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Cosmological data provide a powerful tool in the search for physics beyond the Standard Model (SM). An
interesting target are light relics, new degrees of freedom which decoupled from the SM while relativistic.
Nearly massless relics contribute to the radiation energy budget, and are commonly parametrized as variations
in the effective number Neff of neutrino species. Additionally, relics with masses greater than 10−4 eV
become nonrelativistic before today, and thus behave as matter instead of radiation. This leaves an imprint in
the clustering of the large-scale structure of the Universe, as light relics have important streaming motions,
mirroring the case of massive neutrinos. Here we forecast how well current and upcoming cosmological
surveys can probe light massive relics. We consider minimal extensions to the SM by both fermionic and
bosonic relic degrees of freedom. By combining current and upcoming cosmic-microwave-background and
large-scale-structure surveys, we forecast the significance at which each light massive relic, with different
masses and temperatures, can be detected. We find that a very large coverage of parameter space will be
attainable by upcoming experiments, opening the possibility of exploring uncharted territory for new physics
beyond the SM.
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I. INTRODUCTION

The nature of the dark sector is one of the major puzzles
of fundamental physics, integral to the understanding of
our Universe across almost every epoch. Searches for the
composition of the dark sector and, more broadly, of
physics beyond the Standard Model (SM), take place at
different energy scales, and use data ranging from particle
colliders to astrophysical and cosmological surveys. The
interactions of the dark sector with the SM are central to
many of these searches. Yet, the small energies and
interaction cross sections expected in many models often
result in low experimental sensitivity to new physics. In
contrast, by exploring the entropic effects of new dark-
sector physics, cosmological data is in an exciting position
to make robust discoveries.
Numerous extensions of the SM happen to posit the

existence of light, feebly interacting particles, including
axions and axionlike particles [1–4], dark photons [5–8],
and light fermions [9–11]. One broad category are light
relics, stable particles which were in thermal contact with the
SM in the early Universe and decoupled while relativistic.
Consequently, their cosmic abundance was frozen and
survived until z ¼ 0. The quintessential example within
the SM are neutrinos, but they need not be the only light
relics to populate our Universe. Different proposed new light
relics include a fourth, sterile neutrino, whose existence is
suggested by different anomalous experimental results

[12–14] (see Ref. [15] for a recent review), as well as the
gravitino, the supersymmetric partner of the graviton [16].
New relics that are sufficiently light will manifest as dark

radiation, and can be searched for through their effect on
the cosmic microwave background (CMB) anisotropies
[17–19], typically parametrized by the effective number of
neutrino species, Neff (which is 3.045 in the standard
cosmological model [20–22]). Massive relics can, on the
other hand, become nonrelativistic at some point in cosmic
history, and behave as other components of matter in the
Universe thereafter. However, their decoupling while rela-
tivistic gives these relics significant streaming motion,
which sets a scale below which they cannot cluster, thus
altering the large-scale structure (LSS) of our Universe.
This has allowed cosmology to set the leading constraints
on neutrino mass, at Σmν < 0.26 eV (95% C.L.), assuming
standard cosmology [23]. In this work we will search for
new light—but massive—relics (LIMRs) using cosmologi-
cal observables.
Cosmological data from near-future surveys are expected

to provide exquisite measurements of the distribution of
matter in our Universe. LIMRs that have become non-
relativistic before z ¼ 0 (with masses mX ≳ 10−3 eV), will
impact that distribution by behaving as hot dark matter
[24–28]. In addition to the relic mass, two relevant
parameters determine the relic abundance. The first is their
number gX of degrees of freedom. The second is their

temperature Tð0Þ
X today. Due to comoving-entropy conser-

vation, any relic that was in equilibrium with the SM in the*nicholasdeporzio@g.harvard.edu
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early Universe ought to have Tð0Þ
X ≥ 0.91 K. This minimum

temperature gives rise to different values of ΔNeff for each
type of relic [29]: 0.027 for scalars (gX ¼ 1), 0.047 for
Weyl fermions (gX ¼ 2), 0.054 for massless gauge bosons
(gX ¼ 2), and 0.095 for Dirac fermions (gX ¼ 4). In
addition, relics with masses in the eV scale will become
nonrelativistic before z ¼ 0, leaving an imprint in the form
of suppressed matter fluctuations. Here we forecast how
well eV-scale LIMRs can be observed by joint CMB and
LSS surveys.
This paper is structured as follows. In Sec. II we briefly

review light relics and their effects on cosmological observ-
ables. In Sec. III we detail the datasets we consider, which
we employ in Sec. IV to forecast constraints on LIMRs
within the mass range 10−2–101 eV.We conclude in Sec. V.

II. LIGHT RELICS AND THEIR EFFECT ON
COSMOLOGICAL OBSERVABLES

We begin with an overview of the physics of light relics
and their effects on cosmological observables. A LIMR X is

characterized by its present-day temperature Tð0Þ
X and mass

mX, as well as its statistics, bosonic or fermionic, and its
number gX of degrees of freedom. The present-day temper-
ature of a light relic (massive or not) is set by the time at
which it decouples from the SM thermal bath, which is
found as

Tð0Þ
X ¼

 
gð0Þ�S
gðdecÞ�S

!
1=3

Tð0Þ
γ ; ð1Þ

where gð0=decÞ�S denotes the entropy degrees of freedom in

the Universe today/when the relic decoupled, and Tð0Þ
γ ¼

2.725 K is the present-day temperature of the photon bath.
In this way, the conservation of comoving entropy provides
a minimal light relic temperature assuming the SM with no
additional degrees of freedom (other than the relic),

Tð0Þ
X ≳

�
3.91
106.75

�
1=3

Tð0Þ
γ ≈ 0.91 K; ð2Þ

where just after the electroweak phase transition we

have gðdecÞ�s ¼ 106.75 encompasses all the known degrees
of freedom of the Standard Model, and the present-day

value of gð0Þ�s ¼ 3.91 includes photons and decoupled,
cooler neutrinos. As an example, the SM (active) neutrinos

have Tð0Þ
ν ¼ 1.95 K, as they decoupled just prior to

electron-positron annihilation where gðdec;νÞ�s ¼10.75. Note
that the baryonic and cold-dark matter (CDM) contribu-
tions are negligible, given their exponentially suppressed
abundance.
In contrast, light relics decoupled while relativistic,

and so are cosmologically abundant, with number densities
comparable to that of photons or neutrinos. For instance,

a Weyl fermion decoupling as early as possible (with
minimal present-day temperature 0.91 K) will have a
number density today of 11 cm−3, and a vector boson that
decouples just before eþe− annihilation (with a temperature
today of 1.95 K, as neutrinos) will have a present-day
number density of 150 cm−3. Thus, the contribution of light
relics to the cosmic energy budget can be significant.
It is often enlightening to describe the cosmological

effects of other relics in relation to those of neutrinos, given
their common origin as light relics. As advanced in the
introduction, relics in the early Universe (while TX ≫ mX)
behave as radiation, and their cosmological impact while
relativistic can be encapsulated in the number of effective
neutrinos, Neff , defined with respect to their contribution to
the radiation energy density,

