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There is no unique way to describe the dark energy–dark matter interaction, as we have little information
about the nature and dynamics of the dark sector. Hence, in many of the phenomenological dark matter
fluid interaction models in the literature, the interaction strength Qν in the dark sector is introduced by
hand. Demanding that the interaction strengthQν in the dark sector must have a field theory description, we
obtain a unique form of the interaction strength. We show the equivalence between the fields and fluids for
the fðR; χÞ model where f is an arbitrary, smooth function of R and a classical scalar field χ, which
represents dark matter. Up to first order in perturbations, we show that the one-to-one mapping between the
classical field theory description and the phenomenological fluid description of interacting dark energy
and dark matter exists only for this unique form of interaction. We then classify the interacting dark
energy models considered in the literature into two categories based on the field-theoretic description.
We introduce a novel autonomous system and its stability analysis for the general interacting dark sector.
We show that the dark-energy-dominated epoch occurs earlier than the noninteracting systems for a specific
scalar field potential and a range of coupling strengths.

DOI: 10.1103/PhysRevD.103.023510

I. INTRODUCTION

Dark matter dominates the mass of galaxies, and dark
energy forms the majority of our Universe’s energy density
[1]. However, we have little information about the proper-
ties of these two components that dominate the energy
content of the Universe today [2]. The only information we
have about the two components is that (i) dark energy
contributes a negative pressure to the energy budget, and
(ii) dark matter has negligible (possibly zero) pressure [1].
The above properties are based on gravitational inter-
actions. More importantly, we do not know how they
interact with each other and baryons/photons.
In the early Universe, due to the tight coupling of baryons

and photons, the baryons participate in the acoustic oscil-
lations of the photons, and also cause Silk damping [3]. Near
recombination, the baryons decouple from the photons, and
photons propagate freely. Solar eclipse measurements rule
out dark matter interactions with photons. Local gravity
measurements rule out dark energy interactions with bary-
ons [4]. However, the current observations cannot constrain
(or rule out) the interaction strength between darkmatter and
dark energy. Interestingly, the dark matter–dark energy
interaction provides a mechanism to alleviate the coinci-
dence problem (see, for instance, Ref. [5]). Besides this, it
was recently shown that the dark matter–dark energy

interaction can reconcile the tensions in the Hubble constant
H0 [6].
Naturally, there has been a surge in constructing dark

energy–dark matter models [7–32]. Phenomenologically, in
all of these models the interaction is proposed between the
fluid terms in the dark sector. More specifically, dark matter
(DM) and dark energy (DE) do not individually satisfy the
conservation equations; however, the combined sector
satisfies the energy conservation equation [5], i.e.,

∇μTðDE;DMÞ
μν ¼ QðDE;DMÞ

ν ð1Þ

such that

QðDEÞ
ν þQðDMÞ

ν ¼ 0; ð2Þ

where Q determines the interaction strength between dark
matter and dark energy. Since the gravitational effects on
dark matter and dark energy are opposite, even a small
interaction can impact the cosmological evolution [5].
Since we have little information about the dark sector, in
many of these models the interaction strength Qν in the
dark sector is put in by hand.
However, it is unclear whether these broad classes of

phenomenological models can be obtained from a field
theory action. More specifically, can the above interaction
strength Qν in the dark sector be derived systematically
from a field theory action? Attempts have been made in the
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literature to obtain the interaction strength from the field-
theoretic action [30]. The correspondence between the fluid
description and field-theoretic description is established
only for the background cosmology and not for the
perturbations. The analysis of cosmological perturbations
is essential to provide a complete understanding of these
models and, more importantly, to determine if the pertur-
bations are stable in the presence of the interaction Qν.
In this work, we show the equivalence up to first order in

the perturbations of the fðR; χÞ model, where f is an
arbitrary, smooth function of R and the classical scalar field
χ which represents dark matter. More specifically, under
conformal transformations, we show that fðR; χÞ is equiv-
alent to a model with two coupled scalar fields. The
coupling between the classical scalar fields, which gives
rise to the dark energy–dark matter interaction (1), can be
represented by the evolution equations of the dark energy
(represented by a scalar field) and dark matter (represented
by a fluid). We show that the interaction between the dark
sectors can be rewritten in terms of the trace of the energy-
momentum tensor of the dark matter fluid and a coupling
function depending on the dark energy field. We then look
at several interacting dark sector models proposed in the
literature and identify those that are compatible with the
field theory action proposed here.
We define a set of dimensionless variables and construct

an autonomous system that completely describes the dark
energy–dark matter interaction and background evolution.
We analyze the fixed points of the system and show that the
system has a stable attractor solution, corresponding to the
late-time accelerated expansion of the Universe. To our
knowledge, this is the first time such an approach has been
used to study a general class of interacting dark sector
models. We consider a specific dark energy–dark matter
interaction model and study the background evolution. We
show that for a range of (both positive and negative)
coupling strengths, the dark-energy-dominated epoch
occurs earlier with an interacting dark sector than in the
noninteracting dark sector.
In this work we use the natural units where c ¼ 1,

κ2 ¼ 8πG, and the metric signature ð−;þ;þ;þÞ. Greek
letters denote the four-dimensional space-time coordinates
and latin letters denote the three-dimensional spatial
coordinates. Overbarred quantities [like ρ̄ðtÞ, P̄ðtÞ] are
evaluated for the Friedmann-Robertson-Walker (FRW)
background, and a dot represents a derivative with respect
to cosmic time t. Unless otherwise specified, the subscript
“, ϕ” denotes a derivative with respect to ϕ, the subscript
“,χ” denotes a derivative with respect to χ, and the subscript
m denotes dark matter.

II. DARK SECTOR INTERACTION
FROM A FIELD THEORY ACTION

In the field theory description of the interacting dark
energy–dark matter models, the coupling between the dark

sector components is represented by a coupling term, which
is an arbitrary function of the dark energy scalar field. It can
be shown that modified gravity models such as fðR̃; χ̃Þ
gravity can lead to such models [33]. Consider the
following action in the Jordan frame:

SJ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2κ2
fðR̃;χ̃Þ−1

2
g̃μν∇̃μχ̃∇̃νχ̃−Vðχ̃Þ

�
; ð3Þ

where fðR̃; χ̃Þ is an arbitrary, smooth function of the Ricci
scalar and scalar field χ̃, and VðχÞ is the self-interaction
potential of the scalar field χ̃. Under the conformal trans-
formation

gμν ¼ Ω2g̃μν; where Ω2 ¼ FðR̃; χ̃Þ≡ ∂fðR̃; χ̃Þ
∂R̃ ð4Þ

and a field redefinition, the action in the Einstein frame
takes the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
gμν∇μϕ∇νϕ −UðϕÞ

−
1

2
e2αðϕÞgμν∇μχ∇νχ − e4αðϕÞVðχÞ

�
; ð5Þ

where

U ¼ FR̃ − f
2κ2F2

:

