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In this paper, working in a Friedman-Lemaitre-Robertson-Walker (FLRW) space-time, we recover,
without invoking unconventional exotic matter, the generalized Friedman equation of quantum loop
cosmology, and therefore the cosmological bounce. We obtain this result proposing a new model in the
framework of modified teleparallel gravity, where the Ricci scalar is replaced by the torsion scalar T.
Furthermore we show that the associated perturbations again in a flat FLRW space-time are not affected by
superluminarities or gradient instabilities. Then, we generalize the results to the curved FLRW space-time
by using an appropriate formulation. In this context, the results of the Born-Infeld model are also
investigated.
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I. INTRODUCTION

General relativity (GR) with the presence of a suitable
cosmological constant and the addition of cold dark matter,
the so-calledΛCDMmodel, is able to describe a large part of
the cosmic history of our universe. The cosmic acceleration
or dark energy dominated era which our universe undergoes
today is well supported by the cosmological constant which
drives the de Sitter expansion, and recently the ΛCDM
model has been tested with high accuracy [1,2].1

However, it is well known that GR admits singular
space-time solutions, where scalar curvature invariants
become singular and geodesic incomplete metrics exist.
In a radiation/matter dominated universe the big bang
singularity occurs and only under the assumption of
unconventional exotic matter can it be avoided and even-
tually replaced by a bounce, where a contraction phase is
followed by an expansion and the scale factor reaches a
minimum but finite value (see Ref. [5] for a review).
In quantum loop cosmology (QLC) an effective modified

Friedman equation has been obtained and the solution
in a flat Friedmann–Lemaître–Robertson–Walker (FLRW)
space-time admits the cosmological bounce [6–10]. Several
modified gravity models, including mimetic gravity [11],
nonpolynomial gravity [12], Einstein Gauss-Bonnet [13],

and Einstein-Aether (EA) gravity [14] lead to loop modi-
fied Friedmann equation for flat FLRW space-time.
Here, following Refs. [13,14], we consider a different

framework with respect to GR. In particular wewill analyze
modified teleparallel gravity models. Teleparallel gravity is
an approach to gravity in which, instead of making use of
the Levi-Civita connection, the so-called Weitzenbock
connection [15–17] is considered. This choice leads to a
vanishing curvature tensor and to a nonvanishing torsion
tensor. In the modified teleparallel framework the
Lagrangian of the theory is a function fðTÞ of the torsion
scalar T, which is a suitable combination of quadratic
scalars depending on the torsion tensor. These theories
involve second-order differential equations of motion,
making them less problematic than others where the
modifications are proposed as general functions of curva-
ture invariants, as in FðRÞ models.
However we should not forget that teleparallel gravity is

a variant of Riemann-Cartan geometry where a spin
connection is present. In this paper we introduce the notion
of proper frame in which the spin connection is vanishing,
and some issues related to the breaking of the local Lorentz
invariance are discussed. We limit our discussion to highly
symmetric space-times, namely FLRW space-times, where
simple proper frames can be found. For additional dis-
cussions regarding the so-called covariant teleparallel
gravity formalism, see for instance Ref. [18].
We focus on solutions without singularities. In particular

we recover the equations of QLC without considering
exotic matter. We study two bounce models: one is the
modified Born-Infleld model [19], while the second is a
novel fðTÞ proposal. We consider the aforementioned
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different measure of Hubble constant is present, and is currently
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models in a spatially flat and curved FLRW space-time. In
fact, the possible relevance of curved FLRW space-times
has been recently pointed out in [20,21].
The paper is organized as follows. In Sec. II we briefly

review the formalism of teleparallel gravity and the tele-
parallel formalism of GR. In Sec. III we discuss a fðTÞ
model which reproduces the QLC results in a flat FLRW
space-time. A Born-Infeld model is also revisited. The
cosmological perturbations of these models are studied in
Sec. III B, where we review some results (mainly from
[22]) and show that the theory is not affected by super-
luminarity effects or gradient instabilities. In Sec. III C the
curved case in investigated. Using the minisuperspace
approach, the field equations of the theory are derived.
Finally, conclusions are given in Sec. IV.
In our convention, the speed of light is c ¼ 1 and the

Planck mass is 1=8πG ¼ 1. We also adopt the mostly plus
metric convention.