ρradðzÞ ¼
π2

30

�X
bosons

gbT4
bðzÞ þ

7

8

X
fermions

gfT4
fðzÞ

�

≡ π2

30

�
2T4

γðzÞ þ
7

4
NeffT4

νðzÞ
�
; ð3Þ

where Tγ=νðzÞ is the temperature of photons and neutrinos
at redshift z, gb=gf are the degrees of freedom, and Tb=Tf

are the temperatures of each boson/fermion, respectively.
Introducing an entropically significant light relic will

generate a contribution to Eq. (3) of ðπ2=30ÞgXT4
X for

bosonic species, or 7=8 times that for fermionic species.
We can then describe any departure from the predicted
value of NΛCDM

eff ¼ 3.045 in the standard ΛCDM model by
the quantity ΔNeff, given by

ΔNeff ¼ cγ1

�
gX
gν

��
Tð0Þ
X

Tð0Þ
ν

�4

; ð4Þ

in terms of the neutrino parameters gν ¼ 2 and Tð0Þ
ν ¼

1.95 K. The factor c1 ¼ 8=7 accounts for the difference
between the Bose-Einstein (γ ¼ 1) and Fermi-Dirac
(γ ¼ 0) distributions.
This discussion is encapsulated in Fig. 1, showing the

relation between the present-day relic temperature to the
time of relic decoupling, and its corresponding contribution
to Neff . Note that the present-day temperature of a relic
for fixed decoupling epoch does not depend on particle
species, but its contribution to radiation energy does.
Current limits on ΔNeff arise primarily from observables

at two epochs. The first is recombination. Measurements
of radiation at recombination are sensitive to relics lighter
than ∼0.1 eV. The Planck 2018 analysis reports a meas-
urement of Neff ¼ 2.99þ0.34

−0.33 (TTþ TEþ EEþ lowEþ
lensingþ BAO) at 95% C.L. [23]. The proposed CMB-
Stage 4 (CMB-S4) experiment is expected to refine this
measurement to the σðNeffÞ ¼ 0.03 level [30]. The second
is the Helium abundance, from where we can infer the
number of relativistic species present during big bang
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nucleosynthesis (BBN). The 68% C.L. measurement dur-
ing that era isNeff ¼ 2.85� 0.28 [31], which is valid for all
relics lighter than mX ≲ 106 eV. Note that this does not
affect dark matter (DM) produced via the freeze-in mecha-
nism, as it can contribute negligibly to Neff [32,33].
In this work we consider detection prospects for four

types of LIMRs: scalars, vectors, and both Dirac and Weyl
fermions. We study relics with eV-scale masses, 10−2 eV ≤
mX ≤ 101 eV, such that they all behave as matter at z ¼ 0,
with the highest mass candidates constituting up to ∼10%
of DM abundance. Finally, we also consider a range

of temperatures, bounded by Tð0Þ
X ≥ 0.91 K from below.

Our maximum temperature is informed by the constraint
ΔNeff ≤ 0.36 from Planck, corresponding to a single

additional species of Weyl fermion at Tð0Þ
X ≤ 1.5 K. This

bound could be further improved by combining with BBN
measurements of, e.g., D/H ratios [34], Lyman-α forest
flux power spectrum data [35,36], as well as baryon
acoustic oscillations (BAO) and galaxy power spectrum
measurements [37–39].

A. Effect on the LSS of the Universe

LIMRs can become non-relativistic at some point in
cosmic history, and comprise a fraction of DM at z ¼ 0.
Unlike CDM, which is expected to compose the majority of
the matter sector, LIMRs have significant thermal motions,
even if nonrelativistic. Thus, these relics will stream away
from structures below their free-streaming scale, which
during matter domination is given by [40,41]

kfs ¼
0.08ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�

mX

0.1 eV

��
Tð0Þ
X

Tð0Þ
ν

�−1

hMpc−1: ð5Þ

Throughout this section we assume a Weyl fermionic
relic, and we will relax this assumption later. This presents
another way of searching for LIMRs: through their effect
on the matter fluctuations. LIMRs produce a suppression in
the matter power spectrum at scales smaller than kfs, which
we discuss below. The size of this suppression depends on
the present abundance of the LIMR, which (if nonrelativ-
istic) is given by

ΩXh2 ¼
mX

93.14 eV
gX
gν

�
Tð0Þ
X

Tð0Þ
ν

�3

: ð6Þ

From Eq. (6) we see that there is a maximum allowed
particle mass, found by saturating the observed DM
abundance Ωcdmh2 ¼ 0.12 [23]. For a relic temperature

Tð0Þ
X ≈ 1.5 K, this is mX ≈ 10 eV. Additionally, in this

work we are interested in the relics that become non-
relativistic before today. Thus, the mass range we will study
encompasses

10−2 eV ≤ mX ≤ 101 eV: ð7Þ

LIMRs produce a suppression in matter fluctuations,
similar to neutrinos, due to two reasons. The first is simply
that the light relic does not cluster at small scales, and
its fluctuation δX at small-scale roughly follows δX ¼
ðk=kfsÞ−2δm with respect to the matter overdensity δm.
The second is that the absence of relic fluctuations at small
scales slows down the growth of CDM (and baryon)
overdensities. Together, these two factors produce a sup-
pression of roughly ð1 − 14fXÞ in the matter power
spectrum [42], where fX is the fraction of matter that is
composed of the LIMR X. This suppression is less
pronounced for relics that stay relativistic for longer, which
yields the well-known result of ð1 − 8fνÞ for neutrinos
comprising a fraction fν of matter, as neutrinos only
become nonrelativistic during matter domination. These
numbers are for illustration purposes only, and in all cases
we find the full effect of LIMRs on the cosmological
observables using the publicly available software CLASS

[43]. Nevertheless, they provide intuition about the physi-
cal effect of such a relic. While the mechanism that
produces the suppression is the same as for neutrino
masses, the free-streaming scale kfs for a LIMR is not
fully determined by its mass (or abundance), as their
temperature today is unknown. Relics that are still relativ-
istic at z ¼ 0 (with mX ≲ 10−3 eV) will have never col-
lapsed into structures and thus their observable effects can
be fully included into ΔNeff . In practice, this is the case for
LIMRs with masses below ∼0.1 eV, as we will show, so we
will use our results for a 10−2 eV relic for lighter masses.

FIG. 1. Cosmic evolution of ΔNeff due to a light relic that

decoupled when the Universe had a temperature TðdecÞ
γ . We

assume four different types of relics with spin s, as described
in the text, and show the 68% C.L. constraints achieved by Planck
as a horizontal solid line, and the forecast by CMB-S4 in dashed
lines. The right vertical axis shows what the temperature of the
relic would be at z ¼ 0, following the violet (lowest) curve
plotted for s ¼ 0. Note that these constraints only apply to relics
with mX ≈ 0.1 eV or lighter.
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To study LIMRs, the relevant observables are the
fluctuations of baryons and cold dark matter, as only those
will gravitationally bind to form the visible structures we
observe as galaxies, the relics being too light to cluster (see,
however, Ref. [44]). The power spectrum of baryonic plus
cold dark matter fluctuations is modeled by

PcbðkÞ ¼ PζðkÞðfbTbðkÞ þ fcTcðkÞÞ2; ð8Þ

where Pζ is the primordial power spectrum, the transfer
functions Tb and Tc are found using CLASS [43], and the
fractional abundances are defined by

fb=c ≡ ωb=c

ωb þ ωc
; ð9Þ

where ωb and ωc are the baryon and CDM abundances.
We show the suppression in Pcb in Fig. 2 (upper panel)

for a fermion with mX ¼ 0.02 eV and TX ¼ 0.91 K, for
degrees of freedom gX ¼ 2, 3, and 4. In all cases the high-k
power is more suppressed, as expected. Increasing the
abundance of the LIMR, by augmenting gX, produces a
more marked suppression, while keeping the shape fixed.
Moreover, increasing the relic abundance produces wiggles
at the BAO scale, as the LIMR both contributes as radiation
at recombination and free streams—like neutrinos—chang-
ing the BAO phase [17].
The suppression of matter fluctuations produces a

change in the biasing of galaxies, which has been calcu-
lated for both neutrinos and other relics [45–47], and
accounted for in neutrino-mass forecasts in our companion
paper [48]. This produces a growth in the galaxy power
spectrum that partially compensates the relic-induced
suppression. Here we account for this growth induced
scale-dependent bias (GISDB) by multiplying the
Lagrangian bias by a k-dependent factor

gðkÞ ¼ RΛCDM
L ðkÞRX

LðkÞRν
LðkÞ; ð10Þ

where the functions Ri
L account for different effects,

following Ref. [46]. First, RΛCDM
L accounts for the steplike

change in the growth rate of fluctuations before and after
matter-radiation equality, parametrized as

