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Galaxy bispectrum is a promising probe of inflationary physics in the early Universe as a measure of
primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode
coupling due to nonlinear gravitational growth. In this paper, we examine the standard reconstruction
method of linear cosmic mass density fields from nonlinear galaxy density fields to decorrelate the
covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum
for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent N-body
simulations. Our results show that the bispectrum covariance for the postreconstructed field approaches the
Gaussian prediction at scale of k < 0.2 hMpc−1. We also verify the leading-order PNG-induced
bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate
the constraining power of the postreconstructed bispectrum for PNG at redshift of approximately 0.5.
Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including
anisotropic signals. Assuming a massive galaxy sample in the Sloan Digital Sky Survey Baryon Oscillation
Spectroscopic Survey, we find that the postreconstructed bispectrum can constrain the local, equilateral,
and orthogonal types of PNG with ΔfNL ∼ 13, 90, and 42, respectively, improving the constraints with the
prereconstructed bispectrum by a factor of 1.3–3.2. In conclusion, the reconstruction plays an essential
role in constraining various types of PNG signatures with a level of ΔfNL ≲ 1 from the galaxy bispectrum
based on upcoming galaxy surveys.
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I. INTRODUCTION

The origin of large-scale structures in the Universe is a
key question in modern cosmology. Inflation is among the
best candidates for the production mechanism of the seeds
of primordial density fluctuations, while the physics behind
inflation is still unclear. A deviation from Gaussianity in the
initial curvature perturbations, referred to as primordial
non-Gaussianity (PNG), is considered to be a unique
quantity to constrain the physics of inflationary models
in the early Universe [1]. The degree of PNG is observable
by measuring the three-point correlation function in the
anisotropy of the cosmic microwave background (CMB)
[2] as well as in the spatial distribution of tracers of large-
scale structures, e.g., galaxies [3].
The tightest constraint on PNG has been obtained from

the statistical analysis of CMB measured by the Planck

satellite [4]. Future galaxy surveys have great potential in
improving the Planck constraints by a factor of approx-
imately 10 [5,6]. In particular, the three-point correlation
analysis of galaxies will be key for the next breakthrough in
our understanding of the early Universe because it enables
us to explore a wider range of inflationary models than the
conventional two-point correlations. Most previous studies
on PNG forecasts assume that the covariance of galaxy
bispectra (i.e., the three-point correlation in Fourier space)
follows Gaussian statistics (e.g., Ref. [6], and see refer-
ences therein),1 whereas it is not always valid in actual
observations. Nonlinear gravitational growth can naturally
induce additional correlated scatters among different length
scales in measurements of galaxy bispectra, referred to as
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1Recently, Ref. [7] presented forecasts of standard cosmologi-
cal parameter constraints with redshift-space galaxy power
spectra and bispectra by including non-Gaussian covariances.
Nevertheless, the impact of the non-Gaussian covariances on the
PNG constraint is still unclear.
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non-Gaussian covariances. Surprisingly, the non-Gaussian
covariance can dominate the statistical error of the galaxy
bispectrum even at length scales of approximately 100Mpc,
leading to the degradation of the signal-to-noise ratio by a
factor of 3–4 in the current galaxy surveys [8,9]. Hence, the
actual constraining power of the galaxy bispectrum for PNG
will hinge on details in sample covariance estimation.
In this paper, we investigate the possibility of reducing

the non-Gaussian covariance and increasing the informa-
tion content in the galaxy bispectrum by using a
reconstruction method as developed in Ref. [10]. The
original motivation of this method was to obtain precise
measurements of the baryon acoustic oscillations (BAOs)
by reducing nonlinear gravitational effects in observed
galaxy density fields, effectively linearizing the two-point
statistics. This reconstruction method has been applied to
the measurement of three-point correlations in the Sloan
Digital Sky Survey (SDSS), allowing us to enhance the
acoustic feature in the non-Gaussian observable at large
scales [11]. Apart from that initial benefit, we show that
reconstruction can reduce the correlated scatters in the
observed galaxy bispectra, as it removes nonlinear mode
coupling in the galaxy density field on large scales [12].
Recently, Ref. [13] found the reduction of the correlated
scatters in the power spectrum for postreconstructed cosmic
mass density fields, whereas we extend the previous study
to halo density fields. We evaluate the covariance of the
postreconstructed bispectrum among 4000 N-body simu-
lations and demonstrate how much gain in the information
contents in the postreconstructed bispectrum will be
obtained without adding new survey volumes.
Apart from the covariance, we also study the information

content in anisotropic components of galaxy bispectra
caused by redshift-space distortions (RSDs). To increase
the signal-to-noise ratio of PNG in galaxy surveys, we need
precise constraints on the galaxy bias. Because the infor-
mation of nonlinear velocity fields is imprinted in the
anisotropic bispectrum and is independent of nonlinear
bias, we expect that the anistropic bispectrum will solve
some degeneracies between PNG and galaxy-bias param-
eters. For this purpose, we adopt a framework in Ref. [14]
to decompose the galaxy bispectra into isotropic and
anisotropic components.
The rest of the present paper is organized as follows. In