II. TELEPARALLEL GRAVITY REVIEW

In this section we review the Riemann-Cartan and
Weitzenbock teleparallel geometry and the main difference
with respect to textbooks’ GR. In fact, in GR one usually
considers the Levi-Civita connection, here denoted by Γ̂μ

αβ.
This connection satisfies the metric compatibility condi-
tion, i.e., the associated covariant derivative of the tensor
metric vanishes. Furthermore it is symmetric in the lower
indices. As a result, the theory is torsion free.
In general, a generic metric compatible connection, or

Cartan connection, has a nontrivial antisymmetric part, and
the torsion tensor is not vanishing. In the following, we
shall present a short review of the formalism we will use
throughout the paper.
The geometry which deals with a Cartan or spin

connection is called Riemann-Cartan geometry. In this
context, the dynamical variables are one-forms ea, which
constitute the tetrad (or vierbein in d ¼ 4), and the spin
connection one-forms ωa

b. Introducing the natural basis
one-form dxμ by means of ea ¼ eaμdxμ, and ωa

b ¼ ωa
bμdx

μ,
the metric tensor is related to the tetrads via

gμν ¼ ηabeaμebν ; ð1Þ
where ηab is the Minkowski metric tensor of the tangent
space. From this we note that the metric determinant which
effectively appears in the Lagrangian is

ffiffiffiffiffiffi−gp ¼ detðeaμÞ.
The related Riemann-Cartan and torsion two-forms are

given by Cartan equations

Ra
b ¼ dωa

b þ ωa
c ∧ ωc

b; ð2Þ
Ta ¼ dea þ ωa

b ∧ eb: ð3Þ
If we denote by L ¼ LðxÞ a local Lorentz transformation,
namely η ¼ LTηL, one has

e0 ¼ Le; g0 ¼ g;

ω0 ¼ LωBþ LdB where B ¼ L−1; ð4Þ

where g is the metric tensor. If we impose a vanishing
Riemann-Cartan two-form, we obtain the so-called
Weitzenbock geometry, and the related connection is called
the Weitzenbock connection, here denoted by Γμ

αβ. It is
possible to show that the most general solution of Ra

b ¼ 0 is
ω ¼ LdB ¼ −dLB, namely

ωa
b ¼ La

cdBc
b: ð5Þ

Thus, the nonvanishing related torsion two-form reads

Ta ¼ dea þ La
cdBc

b ∧ eb: ð6Þ

Recalling that ea ¼ eaμdxμ and ωa
b ¼ ωa

bμdx
μ, we get the

torsion tensor as

Tρ
μν ¼ eρa

2
ð∂μeaν þ ωa

bμe
b
νÞ − ðμ ↔ νÞ: ð7Þ

Given a Cartan connection, we can introduce the contorsion
tensor Kμ

αβ by means

Γρ
μν ¼ Γ̂μ

ρβ þ Kμ
ρβ: ð8Þ

Therefore the definition of Kμ
αβ from the torsion tensor is

2Kρ
μν ¼ Tμ

ρ
ν þ Tν

ρ
μ − Tρ

μν: ð9Þ

We also have

Γρ
μν ¼ eρað∂νeaμ þ ωa

bνe
b
μÞ: ð10Þ

At this point, we can choose ωa
b in Eq. (5) to be null, since

this choice simplifies the solutions of the equations of
motion. This choice clearly still leads to vanishing Cartan-
Riemann curvature, and thus the Weitzenbock connection
depends now only on the tetrad, and the related inverse eρa,
namely

Γρ
μν ¼ eρa∂νeaμ: ð11Þ

Finally, we introduce the torsion scalar, the only scalar,
which being a particular combination of the three inde-
pendent quadratic torsion scalars, leads to second-order
differential equations of motion,