RΛCDM
L ðkÞ ¼ 1þ ΔΛCDM tanh

�
αk
keq

�
; ð11Þ

where ΔΛCDM ¼ 4.8 × 10−3 and α ¼ 4 determine the
amplitude and location of the step, given the scale keq of
matter-radiation equality. The two other factors account for
the effect of a LIMR on the matter power spectrum, also
taken to be a steplike function

Ri
LðkÞ ¼ 1þ Δi tanh

�
1þ ln qiðkÞ

Δq

�
; ð12Þ

with an amplitude Δi ¼ 0.6fi determined by the fraction fi
of matter composed of the relic i (X or ν), width Δq ¼ 1.6,
and where we have defined qiðkÞ≡ 5k=kfs;i, given the free-
streaming scale kfs;i of each LIMR.

B. Effect on the CMB

The CMB is sensitive to the presence of LIMRs in the
Universe, through their mean energy density [49,50] and
their perturbations [51,52]. Their additional energy density
changes the expansion rate of the Universe, which in turn
affects the CMB damping tail. Since matter-radiation
equality is very well measured through the location of
the first acoustic peak, this causes the power spectrum to be
suppressed on short-wavelength modes. In addition to this
effect, their perturbations cause a change in the amplitude

FIG. 2. Effect of introducing a fermion with degrees of freedom
gX , temperature TX ¼ 0.91 K, and mass mX ¼ 0.02 eV on the
CDMþ baryon power spectrum (upper panel) and the CMB
temperature power spectrum (lower panel). Here all cosmological
parameters are fixed when introducing the LIMR so the fraction
of the matter or radiation energy occupied by the LIMR before
and after its nonrelativistic transition will increase with its
abundance. Since the LIMR energy density is not counted in
the CDM plus baryon power spectrum, an increase in LIMR
abundance will manifest as an overall suppression to Pcb. We
note that an effective fractional number of degrees of freedom
may be achieved as a result of out-of-equilibrium processes.
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and a shift in the location of the CMB acoustic peaks (for a
review of the phase shift in the acoustic peaks in the CMB,
see Ref. [19]).
We show an example of the effect of a LIMR on the

CMB in Fig. 2—again for a fermion with mX ¼ 0.02 eV
and TX ¼ 0.91 K, for degrees of freedom gX ¼ 2, 3, and 4.
The amplitude and phase shift of the BAO is clearly seen to
increase with gX.

C. Types of relic

Throughout this work we will study four major types of
LIMRs, two fermionic and two bosonic, which we now
describe.
In the fermionic category, the first type we study are

the neutrinolike Weyl fermions, with nonzero mass, spin
s ¼ 1=2, and two degrees of freedom (gX ¼ 2). In addition
to sterile neutrinos, an intriguing example is the gravitino,
the supersymmetric partner of the graviton. While the
gravitino has s ¼ 3=2, only the longitudinal modes couple
to the Standard Model and hence behaves equivalently to
an s ¼ 1=2 particle with gX ¼ 2. The gravitino is predicted
in models of supersymmetric gravity to have a mass in the
eV range [53,54], within the range relevant to our study.
The second type we tackle are the related Dirac fermions,
such as the axino [55], which simply have twice as many
degrees of freedom (gX ¼ 4).
In the bosonic category we study two types of

particles as well: first scalars, with only one degree
of freedom (gX ¼ 1). A realization of this model could
be a Goldstone boson, which can have naturally small
masses. The second type are spin-1 vectors. We assume
that they have a Stueckelberg mass, as it is technically
natural [56] and avoids complications from Higgs
mechanisms. While this relic will be nonrelativistic
today, its longitudinal mode was decoupled in the early
Universe (while it was relativistic), and thus only two of
the three degrees of freedom were populated. Therefore,
this relic has gX ¼ 2.
Instead of modifying the distribution function for each

type of relic, we will take advantage of the fact that any
relic, whether bosonic or fermionic, can be recast onto an
equivalent Weyl relic (i.e., a neutrino with gW ¼ 2), with
some temperature Teq

W and mass meq
W [24,46]. Justification

for this procedure is based on the results of other works
which considered the significance of the distribution
shapes for different species [46]. Assuming a relic of
temperature TX, with gX degrees of freedom, the equivalent
Weyl relic has

Teq
W ¼ TXðgX=gWÞ1=4cγ=41 ; ð13Þ

meq
W ¼ mXðgX=gWÞ1=4cγ=41 cγ2; ð14Þ

where we correct for the different distributions of these
particles by setting γ ¼ 1 for bosons (and γ ¼ 0 for our

base case of fermions as before), with constants c1 ¼ 8=7
[as in Eq. (4)] and c2 ¼ 7=6. Note that our normalization is
slightly different from that found in Ref. [46], as there
fermionic degrees of freedom contributed by 3=2.

III. METHODS

We now present our forecasting methods. In this first
exploratory work we will follow a Fisher-matrix approach,
in order to efficiently explore the 2D parameter space

(Tð0Þ
X ;mX) of possible LIMRs. We encourage the reader

to visit Appendix A for a comparison against Markov
chain Monte Carlo (MCMC) results. We will also cover
different combinations of datasets. For the CMB, we will
study the current Planck satellite [23] as well as the
upcoming ground-based CMB-S4 [57]. On the galaxy-
survey side we will consider the current BOSS [58], the
ongoing DESI [59], and the upcoming Euclid [60] surveys.

A. Parameters

We are interested in forecasting how well different
LIMRs with varied temperatures and masses can be
detected. Therefore, a simple Fisher forecast of the relic
mass and temperature, assuming a particular fiducial relic,
is insufficient. Instead, we will find how well LIMRs of

varying mass mX and temperature Tð0Þ
X can be observed by

different experiments. The parameter we will forecast is gX,
the number of degrees of freedom of the LIMR.1 Then,
gX=σðgXÞ is a good proxy for the significance at which a

LIMR of a particular mX and Tð0Þ
X can be detected.

In order to properly search for a LIMR we have to
marginalize over the six ΛCDM parameters. These include
the baryon and cold dark-matter abundances, ωb and ωcdm
(with fiducial values of ωb ¼ 0.02226 and ωcdm ¼ 0.1127),
the (reduced) Hubble constant h ¼ 0.701, and the optical
depth τreio ¼ 0.0598 to reionization. The last two param-
eters are the amplitude As, and tilt ns, of primordial
fluctuations, with fiducial values of As ¼ 2.2321 × 10−9

and ns ¼ 0.967. In addition, we marginalize over the effect
of neutrino masses. We assume for our fiducial model the
existence of three degenerate massive neutrinos, withP

mν ¼ 0.06 eV, and we will report constraints both with
and without marginalization over neutrino masses. Unless
explicitly stated, no prior will be assumed for these
parameters in the Fisher forecasts used to provide param-
eter constraints. For a discussion about the effect of the
neutrino hierarchy see Refs. [48,61].

