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We examine the relation between the Szekeres models and relativistic Lagrangian perturbation schemes,
in particular the relativistic Zel’dovich approximation (RZA). We show that the second class of the
Szekeres solutions is exactly contained within the RZAwhen the latter is restricted to an irrotational dust
source with a flow-orthogonal foliation of spacetime. In such a case, the solution is governed by the first
principal scalar invariant of the deformation field, proving a direct connection with a class of Newtonian
three-dimensional solutions without symmetry. For the second class, a necessary and sufficient condition
for the vanishing of cosmological backreaction on a scale of homogeneity is expressed through integral
constraints. Domains with no backreaction can be smoothly matched, forming a lattice model, where exact
deviations average out at a given scale of homogeneity, and the homogeneous and isotropic background is
recovered as an average property of the model. Although the connection with the first class of Szekeres
solutions is not straightforward, this class allows for the interpretation in terms of a spatial superposition of
nonintersecting fluid lines, where each world line evolves independently and under the RZA model
equations, but with different associated “local backgrounds”. This points to the possibility of generalizing
the Lagrangian perturbation schemes to structure formation models on evolving backgrounds, including
global cosmological backreaction.
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I. INTRODUCTION

In the Lagrangian formulation, the Newtonian theory is
paraphrased within the general relativity framework through
coframe fields, which constitute a formal generalization of
the deformation gradient in Newtonian cosmology [1–7].
Then, following Zel’dovich’s extrapolation idea, other var-
iables are functionally expressed in terms of this deformation
field (for details on the transformation of the 3þ 1 Einstein
equations to a system for spatial coframes, see Ref. [1], for
the average properties of the first-order scheme, see Ref. [2],
for the nth-order Lagrangian perturbation and solution
schemes, see Ref. [3], and for generalizations including
the tensor perturbations, Ref. [4], and including pressure
through a change of foliation, Ref. [5]).
The relativistic Zel’dovich approximation (RZA) forms

an extrapolation of the first-order scheme, as defined in [1].
It holds, by construction, nonlinearities encoded in the
functional dependence of variables on the coframe fields,
which accounts for the correct causal structure and
measurement of distances. However, despite approximate

assumptions, it is remarkable that RZA contains as par-
ticular cases a subclass of the Szekeres solutions, furnish-
ing the most general exact solutions applicable to
cosmology. This was first noticed by M. Kasai in his
seminal work [6], and we now revisit and prove it using the
definition of RZA provided in the series of papers follow-
ing [1]. A further remarkable property of RZA is that its
spatial average also contains classes of averaged exact
solutions, e.g., the spatially flat Lemaître-Tolman Bondi
(LTB) solution, further discussed below.
Szekeres models form a class of exact solutions to

Einstein’s equations, which, in general, present no sym-
metries [8,9] (but quasisymmetries). Their field source is an
irrotational but inhomogeneous dust fluid; the spacetime is
compatible with the inclusion of a cosmological constant (Λ)
[10–13]. The solution is classified into two classes, depend-
ing on whether the metric function β;ξ in their general line
element [see Eq. (20) below] is different or equal to zero
[11,12,14]. While the first class (class I: β;ξ ≠ 0) has been
successfully used in cosmology and astrophysics [15–38],
the second one (class II: β;ξ ¼ 0) has received much less
attention. Among the exceptions we find [33,39,40].
In this paper we aim at addressing the question of which

subclass of the Szekeres solutions is contained within RZA.
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We will call this subclass the “exact body of RZA.” The
importance of this result is twofold: first, the Szekeres
solutions can be used as a reference to test the accuracy of
the functional evaluation of RZA that goes beyond a mere
perturbative evaluation, and, second, RZA provides a guide
for reinterpreting the Szekeres arbitrary functions in terms
of generalized Newtonian quantities. To examine the
connection between the solutions, we analyze each class
of the Szekeres solutions separately. While the relation of
RZA to class I seems intricate and demands more future
work, class II is exactly contained within RZA, and
corresponds to a class of three-dimensional, locally one-
dimensional Newtonian solutions without symmetries
investigated in [41] (see also the same solution class
without a background [42], and the same class that includes
the cosmological constant in the background [43]).
The motivation underlying this work goes beyond these

technical clarifications. The relativistic generalization of
the Newtonian Lagrangian perturbation theory, with its
first-order member RZA, reveals the powerful property that
its average, [2], contains the spatially averaged exact
spherically symmetric LTB solution [44] [Sec. VII 2], a
property that is unexpected since the local model contains a
class of plane-symmetric solutions and is expected to
perform best for highly anisotropic collapse. However,
this remark holds true for flat LTB solutions only and as
such it corresponds to the situation of Newton’s iron sphere
theorem. Thus, RZA appears to be a restricted answer to a
full relativistic generalization, and we aim at understanding
the class I Szekeres solutions as providing hints toward
such a generalization.
The plan of this article is as follows. We begin by

presenting the most fundamental properties of the relativistic
Zel’dovich approximation and Szekeres models in Secs. II
and III, respectively. Section IV provides the general steps to
reformulate the Szekeres solutions in the language of rela-
tivistic Lagrangian perturbations. This reformulation is spe-
cialized to be compatible with RZA in Sec. V, with the result
that thewhole class II is exactly contained inRZA.Within this
section, we study the conditions under which deviations from
an FLRW (Friedmann-Lemaître-Robertson-Walker) back-
ground solution average out on some scale of homogeneity,
Sec. VA, while in Sec. V B we present a lattice model made
up of consecutive cells with null backreaction on a particular
homogeneity scale, smoothly matched across suitable surfa-
ces. In Sec. V Cwe show that the RZA functionals reproduce
the correct Szekeres quantities and examine the correspon-
dence between class II and a class of three-dimensional
Newtonian solutionswithout symmetry. InSec.VIwediscuss
the relation of class I solutions to RZA, reinterpret the
dynamics as a set of independent world lines, and show that
each one follows the RZA model equations. Our results are
summarized and discussed in Sec. VII.
The main text is complemented with nine appendixes,

providing the necessary background material to keep the

paper as self-contained as possible: Appendix A contains
a detailed discussion about the relation between the
Szekeres-Szafron and Goode-Wainwright parametriza-
tions, which incidentally proves the compatibility of the
Goode-Wainwright formulation (of both classes I and II)
with the presence of a cosmological constant. As a
reference to the case with Λ ¼ 0, in Appendix B, we
show the Goode-Wainwright parametric solutions of the
Szekeres field equations. Appendix C presents the trans-
formations to Cartesian coordinates of some subcases of
the Szekeres solutions. The spatially averaged equations
for the volume-expansion and volume-acceleration are
shown in Appendix D. Appendix E contains the formal
proof of the Lemma 2 enunciated in Sec. VA, while the
proofs of Lemmata 3 and 4 are provided in Appendix F.
Supplementary calculations, based on the noncommuta-
tivity of averaging and evolution as well as cosmological
backreaction, aim at a better understanding of the class I
solutions and are presented in Appendix G. For better
readability, we have reserved for Appendix H the func-
tional evaluation of the relevant dynamical fields. Finally,
in Appendix I, we provide the formal relation between
LTB models and RZA, which supports the discussion
conducted in Sec. VI B.

II. THE RELATIVISTIC LAGRANGIAN
FORMULATION

In this section, we summarize the most important results
about RZA that are relevant to the subject of the paper.
Therefore, we will limit our exposition to the case of an
irrotational dust source with a flow-orthogonal foliation of
the spacetime (compatible with the restrictions obeyed by
the Szekeres solutions). For more details and generaliza-
tions including tensor perturbations (giving place to gravi-
tational waves) or pressure gradients see [1–5,45].
For comoving and synchronous observers, the metric

takes the form:

ð4Þg ¼ −dt ⊗ dtþ ð3Þg with ð3Þg ¼ gijdXi ⊗ dXj; ð1Þ

where Xi are Gaussian normal (Lagrangian) coordinates.1

Following [2–5], the spatial metric is decomposed in terms
of the coframes as follows:

ð3Þg ¼ Gabηa ⊗ ηb; gij ¼ Gabη
a
iη

b
j; ð2Þ

where the coframes are split into a trivial set and deviations
thereof:

ηa ¼ ηaidXi ¼ aðtÞðδai þ Pa
iÞdXi: ð3Þ

1Indices i; j; k; � � � denote coordinate indices, while indices
a; b; c � � � are introduced as counters of components, e.g., of
vectors or differential forms. In this paper we use units where the
gravitational constant and the speed of light are set to G ¼ c ¼ 1.
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The initial metric coefficients are encoded in Gram’s matrix
Gab:

GabðXÞδaiδbj ¼ GijðXÞ≡ gijðti;XÞ: ð4Þ
Through the 3þ 1 formalism with a flow-orthogonal

foliation of spacetime, Einstein’s equations are transformed
into a system of 9þ 4 evolution equations (the 4 constraint
equations of general relativity are transformed to evolution
equations in the Lagrangian framework) for the 9 coframe
coefficient functions [1,4]. The complete system of equa-
tions reads:

Gab _η
a
½iη

b
j� ¼ 0; ð5aÞ

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ• ¼ −Ri
j þ ð4πϱþ ΛÞδij; ð5bÞ

1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k ¼ −

R
2
þ ð8πϱþ ΛÞ; ð5cÞ

�
1

J
ϵabcϵ

ikl _ηajη
b
kη

c
l

�
jji
¼

�
1

J
ϵabcϵ

ikl _ηaiη
b
kη

c
l

�
jj
; ð5dÞ

where the overdot stands for the covariant (here simply the
partial) time-derivative; the single and the double vertical
slash denote the ordinary partial derivative and the spatial
covariant derivative, respectively; J is the determinant of
the coframe matrix, see (13), and Rij is the spatial Ricci
tensor with trace R. (The expression of the Ricci tensor in
terms of coframes is left implicit, see [1].)

A. Relativistic Zel’dovich approximation

The 3þ 1 Lagrangian framework of Einstein’s equations
consists in considering the (nine functions of the) spatial
coframes as the only dynamical variables [1]. The relativ-
istic Lagrangian perturbation theory then only perturbs the
coframes, while their first-order member provides the RZA
coframes. The so linearized Lagrange-Einstein system
entitles us to evaluate any other field as a functional of
the linear coframe perturbations, leading to nonlinear
(functional) expressions for any relevant field. For instance,
in this approximation, the spatial metric is a quadratic form
of the deformation field,

gij ¼ Gabη
a
iη

b
j ð6aÞ

¼ a2ðtÞ½Gij þGabðδaiPb
j þ δbjPa

i þPa
iPb

jÞ�; ð6bÞ

which allows for correctly evaluating distances as well as
having the correct light cone structure in generic inhomo-
geneous matter distributions that correspond to the coframe
deformation at a given order.
Since the initial spatial metric is encoded in the Gram’s

matrix, the deformation field vanishes at some initial time
ti, and we have for the initial data (cf. e.g., [4]):

Pa
iðtiÞ ¼ 0; ð7aÞ

_Pa
iðtiÞ≡Ua

i; U½ij� ¼ 0; ð7bÞ

P̈a
iðtiÞ≡Wa

i − 2HðtiÞUa
i; W½ij� ¼ 0: ð7cÞ

In the equations above, H ¼ _a=a is the Hubble function,
and the one-form fields Ua and Wa are the relativistic
generalizations of the initial Newtonian peculiar-velocity
and peculiar-acceleration gradients, with coefficients in
the exact coordinate basis dXi denoted by Ua

i and Wa
i,

respectively. They are subject to the (energy and momen-
tum) constraints of the Einstein equations, Eqs. (5c) and
(5d), here imposed on the initial data:

HðtiÞU ¼ −
RðtiÞ
4

−W; ð8aÞ

ðUa
jδa

iÞki ¼ ðUa
iδa

iÞjj: ð8bÞ

Above, U and W denote the traces of the Newtonian
peculiar-velocity and -acceleration gradients, respectively,
defined below in Eq. (10). For RZA the general constraint
equations are reduced to constraints on initial data due to
the space and time-separability of RZA. They therefore
hold throughout the evolution even in the approximate
regime [1,4]. For exact solutions, these constraint equations
propagate, also for nonseparable solutions, according to
well-known theorems.

B. Example: The solution for the trace

The solution is separated into spatial and temporal parts.
If we focus on the trace part, the time-dependence is
determined from Raychaudhuri’s equation [4],

P̈þ 2H _P − 4πϱbðtÞP ¼ a−3W; ð9Þ
where ϱbðtÞ is the background density, and the following
abbreviations were and will be used:

P≡ Pk
k ¼ δkaPa

k; δkaUa
k ≡U; δkaWa

k ≡W:

ð10Þ
Once a background model has been set, the growing and
decaying solutions of Eq. (9) determine the temporal
evolution. For an EdS (Einstein-de Sitter) background
model, we have:

P ¼ 3

5

��
Uti þ

3

2
Wt2i

��
t
ti

�
2=3

− ðUti −Wt2i Þ
�
t
ti

�
−1

−
5

2
Wt2i

�
: ð11Þ

The relativistic correspondence to Zel’dovich’s approxi-
mation is obtained by subjecting the initial data to the
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slaving condition U ¼ Wti, cf. [41,46] for the Newtonian
case.
We emphasize that RZA also contains trace-free tenso-

rial parts that include nonperturbative models for gravita-
tional waves. We direct the reader to the detailed analyses
in [4].