T ¼ TρμνSρμν; ð12Þ

where

Sρμν ¼ Kρμν þ gρμTβν
β − gρνTβμ

β: ð13Þ
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Lastly, a small remark regarding the choice ωa
b ¼ 0 is

necessary. In fact this choice leads to a manifest breaking of
the local Lorentz invariance (LLI), since dTa is no longer
associated with a tensor two-form.
In the context of the teleparallel equivalent of general

relativity such an arbitrary choice for the spin connection
does not pose a severe problem, since the term in the torsion
scalar depending on ω can be rewritten as a total derivative
(see Ref. [23]), and thus does not contribute to the
equations of motion derived from a Lagrangian of the
form (15), which are still invariant under LLI. However,
when working with generalizations like fðTÞ gravity, if
fðTÞ ≠ T, this is no longer true, and the variation of such
term will be in general not vanishing. Unless wewant to use
a frame independent formalism (see for example Ref. [18]),
the only solution is to choose a frame, whose tetrad is called
proper tetrads, where the term in the torsion scalar propor-
tional to the spin connection vanishes. In fact choosing a
FLRW space-time leads exactly to this, thus there will be no
contradictions in the following analysis. For more details
about the problem of covariance of teleparallel gravity see
Refs. [24–29].

A. Teleparallel formulation of general relativity

In this section we review the teleparallel formulation of
GR. If we consider the Weitzenbock connection, one has
the important identity

ffiffiffiffiffiffi
−g

p
R̂ ¼ −

ffiffiffiffiffiffi
−g

p
T − ∂μð2Tβμ

βÞ; ð14Þ

where R̂ is the standard GR Ricci tensor obtained with the
Levi-Civita connection. Since the second term of Eq. (14) is
a surface term, the action

I ¼ −
1

2

Z
dx4

ffiffiffiffiffiffi
−g

p
T þ Im ð15Þ

leads to equations of motion which are equivalent to the
GR ones.
As an important example, consider the flat FLRW space-

time. Here one is dealing with a high symmetric space-
time, namely

ds2 ¼ −dt2 þ aðtÞ2ds20; ð16Þ

where aðtÞ is the scale factor and depends on the cosmo-
logical time only. If we use the Cartesian spatial coordi-
nates xi, one has ds20 ¼ δijdxidxj, and a suitable choice for
the tetrad is the naive diagonal one, namely

eaμ ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ: ð17Þ

In this case we can safely use the Weitzenbock connection
ωa
b ¼ 0, being (17) what we defined a proper tetrad. The

torsion scalar T reads

T ¼ 6H2; ð18Þ

and the above teleparallel action leads to the GR Friedmann
equation

3H2 ¼ ρ: ð19Þ

III. MODIFIED TELEPARALLEL GRAVITY

It is well known that a possible description of dark
energy (DE) can be achieved by the modified gravity
models based on fðRÞ gravity, where R is the Ricci scalar.
However, this approach involves fourth-order differential
equations of motion, possibly leading to Ostrogradskij
instabilities. In this section we want to discuss a similar
theory, where the function is a function of the scalar torsion
T instead of the Ricci scalar. In fact, one may introduce the
modified teleparallel gravity considering a Weitzenbock
geometry with a Lagrangian depending only on the scalar
torsion T, namely fðTÞ gravity [22,30–42]. A review on
this approach can be found in Ref. [43].
The action of these models is defined as

I ¼ −
1

2

Z
dx4

ffiffiffiffiffiffi
−g

p
fðTÞ þ Im: ð20Þ

It is possible to show that, with this choice of the tensor
scalar T, the related equations of motion are second-order
partial differential equations.
As an example, we verify this important feature of the

fðTÞ models considering again the flat FLRW space-time.
In fact, in this relevant case, the Cartesian and spherical
coordinates lead to the same expression for the scalar
tensor, namely T ¼ 6H2. Moreover, the generalized
Friedmann equation is [43]

ρ ¼ fðTÞ
2

− TfTðTÞ; ð21Þ

or, using the value of the torsion tensor in this space-time
T ¼ 6H2,

ρ ¼ fðHÞ
2

−H
f0ðHÞ
2

; ð22Þ

where ρ is the standard matter energy density and
f0ðHÞ ¼ df

dH. The diffeormorphism invariance leads to

_ρ ¼ −3Hðρþ pÞ; ð23Þ

and the second Friedmann equation follows as usual by the
above two equations (22)–(23), namely

−p ¼ fðHÞ
2

−H
f0ðHÞ
2

−
1

6
_Hf00ðHÞ; ð24Þ
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where the dot denotes the time derivative and p the
standard matter pressure.