1We note that, while gX appears to be a fixed quantity for a
given relic, e.g., gX ¼ 1 for a scalar, changing gX simply means
altering the amount of relic particles (as both ΔNeff ∝ gX and
ΩX ∝ gX) while keeping their thermal properties identical. That
makes gX a useful variable to forecast.
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B. CMB experiments

We will model both Planck and CMB-S4 as having a
single effective observing frequency, to avoid marginal-
izing over foregrounds. For Planck we will use CMB
temperature (T) and E-mode polarization data, covering
the range l ¼ ½2 − 2500�. We take noises of ΔT ¼
43 μK-arcmin and ΔE ¼ 81 μK-arcmin, with a θFWHM ¼
5 arcmin angular resolution. This well approximates the
(more complex) Planck data likelihood.
For CMB-S4 we take ΔT ¼1 μK-arcmin, and ΔE¼ffiffiffi
2

p
ΔT , with an angular resolution of θFWHM ¼ 3 arcmin.

Additionally, we include lensing data, where we perform
iterative delensing of B modes to lower the noise, as in
Refs. [62,63]. All modes cover the range l ¼ ½30 − 5000�,
except for the TT autocorrelation, where we do not go
beyond l ¼ 3000 to avoid foreground contamination [30].
We add a Gaussian prior on the optical depth of reionization
of σðτreioÞ ¼ 0.01, instead of the l < 30 modes in this
case. This follows the prescription in the CMB-S4 science
book [30], as well as our companion paper [48], and is the
sensitivity reported from the Planck 2018 results. As such,
it serves as a conservative estimate for futuristic surveys,
such as CMB-S4 [23].
The CMB data will perform two main roles. First, it will

very precisely measure the standard cosmological param-
eters, breaking many degeneracies in the LSS data. Second,
the CMB is sensitive to the effects of a LIMR both during
recombination and in the matter fluctuations at lower
redshifts, through the weak lensing information.

C. Galaxy surveys

For the LSS data we will consider three surveys, all of
them spectroscopic. We leave for future work studying the
promise of photometric surveys, such as the Vera Rubin
Observatory [64], and weak-lensing surveys, such as the
Dark Energy Survey [65].
We take the luminous red galaxy (LRG) sample of the

Sloan Digital Sky Survey Baryon Oscillation Spectroscopic

Survey (BOSS) [58], which will serve as an indication
of the power of current data. To showcase the promise
of upcoming surveys we study the emission-line galaxy
(ELG) sample of the Dark Energy Spectroscopic
Instrument (DESI) [59], and the more futuristic Hα emitters
of Euclid [60]. We restrict our analysis to a single tracer, the
most populous for each survey, though more optimistic
results are expected for multitracer approaches [66]. The
noise per redshift bin for each sample is reported in Table I.
We assume sky coverages of 10 000 deg2 for BOSS,
14 000 deg2 for DESI, and 15 000 deg2 for Euclid.
As each of these surveys contain distinct tracers, the

bias description of each will be somewhat different as well.
Here we follow a simple approach, and parametrize the
linear Eulerian bias as

b1ðk; zÞ ¼ ½1þ bLðk; zÞ þ αk2k2�; ð15Þ

where the αk term (with a fiducial value of 1 Mpc2)
accounts for nonlinearities in the bias [68]. We emphasize
that we do not include the clustering of light relics in this
description. We also note that while cold dark matter and
baryons may demonstrate different clustering behaviors
at small scales, we do not consider such scales in this work
and so do not include corrections to the bias that would
differentiate the baryon and cold dark matter clustering
fields. An additional scale-dependence comes from the
aforementioned GISDB effect, which enters in the
Lagrangian bias,

bLðk; zÞ ¼ ½b0ðzÞ − 1�gðkÞ; ð16Þ

where gðkÞ is as defined in Eq. (10). The redshift evolution
of the bias is encapsulated in the term b0ðzÞ, which is
chosen such that the scale-independent (i.e., k → 0) behav-
ior of the Eulerian bias matches with suggestions made
elsewhere in the literature [46]. For the ELGs in DESI we
match to

TABLE I. Forecasted number of target galaxies measurable by each survey: LRGs for BOSS, ELGs for DESI, and
Hα emitters for Euclid per redshift per deg2 at each redshift bin z, taken from Refs. [59,60,67].

z 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

dNLRG

dz ddeg2 [BOSS] 8 50 125 222 332 447 208 30 0 0
dNELG
dz ddeg2 [DESI] 0 0 0 0 0 0 309 2269 1923 2094
dNHα

dz ddeg2 [Euclid] 0 0 0 0 0 0 2434 4364 4728 4825

z 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95
dNLRG
dz ddeg2 [BOSS] 0 0 0 0 0 0 0 0 0 0
dNELG

dz ddeg2 [DESI] 1441 1353 1337 523 466 329 126 0 0 0
dNHα

dz ddeg2 [Euclid] 4728 4507 4269 3720 3104 2308 1514 1474 893 497
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b0ðzÞ ¼
β0

DðzÞ ; ð17Þ

where DðzÞ is the growth factor and β0 ¼ 1 [59]; whereas
for the tracers in BOSS and Euclid we take

b0ðzÞ ¼ β0ð1þ zÞ0.5β1 ; ð18Þ

with fiducials β0 ¼ 1.7 and β1 ¼ 1 as in Ref. [69]. We
marginalize over the nuisance parameters β0, αk2, as well as
β1 for BOSS and Euclid. We note that a full analysis of the
data might require marginalization over the amplitude of
the bias at each redshift bin independently, which would
however lead to a loss in constraining power.

D. Fisher matrix

We will obtain forecasted constraints using the Fisher-
matrix formalism [70–72]. For the CMB we follow the
approach of Refs. [73,74]. For the galaxy observables we
detail below how we construct our Fisher matrix.
As described in Sec. II, LIMRs suppress the clustering of

matter in our Universe, and as a consequence, that of biased
tracers of matter, such as galaxies. We take into account
several effects to convert from matter to galaxy fluctua-
tions. First, there are redshift-space distortions (RSD),
induced by the gravitational infall into, and peculiar
velocities of galaxies [75,76]. We write the galaxy power
spectrum as

Pgðk; μÞ ¼ Rðk; μÞF ðk; μÞPcbðkÞ; ð19Þ

in terms of the power spectrum PcbðkÞ of CDMþ baryon
fluctuations, where the two prefactors R and F account
for the RSD and the finger-of-god (FOG) effect, both of
which make Pg anisotropic, as they depend on μ ¼ k̂ · n̂,
the line-of-sight angle.
We model the linear RSD term simply as

Rðk; μÞ ¼ ½b1ðkÞ þ fμ2�2; ð20Þ

where b1 is the linear Eulerian bias, as described above, and
f ≡ d lnD=d ln a is the logarithmic derivative of the
growth factor D, which can be well approximated by [77]

fðzÞ ¼
�

Ωcbð1þ zÞ3
Ωcbð1þ zÞ3 þΩΛ

�
γ

; ð21Þ

with γ ¼ 0.55. The nonlinear FOG effect is included in the
term

F ðk; μÞ ¼ exp ½−k2μ2σ2v=H2�; ð22Þ

with σv ¼ ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2σ2z þ σ2FOG=2

p
, where σFOG ¼

σð0ÞFOG

ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
, with σð0ÞFOG ≡ 250 km s−1 [78] as the intrinsic

velocity dispersion of galaxies, and we take a spectroscopic
redshift error σz ≡ 0.001c [59], which corresponds to the
DESI precision requirement at z ¼ 1.
In addition, we include the Alcock-Paczynski (AP) effect