C. Functional evaluation

Let us examine in more detail the functional evaluation
within RZA. As was pointed out previously, the crucial
aspect of the formalism relies on its very architecture,
linearizing the deformation field in the coframe set only. All
relevant fields are computed from their exact and, in
general, nonlinear functional expressions with no further
truncations. This extrapolation idea accounts for the intrin-
sic nonlinearity of the model, encoded in its predicted
fields—as in the example of the metric form (6), or the
implicit functional of the Ricci tensor/scalar in (5). In this
spirit, the nonlinear density field is evaluated through the
exact integral of the continuity equation:

ϱ ¼ ϱiJ−1; with J ¼ ffiffiffi
g

p
=

ffiffiffiffi
G

p
; ð12Þ

where the determinant, J, is given by

J ¼ detðηaiÞ ¼ a3ð1þ Jð1Þ þ Jð2Þ þ Jð3ÞÞ; ð13Þ
and the peculiar-determinant is defined through

J ≡ J=a3: ð14Þ
In (13), we introduced the principal scalar invariants of the
perturbation matrix Pa

i,

Jð1Þ ≡ 1

2
ϵabcϵ

ijkPa
iδ

b
jδ

c
k; ð15aÞ

Jð2Þ ≡ 1

2
ϵabcϵ

ijkPa
i P

b
jδ

c
k; ð15bÞ

Jð3Þ ≡ 1

6
ϵabcϵ

ijkPa
iPb

jPc
k: ð15cÞ

The expression for the expansion tensor in terms of the
coframes follows from the one for the extrinsic curvature,
which in a flow-orthogonal foliation of spacetime reads:

Θij ¼ −Kij ¼
1

2
_gij: ð16Þ

Θi
j ¼ eia _ηaj; with eia ¼

1

2J
ϵabcϵ

iklηbkη
c
l: ð17Þ

Since we are interested in vorticity-free models, the
kinematic decomposition of the expansion tensor re-
duces to

Θi
j ¼ σij þ

1

3
Θδij; ð18Þ

where the expansion scalar, Θ ¼ _J=J, and the shear tensor,
σij, are the trace and trace-free part of the expansion tensor,
respectively.
Finally, the three-dimensional spatial curvature and the

gravitoelectric and gravitomagnetic parts of theWeyl tensor
can be expressed in terms of coframes through the
following relations [4]:

−Ri
j ¼

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ• − ð4πϱþ ΛÞδij; ð19aÞ

−
R
2
¼ 1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k − ð8πϱþ ΛÞ; ð19bÞ

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l ¼ Λ − 4πϱ; ð19cÞ

−Ei
j ¼

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l þ

1

3
ð4πϱ − ΛÞδij; ð19dÞ

−Hi
j ¼

1

J
Gabϵ

iklð_ηajklηbk þ _ηajη
b
kklÞ; ð19eÞ

where Eq. (19c) follows by taking the trace of Eq. (19a) and
inserting Eq. (19b). See more details about the functional
evaluation within RZA in Sec. V C and Appendix H.

III. SZEKERES MODELS

The general line-element of the Szekeres solutions can
be cast into the form [9,13]:

ds2 ¼ −dt2 þ e2αdξ2 þ e2βðdς2 þ dϰ2Þ; ð20Þ

where the metric coefficients αðt; ς; ϰ; ξÞ and βðt; ς; ϰ; ξÞ
are determined from the Einstein equations, with ξ ¼
ðς; ϰ; ξÞ being the comoving coordinates. For a compre-
hensive and detailed exposition of the Szekeres models see
[11,12,14].
The original Szekeres solution has been reparametrized

multiple times. However, the whole family can be invar-
iantly defined as an exact solution of the Einstein equations
with the following properties [12,47]:

(i) A geodesic and irrotational dust source.
(ii) A purely gravitoelectric and Petrov D Weyl tensor.
(iii) A shear with two equal eigenvalues and degenerate

eigensurface coinciding with the one of the Weyl
tensor.

This coordinate-independent definition was furnished by
Barnes and Rowlingson [48].

A. Goode-Wainwright parametrization

In this paper, we use a representation introduced by
Goode and Wainwright (GW) in [49,50], which, as we will
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see below, is well-suited for establishing a formal con-
nection with RZA. In Appendix A, we discuss how this
parametrization relates to the Szekeres-Szafron’s one with a
nonvanishing cosmological constant. This analysis enhan-
ces the GW formulation of class I to include Λ ≠ 0, which
to the best of our knowledge has thus far not been
(formally) considered. The compatibility of class I with
the cosmological constant is a natural result, previously
used in the literature without formal proof [33]. Here, we
validate and formalize it by analyzing not only the relation
between the arbitrary (spatial) functions but also the
model’s time-evolution (the ultimately Λ dynamical con-
tribution). The analogous generalization of class II is due to
Meures and Bruni [40].
In the GW representation, the Szekeres line-element

reads:

ds2 ¼ −dt2 þ S2ðG2W2dξ2 þ e2νðdς2 þ dϰ2ÞÞ; ð21Þ
where the metric function Sðt; ξÞ satisfies

_S2 ¼ −k0 þ
2μ

S
þ Λ

3
S2: ð22Þ

Here, k0 ¼ 0;�1, while μ ¼ μðξÞ is arbitrary. In general,
μ > 0 is needed to have a well-defined FLRW limit. Next,
Gðξ; ς; ϰÞ is given by

G ¼ AðξÞ − F ðt; ξÞ
¼ AðξÞ − βþfþ − β−f−: ð23Þ

A, e2ν, W, βþðξÞ and β−ðξÞ differ for each class, and fþ
and f− are the growing and decaying solutions of

F̈ þ 2
_S
S

_F −
3μ

S3
F ¼ 0; ð24Þ

which can be traced back to the Raychaudhuri equation.
The energy-density takes the following simple form:

8πϱðt; ξÞ ¼ 6μA
S3G

¼ 6μ

S3

�
1þ F

G

�
: ð25Þ

The solutions of (22) and (24) can be expressed in
parametric form in the cases of a vanishing cosmological
constant (see Appendix B), and for class II with k0 ¼ 0, but
Λ ≠ 0, see [40].
The model is separated into two classes as follows:

1. Class I, β;ξ ≠ 0 in (20)

For this class,

S ¼ Sðt; ξÞ; with S;ξ ≠ 0; ð26aÞ
f� ¼ f�ðt; ξÞ; T ¼ T ðξÞ; μ ¼ μðξÞ; ð26bÞ

and

eν ¼ fðξÞ½c0ðξÞðς2 þ ϰ2Þ
þ 2c1ðξÞςþ 2c2ðξÞϰ þ c3ðξÞ�−1; ð26cÞ

while fðξÞ is completely arbitrary, the ci functions are
subject to the conditions:2

c0c3 − c21 − c22 ¼ ϵ=4; ϵ ¼ 0;�1; ð26dÞ
A ¼ fν;ξ − k0βþ; W2 ¼ ðϵ − k0f2Þ−1; ð26eÞ

βþ ¼ −k0fμ;ξ=ð3μÞ; β− ¼ fT ;ξ: ð26fÞ

The present parametrization was originally formulated by
Goode and Wainwright by assuming Λ ¼ 0. Since then, the
GW parametrization of class I has been restricted to the case
without a cosmological constant. In Appendix A, we provide
the formal proof that the GW parametrization is valid for
Λ ≠ 0 as well, filling a gap in the literature on this topic.
Szekeres models predict an inhomogeneous initial (past)

singularity, the “big bang time,” T ðξÞ, one of the free
functions of the model. Note that it is not correct to
associate this singularity with the physical big bang since
these dust cosmological models are not valid in a radiation-
dominated era. Due to the relation between T ;ξ and the
decaying mode of structure [51], some authors assume a
simultaneous bang time condition to have a “purely
growing mode” [27,28,32]. The absence of the decaying
mode is motivated by its negligible contribution in the
matter-dominated era.3 However, for the sake of math-
ematical generality, we will not make any restricting
assumption on T in the present paper.

2. Class II, β;ξ = 0 in (20)

This class has a much simpler mathematical structure
than the previous one:

S ¼ SðtÞ; f� ¼ f�ðtÞ; T ; μ ¼ const:; ð27aÞ
k0 ¼ 0;�1; W ¼ 1; ð27bÞ

eν ¼
�
1þ k0

4
ðς2 þ ϰ2Þ

�
−1
; ð27cÞ

2As defined in (26f), our function β− differs by a factor of μ
from its equivalent in the original GW parametrization,
β− ¼ fT ;ξ=ð6μÞ. Since the solutions of Eq. (24) are determined
up to a multiplicative function of ξ, we have the freedom to
choose that function under the criterion of simplicity. The physics
of the solution is not contained in the function β− alone, but in the
expression for scale factor G ¼ A − f−β− − βþfþ. See Ref. 20 in
[49] and Appendix A.

3For RZA this is realized by the alignment betweenUa andWa

after recombination (see the slaving condition imposed on initial
data that leads to the strict absence of the decaying mode in the
matter-dominated regime, Sec. II B). The analysis of the radia-
tion-dominated epoch shows that matter perturbations grow
logarithmically during this phase leading to this alignment or
slaving of the motion to the gravitational field [52].
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with

A ¼
(
eν½c0ðξÞð1 − k0

4
ðς2 þ ϰ2ÞÞ þ c1ðξÞςþ c2ðξÞϰ� − k0βþ; for k0 ¼ �1;

c0ðξÞ þ c1ðξÞςþ c2ðξÞϰ − βþðξÞðς2 þ ϰ2Þ=2; for k0 ¼ 0;
ð27dÞ

ci and β� are arbitrary functions of ξ. Here, the constant μ
satisfies

3μ ¼ 4πϱbðtiÞ; ð28Þ

and T can be set to zero without loss of generality,4 setting
the initial singularity at t ¼ 0 (for cosmological applica-
tions we are usually interested in t ≥ ti > 0). Then, Eq. (25)
can be rewritten as follows:

ϱðt; ξÞ ¼ ϱbðtÞ
�
1þ F

G

�
; ð29Þ

where we can identify the background density (ϱb) and its
exact “perturbation” (deviation: δ ¼ ϱ=ϱb − 1 ¼ F=G, the
usual variable of cosmological perturbation theory).
As was noted by Goode and Wainwright [49], one of the

remarkable properties of the Szekeres solutions in this
representation is the role of equations (22) and (24)
governing the evolution. The first one is the well-known
Friedmann equation (for fixed ξ in class I), while the
second one is the same equation that in standard linear
perturbation theory leads to the growing and decaying
modes. The latter admits a first integral in the form [40,49]:

_S
S

_F −
ðk0 − 3μ=SÞ

S2
F ¼ C

S2
; with C ¼ βþ; ð30Þ

where the presence of an inhomogeneous term in the
differential equation is due to the growing contribution
of F , βþfþ. The constant C arises as residual freedom of
the integration of (24) and its value cannot be determined
from the line-element alone. The condition C ¼ βþ is more
than a mathematical simplification, it can be obtained from
the Einstein equations.5

Strictly speaking, the Goode and Wainwright formu-
lation does not fully cover the Szekeres models [49]. Since
the success of their reparametrization relies on expressing
the line-element in terms of the growing and decaying

linear modes on an FLRW universe model, solutions with
an associated vacuum background (μ ¼ 0) are left out of
the description. Unless otherwise specified, in this paper,
we will refer to Szekeres class II as those solutions included
in the GW formulation, excluding the “PII” and “HIII”
cases of [54], which, however, exhibit interesting math-
ematical properties [55].

B. FLRW limit and Cartesian coordinates

We first note that ξ ¼ ðς; ϰ; ξÞ is the coordinate system in
which the Szekeres spatial metric is diagonal, but they are
not coordinates of any of the standard representations of the
FLRW solution. In fact, the FLRW models emerge in an
unfamiliar form in this coordinates when βþ ¼ β− ¼ 0
(necessary and sufficient conditions for the Friedmann
limit) [11,12,49]. In ξ-coordinates, the FLRW line-element
is described by the following coframe set:

η̄1 ¼ aeνdς; η̄2 ¼ aeνdϰ; η̄3 ¼ afWν;ξdξ; ð31Þ

for class I; and

η̄1 ¼ aeνdς; η̄2 ¼ aeνdϰ; η̄3 ¼ aĀdξ; ð32Þ

for class II. In the above expressions,

Ā≡Ajβ�¼0; ð33Þ

and we have replaced S by the FLRW scale factor, aðtÞ.
An appropriate selection of the arbitrary functions can

lead to the FLRW limit in a more specific coordinate
system. In particular, the choices [11,12]

c1 ¼ c2 ¼ 0; c3 ¼ 4c0 ¼ 1; f ¼ ξ ¼ r; ð34Þ

for class I, and,

c0 ¼ c2 ¼ 0; c1 ¼ 1; ð35Þ

for class II, reduce the line-element to forms which can be
transformed to Cartesian coordinates by the changes of
coordinates (C3) and (C12) (see Appendix C). Thus, the
FLRW coframe set takes the trivial form η̄i ¼ aðtÞdXi.
One may wonder why not working in Cartesian coor-

dinates from the very beginning. There are two main
reasons for not doing so: first, in the diagonal coordinate
system, we can undertake the analysis without additional
non-diagonal terms hindering the interpretation of the

4This assumption does not impose any restriction on the
decreasing mode. For class II, β− is an arbitrary function, in
contrast to class I where β− ∝ T ;ξ.

5As was shown in [40], C ¼ βþ can be obtained directly from
the Einstein equations, and the term C=S2 represents an inho-
mogeneous curvature. Although most of the analysis was
restricted to the case k0 ¼ 0 of the class II models, the steps
leading to (30) in Appendix B of [40] can be easily generalized to
the whole family of Szekeres models. See also [3] for similar first
integrals of Eq. (9) in RZA and [53] for a perturbative analysis.
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results. Second, we do not have a global transformation to
take the FLRW model in the GW representation to
Cartesian coordinates. Instead, we need to impose addi-
tional assumptions [Eqs. (34) and (35)]. Although we argue
that these assumptions can be seen as a particular choice of
coordinates of the FLRW limit, essential physics could be
lost. For instance, the Szekeres dipole of class I is related to
the functions ci; setting them to fixed values imposes
significant restrictions on the dipolar anisotropy.

C. One motivation of this work: Kasai’s statement

So far we have presented the most fundamental aspects
of RZA and Szekeres solutions by separating the respective
classes. Masumi Kasai [6] pointed out a relation, sug-
gesting that the trace-part of RZA is contained as a
particular case within the class II of Szekeres models with
k0 ¼ 0. Particularly, Kasai states that this subfamily sat-
isfies “the linearized constraint equation” of RZA, leaving
open the questions of whether such a relation holds exactly
or whether it is strictly linear, and also whether there are
other subcases of the Szekeres solutions contained within
RZA. Kasai has also restricted the RZA model to the
consideration of the coframe deformation, i.e., he does not
functionally extrapolate variables other than the density,
e.g., he proposes to linearize the metric functional (6). In
the following sections, we will address these issues by a
direct comparison of the line-elements.

IV. SZEKERES EXACT SOLUTIONS
AS RELATIVISTIC LAGRANGIAN

PERTURBATIONS

To relate the Relativistic Lagrangian formalism to the
Szekeres exact solutions, we will take the following steps:
(1) Find the set of coframes in the orthonormal Cartan

basis η̃ai , where the metric is diagonal,

ð3Þg ¼ δab η̃a ⊗ η̃b: ð36Þ

Here, these coframes can be considered, without loss
of generality, diagonal as well.