This action has also been considered in the context of a
multifield inflationary scenario (see, for instance,
Ref. [34]). Recently, the same action was also considered
in Ref. [30]. However, to our knowledge, we have not seen
an explicit calculation that shows the derivation of the
above action in the Einstein frame. Appendix A contains
the details of the transformations in field space used to
derive the above action.
From the above action (5), the field equations for χ and ϕ

are, respectively,

−∇μ∇μχ − 2α;ϕðϕÞ∇μϕ∇μχ þ e2αðϕÞV;χðχÞ ¼ 0; ð6Þ

−∇μ∇μϕþ 4e4αα;ϕðϕÞVðχÞ þ e2αα;ϕðϕÞ∇μχ∇μχ

þU;ϕðϕÞ ¼ 0; ð7Þ

where the notations such as V;χ and U;ϕ denote ∂V=∂χ and
∂U=∂ϕ. The variation of the action (5) with respect to the
metric gμν gives the Einstein equation

Gμν ¼ κ2Tμν; ð8Þ

where the stress-tensor is given by
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Tμν ¼ ∇μϕ∇νϕ −
1

2
gμν∇σϕ∇σϕ − gμνUðϕÞ þ e2α∇μχ∇νχ

−
1

2
e2αgμν∇σχ∇σχ − e4αgμνVðχÞ: ð9Þ

In the field-theoretic description, the two field equations (6)–
(7) and the Einstein equation (8) completely describe the
system.
Since dark matter and dark energy constitute up to 95%

of the energy content of the Universe today, it is a good
approximation to assume that the total energy-momentum
tensor of the Universe is given by Eq. (9). Demanding the
local conservation of the energy-momentum tensor leads to

∇μTμν ¼ ∇μTðϕÞ
μν þ∇μTðχÞ

μν ¼ 0; ð10Þ
where TðϕÞ

μν and TðχÞ
μν refer to the stress tensors corresponding

to the scalar fields ϕ and χ, respectively. Due to the
interaction between the two fields ϕ and χ, there is no
unique way to write the stress tensor corresponding to the
scalar fields, and the conservation of the energy-momentum
tensor of the individual components is violated. Following
Eqs. (1), (6), and (7), the interaction between the two scalar
fields can be described as

−∇μTðϕÞ
μν ¼ QðFÞ

ν ¼ ∇μTðχÞ
μν ; ð11Þ

where

TðχÞ
μν ¼ e2αðϕÞ

�
∇μχ∇νχ −

1

2
gμν∇σχ∇σχ − e2αðϕÞgμνVðχÞ

�
;

ð12Þ

TðϕÞ
μν ¼ ∇μϕ∇νϕ −

1

2
gμν∇σϕ∇σϕ − gμνUðϕÞ; ð13Þ

QðFÞ
ν ¼ ∇μTðχÞ

μν

¼ −e2αðϕÞα;ϕðϕÞ∇νϕ½∇σχ∇σχ þ 4e2αðϕÞVðχÞ�: ð14Þ

It is important to note that, starting from Eq. (3), we can
obtain interaction strength QðFÞ in terms of ϕ and VðχÞ. We
can equally rewrite QðFÞ in terms of UðϕÞ. While this field
theory description may be considered a fundamental
description of the system, the fluid description turns out
to be more useful to analyze the cosmological observations.
In that regard, the most common description of the
interacting dark sector is in terms of dark matter fluid.

A. Fluid description of the interacting dark sector

In the fluid description, it is often convenient to consider
the dark matter to be a fluid. For this purpose, we replace
the dark matter scalar field and related quantities by the
corresponding energy density ρm and pressure pm of the
dark matter fluid [30]:

pm ¼ −
1

2
e2α½gμν∇μχ∇νχ þ e2αVðχÞ�;

ρm ¼ −
1

2
e2α½gμν∇μχ∇νχ − e2αVðχÞ�: ð15Þ

The four-velocity uμ of the dark matter fluid is
given by

uμ ¼ −½−gαβ∇αχ∇βχ�−1
2∇μχ: ð16Þ

In this description, the Einstein equation can be rewritten
in terms of the dark energy scalar field and dark matter
fluid:

Gμν ¼ κ2
�
∇μϕ∇νϕ −

1

2
gμν∇σϕ∇σϕ − gμνVðϕÞ

þ pmgμν þ ðρm þ pmÞuμuν
�
; ð17Þ

where the energy-momentum tensor for the dark matter
fluid is given by

TðmÞμ
ν ¼ pmgμν þ ðρm þ pmÞuμuν; ð18Þ

and the interaction term can be rewritten as

QðFÞ
ν ¼ ∇μT

ðmÞμ
ν

¼ −e2αðϕÞα;ϕðϕÞ∇νϕ½∇σχ∇σχ þ 4e2αðϕÞVðχÞ�
¼ −α;ϕðϕÞ∇νϕðρm − 3pmÞ: ð19Þ

Identifying TðmÞ ¼ TðmÞμ
μ ¼ −ðρm − 3pmÞ, we get

QðFÞ
ν ¼ TðmÞ∇ναðϕÞ: ð20Þ

Thus, we see that in the fluid description of interacting dark
matter the interaction term is proportional to the trace of
the energy-momentum tensor of the dark matter and the
coupling α. It is important to note that, starting from the
Jordan frame action (3), the form of the interaction term

QðFÞ
ν is uniquely written in terms of the dark energy scalar

field and dark matter fluid.
This has to be contrasted with the dark matter interaction

fluid models in the literature [7–23,25–32], where Qν

can take any form. In the next section we show that a
one-to-one correspondence between the fields and the
fluids is only true if the interaction term is given by

QðFÞ
ν in Eq. (20).

III. COSMOLOGICAL EVOLUTION WITH DARK
ENERGY–DARK MATTER INTERACTION

To study the cosmological evolution with an interacting
dark sector, we consider the spatially flat FRW metric
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with first-order scalar perturbations in synchronous
gauge1 [3]:

g00 ¼ −1; g0i ¼ 0;

gij ¼ a2
�
ð1þ AÞδij þ

∂2B
∂xi∂xj

�
; ð21Þ

where a≡ aðtÞ is the scale factor with the Hubble
parameter given by H ¼ _a=a, and A≡ Aðt; x; y; zÞ and
B≡ Bðt; x; y; zÞ are scalar perturbations. At the linear
order, the scalar, vector, and tensor perturbations decouple
and can be treated separately. Since the scalar perturbations
couple to the energy density ðδρÞ and pressure ðδPÞ leading
to the growing inhomogeneities, we only consider scalar
perturbations.
The scalar fields ϕ and χ, dark matter fluid energy

density (ρm), dark matter fluid pressure (pm), and inter-
action strength (Qν) can be split into background and
perturbed parts as

ϕ ¼ ϕ̄þ δϕ; χ ¼ χ̄ þ δχ; ρm ¼ ρ̄m þ δρm;

pm ¼ p̄m þ δpm; Qν ¼ Q̄ν þ δQν: ð22Þ

In the literature, in the fluid description the dark matter is
usually assumed to be pressureless dust, i.e., p̄m¼δpm¼0.
In this work, we do not make this assumption for the dark
matter fluid, i.e., p̄m ≠ 0 and δpm ≠ 0. However, all of our
calculations are valid in the special case of pressure-
less dust.
The components of the dark matter fluid four-velocity

can be written as

uμ ¼ ūμ þ δuμ; ū0 ¼ −1; δu0 ¼ 0;

ūi ¼ 0; δui ¼
∂δus
∂xi ; δus ¼ −

δχ
_̄χ
: ð23Þ

In the following subsections, we present the evolution
equations for the background and the first-order
perturbations.

