÞ at that time. This
tensor can again be written in terms of spherical tensors,
and the spherical-tensor components induced by one
Fourier mode δ̃ðk⃗; ηÞ, of wave vector k⃗, of the density
field are [Eq. (4) in Ref. [8] ],

P̃2mðk⃗; ηÞ ¼
ffiffiffiffiffiffi
4π

5

r
DðηÞδ̃ðk⃗; ηÞY2mðk̂Þ; ð3Þ

where Ylm are the spherical harmonics. Here,

DðηÞ≡ 1

20
ffiffiffi
2

p T⋆
TγðηÞ

�
1 −

TγðηÞ
TsðηÞ

�
fτðηÞ

1þ x̃αðηÞ þ x̃cðηÞ
; ð4Þ

is a k⃗-independent quantity, where T� ¼ 68 mK is the
hyperfine splitting in temperature unit, f is the growth rate
of structure (which is unity during the matter domination),
and x̃cðηÞ describes the rate of collisions with other
hydrogen atoms. In terms of Cartesian tensors, the relation
must take the form,

γabðx⃗; ηÞ ¼ Fð∇2Þ
�
∇a∇b −

1

3
δab∇2

�
δðx⃗; ηÞ; ð5Þ

(where ∇a ≡ ∂=∂xa) given that any symmetric trace-free
rank-2 tensor constructed from the scalar δðx⃗Þ must be
proportional to ½∇a∇b − ðδab=3Þ∇2�δðx⃗Þ. In Fourier space,
this relation becomes

γ̃abðk⃗; ηÞ ¼ −Fð−k2Þ
�
kakb −

k2

3
δab

�
δ̃ðk⃗; ηÞ: ð6Þ

The function FðxÞ can be determined, for example, by
taking k⃗ ¼ kẑ (which makes γab diagonal) and comparing
Eq. (6) with Eq. (3). Doing so, we find Fð−k2Þ ¼
−D=ð ffiffiffi

2
p

k2Þ, or

γ̃abðk⃗; ηÞ ¼
DðηÞffiffiffi

2
p

�
k̂ak̂b −

δab
3

�
δ̃ðk⃗; ηÞ: ð7Þ

We now review the relation between the CMB-
anisotropy tensor tabðx⃗; ηÞ and δðx⃗; ηÞ. Since tabðx⃗; ηÞ is
the quadrupole moment of the CMB anisotropy observed at
ðx⃗; ηÞ during the matter-dominated era, we can obtain it
from the Sachs-Wolfe effect. Thus,

tabðx⃗; ηÞ ¼
Z

d2ûð3ûaûb − δabÞΘðx⃗; û; ηÞ

¼ −
Z

d2û

�
ûaûb −

δab
3

�
Φ½x⃗þ ûðη − ηlsÞ; ηls�;

ð8Þ

where Φðx⃗; ηlsÞ is the Newtonian-gauge gravitational
potential [13] at the conformal time ηls of the CMB surface
of last scatter. Using the shift formula, this relation can be
written in Fourier space as

t̃abðk⃗; ηÞ ¼ −
�Z

d2û

�
ûaûb −

δab
3

�
eik⃗·ûðη−ηlsÞ

�
Φ̃ðk⃗; ηlsÞ:

ð9Þ

The integral over û can be evaluated by using the
plane-wave expansion and taking k⃗ ¼ kẑ. The gravita-
tional-potential perturbation can be related to the density
perturbation through the (Fourier-space) Poisson equation,
ðk=aÞ2Φ̃ðk⃗; ηÞ ¼ 4πGρ̄ δ̃ðk⃗; ηÞ, with a the scale factor and
ρ̄ ¼ 3H2

0Ωm=ð8πGa3Þ the mean density in the matter
dominated era. Finally, we arrive at
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t̃abðk⃗; ηÞ ¼
6πH2

0Ωm

aðηlsÞk2
j2½kðη − ηlsÞ�

�
k̂ak̂b −

δab
3

�
δ̃ðk⃗; ηlsÞ;

ð10Þ

where jJðxÞ are the spherical Bessel functions.
Next, we relate the matter perturbation δðx⃗; ηÞ at con-

formal time η ¼ η0 − χ and ηls to the primordial curvature
perturbation Rðx⃗Þ generated during inflation. Since both
times are within the matter dominated era, the relation in
Fourier space takes the form [13]

δ̃ðk⃗; ηÞ ¼ 2k2

5H2
0Ωm

TðkÞDþðηÞR̃ðk⃗Þ: ð11Þ

HereDþðηÞ is the linear structure growth function and TðkÞ
is the matter transfer function normalized to unity at large
scales.
We now expand the primordial curvature perturbation

Rðx⃗Þ ¼
X

kJM

RkJM½4πiJΨk
ðJMÞðx⃗Þ�; ð12Þ

in terms of scalar TAM waves Ψk
ðJMÞðx⃗Þ≡ jJðkxÞYJMðx̂Þ.