A. Cosmological bounce models

In this section we propose two bounce models for the
early universe in the context of teleparallel gravity. For
additional works about bounce models in teleparallel
gravity, see [44,45].

1. A model proposal

We introduce the following expression for the function
of the torsion scalar

fðTÞ ¼ 12

α2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

T
6

r
− α

ffiffiffiffiffiffiffiffi
T=6

p
arcsin

�
α

ffiffiffiffi
T
6

r ��
;

ð25Þ

which can be rewritten, using T ¼ 6H2,

fðHÞ ¼ 12

α2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2H2

p
− αH arcsin ðαHÞ�; ð26Þ

where α is a dimensional positive parameter. Note that
fðHÞ ¼ −6H2 þOðα2Þ when jαj → 0, confirming that we
are studying a correction to Einstein gravity which can be
controlled with the value of the parameter α.
The first Friedmann equation is

6

α2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2α2

p
� ¼ ρ; ð27Þ

which is equivalent to the QLC Friemann equation

3H2 ¼ ρ

�
1 −

ρ

ρc

�
; where ρc ¼

12

α2
; ð28Þ

where ρc is called critical density. Thus, by assuming
p ¼ ωρ, with ω ≠ −1, when ρc → ∞, we recover
Einstein’s gravity. It is well known that the above equation
leads to a cosmological bounce solution. For example the
density reads [14]

ρ ¼ 1

α2 þ 3ð1þωÞ2
4

t2
: ð29Þ

As a result, the correction to GR avoids the big bang
singularity. In this case, the model admits a bounce solution
with H ¼ 0. On the other hand, if ω ¼ −1, namely ρ ¼ ρ0
where ρ0 is a constant, in general we get a flat de Sitter
solution.

2. Modified Born-Infeld model

In the literature several other modified teleparallel
gravity bounce models have been proposed. In this section

we revisit one of them. In particular, we study a Born-Infeld
type model based on the choice suggested in [19], and also
discussed in [46]. For other models see [47]

fðTÞ ¼ 12

α2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

T
6

r
− 1

�
; ð30Þ

which can be rewritten as

fðHÞ ¼ 12

α2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2H2

p
− 1�: ð31Þ

The related equations of motion lead to

�
1þ α2ρ

6

�
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2H2

p
� ¼ 1; ð32Þ

from which we can compute the modified Friedmann
equation

3H2 ¼ ρ

�
1þ α2ρ

12

��
1þ α2ρ

6

�−2
: ð33Þ

From the matter conservation law and a barotropic fluid
p ¼ ωρ, we obtain

_ρ ¼ −
ffiffiffi
3

p
ð1þ ωÞ

�
ρ3 þ α2ρ4

12

�
1=2

�
1þ α2ρ

6

�−1
; ð34Þ

whose solution is

ffiffiffiffiffi
3ρ

p
ð1þ ωÞt ¼

�
1þ α2ρ

12

�
1=2

− α
ffiffiffiffiffi
2ρ

p
arcsinh

�
α

ffiffiffiffiffiffiffiffi
ρ=2

p
3

�
:

ð35Þ

The equation above is a transcendental equation for ρwhich
in general is difficult to solve analytically. However, wemay
find an approximated solution for small values of jαj,

ρðtÞ ¼ 1

3ð1þ ωÞ2tþ α2

8

þOðα4Þ: ð36Þ

Therefore also in this model we can remove the GR big bang
singularity at t ¼ 0, which can be retrieved in the
limit jαj → 0.

B. Cosmological perturbations

In this section we recall the linear cosmological pertur-
bations in the context of fðTÞ- modified gravity, in a flat
FLRW space-time, in order to assess the stability of our
model in the context of linear perturbations. We will use the
derivation found in Ref. [22]. By introducing the comoving
coordinates with conformal time dη ¼ dt=aðtÞ, such that
a≡ aðηÞ, the choice for the unperturbed vierbein reads
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eAμ ¼ aðηÞδAμ : ð37Þ

