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A promising avenue to measure the total, and potentially individual, mass of neutrinos consists of
leveraging cosmological datasets, such as the cosmic microwave background and surveys of the large-scale
structure of the Universe. In order to obtain unbiased estimates of the neutrino mass, however, many effects
ought to be included. Here we forecast, via a Markov chain Monte Carlo likelihood analysis, whether
measurements by two galaxy surveys, DESI and Euclid, when added to the CMB-S4 experiment, are
sensitive to two effects that can alter neutrino-mass measurements. The first is the slight difference in the
suppression of matter fluctuations that each neutrino-mass hierarchy generates at fixed total mass. The
second is the growth-induced scale-dependent bias of haloes produced by massive neutrinos. We find that
near-future surveys can distinguish hierarchies with the same total mass only at the 1σ level; thus, while
these are poised to deliver a measurement of the sum of neutrino masses, they cannot significantly discern
the mass of each individual neutrino in the foreseeable future. We further find that neglecting the growth-
induced scale-dependent bias induces up to a 1σ overestimation of the total neutrino mass, and we show
how to absorb this effect via a redshift-dependent parametrization of the scale-independent bias.
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I. INTRODUCTION

The existence of neutrinos has long been established, but
comparatively little is known about them, due to their weak
couplings to the visible sector. Although in the Standard
Model neutrinos are massless, compelling evidence of
flavor oscillations from solar, atmospheric, and reactor
fronts [1–7] yield measurements of two mass splittings,
indicating nonzero masses for at least two of the three
neutrino species. The sign of one of the measured mass
splittings is yet to be determined, suggesting that neutrinos
are ordered in one of two scenarios: the normal hierarchy
(NH), where the two lighter neutrinos are closer in mass, or
the inverted hierarchy (IH), where the two heavier ones are.
Distinguishing between the two neutrino hierarchies, as
well as measuring their overall mass scale, are integral steps
towards amending the Standard Model via characterizing
its least-understood fermions.
Current results from the KATRIN Tritium decay experi-

ment have improved the limits on the mass mν of each
neutrino species tomν < 1100 meV in the quasidegenerate
regime [8], and are expected to constrain each neutrino
mass in this regime to 200 meV with upcoming data [9].
This is, however, still far from the minimum (total) masses
expected for the NH and IH, of 60 and 100 meV,
respectively. A diverse range of other particle experiments
are also underway aiming to fully characterize the oscil-
lation parameters and determine the mass ordering [10–16].
At the same time, cosmological datasets provide a powerful
tool in the search for massive neutrinos, as these particles

are very abundant in our Universe, with a density per
species today of nν ∼ 100 cm−3, comparable to that of
cosmic microwave background (CMB) photons. This
cosmic neutrino background influences the formation of
large-scale structure (LSS) in the Universe: at least two of
these species are nonrelativistic at the present day and
contribute to the dark matter (DM) content. However, their
small masses imply large streaming velocities and induce
structure suppression at small scales (see Refs. [17,18] for
detailed reviews of these effects).
Indeed, the leading constraints on the sum of neutrino

masses are currently obtained with cosmological data [18–
22]. The latest 2018 Planck data, in conjunction with
measurements of the baryon acoustic oscillations from the
Baryon Oscillation Spectroscopic Survey (BOSS), have
been used to constrain

P
mν ≤ 120 meV at 95% C.L. [23].

This measurement is compatible with both the normal and
inverted hierarchies, though the available parameter space
for the latter will always be smaller. Upcoming data from
the CMB Stage-4 (CMB-S4) experiment, as well as the
Dark Energy Spectroscopic Instrument (DESI) and Euclid
galaxy surveys, will reduce these error bars dramatically,
and it is expected that these experiments will measure the
sum of neutrino masses at least at the 3σ level [24].
As cosmological data (especially that from large-scale

structure experiments) become increasingly precise, it
becomes critical to accurately characterize the cosmologi-
cal effects of neutrinos in the analysis of this data. This is
crucial both for the correct characterization of cosmological
neutrinos and also for the measurement of relevant
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parameters of structure formation, such as the amplitude of
fluctuations or the intrinsic bias of tracers. Currently,
searches for massive neutrinos with cosmological data
often make two simplifying assumptions, described below.
The first assumption commonly made is that the three