Sec. II, we describe our simulation data to study covariance
matrices of the postreconstructed bispectrum and how to
measure the bispectrum from the simulation. In Sec. III, we
summarize a theoretical model to predict statistics of
postreconstructed density fields. We present the results
in Sec. IV. Concluding remarks and discussions are given
in Sec. V.

II. SIMULATION AND METHOD

To study the postreconstructed galaxy bispectrum, we
run 4000 independent realizations of a cosmological

N-body simulation. We perform the simulation with
GADGET-2 Tree-Particle Mesh code [15]. Each simula-
tion contains 5123 particles in a cubic volume of
5003 ðh−1MpcÞ3. We generate the initial conditions using
a parallel code developed by Refs. [16,17], which employs
the second-order Lagrangian perturbation theory [18]. We
assume that the initial density fluctuations follow Gaussian
statistics. The initial redshift is set to zinit ¼ 31, where we
compute the linear matter transfer function using CAMB [19].
We adopt the following parameters in the simulations:
present-day matter density parameter Ωm0 ¼ 0.3156, dark
energy density ΩΛ ¼ 1 − Ωm0 ¼ 0.6844, the density fluc-
tuation amplitude σ8 ¼ 0.831, the parameter of the equation
of state of dark energy w0 ¼ −1, Hubble parameter
h ¼ 0.6727, and the scalar spectral index ns ¼ 0.9645.
These parameters are consistent with the Planck 2015 results
[20]. We output the simulation data at z ¼ 0.484, which
represents the intermediate redshift for available luminous
red galaxy catalogs from the SDSS Baryon Oscillation
Spectroscopic Survey (BOSS) [21].
We then identify the dark matter halos from the

corresponding simulations using the phase-space temporal
halo finder ROCKSTAR [22]. In the following, we consider a
sample of dark matter halos with a mass range of
1013–14 h−1 M⊙ at z ¼ 0.484.2 Note that the mass range
of our halo sample is similar to one in a galaxy sample
in BOSS [23]. The average number density of
this halo sample over 4000 realizations is found to be
3.9 × 10−4 ðh−1MpcÞ−3. Individual halos in our sample are
resolved by 126–1260 particles. To take into account the
effect of redshift space distortions caused by the peculiar
velocity field in the clustering analysis, we set the z axis in
our simulation to be the line-of-sight direction and work
with the distant-observer approximation.
Throughout this paper, we follow the “standard”

reconstruction method as in Ref [10]. When computing
the displacement field, we apply a Gaussian filter with a
smoothing scale of R ¼ 10 h−1 Mpc and divide the result-
ing smoothed density field by the linear bias bfid ¼ 1.8,
according to our halo sample [24]. To be specific, the
displacement vector is defined in Fourier space as

sðkÞ ¼ −i
1

bfid

k
k2

Wðk; RÞδhðkÞ; ð1Þ

where δh is the halo density fluctuation including RSDs and
Wðk; RÞ ¼ e−k

2R2=2 is the Gaussian smoothing function.
Note that we do not remove linear RSDs through
reconstruction. We grid halos onto meshes with 5123 cells
using the cloud-in-cell assignment scheme. Furthermore, in
our statistical analyses, we use the randoms 100 times as
many point sources as halos for a given realization in our

2We define the halo mass by spherical overdensity mass with
respect to 200 times mean matter density in the Universe.

SHIRASAKI, SUGIYAMA, TAKAHASHI, and KITAURA PHYS. REV. D 103, 023506 (2021)

023506-2



simulation volume. Under the Zel’dovich approximation,
the displacement field of Eq. (1) sets the density field to be
in its initial state. Hence, the reversal Zel’dovich method
will provide a means of reducing the nonlinear gravitational
growth in the density field of interest. We study this effect
in details in Sec. III.
To compute the redshift-space bispectrum from the

simulation data, we follow a decomposition formalism
developed in Ref. [14]. This approach is efficient to
separate the anisotropic and isotropic signals from the
observed bispectrum. For a given halo overdensity field,
one defines the halo bispectrum as

hδhðk1Þδhðk2Þδhðk3Þi≡ ð2πÞ3δDðk1þk2þk3ÞBðk1;k2;k3Þ;
ð2Þ

where δD represents the Dirac delta function and
Bðk1; k2; k3Þ is the bispectrum. In redshift space, the
bispectrum depends on the line-of-sight direction of each
halo as well, causing anisotropic signals. Reference [14]
found that such anisotropic signals in the redshift-space
bispectrum can be well characterized with a tripolar
spherical harmonic basis [25]. The coefficient in the tripolar
spherical harmonic decomposition of the redshift-space
bispectrum is given by