A. Correspondence between fields and fluids
in the FRW background

In the fluid description, the Friedmann equations for the
interacting dark sector are given by [5]

�
_a
a

�
2

¼ κ2

3

�
ρ̄m þ

_̄ϕ
2

2
þUðϕ̄Þ

�
;

2
ä
a
þ
�
_a
a

�
2

¼ −
κ2

3

�
p̄m þ

_̄ϕ
2

2
−Uðϕ̄Þ

�
: ð24Þ

From Eq. (1), the conservation equations for the dark
energy field and dark matter fluid in the FRW background
are given by

̈ϕ̄ _̄ϕþ3H _̄ϕ
2 þU;ϕðϕ̄Þ _̄ϕ ¼ Q̄;

_̄ρm þ 3Hðρ̄m þ p̄mÞ ¼ −Q̄: ð25Þ

In the phenomenological description of the dark matter
fluid interaction, there is no unique form of Q̄. Several
authors have considered many different forms of Q̄ in the
literature (see, for instance, Refs. [7–23,25–32]). However,
as discussed in Sec. II A, starting from the Jordan frame

action (3) the interaction term QðFÞ
ν in Eq. (20) is written

uniquely in terms of the dark energy scalar field and dark
matter fluid. In this case, the background interaction term is
given by

Q̄ðFÞ ¼ −α;ϕðϕ̄Þ _̄ϕðρ̄m − 3p̄mÞ: ð26Þ

We now show that the above equations are consistent
with the field theory description only for this form of the
interaction term Q̄ðFÞ. Using the definitions of pm and ρm in
Eq. (15), the evolution equations for the scalar fields ϕ and
χ are given by

̈χ̄ þ 3H _̄χ þ e2αV;χðχ̄Þ þ 2α;ϕðϕ̄Þ _̄ϕ _̄χ ¼ 0;

̈ϕ̄þ 3H _̄ϕþ U;ϕðϕ̄Þ þ 4e4αα;ϕðϕ̄ÞVðχ̄Þ − e2αα;ϕðϕ̄Þ _̄χ2 ¼ 0:

ð27Þ

The background interaction term in the field theory
picture can also be obtained by a direct substitution of
the variables:

Q̄ðFÞ ¼ α;ϕðϕ̄Þ _̄ϕe2αðϕ̄Þ½ _̄χ2 − 4e2αVðχ̄Þ�: ð28Þ

Similarly, the Friedmann equations in the field theory
description can be obtained by substituting ρ̄m and p̄m
with the corresponding field theory variables. From the
above analysis, it is clear that there is a one-to-one
correspondence between the fluids and fields only for
the interaction term Q̄ðFÞ. For any other form of the
interaction term, the correspondence may not exist. In
Sec. IV, we classify various models used in the literature
based on this correspondence.

B. Correspondence between fields and fluids
in first-order perturbations

In the fluid description, the first-order scalar
perturbations in synchronous gauge satisfy the following
equations [3]:

_A ¼ κ2½ðp̄m þ ρ̄mÞδus − _̄ϕδϕ�; ð29Þ
1For the evolution equations in Newtonian gauge, see

Appendix B.

JOSEPH P. JOHNSON and S. SHANKARANARAYANAN PHYS. REV. D 103, 023510 (2021)

023510-4



B̈þ 3H _B −
A
a2

¼ 0; ð30Þ

3

2
Äþ∇2

�
1

2
B̈þH _B

�
þ 3H _A

¼ κ2

2
½−δρm − 3δpm − 4 _̄ϕ _δϕþ2U;ϕðϕ̄Þδϕ�; ð31Þ

−
1

2
Äþ 1

2a2
∇2A − 3H _A −

1

2
H∇2 _B

¼ κ2

2
½−δρm þ δpm − 2U;ϕðϕ̄Þδϕ�: ð32Þ

From Eq. (1), the conservation equations for the dark
energy field and dark matter fluid in the first-order
perturbations are given by

_δρm þ 3Hðδpm þ δρmÞ þ ðp̄m þ ρ̄mÞ
�∇2δus

a2
þ 3

2
_Aþ∇2 _B

2

�

¼ −δQ; ð33Þ

_̄ϕ

�
δ̈ϕ −

∇2δϕ

a2
þ U;ϕϕðϕ̄Þδϕ

�
þ _δϕð ̈ϕ̄þ 6H _̄ϕþ U;ϕðϕ̄ÞÞ

þ
_̄ϕ
2

2
ð∇2 _Bþ 3 _AÞ ¼ δQ: ð34Þ

The above equations are generic equations for the coupled
dark matter fluid and dark energy field with an arbitrary
interaction term δQ. As mentioned earlier, there is no
unique form of δQ in the phenomenological description of
the dark matter fluid interaction. Several authors have
considered many different forms of δQ in the literature
(see, for instance, Refs. [7–32]). However, as discussed in
Sec. II A, starting from the Jordan frame action (3) the

interaction term QðFÞ
ν in Eq. (20) is uniquely written in

terms of the dark energy scalar field and dark matter fluid.
In this case, the perturbed interaction term is given by

δQðFÞ ¼ −ðδρm − 3δpmÞα;ϕðϕ̄Þ _̄ϕ
− ðρ̄m − 3p̄mÞ½α;ϕϕðϕ̄Þ _̄ϕδϕþ α;ϕðϕ̄Þ _δϕ�: ð35Þ

Like in the previous subsection, we now show that the above
equations are consistent with the field theory description
only for this form of interaction QðFÞ. Substituting ρm, pm,
δρm, and δpm from Eq. (15), the perturbed equations of
motion for ϕ and χ are, respectively,

δ̈χ −
∇2δχ

a2
þ e2αV;χχðχ̄Þδχ þ

_̄χ

2
ð∇2 _Bþ 3 _AÞ

þ 3H _δχ þ 2α;ϕðϕ̄Þð _̄ϕ _δχþ _̄χ _δϕÞ
þ 2δϕ½ _̄ϕ _̄χ α;ϕϕðϕ̄Þ þ e2αα;ϕðϕ̄ÞV;χðχ̄Þ� ¼ 0; ð36Þ

δ̈ϕ −
∇2δϕ

a2
þU;ϕϕðϕ̄Þδϕþ

_̄ϕ

2
ð∇2 _Bþ 3 _AÞ

þ 2e2αα;ϕðϕ̄Þ½2e2αV;χðχ̄Þδχ − _̄χ _δχ�
þ 2e2αα;ϕðϕ̄Þ2δϕ½8e2αVðχ̄Þ − _̄χ2�
þ e2αα;ϕϕðϕ̄Þδϕ½4e2αVðχ̄Þ − _̄χ2� ¼ 0: ð37Þ

The above perturbed field equations are identical to the
equations obtained from Eqs. (6) and (7), respectively. The
perturbed interaction term in the field theory picture can also
be obtained by a direct substitution of the variables:

δQðFÞ ¼ 2e2αα;ϕðϕ̄Þ _̄ϕ½ _̄χ _δχ −2e2αV;χðχ̄Þδχ�
þ e2αα;ϕϕðϕ̄Þ _̄ϕδϕ½ _̄χ2 − 4Vðχ̄Þ�
þ 2e2αα;ϕðϕ̄Þ2 _̄ϕδϕ½ _̄χ2 − 8e2αVðχ̄Þ�
þ e2αα;ϕðϕ̄Þ _δϕ½ _̄χ2 − 4e2αVðχ̄Þ�: ð38Þ

We would like to stress the following points regarding the
above results. First, there is no unique form of δQ in the
phenomenological description of the dark matter fluid
interaction. However, demanding a one-to-one correspon-
dence between the field and fluid pictures leads to a unique

interaction term QðFÞ
ν . Second, we see that apart from the

convenience of relating the variable to cosmological observ-
ables, the evolution equations in the fluid description are
simpler than those in the fluid theory description, which
simplifies the numerical analysis of the model. Third, while
the form of the interaction term is unique, it still contains
unknown functions like αðϕÞ, χ, and VðχÞ. In the next
section, we will use this correspondence to clarify the
phenomenological dark matter fluid interaction models in
the literature [7–31].

IV. INTERACTING DARK ENERGY MODELS
IN THE LITERATURE

Since we have little information about the nature and
dynamics of the dark sector, there is no unique way of
describing the interaction between dark energy and dark
matter. So far, the interaction strength Qν has been
described by phenomenological models, with model
parameters constrained by cosmological observations [5].
In many of the models, the interaction strength Qν in the
dark sector is constructed using the energy densities of dark
energy and dark matter and other dynamic quantities
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appearing in the model. However, it is not clear whether the
models can be written from a field-theoretic action.
In this work, starting from the Jordan frame action (3),

we showed that the interaction term QðFÞ
ν is unique. We

showed that this interaction provides a one-to-one mapping
between the field and fluid descriptions of the dark matter
sector. Armed with this, in this section we classify the

interacting dark energy models considered in the literature
into two categories based on the field-theoretic description.
The table below identifies the models that can (or cannot)
be described by the field theory approach considered in
this work. The list is not exhaustive but gives a good
representation of the various models discussed in the
literature.

Interacting DE-DM model DE-DM Interaction ∇μTðDE;DMÞ
μν ¼ QðDE;DMÞ

ν Is Qν ∝ QðFÞ
ν ?

Amendola—1999 [7] _ρm þ 3Hρm ¼ −Cρm _ϕ Yes
Amendola—1999 [8] _ρm þ 3Hρm ¼ −Cρm _ϕ Yes
Billyard & Coley—1999 [9] _ϕðϕ̈þ 3H _ϕþ kVÞ ¼ ð4−3γÞ

2
ffiffiffiffiffiffiffi
ωþ3

2

p _ϕμ Yes

Olivares et al.—2005 [10] dρc
dt þ 3Hρc ¼ 3Hc2ðρc þ ρxÞ No

Amendola et al.—2006 [11] _ρDM þ 3HρDM − δðaÞHρDM ¼ 0 No
Olivares et al.—2007 [12] _ρc þ 3Hρc ¼ 3Hc2ðρx þ ρcÞ No

Boehmer et al.—2008 [13] _ρc þ 3Hρc ¼ −
ffiffiffiffiffiffiffiffi
2=3

p
κβρc _φ Yes

_ρc þ 3Hρc ¼ −αHρc No

Caldera-Cabral et al.—2008 [14] _ρc ¼ −3Hρc þ 3Hðαxρx þ αcρcÞ No
_ρc ¼ −3Hρc þ 3ðΓxρx þ ΓcρcÞ No

He & Wang—2008 [15] _ρDM þ 3HρDM − δHρDM ¼ 0 No
_ρDM þ 3HρDM − δHðρDM þ ρDEÞ ¼ 0 No

Pettorino & Baccigalupi—2008 [16] ϕ00 þ 2Hϕ0 þ a2U;ϕ ¼ a2Ccρc Yes
Quartin et al.—2008 [17] dρc

dN þ 3ρc ¼ 3λxρx þ λcρc No

Boehmer et al.—2009 [18] _ρc ¼ −3Hρc − α
M0

ρ2φ No

_ρc ¼ −3Hρc −
β
M0

ρ2c No

_ρc ¼ −3Hρc −
γ
M0

ρφρc No

Beyer et al.—2010 [19] φ̈þ 3H _φ − αM3e−αφ=M ¼ β
M ρχ Yes

Lopez Honorez et al.—2010 [20] _ρdm þ 3Hρdm ¼ βðϕÞρdm _ϕ Yes
Avelino & Silva—2012 [21] _ρm þ 3Hρm ¼ αHaβρw No
Pan et al.—2012 [22] _ρm þ 3Hρm ¼ 3λmHρm þ 3λdHρd No
Salvatelli et al.—2013 [23] _ρdm þ 3Hρdm ¼ ξHρde No
Chimento et al.—2013 [24] ρ0m þ γmρm ¼ −αρ0ρ No
Amendola et al.—2014 [25] _ρα þ 3Hρα ¼ −κ

P
i Ciα

_ϕiρα Yes
Marra—2015 [26] _ρm þ 3Hρm ¼ νδnmρm _ϕ=MPl No

Bernardi & Landim—2016 [27] _ρm þ 3Hρm ¼ Qðρϕ þ ρmÞ _ϕ No

_ρm þ 3Hρm ¼ Qρϕ _ϕ No

Pan & Sharov—2016 [28] _ρdm þ 3Hρdm ¼ 3λmHρdm þ 3λdHρd No

Bruck & Mifsud—2017 [29] a ∇μTDM
μν ¼ Q∇νϕ Yes

Q ¼ C;ϕ

2C TDM þ D;ϕ

2C Tμν
DM∇μϕ∇νϕ −∇μ½DC Tμν

DM∇νϕ� if D ¼ 0

Gonzalez & Trodden—2018 [30] _ρχ þ 3Hρχ ¼ α0 _ϕρχ Yes

Barros et al.—2018 [31] _ρc þ 3Hρc ¼ −κβ _ϕρ. Yes
Landim—2019 [32] ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ −Qρm Yes

aViolates the causality condition [DðϕÞ > 0] for the disformal transformations [35].
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V. DETAILED ANALYSIS OF
BACKGROUND EVOLUTION

This section considers the class of interacting models
with a one-to-one mapping between the fields and fluids
and shows that one can exactly solve the evolution equation
of the dark matter fluid. We perform a detailed analysis of
the background evolution of the dark sector in the fluid
picture.
The background interaction term (20) in the fluid picture

can be rewritten as

Q̄ðFÞ ¼ −α;ϕðϕ̄Þ _̄ϕðρ̄m − 3p̄mÞ ¼ − _αðϕ̄Þðρ̄m − 3p̄mÞ: ð39Þ

Assuming a matter fluid with a constant equation of state
ωm ¼ p̄m=ρ̄m, we can rewrite the continuity equation for
matter fluid as

_̄ρm þ 3Hρ̄mð1þ ωmÞ ¼ _αðϕ̄Þρ̄mð1 − 3ωmÞ: ð40Þ

Solving this, we get

ρ̄m ¼ ρ̄m0
a−3ð1þωmÞe½αðϕ̄Þ−α0�ð1−3ωmÞ; ð41Þ

where ρ̄m0
and ϕ̄0 are the current values of ρ̄m and ϕ̄, and

α0 ¼ αðϕ̄0Þ. The evolution of ϕ is determined by the
equation of motion of ϕ. As expected, setting αðϕÞ ¼ 0
results in the evolution of ρm in the ΛCDM model.