neutrinos have the same mass, a configuration commonly
termed the degenerate hierarchy. While this is a valid
approximation for neutrino masses much heavier than their
splittings (mνi ≫ 50 meV), it fails for the range of masses
still allowed by current data. While the dominant cosmo-
logical effect of neutrinos is set by the sum of their masses,
the distribution of individual masses has an effect that,
although subtle, might be detectable by future surveys
[19,25–32]. It is possible that the next-generation meas-
urement of total neutrino mass will simply eliminate the
inverted hierarchy by ruling out its minimum mass.
However, in the case that this measured sum permits both
normal and inverted configurations (

P
mν ≥ 100 meV), it

is also worth investigating whether cosmological data has
the power to distinguish between the two.
The second approximation is that the halo bias is

unaltered by the presence of light degrees of freedom.
However, it was shown in Refs. [33–35] that the same
scale-dependent growth that gives rise to a suppression in
the matter power spectrum in the presence of massive
neutrinos induces a scale-and redshift-dependent enhance-
ment to the halo bias as well. This growth-induced scale-
dependent bias (GISDB) can partially compensate the
effect of neutrinos on the galaxy power spectrum, and,
opposed to other biasing effects that abound in standard
cosmology, its amplitude and shape are determined by the
neutrino masses, so it must be properly modeled during
searches for these particles.
In this work we include both of these effects for the first

time (see for instance Refs. [36–38] for previous efforts),
and forecast constraints on the neutrino mass from the
upcoming DESI [39] and Euclid [40] surveys, combined
with the CMB-S4 experiment [41]. We study whether the
omission of these corrections would bias upcoming results.
To find the halo power spectrum in the presence of
neutrinos with three different masses we employ the
publicly available software CLASS [42], which we have
modified to include the recently developed RelicFast

1 [35]
code as a native module. We dub this code RelicCLASS,2 and
in addition to neutrino masses, it can also be used to search
for any other light relic (as we do in our companion
paper [43]).
This paper is structured as follows: in Sec. II we briefly

review the effect of neutrinos on the LSS observables. In
Sec. III we explain the datasets we consider, which we
employ in Sec. IV to forecast the resulting constraints on
neutrino masses. We conclude in Sec. V.

II. NEUTRINOS AND THEIR EFFECT
ON THE LSS

We begin with an overview of the physics of neutrinos
and their effects on the LSS observables, which can be
divided in two pieces: the suppression of the matter power
spectrum, and a modification to the galaxy-halo bias. Both
of these effects are most relevant at scales of k∼0.01h=Mpc
for currently allowed neutrino masses, making galaxy
surveys such as DESI and Euclid ideal probes, given their
expected low noise at those scales.
The Standard Model contains three species of neutrinos

corresponding to the electron, muon, and tau lepton flavors,
which mix into three nondegenerate mass eigenstates.
Various oscillation experiments have measured two mass
splittings to be [7]

Δm2
21 ¼ 79 meV2;

jΔm2
31j ¼ 2.2 × 103 meV2; ð1Þ

where the absolute value on the latter measurement denotes
ambiguity to which species is heavier. This results in two
possible mass configurations, the normal hierarchy, where
m3 > m1, and the inverted hierarchy, where m3 < m1.
Assuming the lightest neutrino is massless, the NH has a
total mass sum of ∼60 meV and the IH has one of
∼100 meV [17].
Neutrinos decouple shortly before cosmic electron-

positron annihilation, and so their present-day temperature

Tð0Þ
ν is offset from that of the photon bath, Tð0Þ

γ , by

the subsequent entropy injection, yielding Tð0Þ
ν ¼

ð4=11Þ1=3Tð0Þ
γ ¼ 1.95 K. Thus, a neutrino of mass mνi will

become nonrelativistic at zNR ∼ 500ðmνi=100 meVÞ, so by
today we expect at least two of the species to be non-
relativistic. In that case, the neutrino abundanceΩν today is
related to the sum of masses simply as [17]

Ωνh2 ¼
X
i

mνi

93.2 eV
; ð2Þ

where h is the reduced Hubble parameter. The nonzero
temperature of neutrinos allows them to freely stream out of
dark-matter structure. This defines a free-streaming scale as
the wave number kfs;i above which neutrinos behave as hot
dark matter, given at late times z < zNR;i by

kfs;i ¼
0.08ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
�

mνi

100 meV

�
hMpc−1; ð3Þ

assuming matter domination [44,45]. We will focus on
neutrinos in this paper, but we note that other light (but not
massless) relics produce similar effects, and we search for
them in our companion paper [43].