Bl1l2Lðk1; k2Þ ¼
Z

dk̂1
4π

Z
dk̂2
4π

Z
dn̂
4π

Wl1l2Lðk̂1; k̂2; n̂Þ

× Bðk1; k2;−k12Þ; ð3Þ

Wl1l2Lðk̂1; k̂2; n̂Þ

≡ ð2l1þ1Þð2l2þ1Þð2Lþ1Þ
�
l1 l2 L

0 0 0

�

×
X

m1;m2;M

�
l1 l2 L

m1 m2 M

�
ym1

l1
ðk̂1Þym2

l2
ðk̂2ÞyML ðn̂Þ; ð4Þ

where k12 ¼ k1 þ k2, yml ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð2lþ 1Þp

Ym
l is a normal-

ized spherical harmonic function and ð� � �Þ with six indices
represents the Wigner-3j symbol. In this decomposition,
the index L governs the expansion with respect to the line-
of-sight direction. The mode of Bl1l2L with L ¼ 0

describes isotropic components in the bispectrum, while
the modes with L > 0 arise from anisotropic components
alone. Hence, we refer to Bl1l2L with L ¼ 0 and L ¼ 2 as
the monopole and quadrupole bispectra, respectively.
In this paper, we consider the lowest-order mono-

pole bispectrum B000ðk1; k2Þ and an anisotropic term
B202ðk1; k2Þ. It would be worth noting that B202 is a leading
anisotropic signal for a sample of massive galaxies [14].
When measuring the bispectrum, we employ the linear
binning in ki (i ¼ 1, 2) for the range of 0.01 − 0.3 hMpc−1

with the number of bins being 15. Hence, the total number

of degrees of freedom in B000 is 15 × ð15þ 1Þ=2 ¼ 120,
while B202 consists of 15 × 15 ¼ 225 data points. We apply
the three-dimensional fast Fourier transform on 5123 grids
by using the triangular-shaped cloud assignment. The
details of the algorithm for bispectrum measurements are
found in Ref. [14]. We evaluate the covariance using 4000
realizations of our halo samples with reconstruction as well
as in the absence of reconstruction.3

III. MODEL

A. Perturbative approach

We develop an analytic model to predict the statistical
properties of the reconstructed density field. In the standard
reconstruction method, we shift halo number density fields
as well as random data points with a given displacement
field s [10]. This process is formally written as

nðrecÞh ðxÞ ¼
Z

d3x0nhðx0ÞδDðx − x0 − sðx0ÞÞ; ð5Þ

nðrecÞr ðxÞ ¼
Z

d3x0n̄hδDðx − x0 − sðx0ÞÞ; ð6Þ

where δD is the 3D Dirac delta function, nh is the halo
number density of interest, n̄h is the mean halo number

density, nðrecÞh and nðrecÞr are the postreconstructed halo
number density and random fields, respectively. Using
Eqs. (5) and (6), we can relate the reconstructed density

field δðrecÞh with the prereconstructed counterpart δh as

δðrecÞh ðxÞ ¼ nðrecÞh ðxÞ − nðrecÞr ðxÞ
n̄h

¼
Z

d3x0δhðx0ÞδDðx − x0 − sðx0ÞÞ; ð7Þ

where δh ¼ nh=n̄h − 1. The Fourier counterpart of δðrecÞh is
then given by

δðrecÞh ðkÞ ¼
Z

d3xe−ik·xe−ik·sðxÞδhðxÞ

¼ δhðkÞ þ
X∞
n¼1

ð−1Þn
n!