Here
P

k is a shorthand for
R
k2dk=ð2πÞ3. We assume that

Rðx⃗Þ is a statistically homogeneous and isotropic random
field in which case,

hðRkJMÞ�Rk0J0M0 i ¼ δkk0δJJ0δMM0PRðkÞ; ð13Þ

where the angle brackets denote an average over all
realizations of the random field. Here δkk0 is a shorthand
for ð2πÞ3δDðk − k0Þ=k2, and PRðkÞ is the primordial
curvature power spectrum.
Likewise, a symmetric trace-free tensor field habðx⃗Þ can

be expanded in much the same manner

habðx⃗Þ ¼
X

α

X

kJM

hαkJM½4πiJΨk;α
ðJMÞabðx⃗Þ�; ð14Þ

where the sum on α is over the five types (α ¼ L;
VE;VB;TE;TB) of tensor TAM waves. Given that we
are here concerned only with primordial density perturba-
tions, we will require only the longitudinal (L) mode which
can be obtained from the scalar TAM wave from

Ψk;L
ðJMÞabðx⃗Þ ¼

1

k2

ffiffiffi
3

2

r �
∇a∇b −

1

3
δab∇2

�
Ψk

ðJMÞðx⃗Þ: ð15Þ

These tensor TAM waves can be written in terms of radial
functions RLβ

J ðkxÞ and tensor spherical harmonics
Yβ
ðJMÞabðx̂Þ as,

Ψk;L
ðJMÞabðx⃗Þ ¼

X

β

RLβ
J ðkxÞYβ

ðJMÞabðx̂Þ: ð16Þ

Here, the sum on β is over β ¼ fL;VE;TEg, the radial
eigenfunctions can be inferred from Eq. (94) in Ref. [10],
and the tensor spherical harmonics are defined in Eq. (91)
in that paper.
Thus, we can write

γabðx⃗; ηÞ ¼
X

kJM

Tγðk; ηÞRkJM½4πiJΨk;L
ðJMÞabðx⃗Þ�; ð17Þ

and similarly for tab in terms of a temperature transfer
function Ttðk; ηÞ. The transfer functions Tγðk; ηÞ and
Ttðk; ηÞ can be determined by combining Eqs. (7) and
(10) with Eq. (11), then using Eqs. (8) and (104) of
Ref. [10] to convert the Fourier amplitudes to TAM
coefficients. Doing so, we find

Tγðk; ηÞ ¼ −
2k2DðηÞ
5

ffiffiffi
3

p
H2

0Ωm

TðkÞDþðηÞ; ð18Þ

Ttðk; ηÞ ¼ −
12

ffiffiffi
2

p
π

5
ffiffiffi
3

p j2½kðη − ηlsÞ�TðkÞ
DþðηlsÞ
aðηlsÞ

: ð19Þ

In 21-cm measurements, the light received in a given
frequency band corresponds to light emitted over a corre-
sponding range of redshifts or, equivalently, comoving
distances. Here we surmise that the circular polarization is
measured in a frequency interval that corresponds to
emission from a shell of comoving-distance width Δχ
centered at χ. The observed circular polarization in direc-
tion n̂ will then be

Vχðn̂Þ≡
Z

χþΔχ=2

χ−Δχ=2

dχ0

Δχ
Vðχ0; n̂Þ

≃ Cðη0 − χÞϵabcnaγbdðχn̂; η0 − χÞtcdðχn̂; η0 − χÞ:
ð20Þ

The approximation in the second equality will hold as long
as the redshift evolution of tab, γab and C is relatively slow
over the integration interval. This approximation is valid
when discussing circular polarization on angular scales θ
larger than Δχ=χ (or multipole moments l≲ χ=Δχ), as
perturbations contributing to these angular scales (those
with comoving wave number k < 1=Δχ) will be slowly
varying in the integral in Eq. (20).
Inserting Eq. (17) and the similar one for tab into

Eq. (20), the spherical-harmonic expansion coefficients
VχðlmÞ ≡ R

d2n̂Y�
lmðn̂ÞVχðn̂Þ then evaluate to
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VχðlmÞ ¼ Cðη0 − χÞ
X

ðkJMÞγ

X

ðkJMÞt
RðkJMÞγRðkJMÞtTγðkγ; η0 − χÞTtðkt; η0 − χÞ

× ½R̃VE
Jγ
ðkγχÞR̃VE

Jt
ðktχÞKVB;VE

lmðJMÞγðJMÞt þ R̃TE
Jγ
ðkγχÞR̃TE

Jt
ðktχÞKTB;TE

lmðJMÞγðJMÞt �; ð21Þ

where R̃β
JðxÞ≡ 4πiJRLβ

J ðxÞ. Here, KVB;VE
lmðJMÞγðJMÞt and K

TB;TE
lmðJMÞγðJMÞt involve Wigner-3j symbols and can be inferred from the

integrals in Eqs. (64) and (66), respectively, of Ref. [11]; they are nonzero only for lþ Jγ þ Jt ¼ odd. Using Wick’s
theorem and Eq. (13) for the primordial power spectrum, plus the summation properties of the K-factors, the angular