The torsion scalar is given by

T ¼ 6

a2
H2; ð38Þ

where we define H ¼ a0=a≡Ha. In what follows, the
prime index will denote the derivative with respect the
conformal time η. The general perturbed vierbein at linear
order reads

e00 ¼ aðηÞð1þ ϕÞ; ð39Þ

e0i ¼ aðηÞð∂iβ þ uiÞ; ð40Þ

ea0 ¼ aðηÞð∂aζ þ vaÞ; ð41Þ

eaj ¼ aðηÞ
�
ð1 − ψÞδaj þ ∂2

ajσ þ ϵajk∂ks

þ ∂jca þ ϵajkwk þ
1

2
haj

�
: ð42Þ

As usual, the vector perturbations are taken to be diver-
genceless, and the tensor perturbations traceless.
One can immediately see that in this case, compared to

GR, one has to deal with six new components given by the
scalar β þ ζ, pseudoscalar s, vector ui þ vi, and pseudo-
vector wj, which have to be taken into account since they
correspond to the 6 degrees of freedom associated with
local Lorentz rotations of the tetrad.
Thus, the perturbed metric elements read as

g00 ¼ −a2ðηÞð1þ 2ϕÞ; ð43Þ

g0i ¼ a2ðηÞð∂iðζ − βÞ þ vi − uiÞ; ð44Þ

gij ¼ a2ðηÞðð1 − 2ψÞδij þ 2∂2
ijσ þ ∂icj þ ∂jci þ hijÞ:

ð45Þ

In the following we consider only the scalar and the tensor
linear perturbations.

1. Scalar perturbations

In order to study the scalar perturbations we will use the
Newtonian gauge, obtained by choosing β ¼ ζ and σ ¼ 0.
Therefore, one can find the linearized torsion components,
and write down the variation of the torsion scalar as

δT ¼ −
4H
a2

ð∇2ζ þ 3Hϕþ 3ψ 0Þ: ð46Þ

From the antisymmetric part of the equations of motion, it
is possible to derive the following relation:

∇2ζ ¼ −3
�
ψ 0 þHϕ −

H0 −H2

H
ψ

�
; ð47Þ

such that one easily sees that ζ is constrained, and is not a
dynamical variable.
The symmetric part of the linearized scalar perturbation

equations result to be

fTð∇2ψ −3Hðψ 0 þHϕÞÞ−36fTTH2ðH0−H2Þ
a2

ψ ¼1

2
a2δρ;

ð48Þ

fTðψ 0 þHϕÞ þ 12HðH0 −H2ÞfTT
a2

ψ ¼ 1

2
a2ðρþ pÞδu;

ð49Þ

fTðϕ − ψÞ þ 12fTTHðH0 −H2Þ
a2

ζ ¼ δs; ð50Þ

fT

�
ψ 00 þHð2ψ 0 þ ϕ0Þ þ ðH2 þ 2H0Þϕþ 1

3
∇2ðϕ − ψÞ

�

þ 12fTT
a2

½HðH0 −H2Þψ 0 þ ðHH00 þ 2H02 − 5H2H0

þH4Þψ þH2ðH0 −H2Þϕ�

þ 144fTTTH2ðH0 −H2Þ2ψ
a4

¼ 1

2
a2δp; ð51Þ

where it has made use of (47) and the functions δρ, δp, δu,
and δs are the fluctuations of energy density, pressure, fluid
velocity, and anisotropic stress, respectively.
Note that even by assuming a vanishing anisotropic

stress, δs ¼ 0, one deals with a gravitational slip ϕ − ψ ≠ 0
when fTT ≠ 0. Recalling that for adiabatic perturbations it
is possible to relate the energy density and pressure, namely
δp ¼ c2sδρ, we can derive from the system above with
δs ¼ 0 the following relation:

fTðψ 00 þHð2ψ 0 þHϕ0Þ þ ϕðH2 þ 2H0ÞÞ

þ 12fTT
a2

ð2HH0ψ 0 − 2H3ψ 0 þHH00ψ þH02ψ

− 3H0H2ψ þ 2ϕH2ðH0 −H2ÞÞ

þ 144fTTTH2ðH0 −H2Þ2ψ
a4

− c2sfTð∇2ψÞ
¼ −3Hðρþ pÞc2sδu: ð52Þ

Moreover, one can use Eq. (47) and Eq. (50) with δs ¼ 0
in order to find for a given wave number k,