Z
d3k1
ð2πÞ3 � � �

Z
d3kn
ð2πÞ3

× ½k · Sðk1Þ� � � � ½k · SðknÞ�
× δhðk − k1���nÞδhðk1Þ � � � δhðknÞ; ð8Þ

where k1���n ¼ k1 þ � � � þ kn and we introduce SðkÞ ¼
kWðkÞ=ðbfidk2Þ. In redshift space, the standard perturbation
theory predicts [27]

3When inverting the covariance, we take into account the
correction as in Ref. [26]. The correction is found to be of an
order of 8% at most in our analysis.
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δhðkÞ ¼
X∞
n¼1

Z
d3k1
ð2πÞ3 � � �

Z
d3kn
ð2πÞ3 δDðk − k1���nÞ

× Znðk1;…; knÞδLðk1Þ � � � δLðknÞ; ð9Þ

where Znðk1;…; k2Þ represents the nth-order kernel func-
tion (the details are found in Ref. [27]) and δL is the linear
mass density perturbation. Using Eqs. (8) and (9), we find
that the postreconstructed halo overdensity field is
expressed in a similar manner to Eq. (9),

δðrecÞh ðkÞ ¼
X∞
n¼1

Z
d3k1
ð2πÞ3 � � �

Z
d3kn
ð2πÞ3 δDðk − k1���nÞ

× ZðrecÞ
n ðk1;…; knÞδLðk1Þ � � � δLðknÞ; ð10Þ

where

ZðrecÞ
n ≡ Zn þ ΔZn; ð11Þ

ΔZ1ðkÞ ¼ 0; ð12Þ

ΔZ2ðk1;k2Þ¼−
1

2
½k12 ·Sðk1Þþk12 ·Sðk2Þ�Z1ðk1ÞZ1ðk2Þ;

ð13Þ

ΔZ3ðk1; k2; k3Þ ¼ −
1

3
½k123 · Sðk12Þ þ k123 · Sðk3Þ�

× Z2ðk1; k2ÞZ1ðk3Þ

þ 1

6
½ðk123 · Sðk1ÞÞðk123 · Sðk2ÞÞ�

× Z1ðk1ÞZ1ðk2ÞZ1ðk3Þ þ ð2 cycÞ; ð14Þ

and so on.
Following Ref. [28], we expand the (prereconstructed)

halo overdensity field into the underlying mass density
fluctuation δm up to the second order,4

δhðkÞ ¼ b1δmðkÞ þ
Z

d3q
ð2πÞ3 δmðqÞδmðk − qÞ

×

�
b2
2
þ bK2

Kðq; k − qÞ
�
; ð15Þ

where b1 stands for the linear bias, b2 represents the
second-order local bias, bK2

is the tidal bias, and the
function K is given by

Kðk1; k2Þ ¼
k1 · k2
k1k2

−
1

3
: ð16Þ

In this notation of the galaxy biasing, Z1ðkÞ ¼ b1 þ fμ2

corresponds to the Kaiser formula of linear RSDs [30] with
f and μ being the logarithmic growth rate function and the
cosine between wave vector and the line-of-sight direction.
Note that Z2 includes nonlinear bias terms such as
b2=2þ bK2

Kðk1; k2Þ. We find that the leading-order fluc-
tuation in the postreconstructed field is independent of the
detail in the assumed displacement field (e.g., a choice of
the filter functionW in Eq. (1)). For the case of dark matter
in real space, we can reproduce previously known forms in
Ref. [31,32] by replacing the kernel functions Zn with

Z1 → 1 and Zn≥2 → Fn≥2; ð17Þ

where the function Fn represents the nth-order kernel
function in the standard perturbation theory for the dark
matter density field (see Ref. [29] for a review).

B. Bispectrum

We then consider the bispectrum of the postrecon-
structed field up to corrections Oðδ5LÞ as

Bðk1; k2; k3Þ ¼ B3 þ B4 þ B5; ð18Þ

where Bn is the bispectrum with an order of OðδnLÞ. Note
Bn¼odd arises from PNG, because Bn¼odd become zero if
the density fluctuation was purely Gaussian, and B4 is
generated by both the nonlinear gravity and a primordial
four-point function in general. In this paper, we ignore the
term coming from the primordial four-point function for
simplicity.
The linear matter perturbations at a redshift z, denoted as

δLðk; zÞ, is related to the curvature perturbation ΦðkÞ
through the function Mðk; zÞ as

δLðk; zÞ ¼ Mðk; zÞΦðkÞ; ð19Þ

Mðk; zÞ ¼ 2k2c2TðkÞDðzÞ
3Ωm0H2

0

; ð20Þ

where DðzÞ is the linear growth factor,5 TðkÞ is the matter
transfer function normalized to unity on large scales k → 0,
and c is the speed of light. Note that we omit the redshift
z in the following for simplicity. The leading term B3 is
given by

B3ðk1; k2; k3Þ ¼ Z1ðk1ÞZ1ðk2ÞZ1ðk3ÞMðk1ÞMðk2ÞMðk3Þ
× BΦðk1; k2; k3Þ; ð21Þ

where BΦ represents the bispectrum of the primordial
curvature perturbation. Note that Eq. (21) is valid even

for the postreconstructed field because it holds Z1 ¼ ZðrecÞ
1 .4Note that δm can be expanded in perturbation theory as well. It

holds that δm ¼ δL at the lowest order in the standard perturbation
theory [29]. 5We normalize D to unity today, i.e., Dðz ¼ 0Þ ¼ 1
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The first gravity-induced term B4 is well-known as the
tree-level solution. For the postreconstructed field, it is
given by