(2) Obtain the Gram’s matrix, identified with the initial
metric, cf. Appendix H:

Gab ¼ δcd η̃
c
ajt¼ti η̃

d
bjt¼ti : ð37Þ

Then, the coframes can be formally rewritten as in
(3), ηai ¼ aðtÞðδai þ Pa

iÞ,

ð3Þg ¼ δcd η̃c ⊗ η̃d ¼ Gab ηa ⊗ ηb: ð38Þ

(3) Split the spatial Szekeres metric into the initial
metric (Gij) and its exact deviation (hij):

gij ≡ a2ðtÞγij ≡ a2ðtÞðGij þ hijÞ: ð39Þ

Here, hij vanishes at the initial time ti.
(4) Solve the equations for the deformation field,

hij ≡GabðδaiPb
j þ δbjPa

i þ Pa
iPb

jÞ; ð40Þ

resulting from equating the Szekeres and RZA
metric components in the ξ-coordinates.

Note that Step 1 leads to the coframes in the coordinates ξ,
where the FLRW line-element takes an unfamiliar form.
However, although the relationship between these and the
Cartesian coordinates is not straightforward, there exists a
spatial transformation taking the line-element from one
coordinate system to another, with the fluid’s 4-velocity
being in both cases a vector normal to the spatial
hypersurfaces.
To obtain the deformation field of the Szekeres model,

let us follow step by step the recipe proposed above.
Equation (36) provides a link between the coframes and the
Szekeres line-element,

½gii� ¼ ½ðη̃iiÞ2� in ξ-coordinates; ð41Þ

where “[]” denotes the component of the element with no
summation implied, and the remaining (off-diagonal)
equations are identically satisfied with ηji ¼ 0 (j ≠ i).
Then,

η̃1 ¼ Seνdς; η̃2 ¼ Seνdϰ; η̃3 ¼ SGWdξ; ð42Þ

where S, eν, G and W were given in Sec. III for each class.
This is the farthest we can go without splitting the

analysis into the classes. The connection with RZA requires
a time-dependent conformal FLRW scale-factor, Eq. (6).
While in class II such a scale factor emerges naturally, in
class I, the conformal metric function depends on both
temporal and spatial coordinates, which notably hinders the
connection between both solutions, but also hints to a
possible generalization of RZA.

V. SZEKERES CLASS II AND RZA

We begin by examining the models of class II, because
their simple mathematical structure allows for a straightfor-
ward connection with RZA. In these spacetimes, the
surfaces fðt; ξÞ ¼ const:g have constant curvature; how-
ever, the plane, spherical or hyperbolic symmetry is lost for
an unrestricted set of the arbitrary functions, leading to the
characteristic absence of killing vectors in the Szekeres
solutions, but pointing to certain quasi-symmetries [8,11].
In what follows, we will denote S ≡ aðtÞ to make more
explicit its relation to the Friedmannian scale factor. Also,
the time of the initial singularity (“bang time”) will be set to
zero, T ¼ 0.
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For class II, the coframes (42) take the following form:

η̃1 ¼ aðtÞeνdς; ð43aÞ

η̃2 ¼ aðtÞeνdϰ; ð43bÞ

η̃3 ¼ aðtÞGdξ ¼ aðtÞðA − F Þdξ
¼ aðtÞðÃ − F̃ Þdξ; ð43cÞ

where

Ã≡A − F i; F̃ ≡ F − F i; ð44aÞ

with F i ¼ F ðti; ξÞ: ð44bÞ

Next, Gram’s matrix is determined by substituting the
previous expressions into (37),

Gab ¼ Diag½e2ν; e2ν; Ã2�; ð45Þ

with aðtiÞ ¼ 1.
By comparing the line-elements (6) and (21) and using

(40), we find that the only nontrivial component of hij is
given by

h33 ¼ −2Ã F̃ þF̃ 2 ¼ Gabðδa3Pb
3 þ δb3Pa

3 þ Pa
3Pb

3Þ
¼ 2Ã2P3

3 þ Ã2ðP3
3Þ2; ð46Þ

which yields:

P3
3 ¼ −F̃=Ã: ð47Þ

Hence, P3
3 is the only nonvanishing element of the

deformation field in these coordinates. So far, this is just
a convenient ansatz. The connection with RZA not only
involves the decomposition of the spatial metric into a
bilinear quadratic form as in (6), but also the matching
of the temporal evolutions. To address this issue, we first
note that

P ¼ P3
3 ¼ γþfþ − γ−f− − ðγþfþðtiÞ − γ−f−ðtiÞÞ; ð48Þ

where we have defined γ� ≡∓β�=Ã.
In this way, the temporal evolution of the Szekeres

deformation field is entirely contained in the functions
f�ðtÞ, the growing and decaying solutions of (24). It is
remarkable that this equation differs from Eq. (9) only by a
nonhomogeneous term. However, from the theory of
second-order ODEs, the solution of the nonhomogeneous
equation (9) can be expressed as the sum of the general
solution of the homogeneous equation and a particular
solution of the nonhomogeneous one, fp,

P ¼ ζþfþ þ ζ−f− þ fp: ð49Þ

The functions ζ� are constant in time, but can depend on
the spatial coordinates. The choice for fp that matches
RZA initial data is:

fp ¼ −W=ð4πϱbðtiÞÞ; ð50Þ

whereW is the trace of the generalized Newtonian peculiar-
acceleration gradient, defined further below in terms of
Szekeres functions.
By a direct comparison of the trace-part evolution of the

deformation fields, Eq. (7) for RZA and (49)–(50) for
Szekeres, we find:

ζþ ¼ γþ ¼ −βþ=Ã; ζ− ¼ −γ− ¼ −β−=Ã; ð51aÞ

γþfþðtiÞ − γ−f−ðtiÞ ¼ W=ð4πϱbðtiÞÞ; ð51bÞ

γþ _fþðtiÞ − γ− _f−ðtiÞ ¼ U; ð51cÞ

γþf̈þðtiÞ − γ−f̈−ðtiÞ ¼ W − 2HðtiÞU: ð51dÞ

The only nontrivial components of the generalized initial
peculiar-velocity and peculiar-acceleration gradients are
U3

3 and W3
3, so that U ¼ U3

3 and W ¼ W3
3. These

initial data strictly obey the constraint equations (8), which
are propagated during the temporal evolution since the
Szekeres models are exact solutions.
At last, we are in the position to discuss the reasoning

behind the approach followed in this paper. The GW
formulation of the Szekeres solutions resembles the usual
formalism of cosmological perturbations: the solution splits
into a background and (exact) deviations thereof. Such
deviations obey the well-known equation for the evolution
of the linear modes on an FLRW background. This feature
was and will also be here exploited to establish a formal
relation between RZA and the Szekeres solutions.
The current analysis can be regarded as a reinterpretation

of the Szekeres solutions in terms of the initial metric
perturbations (Gram’s matrix) and a deformation field: the
RZA model variables. Aside from the associated back-
ground evolution, the nontrivial dynamics of Szekeres class
II is contained in the metric function G ¼ A − F , where
F ≡ 0 unequivocally determines the Friedmann limit. This
intuitively justifies why we have only one nontrivial
component of the deformation field. The results obtained
in this section show that RZA contains the whole class II of
Szekeres models as a particular case, and also provide
a reinterpretation of the Szekeres arbitrary functions in
terms of the generalized initial Newtonian peculiar-velocity
and -acceleration gradients.
It is worth noting that no assumption has been made

on the associated background, making the analysis
valid for any background, either curved, EdS, or ΛCDM.
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Our discussion proves and generalizes the remark made by
Kasai in [6], where he states that the Szekeres solution of
class II with an associated EdS background satisfies “the
linearized constraint equation” of RZA.

A. Example: Einstein-de Sitter background

For an Einstein-de Sitter associated background, the
conformal scale factor and the growing and decaying
solutions of (24) are given by

aðtÞ ¼ ðt=tiÞ23; fþ ¼ ðt=tiÞ23; f− ¼ ðt=tiÞ−1: ð52Þ

From the Szekeres deformation field we can identify the
arbitrary functions with the initial traces of the generalized
Newtonian peculiar-velocity and peculiar-acceleration gra-
dients,

2γþ þ 3γ−
3ti

¼ U ¼ U3
3; ð53aÞ

2ðγþ − γ−Þ
3t2i

¼ W ¼ W3
3: ð53bÞ

In Eq. (52), the constant ti remains undetermined as a
residual freedom of the integration of Eq. (24). In particu-
lar, the first integral (30) sets the arbitrary constant ti
to t2i ¼ 10=9.

B. A note on admissible initial data for class II

In perturbative settings, where deviations off a preas-
sumed background are imposed, such deviations have
to obey certain integral constraints. In order to make sense
to speak of a background, the deviations thereof have to
average out on some large scale of homogeneity LH.
We may begin to look at the following constraint on the

RZA coframe set (3):

Z
DH

Pa
iJd3X¼ 0; J ¼

ffiffiffi
g

pffiffiffiffi
G

p ; gðX; tiÞ≡G; ð54Þ

where DH denotes a spatial domain of averaging corre-
sponding to the homogeneity scale LH, d3X ¼ ffiffiffiffi

G
p

d3ξ, and
Jd3X is the Riemannian volume element.
Applied to the class II of Szekeres models, it turns out

that the integral constraint (54), which is motivated by
perturbations on a flat space, J ¼ 1 (see [56] [Eq. (26c)]),
is not correct in a Riemannian space. One can con-
vince oneself of this fact by looking at the trace of the
integrand and noticing that it splits into a3

R
DH

Pd3X and

a3
R
DH

P2d3X. The final expression is a sum of linearly
independent functions that vanishes if only if the defor-
mation field vanishes identically (valid in any coordinate
system).

The search for integral constraints on the initial data
takes us to the backreaction problem, i.e., the property
that deviations average out on the scale LH is equivalent
to proving that the kinematical backreaction QDH

(see
Appendix D) vanishes, leading to our first lemma.

Lemma 1. Given a compact domain of homogeneity,
DH, the vanishing of h _P=JiDH

is a necessary and sufficient
condition for the absence of backreaction on DH:

QDH
¼ 0 ⇔

�
_P
J

�
DH

¼ 0 ðfor class IIÞ: ð55Þ

Here, we have introduced the spatial average of a scalar-
valued field on a compact domain D, which is defined as
[57]:

hΨiD ¼ 1

VD

Z
D
ΨJd3X; ð56aÞ

with VD ¼
Z
D
Jd3X: ð56bÞ

Proof. The backreaction source term (on an arbitrary
compact domain D) is given by [57]

QD ≡ 2hIIiD −
2

3
hIi2D ð57aÞ

¼ 2

3
ðhΘ2iD − hΘi2DÞ − 2hσ2iD; ð57bÞ

where σ2 ≡ 1
2
σijσ

j
i is the rate of shear, and Θ and σij are

the expansion scalar and shear tensor. Substituting their
functional expressions (Eq. (70a) and (70b) further below)
we obtain, cf. Appendix E:

QD ¼ −6hΣi2D ≤ 0; ðfor class IIÞ; ð58Þ

with Σ≡ −ð1=3Þð _P=JÞ. ▪
This lemma provides us with a workable integral

constraint for a domain of homogeneity, D≡DH:
Lemma 2. The vanishing of the average of _P=J on

the homogeneity scale LH is a necessary and sufficient
condition for the vanishing of P=J on DH:�
P
J

�
DH

¼ 0 ⇔

�
_P
J

�
DH

¼ 0 ðfor class IIÞ: ð59Þ

Proof. For this class, all relevant functions split into a
temporal and spatial dependence; then, the integral con-
straints hP=JiDH

¼ 0 and h _P=JiDH
¼ 0 can be written

as IþqþðtÞ þ I−q−ðtÞ ¼ 0 and Iþ _qþðtÞ þ I− _q−ðtÞ ¼ 0,
respectively, where I� are constants arising from the spatial
integration. Since q� and _q� are linearly independent
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functions, each constraint requires that I� ¼ 0, which
ensures their simultaneous fulfillment and proves the
lemma. For an alternative and more formal proof based
on the commutation rule, see Appendix E. ▪
These integral constraints can be traced back to the

assumption of setting the average values of density and
curvature equal to their FLRW values. We will show that
their subsequent propagation preserves these properties.
We formalize this in the Lemma below, providing a
physical meaning to the vanishing of kinematical back-
reaction for class II.

Lemma 3. The integral constraints (59) are equivalent
to the following conditions:

ðiÞ hϱiDH
¼ ϱbðtÞ; ð60aÞ

ðiiÞ hRiDH
¼ 6

k0
a2

: ð60bÞ

This lemma is proved in Appendix F. In the above
equations, ϱbðtÞ and k0 are the Friedmannian quantities
appearing in the equation for the conformal scale factor.
The conservation law for the curvature is a natural result

of the vanishing of kinematical backreaction. Setting the
initial averaged curvature (on DH) equal to the initial
FLRW constant value, its conservation law follows from
QDH

¼ 0 and the integrability condition, Eq. (D2d).
There is the freedom to assume corresponding offsets in

the model initial data, but if these offsets are set to zero, the
average values of density and curvature equal the FLRW
values at all times as a result of the conservation laws for
the average density and average curvature. However, if we
adopt the point of view that, at early stages, the Universe
can be considered as a perturbation of an FLRW model,
such offsets will not be justified.

Proposition 1. The integral constraint (54) finds its
generalization to the Szekeres class II geometry in�

P
J

�
DH

¼ 0 ðfor class IIÞ: ð61Þ

If the deviation functions are integrable, i.e., if they are
exact one-form fields, Pa ¼ dFa, then this integration
results in boundary terms. Such a procedure is commonly
imposed in Newtonian simulations, where the deviation
fields Fa are subject to periodic boundary conditions, i.e.
assuming a spatial 3-torus topology on the scale LH [58].
Integration is then over the whole boundary-free space
DH ≕Σ. Nonvanishing averages in the interior of the
3-torus model are commonly called cosmic variance.
The integrability of our deformation field can be easily

verified, if we take into account that the general expression,

Pa ¼ Pa
idXi; ð62Þ

can be reduced to

P3 ¼ P3
3

ffiffiffiffiffiffiffiffi
G33

p
dξ ¼ −ðF − F iÞdξ

¼ −fβþðξÞðfþðtÞ − fþðtiÞÞ
þ β−ðξÞðf−ðtÞ − f−ðtiÞÞgdξ: ð63Þ

Hence, the deviations are integrable, Pa ¼ dFa, with
F1 ¼ F2 ¼ 0, and

F3 ¼ −
	
ðfþðtÞ − fþðtiÞÞ

Z
βþðξÞdξ

þ ðf−ðtÞ − f−ðtiÞÞ
Z

β−ðξÞdξ


: ð64Þ

It is interesting that the same result was found for the RZA
model by employing Hodge–de Rham theory [4], while it
should be noted that the whole solution is not integrable
due to the nonintegrability of the initial metric, allowing for
nonvanishing curvature and curvature evolution.