A. Autonomous system of interacting dark
energy–dark matter model

To study the cosmological evolution in the interacting
dark sector, we write the equations in dimensionless
variables and describe them as an autonomous system of
equations [2,36]. To our knowledge, this is the first time
such an approach has been used to study a general class of
interacting dark sector models.
To study and analyze a general class of dark sector

interaction models, we define the following dimensionless
variables:

x ¼
ffiffiffiffiffiffi
C1

6

r
_ϕ

HMPl
; y ¼

ffiffiffiffiffiffi
C1

3

r ffiffiffiffi
U

p

HMPl
; ð42Þ

λ ¼ −
MPlffiffiffiffiffiffi
C1

p U;ϕ

U
; Γ ¼ UU;ϕϕ

U2
;ϕ

; ð43Þ

α ¼ αðϕÞ; β ¼ −
MPlffiffiffiffiffiffi
C1

p α;ϕ
α

; γ ¼ αα;ϕϕ
α2;ϕ

; ð44Þ

where a dot represents a derivative with respect to time, and
C1 is a constant. (C1 is defined in Appendix C.) Here α, β,
and γ describe a general interaction function and its
properties. These variables can be used to study a large
class of interacting dark energy–dark matter models.

The following equations give the autonomous system of
the interacting dark-sector model:

x0 þ 3

2
x

�
1 − x2 þ y2 −

Ωr

3

�
−

ffiffiffi
3

2

r �
λy2 þ q

x

�
¼ 0; ð45Þ

y0 þ 3

2
y

� ffiffiffi
2

3

r
λx − x2 þ y2 −

Ωr

3
− 1

�
¼ 0; ð46Þ

Ω0
m þΩmð3y2 − 3x2 −ΩrÞ þ

ffiffiffi
6

p
q ¼ 0; ð47Þ

Ω0
r þΩrð1 − 3x2 þ 3y2 −ΩrÞ ¼ 0; ð48Þ

λ0 þ
ffiffiffi
6

p
λ2xðΓ − 1Þ ¼ 0; ð49Þ

β0 þ
ffiffiffi
6

p
β2xðγ − 1Þ ¼ 0; ð50Þ

α0 þ
ffiffiffi
6

p
αβx ¼ 0; ð51Þ

and the energy constraint is given by

x2 þ y2 þΩm þΩr − 1 ¼ 0: ð52Þ

Here a prime denotes a derivative with respect to the
number of e-foldings N ≡ lnðaÞ. For the pressureless
matter fluid, the scaled interaction term (q) is defined as

q≡ αβxΩm ¼ −
α;ϕðϕ̄Þ _̄ϕρ̄m
3

ffiffiffi
6

p
H3M2

Pl

¼ Q̄

3
ffiffiffi
6

p
H3M2

Pl

: ð53Þ

Note that various cosmological parameters can be
expressed in terms of these variable as

Ωϕ ¼ x2 þ y2; ωϕ ¼ x2 − y2

x2 þ y2
; ð54Þ

ρi¼3H2M2
PlΩi; ϵ≡−

_H
H2

¼3

2

�
x2−y2þΩr

3
þ1

�
: ð55Þ

B. Stability analysis of the autonomous system

To get further insight into the background evolution of
the Universe with the interacting dark sector, we look at the
fixed points of the autonomous system introduced in
Sec. VA. We consider two cases.

1. Case (i): Models with constant λ (exponential scalar
field potential) and a linear interaction function
(constant αβ).

2. Case (ii): Models with general scalar field potential
(λ ≠ const) and a general coupling function
(αβ ≠ const). To our knowledge, a general stability
analysis for this case has not been done before.
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Table I contains the list of fixed points of the autonomous
system for case (i).
Asmentioned above, the fixed points are for the case of an

exponential scalar field potential and a linear interaction
function. The fixed points can be considered as instantaneous
fixedpoints for other potentials and interaction functions. For
constant λ and αβ, it has been shown that a sequence of
radiation-dominated era, matter-dominated era, and an
accelerated attractor (like, 1b → 1e → 1h) is cosmologically
viable for a range of parameter values [2,37].
Table II contains the list of fixed points of the autono-

mous system for case (ii), which is for a system with an
evolving λ and a general coupling function αðϕÞ (for which
λ and αβ are not necessarily constants).
In some cases, the fixed-point conditions are satisfied for

any physically realizable values of the parameters. These are
represented as empty cells in the table. We can classify the
fixed points in Table II into radiation-dominated, matter-
dominated, and late-time accelerated phase fixed points.

1. Radiation-dominated phase: We have two radiation-
dominated fixed points: “2a” and “2g.” Looking at
the eigenvalues of the Jacobian matrix of the system,
we see that both of them are saddle points.

2. Matter-dominated phase: The matter-dominated era
can be realized by “2b,” “2c,” and “2f,” and all of
them are saddle points.

3. Accelerated phase: Looking at the values of ϵ�, we
see that dark-energy-dominated accelerated expan-
sion can be realized by “2d” and “2h.” Both of these
fixed points are attractors.

From the above analysis, it is clear that the interacting dark
sector model can lead to a radiation-dominated era followed
by a matter-dominated era, followed by an accelerated phase
(e.g., 2a → 2c → 2d). The attractor behavior of the accel-
erated fixed point ensures that the late Universe stays in the
accelerated phase, leading to the de Sitter Universe, which is
indicated by ϵ� ¼ 0 ⇒ H� ¼ const.

C. Dark energy–dark matter interaction:
A specific example

In the previous subsections we have shown that the
interacting dark-sector model can be expressed as an
autonomous system. However, the analysis of an arbitrary
model is not possible. Here, we consider a quintessence
dark energy model [38] with a linear interaction function:

C1 ¼
M2

Pl

2
; UðϕÞ ¼ 8πM2

Plκ

2

1

ϕ
; αðϕÞ ¼ Cffiffiffi

2
p ϕ; ð56Þ

where κ and the coupling strength C are constants. In the
rest of this section, we consider the background evolution
for two different scenarios: C ≥ 0 and C ≤ 0. For both
scenarios, we solve the above set of equations numerically
in the redshift range 1500 < z < 0, and the evolution of
various cosmological parameters are plotted with respect to
the number of e-foldings (N).
For the background evolution, we choose the following

initial conditions and parameter values:

xi ¼ 1.5 × 10−5; yi ¼ 2.5 × 10−5;

Ωri ¼ 0.4; Ωmi
¼ 1 − x2i − y2i −Ωri ;

λi ¼ 0.6; αi ¼ C=λi; βi ¼ −λi;

Γ ¼ 2; γ ¼ 0:

TABLE I. Fixed points of the autonomous system with a given λ and linear coupling function.