B4ðk1; k2; k3Þ ¼ Z1ðk1ÞZ1ðk2ÞZðrecÞ
2 ðk1; k2Þ

× PLðk1ÞPLðk2Þ þ ð2 cycÞ; ð22Þ

where PLðkÞ ¼ M2ðkÞPΦðkÞ with PΦ being the curvature
perturbation power spectrum. For the prereconstructed

field, we can obtain the solution by replacing ZðrecÞ
2 with

Z2 as well. We finally express the term B5, referred to as the
one-loop correction, as

B5ðk1; k2; k3Þ ¼ 4

Z
p
ZðrecÞ
2 ðk1 − p; pÞZðrecÞ

2 ðk2 þ p;−pÞZ1ðk3ÞPLðpÞBpriðk1 − p; k2 þ p; k3Þ þ ð2 cycÞ;

þ 2

Z
p
ZðrecÞ
2 ðk1; k3ÞZðrecÞ

2 ðk1 − p; pÞZ1ðk3ÞPLðk3ÞBpriðk1 − p;−k1; pÞ þ ð5 cycÞ

þ 3

Z
p
Z1ðk1ÞZ1ðk2ÞZðrecÞ

3 ðk2 þ p; k1;−pÞPLðk1ÞBpriðkþ p;−k2; pÞ þ ð5 cycÞ

þ 3

Z
p
Z1ðk1ÞZ1ðk2ÞZðrecÞ

3 ðk3; p;−pÞPLðpÞBpriðk1; k2; k3Þ þ ð2 cycÞ ð23Þ

where
R
p ¼ R

d3p=ð2πÞ3 and Bpriðk1; k2; k3Þ ¼
Mðk1ÞMðk2ÞMðk3ÞBΦðk1; k2; k3Þ.
Previous analyses demonstrated that some terms in B5

can dominate B3 and B4 at large-scale modes, while an
accurate prediction of B5 is still developing [5,33,34]. We
expect that an accurate modeling of B5 needs to take into
account the fact that Eq. (15) does not satisfy hδhi ¼ 0. In
the case of the power spectrum calculations, the one-loop
corrections require some renormalization processes of
nonlinear biases so that the observable power spectrum

can be well behaved at the limit of k → 0 [35–37]. We
would need to account for similar renormalization for B5,
but it is still uncertain. Hence, we do not include the terms
of B5 when making a forecast of constraining PNG. It
would be worth noting that our analysis provides surely
conservative forecasts on PNG, while it is not precise.
Nevertheless, we shall show that the postreconstructed
bispectrum analysis allows us to constrain PNG at a
comparable level to the current Planck results.
On the impact of the B5 terms on PNG constraints,

Ref. [38] performed likelihood analyses to infer a PNG
parameter using dark matter halos in N-body simulations.
They found that the expected best-fit PNG can be unbiased
even if ignoring the B5 terms in their analytic prediction of
halo bispectra. Although their analysis still assumes real-
space measurements, we expect that ignoring B5 terms may
not induce significant biased estimations of PNG when
using galaxy bispetra in redshift space.

IV. RESULTS

A. Postreconstructed bispectrum and its covariance

We first compare the average bispectrum monopole over
4000 simulations with the model prediction. Figure 1
shows the comparison of B000 at k ¼ k1 ¼ k2 with the
simulation results6 and the tree-level prediction in Eq. (22).
For the model prediction, we adopt the input value of the
linear growth rate in our simulations and set the linear bias
b1 ¼ 1.86. We infer this linear bias by measuring the halo-
matter cross-power spectrum in real space with the simu-
lation. For b2, we use the fitting formula calibrated in

FIG. 1. Bispectrum monopole of a sample of dark matter halos
with a mass range of 1013−14h−1 M⊙ at z ¼ 0.484. The black
points and star symbols represent the bispectrum monopoles at
k1 ¼ k2 ¼ k for the pre- and postreconstructed halo density
fields. The red thick line shows the tree-level prediction by
perturbation theory [27], while the red dashed one stands for
the tree-level prediction for the postreconstructed density (see the
details in Sec. III). In this and the following figures, the
bispectrum and its covariance have units of ðh−1 MpcÞ6 and
ðh−1 MpcÞ12, respectively.