C. Cosmological lattice model

The fulfillment of Eq. (61) in Proposition 1 can be
ensured by a proper choice of the initial conditions.
Once the integral constraint is satisfied at some initial
time, it propagates throughout the evolution, guaranteeing
the conservation of the total mass, MDH

≡ hϱiDH
a3DH

, and
the Yamabe functional, YDH

≡ hRiDH
a2DH

, on a certain
scale of homogeneity LH, while matching the correspond-
ing FLRW evolution.
Referring back to the Szekeres variables introduced in

Sec. III, we find that (61) reduces to the vanishing of the
integrals of β�ðξÞ on DH.

Lemma 4. In Szekeres class II solutions, the necessary
and sufficient condition for zero backreaction on DH is
expressed as Z

DH

β�ðξÞdξ ¼ 0: ð65Þ

Appendix F provides the proof of Lemmata 3 and 4 at
one go. The conditions (65), (59), (60), and (61) are
equivalent, and they reduce the average model to the
FLRW background on the scale of homogeneity LH.
Furthermore, the local requirement for the FLRW limit,
β�ðξÞ ¼ 0, finds in (65) its generalization to the Friedmann
limit of the average solution.
Given this integral property, we can build an idealized

but exact lattice model of the Universe by matching
periodic cells infinitely extended in ς and ϰ but satisfying
(65) on ½ξðiÞ; ξðiþ1Þ�, see Fig. 1. Such cells can be matched
across hypersurfaces Γi: ξ ¼ ξðiÞ ¼ const., described by the
comoving coordinates yc ¼ ðt; ς; ϰÞ. Denoting the coordi-
nates of our four-dimensional manifold by xν ¼ ðt; ς; ϰ; ξÞ,
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we find the induced metric on Γi (first fundamental
form) [59]:

hcd ¼ gμνeμceνd ðonΓi∶ξ ¼ ξðiÞ ¼ const:Þ

¼ Diag

�
−1;

a2

1þ k0
4
ðς2 þ ϰ2Þ ;

a2

1þ k0
4
ðς2 þ ϰ2Þ

�
;

with eνb ¼
∂xν
∂yb ¼ δνb; ð66Þ

where b, c, d ¼ 0, 1, 2 and μ, ν ¼ 0, 1, 2, 3. On the other
hand, the extrinsic curvature (second fundamental form)
identically vanishes on Γi:

Kcd ¼ nμ;νeμceνd ¼ 0; ðonΓiÞ: ð67Þ

Above, n is the unitary vector normal to Γi,

nν ¼ aðtÞGδ3ν; ð68Þ

where G, appearing in the coframe set (43c), was defined in
Sec. III.
Hence, both the first and second fundamental forms are

continuous across the matching hypersurfaces (Γi: ξ ¼ ξðiÞ)
as long as we take the same associated background on the
whole manifold. Strictly speaking, our model comprises a
set of periodic deviations matched along surfaces of
constant comoving coordinates ξ of a fixed background
model. Of particular relevance here is that such a back-
ground and the deviations altogether make up an exact
solution of the Einstein equations. Similar models, but in
the context of a generalized Szekeres class II solution with
heat flow, are examined in [60].
The cosmological lattice model introduced here has its

counterpart in the common architecture of Newtonian

simulations. The potential to analyze the large-scale proper-
ties of the Universe is, however, limited due to the
requirement of vanishing backreaction, as in Newtonian
torus-models [58]. However, in contrast to Swiss-cheese
models, there is no need to include FLRW regions to match
the inhomogeneous cells. Instead, the FLRW model
emerges as an average property of the solution. Each cell
is made up of expanding and collapsing regions (under-
going pancake collapse), whose dynamics are described by
the Szekeres exact solution reinterpreted in the language of
RZA (which provides a straightforward connection to
Newtonian models of structure formation).

D. Functional evaluation and correspondence with
Newtonian exact solutions

So far, our study has been restricted to comparing
the line-elements and examining their time evolution.
However, a complete and consistent program should
include an analysis of the functional evaluation, one of
RZA’s most powerful tools, where the Zel’dovich extrapo-
lation idea [61], is extended to all the relevant fields (not
only the density) [41,62].
One interesting feature of these models is the identically

vanishing of the second and third principal scalar invariants
of the deformation matrix, Jð2Þ and Jð3Þ in Eqs. (13)–(15);
then:

J ¼ a3ð1þ Jð1ÞÞ ¼ a3ð1þ PÞ; ð69aÞ

⇒ J ¼ J=a3 ¼ 1þ P; ð69bÞ

which includes only terms up to first-order in the defor-
mation field. This exclusive appearance of the first invari-
ant, known as “exact body of RZA,” is a characteristic of
the anisotropic pancake collapse as a result of the domi-
nance of the first invariant (see [63] [Appendix A] for a
detailed discussion). Note that the second and third
invariants do not vanish for a general RZA model.
Similar results are valid for the other functionals, where

the Szekeres quantities are linear in the deformation field,
Pa

i, while retaining the determinant exact (linear in Pa
i as

well). In addition to the density ϱ ¼ ϱiJ−1, the functionals
of the scalar expansion and shear tensor read:

Θ ¼ 3
_a
a
þ

_P
J
; ð70aÞ

σij ¼
1

J

�
_Pi

j −
1

3
_Pδij

�
: ð70bÞ

Particularly, the shear tensor simplifies to

σij ¼ Σ × Diag½1; 1;−2�; ð71aÞ

FIG. 1. Cosmological lattice model built from Szekeres class II
solutions. Spatial cells comoving with a given background model,
and on a scale where the integral constraint is satisfied, can be
matched through ξ ¼ const: surfaces. Each cell consists of a fully
inhomogeneous region described by the Szekeres class II exact
solution. The FLRW model emerges by construction from the
spatial average of the solution on the homogeneity scale LH .
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Σ≡ −
1

3

_P
J
: ð71bÞ

The expansion tensor can be reconstructed from the
above expression for the expansion scalar (its trace) and the
shear tensor (its antisymmetric trace-free part),

Θi
j ¼ σij þ

1

3
Θδij ¼ Diag

�
_a
a
;
_a
a
;
_a
a
þ

_P
J

�
; ð72Þ

which splits into the background and the exact deviation
contributions. As we will see throughout this section, this
feature is not exclusive to the expansion tensor but all the
relevant Szekeres functionals. The determinant and scalar
curvature have the same form, while the trace-free variables
(the trace-free part of the Ricci tensor, the shear and
gravitoelectric part of the Weyl tensor) only contain the
deviation contribution, since they vanish in the background.
However, focusing on the deviation and examining the
peculiar-expansion tensor, we find that it has only one
nontrivial component,

θij ≡ Diag½0; 0; _P=J�; ð73Þ

reinforcing our initial picture of a locally one-dimensional
deformation in a homogeneous universe model. Recall that
this is the description seen from the geodesic and irrota-
tional frame coinciding with the eigenframe of the expan-
sion tensor (and, in turn, coplanar with the gravitoelectric
Weyl tensor eigenframe).
While the gravitomagnetic part of the Weyl tensor

vanishes identically, the functional of the gravitoelectric
part is diagonal, and its only nonvanishing scalar reads:

Ei
j ¼ Ψ2 × Diag½1; 1;−2�; ð74aÞ

Ψ2 ≡ 1

3J

	
2
_a
a
_Pþ P̈



: ð74bÞ

We remark that this could have been the starting point of
the paper: once we consider an irrotational dust fluid model
with a fluid-flow foliation and a locally one-dimensional
deformation field (as in this case), the above exact func-
tionals invariantly characterize the Szekeres solutions (see
the coordinate-independent definition of these solutions
enunciated in Sec. III).
On the other hand, the Ricci tensor and scalar curvature

are given by

Ri
j ¼

8>><
>>:

2 k0
a2 −

1
J ð3 _a

a
_Pþ P̈Þ; i ¼ j ¼ 1; 2;

2 k0
a2 −

2
J ð3 _a

a
_Pþ P̈Þ; i ¼ j ¼ 3;

0; otherwise;

ð75Þ

and

R ¼ 6
k0
a2

−
4

J

�
3
_a
a
_Pþ P̈

�
; ð76Þ

from which we can determine the trace-free symmetric part
of the Ricci tensor:

τij ¼ Ri
j −

1

3
Rδij ¼ T × Diag½1; 1;−2�; ð77aÞ

T ≡ 1

3J

�
3
_a
a
_Pþ P̈

�
: ð77bÞ

All of the above functionals are exact and yield the well-
known Szekeres quantities when the deformation field is
substituted by its expression in terms of the Szekeres
functions, see Appendix H. Note that these functional
expressions are not strictly linear, as could be interpreted
from Kasai’s discussion in [6] since we keep the determi-
nant exact (i.e., we do not linearize expressions of the form
1=J ≡ ð1þ PÞ−1 ≉ 1 − P). This fact is unexpected, since
RZA arises from a perturbative analysis, and gives strong
support to the functional extrapolation of the perturbed
coframes, defined for all variables in [1].
The vanishing of the second and third invariants implies

a local one-dimensional kinematical motion without three-
dimensional symmetry. With this property, the Szekeres
class II solutions are the relativistic analog of the three-
dimensional class of Newtonian solutions examined in
[41]. Both solutions correspond to a class of locally one-
dimensional flow models and lead to the same nonlinear
evolution of dust structures, governed by the following
equation for the density contrast δ≡ ðϱ − ϱbÞ=ϱb;−1 ≤
δ < ∞:

δ̈þ 2H _δ − 4πϱbδ −
2

1þ δ
_δ2 − 4πϱbδ

2 ¼ 0; ð78Þ

which acquires a Lagrangian linear form for the variable
Δ≡ ðϱ − ϱbÞ=ϱ ¼ δ=ð1þ δÞ; −∞ < Δ < 1 [64,65]:

Δ̈þ 2H _Δ − 4πϱbΔ ¼ 0: ð79Þ

For Szekeres models, the previous equation is obtained
from the Raychaudhuri equation, after using the corre-
sponding (exact) functional evaluations [33,39], see [41]
for details on the Newtonian solution.
The preceding discussion can be summarized in the

following theorem.
Theorem 1. The class II of the Szekeres solutions

forms the general-relativistic analog of the locally one-
dimensional Newtonian solutions of [41], that are kine-
matically characterized by the vanishing of the second and
third principal scalar invariants of the peculiar-expansion
tensor at a FLRW background.
Remark. The Newtonian class of three-dimensional

solutions without symmetries is restricted to initial data
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that are composed of sets of potential two-surfaces with
vanishing Gaussian curvature, see [41,42]. In applications
it is difficult to find initial data that have no initial
singularities beyond the trivial case of plane symmetry
that corresponds to cylinders as special cases of surfaces
with vanishing Gaussian curvature. In view of this it is
evident that the use of this form of the solutions for generic
initial data finds its natural realization in the RZA approxi-
mation, where still the first principal scalar invariant of the
expansion tensor is dominating, but the higher invariants
are nonvanishing. We also note that this restriction does
not apply to Szekeres class I solutions, where several
applications of realistic initial data are possible [15–
21,23,26–28,31–38].

VI. SZEKERES CLASS I AND RZA

Turning now to the class I models, we may point out that,
unlike class II, this class does not admit a decomposition in
terms of separable functions, a necessary condition to
express the Szekeres models in the language of RZA.
The presence of a general scale factor, Sðt; ξÞ, and the
nonseparability of the solutions into space and time
functions break with the spirit of RZA. While the nine
coframe functions can still be considered as the only
dynamical field variables, their interpretation as a defor-
mation of a global background fails. We consider this fact
as a constructive hint on how the relativistic Lagrangian
perturbation scheme would have to be extended. This
extension points to the consideration of average properties
in order to define a “background” that interacts with the
inhomogeneities, i.e., that will include backreaction.
Despite these observations, we will stick to the math-

ematical structure explained in Sec. II and reinterpret the
field Pa

i as a local generalization of the RZA deformation
field in what follows.
For this aim, let us consider a formal coframe decom-

position of the class I line-element. With the proviso of the
spatial dependence of S and f�, the coframes (42) can be
written in a similar form to those of class II:

η̃1 ¼ Seνdς; ð80aÞ

η̃2 ¼ Seνdϰ; ð80bÞ

η̃3 ¼ SGWdξ ¼ SðA − F ÞWdξ

¼ SðÃ − F̃ ÞWdξ; ð80cÞ

where, as for class II, Ã≡A − F i and F̃ ≡ F − F i with
F i ¼ F ðti; ξÞ and Gram’s matrix is obtained from (37), but
here it is understood to relate to the initial metric by
SiðξÞGabðξÞ ¼ gijðti; ξÞ,

Gab ¼ Diag½e2ν; e2ν; Ã2W2�: ð81Þ

For this class, it is not in general possible to set the initial
scale factor to unity (as for class II), but instead, Sðti; ξÞ is a
generic function of ξ, SiðξÞ. Next, Eq. (40) leads to the
expression of the only nonvanishing component of the
“generalized” deformation field,

P3
3 ¼ −F̃=Ã; ð82Þ

which is formally equivalent to its homolog of class II.
So far, this approach is only an ansatz that resembles

RZA. To analyze its physical content, we can take
advantage of the silent property of Szekeres models, under
which each world line evolves independently of the others
and is characterized by local quantities.6 Then, for any
arbitrary world line (labeled by the comoving coordinates
ξ), the conformal scale factor,

SðtÞ≡ Sðt; ξÞjξ¼const:; ð83Þ
satisfies the Friedmann equation of an associated “local
background” with initial density,

4πϱbðtiÞ ¼ 3μðξÞjξ¼const:; ð84Þ
and k0. Consequently, the functions

f�ðtÞ≡ f�ðt; ξÞjξ¼const:; ð85Þ
can be identified as the growing and decaying modes of
structures on this “local background.” Remarkably, the
local quantities characterizing the world lines (density,
scalar expansion, shear and spatial parts of the Weyl
curvature) can be obtained from their respective functionals
of RZA.
This result gives rise to a corollary of Theorem 1 for the

class I solutions.
Corollary 1. The dynamics of the Szekeres class I

solutions corresponds to a constraint superposition of
nonintersecting world lines, each one being solution of
the “exact body” (i.e., Szekeres class II) of RZA, but with
different “local backgrounds”. Consequently, all relevant
quantities have the same local functional expressions as in
class II.
By “constraint superposition” we mean that this super-

position has to be globally consistent with Einstein’s
equations: the energy and momentum constraints have to
be satisfied at some initial hypersurface and propagated in
time. In this sense, all silent solutions are nonlocal. Locally,
these solutions are generated from the free function μðξÞ
which, for each fixed value of ξ, sets an associated “local
background” with its own local parameters, as well as the
“local growing and decaying modes.” A priori, there is no
global background, but we may construct one through a
suitable averaging operation.