Fixed point x� y� Ω�
r Ω�

ϕ ϵ�

1a −1 0 0 1 3
1b 0 0 1 0 2
1c 1 0 0 1 3
1d 1ffiffi

6
p

αβ
0 1 − 1

2α2β2
1

6α2β2
2

1e
ffiffi
2
3

q
αβ 0 0 2

3
α2β2 3

2
þ α2β2

1f −
ffiffi
3
2

q
1

αβ−λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
þ α2β2 − αβλ

q
1

αβ−λ
0 α2β2−αβλþ3

ðλ−αβÞ2 − 3λ
2ðαβ−λÞ

1g
ffiffi
2
3

q
2
λ

2ffiffi
3

p
λ

1 − 4
λ2

4
λ2

2

1h λffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0 1 λ2

2

TABLE II. Fixed points of the autonomous system with varying
λ and a general coupling function α.

Fixed point x� y� Ω�
r Ω�

ϕ Ω�
m λ� α� β� ϵ�

2a 0 0 1 0 0 … … … 2
2b 0 0 0 0 1 … 0 … 3

2

2c 0 0 0 0 1 … … 0 3
2

2d 0 1 0 1 0 0 … … 0
2e −1 0 0 1 0 0 … 0 3
2f 0 0 0 0 1 0 … 0 3

2

2g 0 0 1 0 0 0 … 0 2
2h 0 1 0 1 0 0 … 0 0
2i 1 0 0 1 0 0 … 0 3
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The initial values are chosen so that the evolution is
consistent with the observed values of the cosmological
parameters. It is important to note that a range of initial
conditions will lead to the accelerated expansion of the
Universe with a dark-energy-dominated phase. These
specific initial conditions are chosen as representative
values for the background evolution. The values of Γ
and γ are fixed by the choice of the dark energy scalar
field potential U and the coupling function α, respectively.

1. Scenario I: C ≥ 0

Figure 1 contains the plots of the evolution of the scaled
interaction term q [defined in Eq. (53)] and slow-roll
parameter ϵ [defined in Eq. (55)]. Here we see that the
interaction term takes both positive and negative values
during the evolution, and the strength of the interaction
decreases in the late Universe. All of the cases result in the
late-time accelerated expansion (ϵ < 1). The interacting
dark-sector model leads to an early dark-energy-dominated
phase compared to the noninteracting dark sector.
In the previous subsection, we showed that the interact-

ing dark-sector model has a stable attractor solution, which

corresponds to the late-time accelerated Universe. To
demonstrate this point, we fix the variables other than x
and y to be constants with the values of corresponding
functions atN ¼ 7. As we see in the left panel of Fig. 2, this
is a reasonable assumption since the relevant variables are
nearly constant for N > 3. From the right panel of Fig. 2,
we see that a large range of the x and y parameters lead to a
dark-energy-dominated attractor. It has to be noted that this
is a rough representation of the phase-space evolution since
the other parameters in the system are slowly varying. For
simplicity, we have kept them constant while plotting the
phase- space diagram. Hence, the attractor in the phase-
space diagram is an instantaneous attractor. It is important
to note that various potentials, including the one we have
considered here, have been shown to have a dark-energy-
dominated attractor in the noninteracting scenario [37,39].
Figure 3 contains the plots of the evolution of the energy
density parameters for dark matter and dark energy. The
figure shows that different coupling strengths lead to a
dark-energy-dominated Universe, and the dark-energy-
dominated phase starts earlier as compared to the non-
interacting scenario. To investigate further, in Fig. 4 we plot

FIG. 1. Left panel: evolution of the interaction term q≡ αβxΩm as a function of N. Right panel: slow-roll parameter ϵ as a
function of N.

FIG. 2. Left panel: evolution of various parameters in the future (N > 0). Right panel: x-y phase space with a dark-energy-dominated
attractor point for C ¼ 0.6.
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the evolution of the scaled Hubble parameter h ¼ H=H0.
The plot in the right panel (for redshift range 2 < z < 0) is
the zoomed-in version of the plot in the left panel (for
redshift range 1500 < z < 0). From the plots, it is clear that
while the dark energy dominates early, the scaled Hubble
parameter is smaller in the interacting dark-sector models
than in the noninteracting dark-sector model.

2. Scenario II: C ≤ 0

In this scenario, the initial value of the coupling function
is non-negative. Figure 5 contains the plots of the evolution
of the scaled interaction term q [defined in Eq. (53)] and
slow-roll parameter ϵ [defined in Eq. (55)]. As in the earlier
scenario, the evolution with C < 0 leads to accelerated
expansion, and the interaction function stays positive

FIG. 3. Evolution of energy density parameters as functions of N. Left panel: dark matter. Right panel: dark energy.

FIG. 4. Evolution of the Hubble parameter h ¼ H=H0 as a function of N.

FIG. 5. Left panel: evolution of the interaction term q≡ αβxΩm as a function of N. Right panel: slow-roll parameter ϵ as
a function of N
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during the evolution. However, the late-time evolution
of these parameters is different from that of the C ≥ 0
scenario.
Like in the C ≥ 0 scenario, Fig. 6 contains the evolution

of the system in the x-y phase plane. This scenario also
leads to a stable dark-energy-dominated attractor. Figure 7

contains the evolution of Ωϕ and Ωm. Like in the earlier
scenario, the plots show the dark-energy-dominated phase
in the late Universe. However, the late-time evolution of
these parameters is different from the C ≥ 0 scenario.
Figure 8 also shows a similar trend in the evolution of
the Hubble parameter.

FIG. 6. Left panel: evolution of various parameters in the future (N > 0). Right panel: x-y phase space with a dark-energy-dominated
attractor point for C ¼ −0.6.

FIG. 7. Evolution of the energy density parameters as functions of N. Left panel: dark matter. Right panel: dark energy.

FIG. 8. Evolution of the Hubble parameter h ¼ H=H0 as a function of N.

COSMOLOGICAL PERTURBATIONS IN THE INTERACTING … PHYS. REV. D 103, 023510 (2021)

023510-11



V. CONCLUSIONS AND DISCUSSIONS

In this work, we have constructed the dark energy–dark
matter interaction from a classical field theory action. This
action is obtained from the fðR̃; χ̃Þ action using a con-
formal transformation and redefinition of the scalar fields.
While the total energy-momentum tensor is conserved due
to the interaction, the energy-momentum of the individual
components in the dark sector is not satisfied. This leads to

a unique interaction term QðFÞ
ν .