6For Fig. 1, we remeasure the bispectrum monopole of
B000ðk1; k2Þ at k1 ¼ k2 alone from 4000 simulations with 30
linear-spaced binning in the range of 0.01–0.3 hMpc−1.
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Ref. [39]. Assuming the tidal bias is zero at the initial
halo density, we set bK2

¼ −2ðb1 − 1Þ=7 [40]. We find
that the postreconstructed bispectrum can be negative at
large scales and that our perturbative approach gives a
reasonable fit to the simulation results. We can obtain
better agreements between the simulation results and
our predictions at k < 0.05 hMpc−1 in Fig. 1 if freely
varying the secondary bias parameters of b2 and bK2

.
Reference [31] has shown that the nonlinear growth term
in the postreconstructed second-order matter density
perturbation in real space is given by 17=21 −W.
Hence, it is predicted to be negative (−4=21) on large
scales in the limit of W → 1. A similar argument holds
even for the redshift-space halo statistics as shown in
Eq. (13). Note that similar negative bispectrum has been
predicted for real-space matter density fields [32].
Figure 2 shows the diagonal and off-diagonal elements in

the covariance of B000ðk; kÞ estimated by 4000 simulations.
In the figure, we introduce the notations of

Covðk; k0Þ ¼ Cov½B000ðk; kÞ; B000ðk0; k0Þ�; ð24Þ

Rðk; k0Þ ¼ Covðk; k0Þ
½Covðk; kÞCovðk0; k0Þ�1=2 ; ð25Þ

and we apply the same notation for B202 as well in Fig. 3.
We find that the covariance of the postreconstructed
bispectrum has smaller diagonal elements than the prere-
constructed counterpart. Besides, the off-diagonal elements
in the postreconstructed bispectrum covariance becomes
less prominent, allowing to extract nearly independent
cosmological information over different scales from the
postreconstructed bispectrum. In Figs. 2 and 3, the dashed
line shows a simple Gaussian covariance with the leading-
order halo power spectrum based on the perturbation theory
[9]. The bispectrum covariance in random density fields
consists of four different components in general. One is
given by the product of three power spectra, known as the
Gaussian covariance. We call other terms the non-Gaussian
covariance, and it consists of

CNG ∋ B2; PT; P6; ð26Þ

where CNG is the non-Gaussian covariance of halo bispec-
tra and P, B, T, and P6 are halo power spectra, bispectra,

FIG. 3. Similar to Fig. 2, but we show the cases for B202.FIG. 2. The diagonal and off-diagonal elements of the bispec-
trum covariance for our halo sample. The top panel shows the
diagonal elements in the covariance of B000ðk; kÞ, while the lower
two are for the off-diagonal elements. In each panel, the black
points and the yellow star symbols show the results for the pre-
and postreconstructed fields, respectively. For a reference, we
show the Gaussian covariance by the dashed line assuming the
leading-order halo power spectrum.
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trispectra (four-point correlations in Fourier space), and
six-point spectra (six-point correlations in Fourier space).
See Ref. [9] for derivations and detailed comparisons with
numerical simulations. We note that every term in the non-
Gaussian covariance arises from the nonlinear gravitational
growth. By comparing the dashed line and star symbols in
Figs. 2 and 3, we expect the reconstruction can suppress
the terms of B2, T, and P6 in the bispectrum covariance.
At least, we confirm that the postreconstructed bispectrum
can become smaller than the prereconstructed counterpart
in Fig 1. Although our findings in Figs. 2 and 3 look
reasonable in terms of the perturbation theory, more careful
comparisons of the bispectrum covariance would be mean-
ingful. We leave those for future studies.

B. Constraining power of PNG

Given the result of Figs. 2 and 3, we propose con-
straining PNG with the postreconstructed galaxy bispec-
trum. The reconstruction keeps the PNG-dependent galaxy
bispectrum unchanged at the leading order [see Eq. (12)],
while the gravity-induced bispectrum is expected to
become smaller after reconstruction as shown in Fig. 1.
Therefore, decorrelation in galaxy-bispectrum covariance
after reconstruction can provide a benefit to tightening the
expected constraints of PNG for a given galaxy sample,
compared to the case when one works with the prerecon-
structed density field.