6The silent property has been exploited to perform cosmo-
logical simulations beyond the Szekeres models [66–68].
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Finally, let us notice that for this class the growth of
structure is suppressed when a flat associated “local
background” is assumed, see Eq. (26f). We can avoid this
shortcoming by considering k0 ≠ 0, which would not
necessarily be in contradiction with a flat global back-
ground. To understand this, we may see the GW formu-
lation as a reparametrization of the original Szekeres
solution, where (in class I) the parameter k0 arises from
a rescaling of an arbitrary function kðξÞ: kðξÞ ¼ k0ϕ2ðξÞ;
see Appendix A. Since Szekeres models admit regions with
positive and negative kðξÞ matched by others with
kðξÞ ¼ 0, this property remains valid (although somewhat
hidden) in the GW parametrization.

A. Functional evaluation

The discussion and formulas presented in Sec. V C apply
equally to class I, with the proviso that the results are only
valid for each fluid-element world line. As was discussed
above, these models can be reinterpreted as a superposition
of local solutions of RZA with space-dependent or asso-
ciated “local backgrounds.”

Remark. In class I, all relevant fields have locally the
same functional expressions as in class II.
The functional evaluation is carried out as in class II: it is

only necessary to replace the global scale factor aðtÞ by the
space-dependent scale factor Sðt; ξÞ in (69)–(77). Here as
well, all functionals are exact and yield the well-known
Szekeres quantities when the deformation field is substi-
tuted by its expression in terms of the Szekeres metric
functions, see Appendix H.
Notably, for this class, the density contrast satisfies an

equation equivalent to (78), but in terms of averaged
quantities [33,39,69], indicating again that averaging could
play a key role in evaluating these models.

B. A note on admissible initial data for class I

As we have seen, in contrast to class II, the class I
dynamics cannot be expressed in terms of a deformation
field with respect to a global background. The nontrivial
spatial dependence of the conformal scale factor introduces
another degree of freedom, spoiling the basic architecture
of Lagrangian perturbations.
To gain a better insight into this issue, let us examine the

backreaction term and try to impose integral constraints on
the deformation field (as we did for the class II). Using the
kinematical functionals for the class I (which have the same
mathematical structure as their equivalents of class II), we
obtain for the backreaction functional:

1

6
QD ¼

�� _S
S

�2�
D
−
� _S
S

�2

D
− hΣi2D

þ 2

� _S
S

�
D
hΣiD − 2

� _S
S
Σ
�

D
: ð86Þ

In analogy to class II, a natural choice for an integral
constraint could be, hΣiDH

¼ h _P=JiDH
¼ 0, removing only

two backreaction terms in (86) on the homogeneity scale
LH. But, this constraint does imply the vanishing of neither
hP=JiDH

¼ 0, hP=JiDH
¼ 0 nor h _P=JiDH

¼ 0. However,
by inspecting the commutation rule, we can convince
ourselves that none of these conditions leads to the
vanishing of the remaining terms in QDH

.
All this suggests that we have to follow a more general

approach for class I, where constraints are imposed on the
entangled set of independent functions. An illustrative
example comes from the parabolic LTB model (a subclass
of the Szekeres class I solutions) averaged on a spherical
domain B, for which QB ¼ 0, but neither hΣiB ¼ 0 nor the
independent terms in (86) trivially cancel, see Appendix I.

VII. CONCLUDING REMARKS

We have thoroughly investigated the connection of the
Szekeres exact solutions with relativistic Lagrangian per-
turbation theory in terms of its first-order member RZA.
For the analysis, we restricted the RZA models to those
with an irrotational dust source and a fluid-orthogonal
foliation of the spacetime, necessary conditions to be
compatible with the standard formulations of the
Szekeres irrotational dust solutions. In particular, we
employed a formulation of these solutions due to Goode
and Wainwright, where the metric is written in terms of an
associated background and exact deviations thereof.
Within this framework, we found that the class II

solution is exactly contained in RZA as a particular case
known as “exact body,” where the second and third
principal scalar invariants of the deformation matrix iden-
tically vanish, and the dynamics is characterized by the
exclusive appearance of the first invariant. A similar result
holds for the peculiar-expansion tensor. Remarkably, this
class constitutes the general-relativistic analog of the
locally one-dimensional Newtonian solutions introduced
in [41], which are likewise characterized by the vanishing
of the second and third principal scalar invariants of the
peculiar-expansion tensor.
All Szekeres relevant fields are reproduced by the exact

body functionals of RZA. This reinforces our initial
assertion that the RZA functional evaluation, an extension
of the Zel’dovich extrapolation idea to any dynamical
quantity, is more than a mere perturbative evaluation.
The nonlinearities encoded in the functional definitions
allow to cover exact nonlinear Szekeres solutions.
For class II, the integral constraint hP=JiDH

¼ 0 is a
necessary and sufficient condition for the vanishing of
kinematical backreaction on a domain of homogeneity DH,
providing sense to a physical background solution and
exact fluctuations. This constraint can be traced back to the
conservation laws for the FLRW density and curvature,
which are also properties of the inhomogeneous class II
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model on DH. The presence of the backreaction term (58),
is thus, for this class, a consequence of an offset in the
model initial data, which in the context of the early
Universe requires fine-tuning of initial conditions. It turns
out that spatial cells satisfying the integral constraint can be
smoothly matched across surfaces of constant comoving
coordinates. Proceeding along these lines, we obtained a
cosmological lattice model that mimics the Newtonian
periodicity conditions, where the average of periodic
(exact) fluctuations cancels at a certain scale of inhomo-
geneity (LH), giving place to an isotropic and homo-
geneous background solution.
These assertions are not valid for class I, which has a

more complex mathematical structure. Despite this more
general property, the global solution can be thought of as a
superposition of world lines, where each one obeys the
RZA model equations. For a clear understanding of this
interpretation, it is essential to bear in mind that Szekeres
models belong to the family of silent solutions of general
relativity, where the evolution of each world line is local.
Since fluid lines are decoupled from each other, one may
look at the solution as a set of independent world lines,
which globally satisfy the Einstein equations’ constraints.
In this sense, we have paraphrased the ‘silence property’ in
the language of RZA. Consequently, all relevant fields
have the same functional expressions as in class II, their
evaluation is strictly local, and it is carried out along each
world line.
We highlighted in several places that spatial averaging

may provide the key to construct an effective background
and deviations thereof also for class I. Such a “background”
is then expected to interact with the local structure
formation along the lines of the investigation in [65]. If
successful, such a construction would also provide clues on
how to generalize the Lagrangian perturbation solutions
with the aim to also include Szekeres class I solutions as
well as their exact averages.
Finally, let us summarize in a theorem the most relevant

result of the article.
Theorem 2. For a suitable set of initial conditions, the

exact body subcase of RZA corresponds to the Szekeres
class II exact solution of the Einstein equations.
The proof of the theorem is implicit throughout Sec. V,

and by suitable initial conditions we mean the initial values
of Szekeres functionals. This result goes further than a
simple reformulation of the Szekeres class II solution in the
RZA language, where the nontrivial evolution is repre-
sented by a single dynamical variable, i.e., the deformation
field. It strengthens RZA, as formulated in [1–5], as
the correct generalization of the Newtonian Zel’dovich
Approximation to relativistic cosmology.
Possible implications point to two main directions. First,

RZA provides a consistent framework to generalize the
Szekeres class II exact solution to more general cosmol-
ogies, namely the inclusion of a nontrivial Weyl magnetic

part [4] and to more general fluids [5]. On the other hand,
the known exact generalizations of the Szekeres solution
can provide clues on the extension of RZA to more general
scenarios containing heat-flow [60,70–72], viscosity
[73,74], and electromagnetic fields [75,76] (see [11] for
a summary of the generalizations of Szekeres solutions).
Second, the structure of Szekeres class I solutions, as

elucidated in Corollary 1, paves the way of a possible
strategy to arrive at a more general form of a Lagrangian
structure formation theory. We have demonstrated that the
tools developed for the spatially averaged RZA in [2] can
be directly employed to perform an averaging operation of
a structure formation model corresponding to Szekeres
class I solutions, where the “local background” has to be
included into the averaging process. It is to be expected
that such a model includes backreaction that in turn leads
to an interaction between structure and the evolving
average model. Through a construction via the structure
of Szekeres class I solutions, such a model and its
correspondent approximation would contain nontrivial
exact solutions. e.g., the averaged LTB model with
curvature.
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APPENDIX A: RELATION BETWEEN SZAFRON
AND GOODE-WAINWRIGHT

PARAMETRIZATIONS

This appendix shows the relation between the GW and
Szekeres-Szafron parametrizations with κpðtÞ ¼ −Λ. Our
presentation generalizes the one followed by Krasiński
([Sect. 2.5] [11]) and Plebański and Krasiński ([Sect. 19.8]
[12]), whose modifications account for the inclusion of the
cosmological constant. This fills a gap in the literature,
enhancing the GW formulation of class I to include Λ ≠ 0.
For Class II, such a generalization is due to Meures and
Bruni [40].
The plan is to reproduce the steps in [11,12] to relate the

arbitrary functions of one parametrization to the arbitrary
functions of the other, and then confirm that the scale factor
eα in Eq. (20) can be written as
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eα ¼ WSG≡WSðA − F Þ: ðA1Þ

But, instead of showing by direct substitution that the
parametric expressions for F , valid only for Λ ¼ 0, satisfy
(24), we will verify that F , as defined in (A1), can be
expressed as a linear combination of the growing and
decaying modes on a general background [77]:

f� ∝
	 ð _S=SÞ R S

0
_̂S
−3
dŜ; growingmode∶ fþ;

ð _S=SÞ; decayingmode f−:
ðA2Þ

In our case, S denotes the scale factor of the “associated
background,” interpreted as “local” when the spatial
dependence of class I is considered (the terms “associated”
and “local backgrounds” were introduced in the main text,
see Sec. VI). Hence, f� are the growing and decaying
solutions of

f̈ þ 2
_S
S
_f −

3μ

S3
f ¼ 0; ðA3Þ

where S obeys Eq. (22).

1. The β;ξ ≠ 0 subfamily

In the Szekeres-Szafron parametrization, the line-
element reads [11,12]:

ds2 ¼ −dt2 þ e2αdξ2 þ e2βðdς2 þ dϰ2Þ; ðA4aÞ

eβ ¼ Φðt; ξÞeν̂ðξÞ; ðA4bÞ

eα ¼ hðξÞΦðt; ξÞβ;ξ ≡ hðξÞðΦ;ξ þΦν̂;ξÞ; ðA4cÞ

e−ν̂ ¼ V0ðξÞðς2 þ ϰ2Þ þ 2V1ðξÞς
þ 2V2ðξÞϰ þ V3ðξÞ; ðA4dÞ

where Φ satisfies a Friedmann-like differential equation,

2
Φ̈
Φ
þ

_Φ2

Φ2
− Λþ kðξÞ

Φ2
¼ 0; ðA5Þ

and the following relation holds:

4ðV0V3 − V2
1 − V2

2Þ ¼ ½1=hðξÞ2 þ kðξÞ�: ðA6Þ

For this class, k, V0, V1, V2, and V3 are arbitrary functions
of ξ to be specified in the initial data.

a. Case k ≠ 0

To obtain the Szekeres solutions in the GW parametri-
zation, we normalize kðξÞ by introducing an auxiliary
function, ϕðξÞ,

kðξÞ ¼ k0ϕ2ðξÞ ⇒ ϕ ¼ jkj1=2; ðA7Þ

so that k0 ¼ �1. Next, the scale function S is defined as

Φ ¼ ϕS: ðA8Þ

Substituting (A7) and (A8) into (A5), we obtain a second-
order differential equation for S:

2S̈=S þ _S2=S2 − Λþ k0=S2 ¼ 0; ðA9Þ

which can be integrated to yield Eq. (22):

_S2 ¼ −k0 þ
2μ

S
þ Λ

3
S2: ðA10Þ

In this equation, μðξÞ is an integration constant, which in
the main text was identified as the initial energy density of
the associated local background, 4πϱbðtiÞ ¼ 3μðξÞ along
the world line labeled by ξ ¼ const.
Next, we introduce another auxiliary function, ζsðξÞ,

defined by

ϵζ2s ≡ ½1=h2 þ k0ϕ2� ¼ 4ðV0V3 − V2
1 − V2

2Þ; ðA11Þ

with ϵ ¼ 0;�1. Then,

ζs ¼
	 j1=h2ðξÞ þ kðξÞj1=2; if 1=h2ðξÞ þ kðξÞ ≠ 0;

ζs ≠ 0 and arbitrary; otherwise:

ðA12Þ

The functions ci, f and W arise from the reparametriza-
tions

ðc0; c1; c2; c3; fÞ ¼ ðV0;V1;V2;V3;ϕÞζ−1s : ðA13Þ

From (A13) and (A11), it is evident that Eq. (26d) in the
text holds:

c0c3 − c21 − c22 ¼ ϵ=4: ðA14Þ

The metric function e−ν̂, in (A4), takes the following form
in the new variables:

e−ν̂ ¼ ζs½c0ðς2 þ ϰ2Þ þ 2c1ςþ 2c2ϰ þ c3�

¼ ϕ

f
½c0ðς2 þ ϰ2Þ þ 2c1ςþ 2c2ϰ þ c3�

≡ ϕe−ν; ðA15Þ

where we have defined [as in Eq. (26c)],

eν ≡ f½c0ðς2 þ ϰ2Þ þ 2c1ςþ 2c2ϰ þ c3�−1: ðA16Þ

Next, the function W is defined as
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W ¼ hζs: ðA17Þ