While the field theory description helps us to obtain the
interaction from the action principle, the fluid description
turns out to be more useful for analyzing cosmological
observations. In that regard, the most common description of
the interacting dark sector is in terms of a dark matter fluid.
However, in the phenomenological description of the dark
matter fluid interaction, there is no unique form of Qν. In
many of the models in the literature the interaction strength
Qν in the dark sector is introduced by hand. We have
systematically shown that the one-to-one correspondence
between the fluids and fields is possible only if the interaction

term is givenbyQðFÞ
ν . In this specific case, the equations in the

field theory description can be obtained from the fluid
equations by a simple substitution of the variables.
We classified the interacting dark energy models consid-

ered in the literature into two categories based on the field-
theoretic description.Whilemanyof themodels have a field-
theoretic description, many of the dark matter fluid inter-
action models do not have a field-theoretic description like
that used in thiswork. The field-theoretic description used in
this work is the simplest one possible. It may be possible that
by considering a generalized action, like the Horndeski
Lagrangian, some of thesemodelsmayhave a field-theoretic
description [40]. This needs further investigation.
We defined a set of dimensionless variables and con-

structed a novel autonomous system that describes the
evolution of a general quintessence dark energy interacting
with darkmatter. Studying the fixed points of the autonomous
system, we showed that the interacting dark sector model has
a stable attractor solution that describes the late-time accel-
erated Universe. As an example, we considered the model
with UðϕÞ ∝ 1=ϕ and αðϕÞ ∝ ϕ. We have shown that a
stable, dark-energy-dominated solution exists for this model
for a range of coupling strengths (both positive and negative).
While the form of the interaction term (QðFÞ

ν ) is unique, it
still contains unknown functions like αðϕÞ, χ, and VðχÞ.
These can be constrained using particle physics models
[41]. The immediate question that arises is whether one can
use some other tools to further constrain the suitable dark
matter–dark energy model from the observations. This is
currently under investigation.
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APPENDIX A: FIELD-THEORETIC
FORMULATION OF THE DARK

ENERGY–DARK MATTER INTERACTION

Consider the following Jordan frame action:

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
1

2κ2
fðR̃; χ̃Þ − 1

2
g̃μν∇̃μχ̃∇̃νχ̃ − Vðχ̃Þ

�
;

ðA1Þ
where fðR̃; χ̃Þ is an arbitrary, smooth function of the Ricci
scalar (R̃) defined in the four-dimensional metric g̃μν, and
the scalar field χ̃. Under conformal transformation and
redefining the scalar fields, one can bring it to the Einstein
frame with two interacting scalar fields [34].
To keep calculations tractable, we assume the following

form for fðR̃; χ̃Þ:

fðR̃; χ̃Þ ¼ hðχ̃ÞfðR̃Þ: ðA2Þ

The above action can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
hðχ̃Þ

�
FR̃
2κ2

−U

�
−
1

2
g̃μν∂μχ̃∂νχ̃ − Vðχ̃Þ

�
;

ðA3Þ

where

F
∂f
∂R̃ and Ũ ¼ FR̃ − f

2κ2
:

Under the conformal transformation

ĝμν ¼ Fg̃μν; ðA4Þ

the above action (A3) becomes

S¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
hðχ̃Þ R̂

2κ2
−hðχ̃ÞÛþhðχ̃Þ

ffiffiffiffiffiffiffi
3

2κ2

r
□̂ψ

−
hðχ̃Þ
2

ĝμν∂μψ∂νψ−
e−

ffiffiffiffi
2κ2

3

p
ψ

ĝμν∂μχ̃∂νχ̃−V̂ðχ̃Þ
�
; ðA5Þ

where

ψ ¼
ffiffiffiffiffiffiffi
3

2κ2

r
lnF; Û ¼ Ũ

F2
; V̂ ¼ V

F2
: ðA6Þ
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Introducing one more conformal transformation,

gμν ¼ hðχ̃Þĝμν; ðA7Þ

the above action can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
�

1

2he
ffiffiffiffi
2κ2

3

p
ψ
þ 3h2;χ̃
4κ2h2

�
gμν∂μχ̃∂νχ̃

−
1

2
gμν∂μψ∂νψ −

ffiffiffiffiffiffiffi
3

2κ2

r
h;χ̃
h
gμν∂μχ̃∂νψ − Ŵ

�
; ðA8Þ

where

Ŵ ¼ FR − f
κhF2

þ V
h2F2

: ðA9Þ

The above action in the Einstein frame neatly separates into
the Ricci scalar and the scalar fields. However, the scalar
fields are not in a canonical form. Since the metric gμν
appears in all of the kinetic parts of the scalar fields, the
field-space line element can be written as

dl2 ¼
�

1

he
ffiffiffiffi
2κ2

3

p
ψ
þ 3h2;χ̃
2κ2h2

�
dχ̃2 þ 2

ffiffiffiffiffiffiffi
3

2κ2

r
h;χ̃
h
dχ̃dψ þ dψ2:

ðA10Þ

It has to be noted that it is impossible to bring the above line
element to Euclidean form by a redefinition of the fields.
Thus, the field-space line element can be written in many
different ways, leading to a different interaction between
the two scalar fields. We list two cases below.

1. One of the simplest options is to redefine the fields
as [33]

ffiffiffiffiffiffiffi
3

2κ2

r
ln hþ ψ ¼ ϕ; χ̃ ¼ χ: ðA11Þ

Then, the field-space line element (A10) reduces to

dl2 ¼ 1

he
ffiffiffiffi
2κ2

3

p
ψ
dχ̃2 þ

�
d

� ffiffiffiffiffiffiffi
3

2κ2

r
lnhþ ψ

��2

¼ e−
ffiffiffiffi
2κ2

3

p
ϕdχ2 þ dϕ2: ðA12Þ

Under this field redefinition, the Einstein frame
action (A8) is given by

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
1

2
gμν∇μϕ∇νϕ −UðϕÞ

−
1

2
e−

ffiffiffiffi
2κ2

3

p
ϕgμν∇μχ∇νχ − e−2

ffiffiffiffi
2κ2

3

p
ϕVðχÞ

�
:

ðA13Þ

2. Let us now consider the following redefinition of the
fields:

e2αðϕÞ
�∂χ
∂ψ

�
2

þ
�∂ϕ
∂ψ

�
2

¼ 1;

e2αðϕÞ
∂χ
∂χ̃

∂χ
∂ψ þ ∂ϕ

∂χ̃
∂ϕ
∂ψ ¼

ffiffiffiffiffiffiffi
3

2κ2

r
h; ˜chi

h
;

e2αðϕÞ
�∂χ
∂χ̃

�
2

þ
�∂ϕ
∂χ̃

�
2

¼ 1

he
ffiffiffiffi
2κ2

3

p
ψ
þ 3

2κ2
h2;χ̃
h2

;

ðA14Þ

where χ ≡ χðχ̃;ψÞ, ϕ≡ ϕðχ̃;ψÞ, and αðϕÞ is an
arbitrary function of ϕ. Under this redefinition, the
field space line element (A10) reduces to

ds2 ¼ e2αðϕÞdχ2 þ dϕ2: ðA15Þ

Thus, the Einstein frame action takes the form

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
gμν∇μϕ∇νϕ −UðϕÞ

−
1

2
e2αðϕÞgμν∇μχ∇νχ − e4αðϕÞVðχÞ

�
ðA16Þ

and is identical to the action (5) in Sec. II. This
action describes two interacting scalar fields with an
arbitrary coupling represented by the function αðϕÞ.