To see the impact of reconstruction on constraining
PNG, we perform a Fisher analysis to study the expected
statistical errors for several types of PNG. Assuming that
observables follow a multivariate Gaussian distribution, we
write the Fisher matrix as

Fαβ ¼
X
i;j

C−1
ij

∂Di

∂pα

∂Dj

∂pβ
; ð27Þ

where D represents the data vector which consists of B000

andB202,C is the covariance ofD, p consists of the physical
parameters of interest, and F−1 provides the covariance
matrix in parameter estimation. In Eq. (27), the index inD is
set so that twowave numbers k1 and k2 become smaller than
kmax. In this paper, we adopt the varying parameters
p ¼ ffNL; b2; bK2

g, where fNL controls the amplitude of
the primordial bispectrum Bpri. We consider three different
Bpri, referred to as local-, equilateral-, and orthogonal-type
models. We define these three as

BðlocÞ
Φ ðk1;k2;k3Þ¼2fNL;loc½PΦðk1ÞPΦðk2Þþð2 cycÞ�; ð28Þ

BðeqÞ
Φ ðk1;k2;k3Þ¼−6fNL;eqf−2½PΦðk1ÞPΦðk2ÞPΦðk3Þ�2=3

þ½P1=3
Φ ðk1ÞP2=3

Φ ðk2ÞPΦðk3Þþð5 cycÞ�
− ½PΦðk1ÞPΦðk2Þþð2 cycÞ�g; ð29Þ

FIG. 4. Parameter dependence of halo bispectra. We consider a sample of dark matter halos with a mass range of 1013−14h−1 M⊙ at the
redshift of 0.484. We decompose the bispectrum on a basis of tripolar spherical harmonics and the coefficient in the decomposition
Bl1l2L depends on two wave vectors k1 and k2 alone (see Ref. [14] for details). We define here Bl1l2Lðk1; k2Þ ¼ k1k2Bl1l2Lðk1; k2Þ. The
color in each map shows the first derivative of B000 or B202 with respect to parameters of fNL;loc, b2, and bK2.
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BðorthÞ
Φ ðk1;k2;k3Þ¼ 6fNL;orthf−8½PΦðk1ÞPΦðk2ÞPΦðk3Þ�2=3

þ3½P1=3
Φ ðk1ÞP2=3

Φ ðk2ÞPΦðk3Þþð5 cycÞ�
−3½PΦðk1ÞPΦðk2Þþð2 cycÞ�g; ð30Þ

where Eqs. (28)–(30) represents the local-, equilateral-,
and orthogonal-type bispectra, respectively. We also
study the marginalization effect of the nonlinear biases to
make the forecast of the PNG constraints by the galaxy
bispectrum. Note that we assume here that the Kaiser factor
(the kernel of Z1) can be tightly constrained by power-
spectrum analyses. When computing the Fisher matrix, we
scale the covariance derived by our 4000 simulations with a
survey volume of 4 ðh−1 GpcÞ3. This survey volume is
close to the one in the BOSS. Also, we compute the
derivative terms in Eq. (27) by using the results of
Eqs. (21) and (22). Throughout this paper, we evaluate
Eq. (27) at ffNL; b2; bK2

g ¼ f0;−0.308;−0.245g.
Before showing our results relying on the Fisher analy-

sis, we summarize how the bispectrum depends on the
parameters of fNL; b2, and bK2. Figure 4 shows the first
derivative of B000 or B202 with respect to the parameters of
interest. Note that the derivatives are independent on details
of reconstruction at the tree-level prediction as shown
in Sec. III. Figure 4 highlights that expected parameter
degeneracies among fNL and galaxy biases would be less
significant for the local-type PNG.
The main result of this paper is shown in Table I. For the

local-type PNG, we find that the postreconstructed galaxy
bispectrum can constrain fNL with a level of 13.3 by using
existing galaxy sample. The size of error bars is still larger
than the latest CMB constraint [4], but it is smaller than the
current best constraint by quasars [41]. Note that the CMB
results may be subject to biases due to secondary CMB
fluctuations and cosmic infrared background [42]. In this
sense, the postreconstructed bispectrum for the BOSS
galaxy sample provides a complementary probe for the
PNG. Furthermore, we demonstrate that the postrecon-
structed bispectrum can improve the constraint of single
PNG parameters by a factor of 1.3–3.2 compared to the
original bispectrum. For a given halo sample, one needs to

increase the survey volume by a factor of 2–9 to acquire
this gain without the reconstruction.
Contrary to what is expected from the literature, it is

worth noting that the gain from B202 is not significant for
the constraint of any PNG types. In all the cases we
considered, adding B202 only improves the fNL constraints
by about 10%. This indicates that one can reduce in practice
the degree of freedoms by using B000 alone for con-
straining PNG.

TABLE I. Summary of the Fisher forecast of the PNG constraint by the galaxy bispectrum. We assume the effective survey volume to
be 4 ðh−1 GpcÞ3 at the redshift of 0.484. We consider a sample of dark matter halos with a mass range of 1013–14 h−1 M⊙ and set the
maximum wave number to be kmax ¼ 0.2 hMpc−1. The left two columns represent the results for the prereconstructed (prereconst.)
field, and the right two are for the postreconstructed field. In each table cell, the number without brackets shows the 1σ constraint of fNL
when we marginalize the second-order galaxy biases, while the one in brackets is the unmarginalized counterpart. For comparison, we
show the 68% confidence level of fNL provided by Planck [4] at the right column.