1https://github.com/JulianBMunoz/RelicFast
2https://github.com/wlxu/RelicClass
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A. Effect on matter fluctuations

For this discussion it is informative to differentiate
between two different types of matter content in the
Universe: the component consisting of cold dark matter
and baryons (CDMþ b), which largely follow each other at
late times and actually source the formation of galaxies, and
neutrinos, which are generally nonrelativistic at the present
day but do not cluster at small scales [46,47]. At late times,
when all neutrinos are nonrelativistic, we can define the
matter fluctuations as a sum of these two components:

δm ¼ fcbδcb þ
X
i

fνiδνi ; ð4Þ

where δi is the overdensity in the i component, fi ¼ Ωi=Ωm
its fraction of the total matter abundanceΩm, and we define
fν¼

P
i fνi , where this sum includes all massive neutrinos.

On large scales (k ≪ kfs;i), neutrinos νi will follow
CDMþ b fluctuations, so δν ≈ δcb, whereas on small scales
(k ≫ kfs;i) they will freely stream out of matter potential
wells and their fluctuations will be suppressed, following
δν ∝ δcbk−2 [17]. This affects structure formation in two
main ways. First, δm is suppressed by a factor of ð1 − fνÞ
with respect to δcb, as the larger the neutrino abundance, the
smaller the fraction of matter content that contributes to
the growth of structure. Second, and more important, the
absence of small-scale neutrino fluctuations slows
the growth of the CDMþ b component at large k. If the
neutrinos become nonrelativistic after matter-radiation
equality, this produces an additional scale-dependent sup-
pression on δcb of roughly ð1 − 3fνÞ. The result in the
linear approximation is a total suppression of the matter
power spectrum of ð1 − 8fνÞ for fν ≪ 1 [17].
Both of these effects become present at k ∼ kfs;i for each

species, so not only do neutrinomasses determine the overall
amount of suppression, but also the location in the power
spectrum where said suppression occurs. The effect is
dominantly determined by the total fν, and thus the total
neutrino mass

P
mν. However, hierarchical neutrinos will

each modify the power spectrum at slightly different free-
streaming scales due to their individualmasses. For instance,
for the same total neutrino mass of

P
mν ¼ 100 meV,

the normal hierarchy suppression effects turn on at
kfs;i ∼ 0.02 hMpc−1 (for the lighter neutrinos) and kfs;i ∼
0.04 hMpc−1 (for the heavier), while the inverted hierarchy
suppression effects turn on at kfs;i ∼ 0.005 hMpc−1 and
kfs;i ∼ 0.03 hMpc−1, respectively.
Furthermore, although the difference is subtle, the

amplitude of the small-scale suppression of PcbðkÞ for
cosmologies with fixed total fν is dependent on the epochs
zNR;i where neutrinos begin to behave as matter, with larger
suppression for heavier individual species as the growth of
fluctuations is slowed from an earlier time. Thus, the scale-
dependent suppression is most prominent in the limit where
all the mass is carried by one neutrino, and least prominent

for the case of three degenerate neutrino; in general, the
inverted scenario will generate more suppression for the
same total neutrino mass than the normal one.
In addition to these scale-dependent effects, the inclusion

of massive neutrinos while holding fixed the baryon and
DM abundances (ωb;ωcdm), and the Hubble parameter (h)
forces a shift in the dark-energy abundance (ΩΛ), the effect
of which is an overall suppression of the amplitude of
fluctuations at all scales. However, this effect is less
important for our analysis here, as it can be mimicked
by a compensating shift in the amplitude As of fluctuations,
the Hubble parameter, or the overall halo bias.
We illustrate the effects described above in Fig. 1, where

we incorporate massive neutrinos into the cosmology with
various masses and fixed hierarchy (upper panel) and
with various hierarchies and fixed total mass (lower panel).
We investigate the suppression of each with respect to a
cosmology with massless neutrinos, holding fixed the other