ϕ ¼ 36fTTðH2 −H0ÞðHψ 0 − ðH0 −H2ÞψÞ þ k2a2fTψ
k2a2fT þ 36fTTðH0 −H2ÞH2

:

ð53Þ
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By inserting this expression in (52) and in the limit k → ∞
the gravitational slip vanishes and we get

ψ 00 þ 3H
�
1 −

8

a2fT
ðfTTH2 − fTTTH0Þ

�
ψ 0

þ ½H2 þ c2sk2 þ � � ��ψ ¼ −3Hðρþ pÞc2sδu; ð54Þ

where the dots stand for additional terms not depending on
k2 or of higher order in the 1=k expansion. Therefore the
propagation velocity of scalar perturbations corresponds to
the standard matter sound speed cs as in GR. On the other
hand, for small values of k, the gravitational slip may
diverge [see Eqs. (50) and (47)]. In particular, for small
values of jαj, a term proportional to α2=k2 appears in the
models (25) and (30). However, this behavior is not an issue
as the matter density perturbations are not divergent, see
Ref. [22]. And also in the large scales case the c2s is not
modified with respect to general relativity. Therefore we
expect our models not to be affected by gradient insta-
bilities in the late universe.

2. Tensor perturbations

It is easy to see that tensor perturbations do not affect the
variation of the torsion scalar, while the equation for the
tensor perturbations reads

ðh00ij þ 2Hh0ij −∇2hijÞ þ
12ðH0 −H2ÞfTT

a2fT
h0ij ¼ 0: ð55Þ

Although we have a new friction term, there are no new
mass terms. We can therefore conclude that in general fðTÞ
theories do not introduce massive gravitons. Or, in other
words, the velocity of tensor waves is equal to the speed of
light at any time. Finally, the limit α → 0 recovers the
behaviour of GR perturbations at linear order.

C. Nonflat FLRW case

In this section we review the teleparallel gravity in a
nonspatially flat FLRWspace-time. In fact, the generalization
of what we previously obtained in the flat to nonflat FLRW
case is not straightforward, due to the subtleties associated
with the evaluation of the torsion scalar T. Once T is
computed, since we are considering a dynamical highly
spherical symmetric space-time, we may apply the super-
spacemethods (see for exampleRef. [48]). For amoregeneral
approach, see for example [49] and references therein.
Consider the spatially curved FLRW, written in spherical

coordinates

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

2

�
; ð56Þ

where we units such that the curvature scalar jkj ¼ 1. The
key point is the evaluation of the scalar tensor T on this

space-time. In a nonspatially flat FLRW in spherical
coordinates, the naive choice for the tetrad requires a suitable
nonvanishing spin connection, or alternatively, in the gauge
ω ¼ 0, one has to consider a nontrivial suitable choice for
the tetrad (see for example Refs. [29,50,51]). In both
approaches, the result is the same and reads

T ¼ 6

�
H2ðtÞ − k

a2ðtÞ
�
: ð57Þ

However, this is not the unique expression for the scalar T in
a spatially curved space-time. In fact, according to [52], for
k < 0 we may also have

T ¼ 6

�
HðtÞ � 1

aðtÞ
�
2

: ð58Þ

In all cases, applying the superspace method, the action
can be written, up to a trivial multiplicative time indepen-
dent factor, as

I ¼
Z

a3f½Tða; _aÞ�dtþ Im; ð59Þ

where Im is the usual matter Lagrangian.
Firstly we deal with the choice of the torsion scalar (57).

We can consider aðtÞ as Lagrangian coordinate, and from
the variation of the action with respect to it we obtain the
second Friedmann equation

−p¼fðTÞ
2

−fT

�
6H2þ2 _H−2

k
a2

�
−24H2

�
_Hþ k

a2

�
fTT:

ð60Þ

The first Friedmann equation follows from the above
equation and the standard matter conservation law, ensured
by the diffeomorphism invariance of the model, and reads

ρ ¼ fðTÞ
2

− 6H2fT: ð61Þ

For the second choice of the torsion scalar(58), the second
Friedmann equation reads