To obtain its final form, Eq. (26e), note that the first
equality in Eq. (A11) implies that

h2 ¼ ðϵζ2s − k0ϕ2Þ−1; ðA18Þ

then,

W2 ≡ h2ζ2s ¼
ζ2s

ϵζ2s − k0ϕ2
¼ 1

ϵ − k0ðϕ=ζsÞ2
¼ 1

ϵ − k0f2
:

ðA19Þ

Using (A8) and (A15), we express the metric function eβ in
(A4b) in terms of the GW variables,

eβ ¼ Φeν̂ ¼ ðϕSÞðϕ−1eνÞ ¼ eνS: ðA20Þ

On the other hand, we need (A13) (⇒ f ¼ ϕζ−1s ) and
(A17) to find eα in the GW parametrization:

eα ¼ hðΦ;ξ þΦν̂;ξÞ ¼ hϕðS;ξ þ Sν;ξÞ

¼
�
W
ζs

�
ϕðS;ξ þ Sν;ξÞ ¼ W

�
ϕ

ζs

�
ðS;ξ þ Sν;ξÞ

¼ WfðS;ξ þ Sν;ξÞ ¼ SW
�
f
S;ξ

S
þ fν;ξ

�
¼ SWG: ðA21Þ

In the last term of the above equation we have defined the
metric function G,

G≡ f
S;ξ

S
þ fν;ξ; ðA22Þ

which splits into a time-independent and a time-dependent
part. Let us focus on the time-dependent part: S;ξ=S; fðξÞ
will be considered at the end.
First, we note that (A10) has a formal integral of the

form,

Z
S

0

dŜ

ð−k0 þ 2μ
Ŝ
þ Λ

3
Ŝ2Þ1=2 ¼ t − T ðξÞ; ðA23Þ

where T ðξÞ is the time of the initial singularity, and

_S ¼
�
−k0 þ

2μ

S
þ Λ

3
S2

�
1=2

: ðA24Þ

To find an equation for S;ξ, let us differentiate (A23) and
use (A24) to rewrite some terms conveniently,

S;ξ

_S
− μ;ξ

Z
S

0

dŜ

Ŝð _̂SÞ3
¼ −T ;ξ: ðA25Þ

After some algebra and using the Friedmann-like equation
for _S multiple times, the integral in the equation above
results in

Z
S

0

dŜ

Ŝð _̂SÞ3
¼ 1

3μ

	
k0

Z
S

0

dŜ

ð _̂SÞ3
þ
� _S
S

�−1

: ðA26Þ

This expression allows rewriting (A25) as follows:

S;ξ

_S
¼ −T ;ξ þ

μ;ξ
3μ

	
k0

Z
S

0

dŜ

ð _̂SÞ3
þ
� _S
S

�−1

; ðA27Þ

hence, we obtain:

S;ξ

S
¼ −T ;ξ

� _S
S

�
þ k0

μ;ξ
3μ

� _S
S

Z
S

0

dŜ

ð _̂SÞ3
�
þ μ;ξ

3μ
; ðA28Þ

where the terms in parentheses are the growing and
decaying solutions of (A3) [and (24)]. Then, in (A22), G
is given by

G ¼ f
S;ξ

S
þ fν;ξ

¼
�
f
k0μ;ξ
3μ

�
fþ − ðfT ;ξÞf− þ f

μ;ξ
3μ

þ fν;ξ

¼
�
−k0

�
−f

k0μ;ξ
3μ

�
þ fν;ξ

�

−
��

−f
k0μ;ξ
3μ

�
fþ þ ðfT ;ξÞf−

�
; ðA29Þ

which can be rewritten as

G ¼ ðfν;ξ − k0βþÞ − ðβþfþ þ β−f−Þ: ðA30Þ

Above, we have introduced the functions

βþ ≡ −f
k0μ;ξ
3μ

; β− ≡ fT ;ξ: ðA31Þ

The first term of Eq. (A30) corresponds to the time-
independent part of G in (A22),

A≡ fν;ξ − k0βþ; ðA32Þ

proving the first equation in (26e), while the second term of
Eq. (A30) is the time-dependent part of G and satisfies (24)
[and (A3)] for any local background,

F ≡ βþfþ þ β−f−: ðA33Þ
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Some comments are in order. The solutions of Eq. (24) (or
(A3) are undetermined by a multiplicative function that is
constant in time (a function of ξ in our case). Goode and
Wainwright took advantage of this freedom to simplify the
parametric solutions, and chose that constant to be propor-
tional to μ. Consequently, they defined the β− function as
β− ¼ fT ;ξ=ð6μÞ. We have omitted the denominator since
we are not interested in analyzing the parametric solution,
and its presence is not necessary. The physics of these
equations is contained in the whole term AðξÞ − F ðt; ξÞ.

b. Case k= 0

Things are much simpler when kðξÞ ¼ 0. First, in this
case we cannot use Eq. (A7) to define ϕ or f. Thus, we take

ϕ≡ μ1=3: ðA34Þ

From (A8),

Φ ¼ μ1=3S; ðA35Þ

we find that S satisfies (22) with k ¼ 0 and μ ¼ 1.
Consequently, for k ¼ 0 we can take μ ¼ const: in the
Friedmann-like equations, and then use the arbitrary
function ϕ to set the parametrization. Proceeding along
these lines, the rest of the equations remains the same as in
the previous paragraph. We only would like to highlight
that, as defined in (A22), the solutions of F only contain
the contribution of β−, so that we can assume βþ ¼ 0. Note
that our definitions of β� in the previous class, Eq. (A31),
are compatible with the results for k0 ¼ 0. Hence, the
parametrization (A31) is valid for the whole class I.
Let us illustrate this point with some equations. To write

out Eq. (A22), we need to differentiate (A23); for
μ ¼ const., Eq. (A25) reduces to

S;ξ= _S ¼ −T ;ξ: ðA36Þ

And, from the definition of G, Eq. (A22), we have

G ¼ f
S;ξ

S
þ fν;ξ ¼ −fT ;ξð _S=SÞ þ fν;ξ

¼ fν;ξ − β−f−: ðA37Þ

Hence, for k0 ¼ 0, we have

A ¼ fν;ξ; F ¼ β−f−; β− ¼ fT ;ξ; βþ ¼ 0:

ðA38Þ

2. The β;ξ = 0 subfamily

The solution for this family is given by [11,12]:

ds2 ¼ −dt2 þ e2αdξ2 þ e2βðdς2 þ dϰ2Þ; ðA39aÞ

eβ ¼ ΦðtÞeν; ðA39bÞ

eα ¼ ΦðtÞσðς; ϰ; ξÞ þ λðt; ξÞ; ðA39cÞ

σ ¼ eν
�
1

2
UðξÞðς2 þ ϰ2Þ þ V1ðξÞς

þ V2ðξÞϰ þ 2ZðξÞ
�
; ðA39dÞ

e−ν ¼ 1þ 1

4
kðς2 þ ϰ2Þ: ðA39eÞ

In the above equations, k is a constant, and Φ and λ
satisfy the following equations:

2ΦΦ̈þ _Φ2 − ΛΦ2 þ k ¼ 0; ðA40aÞ

̈λΦþ _λ _Φþ λΦ̈ − ΛλΦ ¼ U þ kZ; ðA40bÞ

which admit integrals of the form,

_Φ2 ¼ −kþ 2μ

Φ
þ 1

3
ΛΦ2; ðA41aÞ

_λΦ _Φþ λμ

Φ
−
Λ
3
λΦ2 ¼ ðU þ kZÞΦþ XðξÞ; ðA41bÞ

where μ is a constant. Equation (A41b) can be solved by
quadrature as follows:

λ ¼ _Φ
�Z ðU þ kZÞΦþ X

Φ _Φ3
dΦþ YðξÞ

�
: ðA42Þ

Here, _Φ denotes the square root of the right-hand side
of (A41a).
Finally, note that when k ≠ 0, it can be set to �1 by

rescaling the coordinates and the arbitrary functions.
Below, we will replace k by k0.

a. Case k= k0 =�1

For class II models with k0 ≠ 0, it is always possible to
drop the right-hand side term of (A40b) by redefining λ, U,
and Z, which will be assumed throughout this section,

U þ k0Z ¼ 0: ðA43Þ

In the GW formulation the metric functions are reparame-
trized as follows:

Φ ¼ SðtÞ; eβ ¼ Seν; ðA44aÞ

U ¼ −k0c0=2; Z ¼ c0=2; ðA44bÞ

V1 ¼ c1; V2 ¼ c2; ðA44cÞ
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which implies

_S2 ¼ −k0 þ
2μ

S
þ 1

3
ΛS2; ðA45Þ

and

σ ¼ eν
�
c0

�
1 −

k0
4
ðς2 þ ϰ2Þ

�
þ c1ςþ c2ϰ

�
: ðA46Þ

To reparametrize the remaining metric coefficient, let us
proceed as in the previous class,

eα ¼ Sσ þ λ ¼ S
�
λ

S
þ σ

�
≡ SG: ðA47Þ

Considering the formal solution for λ, Eq. (A42), under the
assumption (A43):

λ

S
¼

_S
S

�
X
Z

S

0

dŜ

Ŝ _̂S
3
þ Y

�

¼
_S
S

	
X
3μ

�
k0

Z
S

0

dŜ

ð _̂SÞ3
þ
� _S
S

�−1�
þ Y




¼ k0
X
3μ

� _S
S

Z
S

0

dŜ

ð _̂SÞ3
�
þ Y

� _S
S

�
þ X
3μ

¼ k0
X
3μ

fþ þ Yf− þ X
3μ

: ðA48Þ

Above, we used (A26) to rewrite the integral in the third
line, and (A2) to substitute the growing and decaying
modes by f�.
As for class I, we split G≡A − F into its time-

dependent (F ) and time-independent (A) parts,

G ¼ λ

S
þ σ

¼ σ − k0

�
−k0

X
3μ

�
−
��

−k0
X
3μ

�
fþ þ ð−YÞf−

�
¼ ðσ − k0βþÞ − ðβþfþ þ β−f−Þ: ðA49Þ

In the last line we can identify A ¼ σ − k0βþ, which
coincides with the first equation in (27d), and
F ¼ βþfþ þ β−f−, solution of (24). Since XðξÞ and
YðξÞ are arbitrary functions of ξ, βþ ≡ −k0X=ð3μÞ
and β− ≡ −Y are arbitrary as well. In contrast to class I,
fþ and f− are only time-dependent functions (μ is constant
for this class).

b. Case k= k0 = 0

When k0 ¼ 0, eν ¼ 1, Φ ¼ SðtÞ, eβ ¼ S, and

eα ¼ S
�
λ

S
þ σ

�
≡ SG; ðA50Þ

the term λ=S can be rewritten in the following form:

λ

S
¼

_S
S

�Z
S

0

UŜ þ X

Ŝ _̂S
3

dŜ þ YðξÞ
�

¼ U
� _S
S

Z
S

0

dŜ
_̂S
3

�
þ YðξÞ

� _S
S

�
þ X
3μ

¼ Ufþ þ Yf− þ X
3μ

: ðA51Þ

Defining βþ ¼ −U and β− ¼ −Y, we can verify that G ¼
A − F with F ¼ βþfþ þ β−f− and A ¼ σ þ X=ð3μÞ.
The final form of A, Eq. (27d), follows from the para-
metrizations V1 ¼ c1, V2 ¼ c2 and X=ð3μÞ þ 2Z ¼ c0. As
in the previous case, the functions βþ and β− (and c0)
inherit the arbitrariness from X and Y, and F is a solution
of (24) with f� ¼ f�ðtÞ.

APPENDIX B: PARAMETRIC SOLUTIONS
FOR THE Λ= 0 CASE

For completeness, we show the parametric solutions
found by Goode and Wainwright in [49], considering
Λ ¼ 0. As we mentioned in Sec. III A and discussed in
Appendix A, our definition of β− differs from the one
introduced in [50]. The GW solution (valid for both classes)
is given by [11,12,49]:

S ¼ μ
dhðτÞ
dτ

; t − T ðξÞ ¼ μhðτÞ; ðB1aÞ

with

hðτÞ ¼
8<
:

τ − sin τ; k0 ¼ þ1;

sinh τ − τ; k0 ¼ −1;
τ3=6; k0 ¼ 0:

ðB1bÞ

For Λ ¼ 0, the solutions of (24) can be cast into the form:

fþ ¼
8<
:

ð6μ=SÞ½1 − ðτ=2Þ cotðτ=2Þ� − 1; k0 ¼ þ1;

ð6μ=SÞ½1 − ðτ=2Þ cothðτ=2Þ� þ 1; k0 ¼ −1;
τ2=10; k0 ¼ 0;

ðB2aÞ
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and

f− ¼

8>><
>>:

ð6μ=SÞ cotðτ=2Þ; k0 ¼ þ1;

ð6μ=SÞ cothðτ=2Þ; k0 ¼ −1;
24=τ3; k0 ¼ 0:

ðB2bÞ

APPENDIX C: FLRW LIMIT AND CARTESIAN
COORDINATES

When βþ ¼ β− ¼ 0, the FLRW limit emerges in the
“Goode and Wainwright representation of the FLRW
models” [11,12,49].
For class II:

ds2 ¼ −dt2 þ aðtÞ2½Ā2dξ2 þ e2νðdς2 þ dϰ2Þ�;

eν ¼
�
1þ 1

4
k0ðς2 þ ϰ2Þ

�
−1
;

Ā ¼ eν
	
c0ðξÞ

�
1 −

1

4
k0ðς2 þ ϰ2Þ

�

þ c1ðξÞςþ c2ðξÞϰ


: ðC1Þ

Above, we have substituted the scale factor SðtÞ by the
FLRW function aðtÞ. Since (22) is nothing more than the
Friedmann equation, its solution is the FLRW scale factor.
The choice c0 ¼ c2 ¼ 0 and c1 ¼ 1 yields [11,12]:

ds2 ¼ −dt2 þ a2ðtÞ
½1þ 1

4
k0ðς2 þ ϰ2Þ�2 ðς

2dξ2 þ dς2 þ dϰ2Þ:

ðC2Þ

The transformation

ς ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ϰ ¼ z; ξ ¼ φ ¼ arctan

�
y
x

�
;

ðC3Þ

takes (C2) to Cartesian coordinates:

ds2 ¼ −dt2 þ a2ðtÞ
½1þ 1

4
k0ðx2 þ y2 þ z2Þ�2 ðdx

2 þ dy2 þ dz2Þ:

ðC4Þ

For class I:

ds2 ¼ −dt2 þ a2½W2f2ν2;ξdξ
2 þ e2νðdς2 þ dϰ2Þ�: ðC5Þ

Setting c1 ¼ c2 ¼ 0, c3 ¼ 4c0 ¼ 1, and identifying
f ¼ ξ ¼ r, the Oð3Þ orbits of the FLRW class correspond
to spheres of the Szekeres spacetime [11,12]:

ds2 ¼ −dt2 þ a2
�

1

1 − k0r2
dr2 þ e2νðdς2 þ dϰ2Þ

�
; ðC6Þ

where eν ¼ r
½1
4
ðς2 þ ϰ2Þ þ 1� : ðC7Þ

The FLRW line-element in spherical coordinates,

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − k0r2
þ r2ðdϑ2 þ sin2ϑdφ2Þ

�
;

ðC8Þ

is obtained from the transformation

ς ¼ 2 cot

�
ϑ

2

�
cosφ; ϰ ¼ 2 cot

�
ϑ

2

�
sinφ: ðC9Þ

Then, the metric in Cartesian coordinates, Eq. (C4), is
recovered after identifying

x ¼ r̃ sin ϑ cosφ; y ¼ r̃ sinϑ sinφ; z ¼ r̃ cos ϑ;

ðC10Þ

with r̃ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k0r2

q �.
ðk0r=2Þ: ðC11Þ

The successive change of variables (C9)–(C10) can be
summarized in one transformation:

ς ¼ 2x
χ þ z
χ2xy

; ϰ ¼ 2y
χ þ z
χ2xy

; ξ ¼ χ

1þ 1
4
k0χ2

;

ðC12Þ

where we have used χ and χxy as shorthands forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

APPENDIX D: SPATIALLY AVERAGED
EQUATIONS

The kinematic expansion and acceleration laws of an
FLRW spacetime find their generalization in a general,
neither homogeneous nor isotropic, spacetime through
exact volume-expansion and volume-acceleration laws
[44,57].
Defining the volume scale factor as

aD ¼ ðVD=VDi
Þ13; VDi

¼ VDðtiÞ; ðD1Þ

the spatially volume-averaged energy constraint,
Raychaudhuri’s equation, and mass conservation form a
set of exact balance equations that include averaged
curvature invariants as backreaction terms:
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3

�
_aD
aD

�
2

¼ Λþ 8πhϱiD −
1

2
hð3ÞRiD −

1

2
QD; ðD2aÞ

3
äD
aD

¼ Λ − 4πhϱiD þQD; ðD2bÞ

hϱi•D ¼ −3
_aD
aD

hϱiD; ðD2cÞ

1

a6D
hQDa6Di•D þ 1

a2D
hð3ÞRa2Di•D ¼ 0; ðD2dÞ

where the last equation (D2d) is redundant in this set; it
follows from the time-derivative of (D2b) to yield (D2a).
The rate of change of the volume scale factor, _aD=aD,

represents the volume Hubble expansion rate, HD, and QD
is the kinematical backreaction term. QD is expressed
through invariants of the expansion tensor (defined as
minus the extrinsic curvature of the spatial hypersurfaces),
Eq. (57a). In the absence of vorticity (our case), it reduces
to Eq. (57b). The implementation of this formalism in the
LTB subcase of the Szekeres class I solutions was recently
examined in [78].
We have checked that the equations (D2) become

identities for the exact functionals of the Szekeres
solutions.

APPENDIX E: PROOF OF LEMMA 2

To proof Lemma 2 in Sec. VA, we introduce the rule of
noncommutativity (or merely the commutation rule) for the
spatial averaging of a scalar field [57],

hΨi•D − h _ΨiD ¼ hΘΨiD − hΘiDhΨiD; ðE1Þ

where Θ is the expansion scalar, Eq. (70a).
Let us consider the commutation rule for Ψ ¼ P=J

under the assumption h _P=JiDH
¼ 0,

�
P
J

�
•

DH

−
��

P
J

�
•
�

DH

¼
�
Θ
P
J

�
DH

− hΘiDH

�
P
J

�
DH

: ðE2Þ

Writing out each term separately,

��
P
J

�
•
�

DH

¼ −
�
P _P
J2

�
DH

; ðE3aÞ

�
Θ
P
J

�
DH

¼ 3
_a
a

�
P
J

�
DH

þ
�
_PP
J2

�
DH

; ðE3bÞ

hΘiDH

�
P
J

�
DH

¼ 3
_a
a

�
P
J

�
DH

; ðE3cÞ

and substituting into (E2), we obtain:�
P
J

�
•

DH

¼ 0 ⇒

�
P
J

�
DH

¼ const: ðE4Þ

Since the deformation field is initially null, the constant in
the above equation is equal to zero. Hence, we have already
proven the first part of the lemma:

�
_P
J

�
DH

¼ 0 ⇒

�
P
J

�
DH

¼ 0: ðE5Þ

To proof the second part, let us assume that hP=JiDH
¼ 0

and examine the commutation rule again. The first and last
terms of Eq. (E2) are identically zero: the averaged quantity
hP=JiDH

can be considered a (constant) function of time,
qðtÞ ¼ 0, so that _qðtÞ ¼ 0. Then:

−
��

P
J

�
•
�

DH

¼
�
Θ
P
J

�
DH

⇒

�
_P
J

�
DH

¼ 0; ðE6Þ

which proves the second part of the lemma:

�
P
J

�
DH

¼ 0 ⇒

�
_P
J

�
DH

¼ 0: ðE7Þ

Collecting all results together, we obtain the statement of
Lemma 2:

�
P
J

�
DH

¼ 0 ⇔

�
_P
J

�
DH

¼ 0: ðE8Þ

APPENDIX F: PROOF OF LEMMATA 3 AND 4

In this section, we will first prove Lemma 4 and then
Lemma 3, altering the order of their presentation in the
main text. Let us start by considering the integral constraint
(61), which implies

0 ¼
�
P
J

�
DH

¼ a3

VDH

	Z
Pd3X




¼ −
a3

VDH

	Z
DH

F − F i

A − F i

ffiffiffiffi
G

p
d3ξ




¼ −
a3

VDH

	�Z
DH

e2νdςdϰ

��Z
DH

ðF − F iÞdξ
�


; ðF1Þ

where we have used (45), (54), (47), d3X ¼ ffiffiffiffi
G

p
d3ξ, and eν

was defined in (27c). Since a, VDH
, and the first integral in

the last line between square brackets are strictly positive,
the equality holds, if and only if the second integral
vanishes for all t, which can be rewritten as follows:
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0 ¼ qþðtÞ
Z
DH

βþðξÞdξþ q−ðtÞ
Z
DH

β−ðξÞdξ: ðF2Þ

In the above equation, we introduced q�ðtÞ ¼ f�ðtÞ−
f�ðtiÞ; since they are linearly independent functions, the
integral constraint holds for all t, if and only if the
conditions (65) are satisfied. This proves Lemma 4.
Turning now to the first part of Lemma 3, and keeping in

mind that the density, Eq. (29), can be split into the
background term and an exact deviation, we have:

ϱðt; ξÞ ¼ ϱbðtÞ
�
1þ F

G

�
¼ ϱbðtÞð1þ δðt; ξÞÞ: ðF3Þ

Taking the average, we find that hϱiDH
¼ ϱbðtÞ, if and only

if hδiDH
¼ hF=GiDH

¼ 0, which gives

0 ¼ hδiDH
¼ a3

VDH

Z
Fe2νd3ξ

¼ a3

VDH

�Z
DH

e2νdςdϰ�
�Z

DH

Fdξ

�
: ðF4Þ

As before, the equality above holds, if and only ifR
DH

Fdξ ¼ 0. Then, writing out this equation, we get an
expression similar to (F2), indicating that (65) is a
necessary and sufficient condition for the fulfillment
of Eq. (60a).
The second part of the lemma is proved by proceeding

along the same lines: considering the curvature functional
(76), it splits into the FLRW term and an exact deviation,
given by − 4

J ½3 _a
a
_Pþ P̈� ¼ 4

a2 ½ðβþð1þ k0fþÞ þ k0β−f−Þ=
ðA − F Þ�, see Eq. (H11) further below. Then, hRiDH

¼
6k0=a2, if and only if the average of the curvature deviation
vanishes. Once again this leads to (65) as the necessary and
sufficient condition for Eq. (60b).

APPENDIX G: COMMUTATION RULES
FOR CLASS I

The spatial dependence of the conformal scale factor
makes the commutation rules quite different for class I.
Since, in this case, we cannot take the scale factor out of the
integral, P=J is not trivially related toP=J. To illustrate this
point, let us examine their commutation rules and some
particular cases.

1. Commutation rule for Ψ=P=J

Taking Ψ ¼ P=J in (E1) we obtain:

�
P
J

�
•

D
−
�
_P
J

�
D
¼ −

�
3
_S
S
þ

_P
J

�
D

�
P
J

�
D
: ðG1Þ

From this expression, we highlight the following cases:

(i) If hP=JiD ¼ 0, then:

h _P=JiD ¼ 0: ðG2Þ

(ii) If h _P=JiD ¼ 0, then:

�
P
J

�
•

D
¼ −

�
3
_S
S
þ

_P
J

�
D

�
P
J

�
D
: ðG3Þ

2. Commutation rule for Ψ=P=J

Applying the commutation rule to Ψ ¼ P=J we obtain:

�
P
J

�
•

D
−
�
_P
J

�
D
¼ 3

� _S
S
P
J

�
D

−
�
3

� _S
S

�
D
þ
�
_P
J

�
D

��
P
J

�
D
: ðG4Þ

Similarly to the previous case, we consider the vanishing of
hP=JiD and h _P=JiD:

(i) If hPJiD ¼ 0, then:

�
_P
J

�
D
¼ −3

� _S
S
P
J

�
D
: ðG5Þ

(ii) If h _PJiD ¼ 0, then:

�
P
J

�
•

D
¼ 3

� _S
S
P
J

�
D
− 3

� _S
S

�
D

�
P
J

�
D
: ðG6Þ

At first glance, none of these cases provides a useful
relation that would render QD ¼ 0 in Eq. (86).

APPENDIX H: FUNCTIONAL
EVALUATION IN RZA

This appendix complements Sec. V C with some for-
mulas and results that, for better readability of the main
text, were not included there. Although we will mainly
focus on class II, all the results here apply to class I.
First, we provide the form of the equations (19) spe-

cialized to our coframe set, needed to obtain the curvature
functionals,

J ¼ a3ð1þ PÞ; ðH1aÞ

ϵabcϵ
mjk _ηam _η

b
jη

c
k ¼ 2a _a½3ð1þ PÞ _aþ 2a _P�; ðH1bÞ

ϵabcϵ
iklη̈aiη

b
kη

c
l ¼ 2a2½2_a _Pþ3ð1þ PÞäþ aP̈�; ðH1cÞ
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ϵabcϵ
iklð_ηajηbkηclÞ• ¼

8>><
>>:

2a½2ð1þ PÞ _a2 þ a _a _Pþ að1þ PÞä�; i ¼ j ¼ 1; 2;

2a½2ð1þ PÞ _a2 þ 4a _a _Pþ aðð1þ PÞäþ aP̈Þ�; i ¼ j ¼ 3;

0; otherwise;

ðH1dÞ

ϵabcϵ
iklη̈ajη

b
kη

c
l ¼

8>><
>>:

2a2äð1þ PÞ; i ¼ j ¼ 1; 2;

2a2½2_a _Pþ ð1þ PÞäþ aP̈�; i ¼ j ¼ 3;

0; otherwise:

ðH1eÞ

In what follows, we will prove that all the functionals
provided in the main text, reduce to the Szekeres quantities
when we substitute the expression for the deformation field
in terms of the Szekeres functions.
Let us start by writing out the functionals for the

peculiar-determinant and _P=J,

J ¼ 1þ P ¼ 1 −
F − F i

A − F i
¼ A − F

A − F i
; ðH2Þ

_P
J
¼

�
−

_F
A − F i

��
A − F
A − F i

�
−1

¼ −
βþ _fþ þ β− _f−

G
:

ðH3Þ

Then, our functionals reproduce the correct results for the
energy density,

4πϱ ¼ 4π
ϱðtiÞ
J−1

¼ 4π
ϱbðtiÞ
a3

�
1þ F

G

�
; ðH4Þ

the expansion scalar and the shear tensor (see (2.19)–(2.20)
in [49]),

Θ ¼ 3
_a
a
þ

_P
J
¼ 3

_a
a
−
βþ _fþ þ β− _f−

A − F
; ðH5aÞ

2σ11 ¼ 2σ22 ¼ −σ33 ¼ 2Σ ¼ −
2

3

_P
J

¼ 2

3

βþ _fþ þ β− _f−
A − F

: ðH5bÞ

In equation (H4) above, 3μ ¼ 4πϱbðtiÞ and ϱðtiÞ ¼
ϱbðtiÞð1þ F i=GiÞ.
The only nontrivial Weyl scalar, Ψ2, is rewritten as

Ψ2 ¼
1

3J

	
2
_a
a
_Pþ P̈



¼ −

μ

a3

	
βþfþ þ β−f−

G



; ðH6Þ

where we have used equation (24) to get (H6). The final
gravitoelectric part of the Weyl tensor reads (which is the
same as Eq. (2.21) in [49]):

2E1
1 ¼ 2E2

2 ¼ −E3
3 ¼ −

2μ

a3

	
βþfþ þ β−f−

G



: ðH7Þ

To obtain the expressions for the curvature, let us first
rewrite the following quantity in terms of the Szekeres
functions,