[79–81], which accounts for changes in the observed k and
μ and the comoving volumes from assuming different
cosmologies. For that, we write the observed galaxy power
spectrum as [82]

P̃gðk0; μ0Þ ¼ Pgðk; μÞ
�
Htrue

Hfid

��
DA;fid

DA;true

�
2

; ð23Þ

where the subscript “fid” refers to fiducial, and the “true”
wave number k0 and angle μ0 are given by

k0 ¼ k

�
ð1 − μ2Þ D

2
A;fidðzÞ

D2
A;trueðzÞ

þ μ2
H2

trueðzÞ
H2

fidðzÞ
�
1=2

; ð24Þ

μ0 ¼ μ
k
k0
HtrueðzÞ
HfidðzÞ

: ð25Þ

Properly accounting for the AP effect, thus, implies
evaluating the entire galaxy power spectrum at different
wave numbers for each cosmological-parameter change.
That can be computationally consuming, so instead we will
perform a simpler step that is accurate to first order in
derivatives (as any further is not captured by Fisher).
Therefore, we can write

∂P̃gðk0; μ0Þ
∂θi ¼ ∂Pgðk; μÞ

∂θi þ CiðkÞ; ð26Þ

for each parameter θi, where

CiðkÞ ¼
∂Pg

∂k
dk
dθi

þ ∂Pg

∂μ
dμ
dθi

; ð27Þ

accounts for the AP correction to linear order, with the
derivatives of k and μ computed from Eq. (25).
The Fisher element for parameters θi, θj is then

calculated as [67]

Fij ¼
X
z

Z
k2dk

Z
dμ

VðzÞ
2ð2πÞ2

�
n̄P̃g

n̄P̃g þ 1

�2

×

�∂ log P̃g

∂θi
��∂ log P̃g

∂θj
�
; ð28Þ

where VðzÞ is the comoving volume for each redshift bin
summed over, and n̄ðzÞ is the comoving number density
of tracers, given by n̄ðzÞ ¼ ΔzfskyV−1ðzÞdN=ðdz ddeg2Þ,
where the last factor is reported for each survey in Table I.
The integral over μ goes from −1 to 1, and over wave
numbers from kmin ¼ πVðzÞ−1=3 to kmax ¼ 0.2 hMpc−1,
which is mildly in the nonlinear regime [83]. While at
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higher z the fluctuations are smaller and, thus, we could
reach higher kmax while linear, the biasing of galaxies
becomes more complex, so we fix kmax for all z. We expect
that non-Gaussianities in the likelihood will affect con-
straints on cosmological parameters, but we do not model
those effects in this work [84].

IV. RESULTS

In this section we discuss our cosmological constraints
for a LIMR. We will perform two parallel analyses. First,
we will show the reach of different combinations of datasets
by forecasting σðgXÞ for a Weyl (neutrinolike) relic of
different masses and temperatures, covering the entire
range of interest. Then, we will focus on the minimal case

(that with Tð0Þ
X ¼ 0.91 K) for the four relic types we

consider, and find more precisely above which mass mX
they can be ruled out.

A. Full parameter space

We will start with a Weyl relic, and cover a broad range
of cases, where in each case we will assume that there exists
a LIMR in our Universe with mass mX and temperature

today Tð0Þ
X , and forecast how well gX can be measured as a

measure of how significant a detection would be.
We scan through a range of LIMR masses mX from

10−2 eV, as all lighter relics behave identically, up to
∼10 eV, where the relic abundance overcomes that of all

DM. As for their temperature, we cover Tð0Þ
X ¼ ½0.91−

1.50� K, where the lower limit is as found in Sec. II, and the
upper limit saturates the current 95% C.L. Planckþ BOSS
DR12 BAO limit on Neff [23].
First, as a test, we forecast the errors on Neff by looking

at our lightest relic (mX ¼ 0.01 eV) as a proxy of the
massless case, and translating the forecasted error σðgXÞ in
the degrees of freedom into

σðNeffÞ ¼
σðgXÞ
gν

�
Tð0Þ
X

Tð0Þ
ν

�4

: ð29Þ

For reference, we have confirmed that assuming lower
values of mX result in the same forecasts for Neff. This

result is largely independent of the chosen Tð0Þ
X , so we will

show forecasts for a Weyl fermion with Tð0Þ
X ¼ 0.91 K.

Beginning with the CMB, the Planck-only forecast gives
σðgXÞ ¼ 8.11 corresponding to σðNeffÞ ¼ 0.19 which is in
agreement with the Planck value of σðNeffÞ in nonphoton
radiation density when allowing extra relativistic degrees of
freedom Ref. [23]. Likewise, the CMB-S4-only forecast
yields σðNeffÞ ¼ 0.040. This is to be compared with the
value of σðNeffÞ ¼ 0.035 reported in Ref. [30] for the same
combination of resolution and sensitivity. The ∼10%
difference is due to the delensing of T and E modes
[19,85] that is performed in Ref. [30] but not in our

forecasts. This is because we are chiefly interested in more
massive relics, for which the phase shift is not the main
cosmological signature.
In both cases, as well as the ones below, we account for

a noted degeneracy with Σmν by marginalizing over the
neutrino mass in our forecasts. Adding LSS data only
improves these results, as we show in Table II. In particular,
we find that adding BOSS to Planck gives σðNeffÞ ¼ 0.14;
substituting DESI for BOSS yields σðNeffÞ ¼ 0.06.
Looking to the future, Euclid and CMB-S4 will lower this
constraint to σðNeffÞ ¼ 0.02.
We now move to nonzero masses, and provide margin-

alized posteriors from forecasts for a 0.91 K (minimum
temperature)Weyl relic at different masses in Fig. 3.We only
show the 2D contours between gX and other cosmological
parameters; for the full triangle plots at fixed mass
mX ¼ 0.01 eV, see Appendix C. The combination of infor-
mation from the CMB and LSS can be seen to significantly
improve constraints by breaking parameter degeneracies
present in the individual datasets. Interestingly, the degen-
eracy directions changewith LIMRmass. As an example, the
degeneracy line for gX and ωcdm for CMB data changes
direction as the LIMR becomes more massive, and starts
behaving as matter instead of radiation at recombination. The
LSS degeneracy line, however, stays relatively stable,
improving the CMB result by different amount at each mass.
The result described above indicates that combining

CMB and LSS information is critical for an optimal
constraint of LIMRs. We confirm this in Fig. 4, where
we show the forecasted error in gX for CMB and LSS data
on their own, as well as together, which dramatically
improves the constraints. For the rest of this work we
will consider different combinations of CMB and LSS
surveys together.
We now forecast to which level of significance different

LIMR can be constrained, under three different survey
combinations. The first is what would be realizable by
current data, where we assume galaxy data from BOSS and
Planck for the CMB. We show the forecasted σðgXÞ in

Fig. 5, which clearly shows that LIMRs with larger Tð0Þ
X and

mX are more readily observable. However, to observe
(or rule out) a LIMR at 3σ it has to be relatively heavy
(mX≳ few eV), as we will see below. Note that in this figure

we show results for Tð0Þ
X < 0.91 K, as for instance a scalar

TABLE II. Forecasted 1σ errors on Neff from different combi-
nations of experiments. Numbers in parenthesis assume fixed
total neutrino mass, whereas the rest are marginalized over
neutrino masses.