−p ¼ fðTÞ
2

− 2fT

�
3H2 þ _H þ 2

1

a2
� 3

H
a

�

− 24

�
H � 1

a

�
2
�
_H ∓ H

a2

�
fTT; ð62Þ

while the first Friedmann equation is

ρ ¼ fðTÞ
2

− 6H

�
H � 1

a

�
fT; ð63Þ

in agreement with the results of [52]. As a simple con-
sistency check, in the GR case fðTÞ ¼ −T, and in both
cases we obtain the GR result
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3H2 þ 3k
a2

¼ ρ: ð64Þ

In the next sections we will consider two applications of
teleparallel gravity in the nonflat case. In particular, we will
study the models (25) and (30) in the nonflat case.

1. Example 1

Consider again the expression used in (25). In this
example we consider only the first class of models, where
T is given by (57). The other choice leads to similar results.
From Eq. (61) we obtain

6

α2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

T
6

r �
¼ ρ −

6k
a2

�
1

α
ffiffiffiffiffiffiffiffi
T=6

p arcsin

�
α

ffiffiffiffi
T
6

r ��
;

T ¼ 6

�
H2 −

k
a2

�
; ð65Þ

which can be rewritten as

3

�
H2 −

k
a2

�
¼ ρ −

6k
a2

ψkðTÞ −
α2

12

�
ρ −

6k
a2

ψkðTÞ
�
2

; ð66Þ

where

ψkðTÞ≡ 1

α
ffiffiffiffiffiffiffiffi
T=6

p arcsin

�
α
T
6

�
: ð67Þ

At the first order in α2 the equation above becomes

3

�
H2 −

k
a2

�
¼

�
ρ −

6k
a2

��
1 −

ρ − 6k
a2

ρc

�
; ρc ¼

12

α2
;

ð68Þ

or

3

�
H2 þ k

a2

�
¼ ρ −

ðρ − 6k
a2Þ2

ρc
; ρc ¼

12

α2
: ð69Þ

The case is analog to the one discussed in [14], where the
big bang singularity at t ¼ 0 is absent. An exact solution
can be found if we take a barotropic equation of state
p ¼ −ρ=3, namelyω ¼ −1=3 and ρðtÞ ¼ ρ0aðtÞ−2. We can
rewrite the above equation introducing a new variable
y ¼ aðtÞ2

3

4
_y2 ¼ ðρ0 − 3kÞy − ðρ0 − 6kÞ2

ρc
; y ¼ a2ðtÞ; ð70Þ

whose solution is

yðtÞ≡ a2ðtÞ ¼ ðρ0 − 6kÞ2
ρcðρ0 − 3kÞ þ

ρ0 − 3k
3

t2; ð71Þ

where we assume ρ0 > 3k. This (bounce) solution is
regular at að0Þ ≠ 0. When ρc goes to infinity, we recover
the GR solution with the big bang singularity.
Moreover, for the case of a generic constant value of ω,

we can prove the absence of singularities. In fact, consi-
dering a perfect fluid with p ¼ ωρ and ρ ¼ ρ0a−3ð1þωÞ,
with a constant ρ0, we can rewrite Eq. (69) as

Z
dyffiffiffiffiffiffiffiffiffiffi
YðyÞp ¼ t; y ¼ aðtÞ2; ð72Þ

where YðyÞ is

YðyÞ¼4

3

�
ρ0y

1−3ω
2 −3ky−

ρ20y
−1−3ωþ36k2−12kρoy

−1−3ω
2

ρc

�
:

ð73Þ

We can find an approximate solution, valid for small t
around the critical point Yðy�Þ ¼ 0

yðtÞ ≃ y� þ
Y 0�t2

4
; ð74Þ

where t� is the solution of the transcendental equation

ρ0y�

�
y
−1−3ω

2� −
3k
ρ0

�
−
ρ20y

−1−3ω� þ 36k2 − 12kρoy
−1−3ω

2�
ρc

¼ 0:

ð75Þ

Therefore only in the GR limit ρc → ∞ (i.e., α → 0) we
have a singular solution for the flat case with k ¼ 0,
otherwise y� ≠ 0 and the bounce occurs, independently
on the space curvature. For example, considering k ¼ 0,
Eq. (75) becomes

1 −
ρ0y

−3ð1þωÞ
2�

ρc
¼ 0; ð76Þ

whose solution reads

y� ≡ a2ðt�Þ ¼
�
ρc
ρ0

�
− 2
3ð1þωÞ

; ð77Þ

which corresponds to the minimum value of the scale factor
on the cosmological bounce.