circular-polarization power spectrum C
VχVχ

l ≡ hjVχðlmÞj2i is found to be

C
VχVχ

l ¼ jCðη0 − χÞj2
X

JγJtðoddÞ

X

kγkt

PRðkγÞPRðktÞfTγðkγÞTtðktÞ½TγðkγÞTtðktÞ − TγðktÞTtðkγÞ�gη¼η0−χ

×
ð2Jγ þ 1Þð2Jt þ 1Þ

4π

����R̃VE
Jγ
ðkγχÞR̃VE

Jt
ðktχÞ

�
l Jγ Jt
0 þ1 −1

�
− R̃TE

Jγ
ðkγχÞR̃TE

Jt
ðktχÞ

�
l Jγ Jt
0 þ2 −2

�����
2

: ð22Þ

Here “JγJtðoddÞ” means the sum of all terms where Jγ þ
Jt þ l is an odd number for a given l, and the combination
of transfer functions in the curly brackets should be
evaluated at η ¼ η0 − χ. The all-sky mean-square signal
is V2

χ ≡ R
d2n̂jVχðn̂Þj2=ð4πÞ. By Parseval’s theorem, it has

the expectation value hV2
χi ¼

P
lð2lþ 1ÞCVχVχ

l =ð4πÞ.
Evaluations of the angular power spectrum Eq. (22) for

the circular polarizations emitted at three redshifts z ¼ 17,
24, 80 [redshifted frequencies νobs ¼ 1420=ð1þ zÞ MHz]
are shown in Fig. 1. The three redshifts correspond roughly
to the times when X-rays from stellar remnants starts to
heat the gas (z ∼ 17), when the Lyman-α photons from the
first stars start to heat the hydrogen atoms (z ∼ 24), and
when the spin temperature begins to approach the CMB
temperature (z ∼ 80). The functions CðηÞ and DðηÞ depend
on the details of the ionization history and heating of the

IGM and are quite uncertain, particularly at the lower
redshifts (z≲ 20) associated with the epoch of reionization.
To illustrate, we use here the model detailed in Appendix B
of Ref. [14], with one modification Aα → 8 so that T21 ∼
−100 mK at z ¼ 17. For low multipoles (l ≤ 30), Eq. (22)
is evaluated exactly using WIGXJPF [15] to evaluate the
Wigner-3j symbols. For high multipoles (l > 30), we use
the flat-sky approximation [16,17]. Also, we have numeri-
cally confirmed that the angular power spectrum is domi-
nated by the autocorrelation term in the Wick expansion
[i.e., the first term in the square brackets in Eq. (22)].
The numerical results indicate that the angular power

spectra at different redshifts differ primarily in their
magnitude, while the angular (l) dependence is similar
(though not exactly). The power is spread over a wide range
of angular scales but peaks at l ∼ 400 corresponding to an

FIG. 1. Angular power spectra C
VχVχ

l of the 21-cm circular
polarization sourced by scalar perturbation at redshifts z ¼ 17,
24, and 80, corresponding to the redshifted frequencies νobs ¼
1420=ð1þ zÞ MHz ¼ 78.9 MHz, 56.8 MHz, 17.5 MHz. The
signals peak around l ∼ 400, corresponding to an angular scale
θ ∼ 180°=l ∼ 0.5°.

FIG. 2. The mean-square signal hV2
χil≤1000 ≡ P

1000
l¼0 ð2l þ

1ÞCVχVχ

l =ð4πÞ as a function of the redshift. The three vertical
lines correspond the power spectra plotted in Fig. 1. The strongest
signal is sourced around z ¼ 17, corresponding to a redshifted
frequency νobs ¼ 78.9 MHz.
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angular scale ∼0.5°. This is roughly the angular scale
corresponding to the transition scale in the matter transfer
function TðkÞ for those redshifts. We indicate the redshift
dependence of the signal through the mean-square circular

polarization, hV2
χil≤1000≡P

1000
l¼0 ð2lþ1ÞCVχVχ

l =ð4πÞ shown
as a function of redshift in Fig. 2. Again, there are
considerable uncertainties in this calculation, primarily at
lower redshifts, although the gross features should be
reliable. We see that the signal strength can vary quite
rapidly with frequency at frequencies ν ≃ 80 MHz corre-
sponding to the beginning of the x-ray heating. The detailed
frequency dependence here is, however, uncertain. There is
a more robust prediction for a second, wider, peak
at ν ≃ 20 MHz.
To close, we have evaluated the circular polarization of

the 21-cm radiation from the dark ages and epoch of
reionization that arises at second order in the primordial-
density-perturbation amplitude. We leave a detailed explo-
ration of the detectability of the signal, and strategies for

detection, to future work. Still, the estimates of the signal
from the gravitational-wave induced CMB quadrupole [9]
suggest that the signal may be within reach of an ambitious
lunar radio base [18]; if so, the density-perturbation signal
considered here, which is at least 1=r (≳14, r: tensor-to-
scalar ratio [19]) times bigger, should also be within reach.
The techniques described here can also be generalized to
models with primordial gravitational waves or vector
perturbations. It will also be interesting in future work to
investigate the dependence of the signal on the detailed
physics of reionization and to consider cross-correlations of
this signal with other observables [20–23].
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