σðNeffÞ CMB Only BOSS DESI Euclid

LSS Only 0.92 (0.84) 0.29 (0.25) 0.20 (0.13)
Planck 0.19 (0.19) 0.14 (0.08) 0.06 (0.04) 0.06 (0.04)
CMB-S4 0.04 (0.04) 0.04 (0.03) 0.03 (0.02) 0.02 (0.02)
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FIG. 4. Improvement of Weyl relic measurements by addition of
LSS data with DESI and Planck constraints. The relic is fixed at its

minimumpossible temperature,Tð0Þ
X ¼ 0.91 K.As shown, the joint

constraints are much stronger than the LSS or CMB alone.

FIG. 3. 68% C.L. and 95% C.L. projected confidence ellipses for each of the parameters we marginalize over, as well as the LIMR
number gX of degrees of freedom, for DESI (red), Planck (purple), and their combination (green). Each row has a different fiducial relic
mass, denoted on the right, all with an assumed temperature Tð0Þ

X ¼ 0.91 K at z ¼ 0. Note that we also marginalize over the unknown
neutrino mass, which loosens our constraints by as much as 143% for LSS-only information, 64% for CMB-only information, and 81%
for combined LSS and CMB information.

FIG. 5. Forecasted errors on gX for a Weyl (neutrinolike) relic
of different fiducial masses and temperatures, in all cases with
fiducial gX ¼ 2, assuming BOSSþ Planck data. The region of
parameter space measurable at the 3σ-level lays rightward of the
purple solid line, and the dashed red line shows the minimum
temperature expected for a relic.
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at that minimum temperature would be equivalent to a Weyl

fermion with Tð0Þ
X ¼ 0.79 K, as we will discuss below.

The second case we consider is the near-future one,
where we add DESI data to Planck. We show the forecasted
constraints on gX for this combination in Fig. 6, which
are clearly improved with respect to the results shown in
Fig. 5. In this case one can rule out relics of any mass with

Tð0Þ
X ¼ 1.4 K at 3σ. More interestingly, we see that masses

above 1 eV would be ruled out, even for the lowest possible

relic temperature of Tð0Þ
X ¼ 0.91 K.

The final case we consider is more futuristic, and adds
CMB-S4 data to DESI. We show the results in Fig. 7, which
further improves the prospects for detecting light relics. In
this case even relics at low temperatures can be ruled out at
3σ confidence for masses above 0.78 eV, whereas mini-
mum-temperature massless Weyl relics can only be found
at 0.5σ confidence.

B. Minimum temperature

While the figures discussed above covered a broad range
of temperatures and masses, they all assumed a Weyl relic.

Here we extend our results to other types of relics, focusing

on the minimum temperature of Tð0Þ
X ¼ 0.91 K, corre-

sponding to the earliest decoupling from the SM plasma.
We divide our results into fermionic and bosonic relics. The
cumulative results of our forecast for each type of particle
are tabulated in Table III.

1. Fermionic relics

We start with a massive Weyl fermion with Tð0Þ
X ¼

0.91 K, for which we show our forecasts on σðgXÞ for
various combinations of galaxy surveys and CMB experi-
ments in Fig. 8(a), with a finer mass resolution than the
results above. We report the minimum relic masses that are
observable at 3σ significance, both with (and without)
marginalizing over the neutrino masses, as a test of how
degenerate LIMRs are with the total neutrino mass. The
combination of presently available Planck and BOSS
datasets are forecasted to observe or rule out LIMRs above
2.85 (2.47) eV at 3σ significance. For Planck and DESI,
this is lowered to LIMRs with masses above 1.20 (1.00) eV.
This result should motivate an analysis using presently
available datasets. For the futuristic combination of
CMB-S4 and Euclid datasets, we show that LIMR masses
above 0.63 (0.59) eV can be observed or ruled out at 3σ
significance.

FIG. 6. Same as Fig. 5 for DESIþ Planck.

FIG. 7. Same as Fig. 5 for DESIþ CMB-S4.

TABLE III. Minimum mass at which a LIMR (scalar boson,
Weyl fermion, vector boson or Dirac fermion, from top to
bottom) can be observed or ruled out at 3σ significance. Also
reported in parentheses is the result with fixed

P
mν (to its

fiducial value). A “� � �” sign corresponds to no masses within the
3σ constraint. “All” corresponds to all LIMR masses analyzed
being within the 3σ constraint.

CMB Only BOSS DESI Euclid

Scalar mX½eV�
LSS Only � � � (� � �) 4.98 (4.54) 3.24 (3.22)
Planck � � � (� � �) � � � (� � �) 1.96 (1.61) 1.31 (1.16)
CMB-S4 1.48 (1.44) 1.41 (1.31) 1.14 (1.06) 0.93 (0.87)

Weyl Fermion mX½eV�
LSS Only � � � (� � �) 3.13 (2.78) 2.42 (2.41)
Planck � � � (� � �) 2.85 (2.47) 1.20 (1.00) 0.87 (0.78)
CMB-S4 1.03 (1.02) 0.98 (0.91) 0.78 (0.71) 0.63 (0.59)

Vector mX½eV�
LSS Only � � � (� � �) 2.41 (2.08) 1.88 (1.88)
Planck � � � (� � �) 2.05 (1.79) 0.90 (0.75) 0.65 (0.60)
CMB-S4 0.81 (0.78) 0.75 (0.70) 0.58 (0.54) 0.47 (0.44)

Dirac Fermion mX½eV�
LSS Only 4.06 (3.72) 1.82 (1.36) 1.50 (1.50)
Planck � � � (� � �) 1.30 (1.12) 0.61 (0.52) 0.45 (0.43)
CMB-S4 0.56 (0.55) 0.51 (0.48) All (All) All (All)
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As an example of the physical implications of these
constraints, let us apply to them to the (s ¼ 3=2) gravitino,
which is related to the scale of SUSY breaking in some
models. The gravitino is cosmologically equivalent to the
neutrinolike Weyl relic that we have studied, as only the
s ¼ 1=2 modes are thermalized with the SM plasma in
the early Universe [53], and are expected to have the lowest
relic temperature of 0.91 K. This has allowed previous
work to constrain the gravitino mass by requiring that their
abundance does not overcome that of the cosmological dark
matter [86]. Our forecast above shows that current data is
sensitive to gravitinos heavier thanmX ¼ 2.85 eV, which is
around the benchmark of some models of SUSY breaking
[87,88], and a factor of a few better than the best limits
currently available [53,89]. Upcoming data from CMB-S4
combined with Euclid is expected to further detect such
gravitino population masses above 0.63 eV. Under the
assumption that a cosmological gravitino population no
longer exchanges entropy after decoupling from the
SM bath, we can relate constraints on mX to bounds on
the SUSY breaking scale ΛSUSY ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mXMPl

p
[54,90]. Our

forecasted Planck and BOSS dataset translates to an upper

bound ΛSUSY ≲ 80 TeV, whereas the CMB-S4 and Euclid
datasets lower this to ΛSUSY ≲ 50 TeV. These projections
are interestingly complementary to the energy range that
will be reached by the proposed Oð100 TeVÞ particle
collider, showing the promise of our approach.
We also consider a Dirac fermion, with gX ¼ 4 and

mass mX. In terms of the equivalent Weyl fermion,
this corresponds to a temperature Teq

W ¼ 1.08 K and mass
meq

W ¼ 1.19mX. In Fig. 8(b), we show that the combined
Planck and BOSS datasets are forecasted to observe or rule
out such particles above 1.30 (1.12) eV at 3σ significance.
For Planck and DESI, the 3σ constraint is lowered to 0.61
(0.52) eV. Interestingly, CMB-S4 data will enable the
parameter space of Dirac fermions with any mass to be
observed or ruled out at 3σ significance when combined
with LSS data from DESI.