APPENDIX B: COSMOLOGICAL EVOLUTION
IN NEWTONIAN GAUGE

Consider the spatially flat FRW metric with first-order
scalar perturbations in Newtonian gauge [3]:

g00¼−ð1þ2ΦÞ; g0i¼ 0; gij ¼ a2ð1−2ΨÞδij; ðB1Þ

where a≡ aðtÞ is the scale factor with the Hubble
parameter given by H ¼ _a=a, and Φ≡Φðt; x; y; zÞ and
Ψ≡Ψðt; x; y; zÞ are scalar perturbations.
The scalar fields ϕ and χ, the dark matter fluid energy

density (ρm), dark matter fluid pressure (pm), and the
interaction strength (Qν) can be split into background and
perturbed parts as

ϕ ¼ ϕ̄þ δϕ; χ ¼ χ̄ þ δχ; ρm ¼ ρ̄m þ δρm;

pm ¼ p̄m þ δpm; Qν ¼ Q̄ν þ δQν; ðB2Þ

uμ ¼ ūμ þ δuμ; ū0 ¼ −1; δu0 ¼ −Φ;

ūi ¼ 0; δui ¼
∂δus
∂xi ; δus ¼ −

δχ
_̄χ
: ðB3Þ
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In the following subsection, we present the evolution
equations for the first-order perturbations in Newtonian
gauge.

1. Correspondence between fields and fluids
in first-order perturbations

In the fluid description, the first-order scalar perturbations,
in Newtonian gauge, satisfy the following equations [3]:

Ψ −Φ ¼ 0; ðB4Þ

_ΨþHΦ ¼ κ2

2
½ _̄ϕδϕ − ðρ̄m þ p̄mÞδus�; ðB5Þ

3H _Ψ −
∇2Ψ
a2

þ 3H2Φ

¼ −
κ2

2
ðδρm þ _δϕ _̄ϕ−Φ _̄ϕ

2 þU;ϕðϕ̄ÞδϕÞ; ðB6Þ

3Ψ̈þ∇2Φ
a2

þ6ΦðH2þ _HÞþ3Hð2 _Ψþ _ΦÞ

¼ κ2

2
ðδρmþ3δpmþ4 _δϕ _̄ϕ−4Φ _̄ϕ

2−2U;ϕðϕ̄ÞδϕÞ: ðB7Þ

From Eq. (1), the conservation equations for the dark
energy field and dark matter fluid in the first-order
perturbations are given by

_δρmþ 3Hðδpmþ δρmÞþ ðp̄mþ ρ̄mÞ
�∇2δus

a2
− 3 _Ψ

�
¼−δQ;

ðB8Þ

_̄ϕ

�
δ̈ϕ−

∇2δϕ

a2
− 2Φ ̈̄ϕþU;ϕϕðϕ̄Þδϕ

�

þ _δϕð ̈̄ϕþ 6H _̄ϕþU;ϕðϕ̄ÞÞ−
_̄ϕ
2

2
ð3 _Ψþ _Φþ 6HΦÞ ¼ δQ:

ðB9Þ
The above equations are generic equations for the coupled
dark matter fluid and dark energy field with an arbitrary
interaction term δQ. As discussed in Sec. II A, starting from

the Jordan frame action (3), the interaction term QðFÞ
ν in

Eq. (20) is uniquely written in terms of the dark energy
scalar field and dark matter fluid. In this case, the perturbed
interaction term is given by

δQðFÞ ¼ −ðδρm − 3δpmÞα;ϕðϕ̄Þ _̄ϕ
− ðρ̄m − 3p̄mÞ½α;ϕϕðϕ̄Þ _̄ϕδϕþ α;ϕðϕ̄Þ _δϕ�: ðB10Þ

We now show that the above equations are consistent with
the field theory description only for this form of interaction
QðFÞ. Substituting ρm, pm, δρm, and δpm from Eq. (15), the
perturbed equations of motion for ϕ and χ are, respectively,

δ̈χ −
∇2δχ

a2
þ e2αV;χχðχ̄Þδχ − _̄χð3 _Ψþ _ΦÞ þ 2e2αV;χðχ̄ÞΦ

þ 3H _δχ þ 2α;ϕðϕ̄Þð _̄ϕ _δχþ _̄χ _δϕÞ
þ 2δϕ½ _̄ϕ _̄χ α;ϕϕðϕ̄Þ þ e2αα;ϕðϕ̄ÞV;χðχ̄Þ� ¼ 0; ðB11Þ

δ̈ϕ −
∇2δϕ

a2
þ 3H _δϕþ U;ϕϕðϕ̄Þδϕ − _̄ϕð3 _Ψþ _ΦÞ

þ 2U;ϕðϕ̄ÞΦþ 2e2αα;ϕðϕ̄Þ½2e2αV;χðχ̄Þδχ − _̄χ _δχ�
þ 2e2αα;ϕðϕ̄Þ2δϕ½8e2αVðχ̄Þ − _̄χ2�
þ e2αα;ϕϕðϕ̄Þδϕ½4e2αVðχ̄Þ − _̄χ2� ¼ 0: ðB12Þ

The above perturbed field equations are identical to the
equations obtained from Eqs. (6) and (7), respectively. The
perturbed interaction term in the field theory picture can
also be obtained by a direct substitution of the variables:

δQðFÞ ¼ 2e2αα;ϕðϕ̄Þ _̄ϕ½ _̄χ _δχ −2e2αV;χðχ̄Þδχ − _̄χ2Φ�
þ e2αα;ϕϕðϕ̄Þ _̄ϕδϕ½ _̄χ2 − 4e2αVðχ̄Þ�
þ 2e2αα;ϕðϕ̄Þ2 _̄ϕδϕ½ _̄χ2 − 8e2αVðχ̄Þ�
þ e2αα;ϕðϕ̄Þ _δϕ½ _̄χ2 − 4e2αVðχ̄Þ�: ðB13Þ

APPENDIX C: BACKGROUND EVOLUTION IN A
GENERAL INTERACTING DARK
ENERGY–DARK MATTER MODEL

In various quintessence models considered in the liter-
ature, the scalar field’s dimensions differ depending on the
nature of the potential, especially in the case of the power-
law potentials [38]. To include those scenarios, we rewrite
the action for the interacting dark sector as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R − C1

�
1

2
∇μϕ∇μϕþ UðϕÞ

�

− C2

�
1

2
e2αðϕÞ∇μχ∇μχ þ e4αðϕÞVðχÞ

��
; ðC1Þ

where C1 and C2 are constants. Then, the background
energy density and pressure of the dark matter are
defined by

ρm ¼ C2e2αðϕÞ
�
_χ2

2
þ e2αðϕÞVðχÞ

�
; ðC2Þ

pm ¼ C2e2αðϕÞ
�
_χ2

2
− e2αðϕÞVðχÞ

�
: ðC3Þ

Then, the energy conservation equations become

C1ðϕ̈þ 3H _ϕþ UϕðϕÞÞ _ϕ ¼ Q; ðC4Þ
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_ρm þ 3Hðρm þ pmÞ ¼ −Q; ðC5Þ

where the interaction term Q is given by

Q ¼ C2αϕðϕÞ _ϕðe2αðϕÞ _χ2 − 4eαðϕÞVðχÞÞ
¼ −αϕðϕÞ _ϕðρm − 3pmÞ: ðC6Þ

The Friedmann equations are given by

H2 ¼ 1

3M2
Pl

�
ρm þ C1

�
_ϕ2

2
þ UðϕÞ

��
; ðC7Þ

2 _H ¼ −
1

M2
Pl

ðρm þ pm þ C1
_ϕ2Þ: ðC8Þ
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