B000 (prereconst.) B000 þ B202 (prereconst.) B000 (postreconst.) B000 þ B202 (postreconst.) Planck 2015

Local 50.0 (45.0) 42.4 (38.4) 14.2 (9.65) 13.3 (9.10) 0.8� 5.0
Equilateral 133 (93.8) 119 (88.3) 97.9 (37.7) 89.9 (35.9) −4� 43
Orthogonal 79.5 (61.3) 73.4 (57.3) 44.8 (31.4) 41.8 (29.8) −26� 21

FIG. 5. Unmarginalized one-sigma confidence level of the
local-type PNG fNL;loc for different maximum wave numbers
kmax in bispectrum analyses. In this figure, we assume the
effective survey volume to be 4 ðh−1 GpcÞ3 at the redshift of
0.484. We consider a sample of dark matter halos with a mass
range of 1013−14 h−1 M⊙. The black points show the results for
the prereconstructed bispectrum, while the yellow star symbols
represent the postreconstructed cases. For a comparison, we
show the results based on the Gaussian covariance by the cyan
dashed line.
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Finally, we study the unmargianalized error of fNL for
different maximumwave vectors kmax to clarify the effect of
the reconstruction on the bispectrum covariance. Figure 5
shows the unmarginalized errors for the local-type PNG as a
function of kmax. The comparison between black points and
the yellow star symbols in the figure shows that the
reconstruction becomes efficient to reduce the off-diagonal
bispectrum covariances at k≳ 0.1 hMpc−1. The postrecon-
structed results closely follow the Gaussian-covariance
expectations, but there exist substantial differences at
weakly nonlinear scales of k ¼ 0.1–0.15 hMpc−1. After
some trials, we found that these differences can be caused by
negative off-diagonal covariances of the postreconstructed
bispectrum. Similar trends have been found in Ref. [13] for
the postreconstructed matter power spectrum. The results in
Fig. 5 indicate that one will be able to design an optimal
reconstruction so that the error of fNL can beminimized for a
given kmax. Such optimizations are of great interest but
beyond the scope of this paper.

V. CONCLUSION

The galaxy bispectrum represents an interesting probe of
inflationary physics in the early Universe, allowing us to
measure various types of PNG. The numerical calculations
presented in this work show that the same algorithm used
for BAO reconstruction as introduced in Ref. [10] can
become an essential tool to achieve the expected accuracy
in PNG constraints from future galaxy surveys aimed by
the science community. As a representative example,
assuming the SDSS-III BOSS galaxy sample, we found
that the galaxy bispectrum under the realistic non-Gaussian
covariance can constrain the PNG with a level of
ΔfNL ¼ 42.4, 119, and 73.4 for the local-, equilateral-,
and orthogonal-type models, respectively. Nevertheless, the
postreconstructed bispectrum can improve this constraint
by a factor of 1.3–3.2 when one restricts the measurements
to be in quasilinear scales (k ≤ 0.2 hMpc−1). We empha-
size here that our Fisher analyses do not include the one-
loop corrections of the bispectrum [Eq. (23)], providing a
surely conservative forecast of the PNG constraints.

So far, we have considered the standard BAO
reconstruction applied to massive halos corresponding to
luminous red-galaxy-like objects. We expect stronger PNG
constraints from higher number densities going to lower
mass halos, corresponding to emission-line galaxies, as will
be detected by future galaxy surveys, e.g., EUCLID [43] or
DESI [44]. The approach proposed in this study will be
even more crucial to extract PNG signatures, as such
surveys provide data tracing further the nonlinear regime
of the cosmic density field. However, there still remain
important issues to be resolved before we apply our
proposal to real datasets. For instance, we need an accurate
modeling for the one-loop-correction terms B5 as well as
some corrections for mode-mixing effects by a complex
survey window. We also found that the anisotropic bispec-
trum signal B202 would not be relevant to improve the PNG
constraints. Nevertheless, it is still beneficial to study
higher-order terms in the monopole bispectrum such as
B110 and B220 for further improvements in the PNG
constraints.
In summary, this work represents a new approach to

investigate PNG from the large-scale structure. A lot of
work still needs to be done following this path. In a
forthcoming paper, we will study the anisotropic signals of
the postreconstructed bispectrum and present the impor-
tance of reconstruction to optimize the redshift-space
analysis of the galaxy bispectrum.
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