2. Bosonic relics

We now move to bosonic degrees of freedom. First, we
study a minimum-temperature real scalar, with s ¼ 0,
gX ¼ 1, and mass mX. This is equivalent to a Weyl relic
with Teq

W ¼ 0.79 K and meq
W ¼ 1.01mX. We show in

(a) (b)

(c) (d)

FIG. 8. Forecasted error on the relic degrees of freedom for a neutrinolike Weyl fermion (with fiducial gX ¼ 2, top left), a Dirac
fermion (gX ¼ 4, top right), a real scalar (gX ¼ 1, bottom left), and a vector particle (gX ¼ 2, bottom right), all at their minimum
temperature TX ¼ 0.91 K, for various combinations of CMBþ LSS experiments. The horizontal line denotes the uncertainty required
to detect each relic at 3σ.
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Fig. 8(c) that, while the combination of presently available
Planck and BOSS datasets cannot constrain scalar relics at
the 3σ significance, DESI and Planck can jointly rule out
scalars with masses above 1.96 (1.61) eV. Further, the
combination of CMB-S4 with either the DESI or Euclid
datasets can observe or rule out real scalar bosonic relics
above 1.14 (1.06) and 0.93 (0.87) eV, respectively.
Second, we consider a massive vector, with s ¼ 1 and

gX ¼ 2. This massive vector is equivalent to a Weyl relic
with Teq

W ¼ 0.94 K and meq
W ¼ 1.21mX. In Fig. 8(d) we

show that the combination of Planck and BOSS datasets
can observe or rule out massive vector bosonic relics above
2.05 (1.79) eV, whereas substituting BOSS for DESI
improves this number to 0.90 (0.75) eV. Combining the
CMB-S4 and Euclid datasets further improves this to
0.47 (0.44) eV.

C. Neutrino-mass forecasts

We have detailed in each previous subsection the
constraints with and without marginalizing over neutrino
masses to emphasize the importance of this step, as it is
seen to affect results noticeably when LSS information
is being considered. We note that DESI is particularly
sensitive to the marginalization or fixing of

P
mν. This is

due to its chosen bias prescription, which does not include a
parameter to marginalize over the redshift dependence of
the bias, as opposed to BOSS and Euclid. This underscores
the sensitivity of our results to the details of the bias
prescription, which is further explored in our companion
paper [48].
As a consequence of our analysis, we can also forecast

how much neutrino-mass measurements would be affected

by the presence of a LIMR, given the degeneracies betweenP
mν and gX shown in Fig. 3. We show in Fig. 9 the

relative increment in the error of the sum
P

mν of neutrino
masses when marginalizing over a relic of varying mass.
For reference, we forecast σðPmνÞ to be 61.1 × 10−3 eV
for BOSS and Planck, 28.2 × 10−3 eV for DESI and
Planck, and 24.1 × 10−3 eV for DESI and CMB-S4, with
a fiducial at the (normal-hierarchy) minimum

P
mν ¼

60 × 10−3 eV and no other relics. The degradation in the
expected errors ranges from 10% for heavy relics and
futuristic data (DESI+S4), to nearly 100% for lower masses
and current or upcoming data (BOSS/DESI+Planck). Note
that for relics of mX ≈ 0.3 eV the degradation minimizes in
all survey specifications. This mass corresponds to relics
that become non-relativistic around the time of recombi-
nation. In essence, heavier relics produce suppression in the
matter fluctuations, whereas lighter relics chiefly affect
CMB and LSS observables through their change in Neff .
We encourage the reader to see our companion paper [48]
for in-depth neutrino forecasts without relics.

V. CONCLUSIONS

In this work we have studied how well current and
upcoming cosmological surveys can detect LIMRs, focus-
ing on the 10−2 − 101 eV mass range. These particles
become nonrelativistic before z ¼ 0, and thus affect the
formation of structures in the Universe. By combining
information from the CMB and the LSS we have shown
that a large swath of the 2D-parameter space (of relic mass
and temperature) will be probed by upcoming surveys.
There is a minimum temperature that any relic that

was in thermal equilibrium with the Standard Model

should have, Tð0Þ
X ¼ 0.91 K. Interestingly, we find that

Weyl, vectors, and Dirac relics with this temperature, and
masses above ≈1 eV, can be observed or ruled out at the 3σ
significance using the presently available combination of
Planck and BOSS datasets. Looking slightly to the future,
the Planck and DESI datasets will improve these con-
straints, and reduce the minimum mass allowed for LIMRs
by roughly 50%. The more futuristic Euclid and CMB-S4
datasets will present an 80% improvement and, in the case
of Dirac fermions, fully cover the parameter space. If the
sum of neutrino masses,

P
mν, can be learned independ-

ently of CMB and LSS surveys, the effect of fixing theP
mν parameter manifests as an approximate 20%

improvement on these constraints. This could be accom-
plished, for example, by KATRIN which currently sets
the leading upper bound on the effective electron neutrino
mass of 1.1 eV, independently of cosmology [91]. We
emphasize that the effect of marginalizing

P
mν signifi-

cantly weakens the 3σ constraints for some of the cases
reported, suggesting that it is important to account forP

mν in any search for LIMRs. While the need to properly
account for

P
mν has been discussed in previous work

FIG. 9. Forecasted DESI + CMB-S4 uncertainty on the sumP
mν of neutrino masses, when it is jointly searched for with a

relic of mass mX and temperature TX ¼ 0.91 K. The degeneracy
is minimized at ∼Oð0.3 eVÞ for all particle types, although the
constraints on neutrino masses using CMB data from Planck
are always expected to weaken by ∼10%, if a new light relic is
present.
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[17,27,39,92–94], our analysis, which does so for massive
but light relics, is unprecedented.
This result is particularly interesting for the case of the

gravitino. Since the gravitino would have a cosmological
imprint identical to a Weyl fermion, we have shown that
Planck and BOSS can observe or rule out gravitinos heavier
than 2.85 eV. If a gravitino, or any other LIMR, were
detected, then their parameters (i.e., mass and temperature)
could also be measured, as suggested in Ref. [25].
In summary, while light relics are commonly assumed

to be nearly massless—and constrained through Neff—
here we have shown that relics with masses on the
10−2 − 101 eV scale can be constrained with cosmological
data. These constraints are broadly expected to apply to the
full range of allowed relic masses, from effectively mass-
less to saturating the DM abundance. This complements
current efforts in the search of relics, allowing many new
routes for finding physics beyond the Standard Model.
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APPENDIX A: MCMC VALIDATION
OF FISHER FORECASTS

In this Appendix we show a comparison of our Fisher
formalism and an MCMC analysis of the same mock data
to confirm our Fisher analysis throughout the main text. In
Fig. 10 we show the MCMC (solid) and Fisher forecasted
(dotted) marginalized posteriors for cosmological param-
eters and nuisance parameters (including the neutrino massP

mν), assuming CMB-S4þ DESI data. This figure shows
that the predicted errors agree remarkably well between our
Fisher-matrix approach and the full MCMC of mock data.
Moreover, we show posteriors for models with and

without the growth induced scale-dependent modification
to the bias (as described in our companion paper [48]),
which we termed GISDB. The MCMC results are from
Ref. [48], and the Fishers are calculated here. The non-
GISDB Fisher ellipses are centered on the corresponding
MCMC maximum likelihood point. The GISDB ones,
however, are shifted by [95]

δθi ¼ ðF−1ÞijDj; ðA1Þ

in each parameter θi, where we have defined

Dj ¼
X
z

Z
k2dk

Z
dμ

VðzÞ
2ð2πÞ2

�∂ log P̃gðk; μÞ
∂θj

�

× ðP̃g;GISDBðk; μÞ − P̃g;no GISDBðk; μÞÞ
�

n̄P̃g

n̄P̃g þ 1

�2

;

ðA2Þ

and the GISDB Fisher ellipses are computed centered on
the shifted best fit. As shown, the good cohesion between
the Fisher and MCMC analyses of the data, particularly
in the inclusion of the GISDB effect, demonstrates that the
considered effects are well-approximated by the linearity of
the Fisher approach, and thus validates the constraints we
present on additional light relics.