1

J

�
3
_a
a
_Pþ P̈

�

¼ −
βþðf̈þ þ 3 _a

a
_fþÞ þ β−ðf̈− þ 3 _a

a
_f−Þ

G
: ðH8Þ

This equation coincides with the one obtained for the
components of the trace-free spatial Ricci tensor in the
original Goode-Wainwright paper—see appendix B of
[49], taking into account that τ33 ¼ − 2

3J ð3 _a
a
_Pþ P̈Þ. To

work it out toward a simpler expression, without time-
derivatives, we need to introduce the first integral of (24),
Eq. (30), rewritten below as follows:

a _a _fþ −
�
k0 −

3μ

a

�
fþ ¼ 1; ðH9aÞ

a _a _f− −
�
k0 −

3μ

a

�
f− ¼ 0: ðH9bÞ

Using (H9), the terms in parentheses in (H8) can be
rewritten as

f̈� þ 3
_a
a
_f� ¼ f̈� þ 2

_a
a
_f� þ _a

a
_f� ¼ ðk0f� þ α�Þa−2;

ðH10Þ

where αþ ¼ 1 and α− ¼ 0. Then,

1

J

�
3
_a
a
_Pþ P̈

�
¼ −

βþð1þ k0fþÞ þ k0β−f−
a2G

: ðH11Þ

Substituting this expression into (76) and (77), we arrive at
the final expressions for the spatial Ricci scalar and the
trace-free Ricci tensor,
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R ¼ 6

a2

	
k0 þ

2

3G
½βþð1þ k0fþÞ þ k0β−f−�



; ðH12Þ

2τ11 ¼ 2τ22 ¼ −τ33

¼ −
2

3a2G
½βþð1þ k0fþÞ þ k0β−f−�: ðH13Þ

APPENDIX I: LTB SUBCASE

The LTB solution emerges from the Szekeres-Szafron
parametrization, as a subcase of the quasispherical models
of class I, when the free functions AðξÞ, B1ðξÞ, B2ðξÞ and
CðξÞ are all constants [ν;ξ ¼ 0 in (A4d)], the coordinate ξ is
identified with the radial comoving coordinate r, k → −2E,
Φ → R, and ðς; ϰÞ are transformed to the angular coor-
dinates ðϑ;φÞ by a stereographic transformation—see
[26,34] for suitable parametrizations from where the
LTB solution arises in more straightforward ways.
Instead of obtaining the spherically symmetric limit

directly from the GW formulation, we can identify the
LTB deformation field by tracing back the metric coef-
ficients from one parametrization to the other. If we factor
out the function Φ in the metric coefficient gξξ of the
Szekeres-Szafron parametrization, then we can associateA
(in the GW parametrization) with ν;ξ (in the Szekeres-
Szafron parametrization). Since they both vanish in the
LTB limit, the contribution of A will either vanish or be
absorbed by the scale function reparametrization. The
remaining terms will contribute to the Gram’s matrix or
be wiped out by the stereographic transformation. Thus, F
will be associated to the quotient of the scale factor and its
derivative: F → R0=R, see Eq. (A22).
The above reasoning is supported by what we get

directly from the LTB line-element:

ds2 ¼ −dt2 þ R02

1þ 2E
dr2 þ R2dΩ2

¼ −dt2 þ R2

�
Γ2

1þ 2E
dr2 þ dΩ2

�
; ðI1Þ

with Γ≡ R0=R.

1. LTB solution in the language of RZA

The deformation field and Gram’s matrix associated with
the LTB solution are given by:

P ¼ P3
3 ¼ −

F̃

Ã
≡ −

F − F i

A − F i
→

Γ − Γi

Γi
; ðI2Þ

and

Gab ¼ Diag

�
Γ2
i

1þ 2E
; sin2ϑ; 1

�
: ðI3Þ

Substituting (I2) into the “exact body functionals” for
expansion scalar and shear tensor, and taking into account
that

_P
J
¼

�
_R0

R0 −
_R
R

�
⇒ Σ ¼ −

1

3

_P
J
¼ 1

3

�
_R
R
−

_R0

R0

�
; ðI4Þ

we obtain the correct results for the LTB scalar expansion
rate and shear tensor:

Θ ¼ 2
_R
R
þ

_R0

R0 ; ðI5aÞ

2σϑϑ ¼ 2σφφ ¼ −σrr ¼
2

3

�
_R
R
−

_R0

R0

�
: ðI5bÞ

The volume element takes its well-known form:

Jd3X ¼ R3ð1þ PÞ
ffiffiffiffi
G

p
d3x

¼ R3
Γ
Γi

Γi sin ϑ

ð1þ 2EÞ1=2 d
3x

¼ R2R0 sin ϑ

ð1þ 2EÞ1=2 d
3x: ðI6Þ

2. Some general features of the LTB models

The integration of the Einstein equations reduces to a
nonlinear ordinary differential equation that resembles the
equation of movement in a Newtonian Coulomb potential
(for a comprehensive and detailed exposition of the LTB
solution see Sec. 18 of [12] and Sec. 2.1 of [14]). Including
the cosmological constant, we have

_R2 ¼ 2EðrÞ þ 2MðrÞ
R

þ ΛR2

3
; ðI7Þ

where the function MðrÞ is arbitrary.
The model is characterized by three free parameters:

EðrÞ,MðrÞ and tbðrÞ. The latter, the “big bang time,” arises
from the integration of (I7),

t − tbðrÞ ¼
Z

R

0

dR̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðrÞ þ 2MðrÞ

R̂
þ ΛR̂2

3

q : ðI8Þ

In order to have a regular solution, the arbitrary free
functions should satisfy the following regularity conditions
at the symmetry center (origin of coordinates):

Rðt; 0Þ ¼ 0 ∧ Mð0Þ ¼ 0; with ðI9Þ

R ∝ M1=3 ∧ E ∝ M2=3 at r → 0: ðI10Þ

Additionally, the gradients of MðrÞ, EðrÞ and tbðrÞ iden-
tically vanish at r ¼ 0.
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In these coordinates, the FLRW solution results from the
limit,

M ¼ M0r3; E ¼ −
1

2
k0r2; tb ¼ const:; ðI11Þ

where M0 and k0 denote arbitrary constants.

3. Averaging and backreaction in LTB models

We can reconstruct the expansion tensor from the above
expressions for the shear and scalar expansion, Θi

j ¼
σij þ 1

3
Θδij. Then, its principal scalar invariants read:

IðΘi
jÞ ¼ 2

_R
R
þ

_R0

R0 ; ðI12aÞ

IIðΘi
jÞ ¼

_R2

R2
þ 2

_R _R0

RR0 ; ðI12bÞ

IIIðΘi
jÞ ¼

_R2 _R0

R2R0 : ðI12cÞ

Averaging over a spherical, compact domain B we
obtain:

hIiB ¼ 4π

VB

Z
rB

0

∂rð _RR2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dr; ðI13aÞ

hIIiB ¼ 4π

VB

Z
rB

0

∂rð _R2RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dr; ðI13bÞ

hIIIiB ¼ 4π

3VB

Z
rB

0

∂rð _R3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dr; ðI13cÞ

where

VB ¼ 4π

Z
rB

0

R2R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p dr: ðI13dÞ

In general, this set of integrals cannot be evaluated
explicitly except for some special cases. Below, we discuss
two important specializations of the arbitrary functions that
lead to the vanishing of the backreaction term on B.

a. Case E= 0 (parabolic models)

For parabolic solutions, the integrals (I13) yield:

VB ¼ 4π

3
R3
B; and ; ðI14aÞ

hIiB ¼ 3
_RB

RB
; hIIiB ¼ 3

�
_RB

RB

�2

; hIIIiB ¼
�
_RB

RB

�3

;

ðI14bÞ
with RB ≡ Rðt; rBÞ. These relations result in the vanishing
of the kinematical backreaction on B:

QB ¼ 2hIIiB −
2

3
hIi2B ¼ 0: ðI15Þ

b. Case R=ψðtÞ · χ ðrÞ (type-class-II
or separable solution)

The separable solutions of the LTB models, with

R ¼ ψðtÞ · χðrÞ; ðI16Þ

correspond to another case with no backreaction (on an
arbitrary compact domain B). However, what is somewhat
surprising is that this solution is nothing more than the
FLRW solution in a nonstandard coordinate system. To
verify this statement, let us note that the separable ansatz
corresponds to a shear-free model. Substituting (I16) into
the expression for the degenerate eigenvalue of the shear
tensor, we obtain:

Σ ¼ 1

3

�
_R
R
−

_R0

R0

�
¼ 1

3

�
_ψχ

ψχ
−

_ψχ0

ψχ0

�
¼ 0: ðI17Þ

Its identification as the FLRW model directly follows from
a coordinate-independent definition of this class (Plebański
and Krasiński [12]); the necessary and sufficient conditions
for a solution to be included in the FLRW class can be
enunciated as follows:

(i) It is an exact solution of the Einstein equations with
a perfect fluid source.

(ii) The fluid flow has neither rotation, acceleration,
nor shear.

For the general LTB model, the vanishing of the shear
tensor is the only one of these conditions that is not
identically satisfied. However, in our case, σab ¼ 0 is a
consequence of the additional separability assumption,
which renders the solution a FLRW model.
Overall, the vanishing ofQB is only true for the parabolic

case that corresponds to the Newtonian “iron sphere
theorem”. For LTB models with curvature, as well as for
Szekeres class I models, a closed-form expression for the
kinematical backreaction functional, e.g., in terms of the
volume, is an open question.
For some further discussions of average properties of

LTB solutions in relation to RZA, see [Sec. VII] [44], and
of silent universe models, see [Sec. 6.2] [79].

4. More on the evaluation of QB

for parabolic LTB models

In this appendix, we aim at complementing the dis-
cussion in Sec. VI B by showing that for parabolic LTB
models, the vanishing of the kinematical backreaction does
not reveal any trivial relation between the variables in the
expression (86) for QB.
Averaging the parabolic solution on B, we obtain the

following relations:��
_R
R

�2�
B
¼ 3

R3
B

Z
rB

0

_R2R0dr ¼ 3

R3
B

I1; ðI18aÞ
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�
_R
R

�
B
¼ 3

R3
B

Z
rB

0

_RR0Rdr ¼ 3

R3
B

I2; ðI18bÞ

hΣiB ¼ 1

R3
B

�Z
rB

0

_RR0Rdr −
Z

rB

0

_R0R2dr

�

¼ 1

R3
B

ðI2 − I3Þ; ðI18cÞ

�
_R
R
Σ
�

B
¼ 1

R3
B

�Z
rB

0

_R2R0dr −
Z

rB

0

_R _R0Rdr
�

¼ 1

R3
B

ðI1 − I4Þ; ðI18dÞ

where, in general, neither of these terms vanish. In the
above equations we have defined:

I1 ¼
Z

rB

0

_R2R0dr; I2 ¼
Z

rB

0

_RR0Rdr; ðI19aÞ

I3 ¼
Z

rB

0

_R0R2dr; I4 ¼
Z

rB

0

_R _R0Rdr: ðI19bÞ

To make clear that these equations reduce to (I15), we
have to manipulate some of the integrals above. Integrating
by parts leads to the following relations:

I1 ¼ _R2
BRB − 2I4; I3 ¼ _RBR2

B − 2I2; ðI20Þ

which yields for the backreaction term:

1

6
QB ¼

��
_R
R

�2�
B
−
�
_R
R

�2

B
− hΣi2B

þ 2

�
_R
R

�
B
hΣiB − 2

�
_R
R
Σ
�

B

¼ ðI1 þ 2I4ÞR3 − ðI3 þ 2I2Þ2
R6

¼ 0: ðI21Þ

Let us calculate each of the terms above for the case with a
vanishing cosmological constant, where the analytical
solution reads:

Rðr; tÞ ¼
�
9

2
MðrÞðt − tbðrÞÞ2

�
1=3

: ðI22Þ

Carrying out the integrals in (I18),

��
_R
R

�2�
B
¼ 4

9

M − 2
R rB
0

Mt0b
t−tb

dχ

Mðt − tbÞ2
¼ 4

9

M − 2I1

Mðt − tbÞ2
; ðI23aÞ

�
_R
R

�
B
¼ 2

3

R rB
0 ðt − tbÞM0dχ − 2

R rB
0 Mt0bdχ

Mðt − tbÞ2

¼ 2

3

I2 − 2I3

Mðt − tbÞ2
; ðI23bÞ

�
_R
R
Σ
�

B
¼ −

4

9

R rB
0

Mt0b
t−tb

dχ

Mðt − tbÞ2
¼ −

4

9

I1

Mðt − tbÞ2
; ðI23cÞ

hΣiB ¼ −
2

3

R rB
0 Mt0bdχ

Mðt − tbÞ2
¼ −

2

3

I3

Mðt − tbÞ2
; ðI23dÞ

where:

I1 ¼
Z

rB

0

Mt0b
t − tb

dχ; I2 ¼
Z

rB

0

ðt − tbÞM0dχ; ðI24aÞ

I3 ¼
Z

rB

0

Mt0bdχ; VB ¼ 6πMðrÞðt − tbðrÞÞ2: ðI24bÞ

For the backreaction term we then obtain:

1

6
QB ¼ 4

9

�
1

ðt − tbÞ2
−

ðI2 − I3Þ2
M2ðt − tbÞ4

�
; ðI25Þ

where the numerator of the last term in parentheses
simplifies to

I2 − I3 ¼
Z

rB

0

ðt − tbÞM0dχ −
Z

rB

0

Mt0bdχ

¼
Z

rB

0

ððt − tbÞMÞ0dχ ¼ Mðt − tbÞ: ðI26Þ

Hence,

1

6
QB ¼ 4

9

�
1

ðt − tbÞ2
−
ðMðt − tbÞÞ2
M2ðt − tbÞ4

�

¼ 4

9

�
1

ðt − tbÞ2
−

1

ðt − tbÞ2
�

¼ 0: ðI27Þ

Alternatively, we can arrive at the same result directly from
the invariants of the expansion tensor. Carrying out (I13),
we obtain:

hIiB ¼ 2

t − tb
; ðI28aÞ

hIIiB ¼ 1

3

4

ðt − tbÞ2
¼ 1

3
hIi2B; ðI28bÞ

hIIIiB ¼ 8

27ðt − tbÞ3
¼ 1

27
hIi3B: ðI28cÞ

These relations lead to the same result for the back-
reaction term, QB ¼ 2hIIiB − 2

3
hIi2B ¼ 0.
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