2. Example 2

Consider the model (30) in nonflat FLRW space-time.
Again, we use the case where the torsion scalar is given by
(57). The first Friedmann equation becomes
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3

�
H2 −

k
a2

�
¼ ρð1þ α2ρ

12
Þ − 6k

a2 −
3α2k2

a4

ðα2ρ
6
þ 1Þ2

: ð78Þ

For a perfect fluid we can write

Z
dyffiffiffiffiffiffiffiffiffiffi
YðyÞp ¼ t; y ¼ aðtÞ2; ð79Þ

where, at the first order of α2, YðyÞ is

YðyÞ ¼ 2

27
α2ρ20ð3k − 5yÞy−3ω−2 þ 8

3
α2kρ0y−

3ω
2
−1
2

− 4kðα2kþ yÞ þ 4

3
ρ0y

1
2
−3ω

2 : ð80Þ

Therefore an approximate solution, valid for small t around
the critical point Yðy�Þ ¼ 0, can be found and reads

yðtÞ ≃ y� þ
Y 0�t2

4
; ð81Þ

where y� is the solution of

2

27
α2ρ20ð3k − 5y�Þy−3ω−2� þ 8

3
α2kρ0y

−3ω
2
−1
2�

− 4kðα2kþ y�Þ þ
4

3
ρ0y

1
2
−3ω

2� ¼ 0: ð82Þ

Thus in the limit α → 0 and k ¼ 0 we recover the big bang
singularity at y� ¼ 0, otherwise the bounce appears.

IV. CONCLUSIONS

In this paper we have investigated a derivation of
Friedmann equations of QLC-like cosmology in the frame-
work of modified teleparallel gravity, which offers a very
interesting alternative approach with respect to modified
gravitational theories based on metric formulation as FðRÞ
modified models. In fact, instead of using the Levi-Civita
connection, teleparallel gravity is based on the so-called
Weitzenbock connection with a related vanishing curvature
tensor, but nonvanishing torsion tensor. All the GR results
can be found in the equivalent teleparallel GR formulation.
Furthermore, the extension of the theory to modified
teleparallel gravity preserves the field equations at the

second order: this is one of the reasons why modified
teleparallel gravity is often used to investigate a wide
variety of solutions in a cosmological context.
We proposed a model, studying it first in flat FLRW

space-time, which features a nonlinear correction to GR
equations that depends on a critical density and is sufficient
to avoid the big bang singularity, namely the model admits
the cosmological bounce of QLC cosmology. We also
argued that we can recover the GR limit, when the critical
density goes to infinity. Moreover the analysis of scalar and
tensor perturbations shows the viability of the theory and
the lack of superluminar effects.
We also generalized the results to the curved FLRW

space-time. Even though the nonflat case is more complex
due to the nature of teleparallel theories, a direct evaluation
of the field equations from the on-shell form of the
Lagrangian, once the torsion scalar has been determined,
is easily achieved. This is possible because we are working
on highly symmetric space-times, namely FLRW space-
times. Despite the fact that exact solutions can be found
only for some specific matter choices, we investigated
approximate solutions near t ¼ 0, and proved, using the
critical points of the theory, that the models do not contain
singularities and provide cosmological bounce solutions.
Finally, we have generalized the Born-Infeld model to
spatially FLRW curved space.
A last remark is in order. As we pointed out in the

Introduction, several modified gravity models lead to a loop
modified equation for flat FLRW space-time. This sort of
degeneracy may be removed making use of the concept of
gravitational standard candles [53]. With regard to this
issue it seems crucial to deal with models having cT ¼ 1,
but frictional term (or effective Plank mass) in the tensor
perturbation equation different from the GR one. We point
out that our FðTÞ models may be included in this list.
Finally, in the context of LQC, it would be interesting to

explore the application of fðTÞ-gravity as a low-energy
effective field theory, with LQC as the underlying UV
theory.
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