APPENDIX B: MARGINALIZATION
OVER THE RELIC MASS

Throughout the main text, the LIMR mass has been held
fixed. In this Appendix, we allow the LIMR mass to vary in
the forecasts to study what effect this has on the LIMR
constraints presented earlier, as well as to study how well a
prospective LIMR detection could constrain its properties.
For all combinations of LIMR species, galaxy surveys

and CMB experiments studied in this work, we find that
marginalizing over the LIMR mass mX weakens the
constraint on the relic degrees of freedom gX, as expected.
This effect is most exaggerated in the cases where the
constraint is dominantly set by LSS information. In a
joint Planck-BOSS analysis, high-mass relics (with
mX ≥ 0.2 eV) see the gX constraint weakened by nearly
a factor of 2. In cases where CMB information dominates,
however, such as when adding CMB-S4 to BOSS, the gX
constraint is weakened by no more than 6%. Adding Planck
information to DESI, the higher-mass region sees the gX
constraint weakened by no more than a factor of 2. Adding
CMB-S4 to DESI, the gX constraint is weakened by no
more than 25%.
In Figs. 11 and 12, we illustrate this effect, assuming that

a Weyl fermion with fiducial TX ¼ 0.91 K and different
values of mX is observed using different combinations
of galaxy and CMB surveys. The broadening of the error
bars is primarily driven by the LSS information and, as a
consequence, the biggest shift in constraints is observed for
datasets that are primarily or exclusively constrained by the
galaxy surveys.
We see in Fig. 11 that the Planck constraint monoton-

ically weakens with increasing fiducial relic mass. This can
be explained by the decreasing effect of a relic on the
radiation energy density ρr which the CMB is primarily
sensitive to. At low masses, the Planck dataset demon-
strates an orthogonal relationship between the relic mass
and degrees of freedom. Considering that at low masses,
changes in mass will modify the weak lensing signal of the
CMB and produce no change in ρr yet small changes in gX
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will produce directly proportional changes in ρr we expect a
nearly orthogonal relationship between these two parameters
at low masses primarily governed by Eq. (4), as the CMB
signal is dominated by changes to ρr. However, as the
fiducial relic mass is increased, and the relic effect on ρr at
recombination becomes smaller, the CMB becomes sensitive
to the relic primarily through its effect on the weak lensing

signal and the governing relationship changes to Eq. (6)
which is directly proportional to the product of mX and gX.
Thus, these two parameters are expected to develop an
anticorrelation at high masses in the CMB dataset, which is
indeed what we observe in Fig. 11 at higher masses.
Now we consider how the degeneracy direction in the

mX − gX plane varies at different relic masses for the LSS

FIG. 10. MCMC and Fisher forecasted marginalized posteriors for cosmological parameters and nuisance parameters for a joint
DESIþ CMB-S4 analysis. The degenerate hierarchy is assumed with a total mass of

P
mν ¼ 0.1 eV. Models with and without the bias

step (GISDB) are considered. As shown, the good consistency between MCMC and Fisher results, particularly the reproduced shift in
parameters upon turning off GISDB, demonstrates that the effects we consider are well-captured at linear order and validates our results
regarding the detectability of LIMRs.
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datasets. Here the scales affected by the relic, as governed by
Eq. (5), and by the magnitude of the effect, as determined by
Eq. (6), control the effect on the LSS signal. At low masses,
the contribution of the relic to ωM is small and the relic will
primarily affect the LSS signal through its free-streaming
scale, which is independent of gX. So at small relic masses,
we expectmX and gX to be approximately orthogonal. As the
fiducial relic mass is increased, the contribution of the relic
to PM and hence to the LSS signal increases and is again
proportional to the product ofmX and gX. So with increasing
relic mass, we generally expect an anticorrelation to develop
between the relic mass and degrees of freedom.We again see
this to be the case in Fig. 11.
As discussed above, allowing the relic mass to vary

modifies the constraints of the LSS and CMB datasets such
that the accuracy of those constraints is generally less
affected for lower mass relics. As the relic occupies a

greater portion of ΩM, it becomes more important to
simultaneously vary the relic mass and degrees of freedom.
We emphasize that for a fixed relic abundance, there is a
degeneracy between the relic parameters mX, TX, gX
according to Eq. (6). This allows us to translate constraints
on any two of these parameters into constraints on the third
parameter. Where we have allowed the relic mass and
degrees of freedom to vary, the resulting constraints can be
translated to errors on the temperature. We also bring
attention to the fact that marginalizing over the relic mass
is only valid in the neighborhood of parameter space
around each fiducial choice, and not over the entire
parameter space of masses permitted.

APPENDIX C: SAMPLING OF FULL MODEL
POSTERIOR FORECASTS

Datasets with different parameter degeneracies can
powerfully constrain parameters when combined. To illus-
trate this complementary effect between CMB and LSS
surveys, we present a sampling of fully marginalized
posteriors in Fig. 13 for a Weyl (neutrinolike) relic with
temperature 0.91 K and mass 0.01 eV. In each figure, we
present constraints using only DESI (red), only Planck
(violet), and the joint dataset (green).
As in the case of the LIMR parameter gX (number of

degrees of freedom) discussed in the main text, the addition
of LSS information to CMB data will generally break
degeneracies between parameters. As an interesting exam-
ple, we observe that the LSS provides a measurement of
ωcdm that is very close to orthogonal from the CMB one,
breaking degeneracies with As, ns, and gX for very light relic
masses. DESI information also serves to set the measure-
ments on h and

P
mν, which are poorly measured by Planck

as their effects on the CMB are degenerate. In turn, the LSS
by itself is generally ineffective at measuring the other
cosmological parameters, and provides no information on
τreio. While, as illustrated in Fig. 3, the degeneracies between
gX and other parameters shift significantly between relics of
different masses, those between the cosmological parameters
themselves remain largely unchanged.

FIG. 11. Fisher-matrix forecasted marginalized posteriors for the parameters gX and mX. In this forecast, the LIMR mass has been
allowed to vary in addition to its degrees of freedom. We present the marginalized posterior contours for five choices of the fiducial
LiMR mass: 10−2, 10−1.4, 10−0.8, 10−0.2, 100.4, and 101 eV. As shown, the degeneracy lines are driven by the relative orthogonality of
CMB information at low masses, and by strong degeneracy in the LSS data at intermediate to high masses.

FIG. 12. Forecasted sensitivity on the relic degrees of freedom
gX for a Weyl fermion with (solid) and without (dashed)
marginalization over relic mass mX for combinations of datasets
BOSSþ Planck and DESIþ CMB-S4. As expected, there is
little degeneracy in the low-mass limit, where the relic mainly
contributes as Neff ; the gX −mX degeneracy enters most at
intermediate masses.
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