FIG. 1. Percent differences in CDMþ baryon power spectra
compared to a massless neutrino cosmology: for different total
neutrino masses assuming the degenerate hierarchy (upper panel)
and for different hierarchies assuming a total neutrino mass of
100 meV (lower panel). In each case we fix the cosmological
parameters fωb;ωcdm;Ωm; As; nsg, varying h. As shown, the
primary effect of massive neutrinos is a suppression of amplitude
at small scales—the change in amplitude at large scales is
attributed to varying values of h. Note that both the total mass
and individual neutrino masses affect the amount of suppression
and scale at which it turns on, though the latter effect is
subdominant. In addition, the amount of suppression is redshift
dependent, with a larger spread at small scales for larger neutrino
masses.
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cosmological parameters fωb;ωcdm; h; As; ns; τreiog at val-
ues listed in Table II (where ns is the tilt of primordial
fluctuations and τreio is the optical depth to reionization).
Note that the suppression is larger for heavier neutrinos and
occurs at smaller scales, and also it is larger for the inverted
hierarchy than the normal hierarchy, though only becoming
apparent at comparatively small scales.

B. Effect on the bias—RelicCLASS

We can observe the neutrino-induced suppression in δm
by directly measuring the matter power spectrum, for
example through weak lensing of the CMB or galaxies
[48,49]. Most measurements are, however, of galaxy
distributions, which trace the underlying matter fluctua-
tions. In this case it is not enough to study how neutrinos
affect the matter power spectrum, but rather it is necessary
to find how they change the relation between the halo and
the matter overdensities, the galaxy bias.
Due to the nonlinearity of halo formation, the over-

density of haloes traces that of the matter, albeit with a
rescaling referred to as the bias. In this work we will always
refer to the bias with respect to the CDMþ b field, to avoid
spurious scale-dependencies due to the nonclustering
nature of neutrinos [20,46,50,51]. In that case, the halo
fluctuation (without redshift-space distortions) is given by

δhðk; zÞ ¼ b1ðk; zÞδcbðk; zÞ ð5Þ

to linear order, where b1 is the Eulerian bias, which can be
written in terms of the linear Lagrangian bias bL as

b1ðk; zÞ ¼ 1þ bLðk; zÞ; ð6Þ

where the Lagrangian bias is also defined with respect to
the cb fluid.
In previous LSS searches for neutrino masses it was

typically assumed that either b1, or its equivalent with
respect to all matter, was constant at all scales. Nonetheless,
neutrinos produce a scale-and redshift-dependent growth in
the CDMþ b fluctuations, due to their free-streaming
nature. This effect cannot be simply included through
transfer functions, due to the non-local temporal nature
of the halo-formation process [33,34,52,53], and the
process of halo collapse has to be modeled.
We use the publicly available code RelicFast, which solves

for the spherical collapse of haloes including the effect of
neutrinos. In Ref. [35] we found that, while the overall
value of the bias is very sensitive to the astrophysics of
specific tracers, the scale-dependence of the Lagrangian
bias is impervious to those effects within our model.
The result of this correction is a scale-dependent step in

the Eulerian bias as shown in Fig. 2, which we term the
growth induced scale-dependent bias (GISDB). We para-
metrize the bias through

bLðk; zÞ ¼ bLðzÞfðk; zÞ; ð7Þ

where fðk; zÞ is numerically computed with RelicFast to
properly account for the effect of neutrinos in the halo bias,

and bLðzÞ denotes the scale-independent magnitude of the
Lagrangian bias, which we will marginalize over. We
remind the reader that fðkÞ can be approximated in terms
of tanh½logðkÞ�, as it is roughly a step function in log-k
space [35]. Nonetheless, we choose to use the full shape of
the function, in order to fully capture its physical effect.

Additionally, as the amplitude bLðzÞ of the bias depends
very sensitively on the properties of the haloes studied, we
will marginalize over it as a free parameter. On the other
hand, the scale-dependent behavior, parametrized through
fðk; zÞ, is largely independent of those factors [34,35].
The specifications of the RelicCLASS code is as follows:

we have modified the publicly available Boltzmann solver
CLASS to include the effect of neutrinos in the halo bias
computed by RelicFast within CLASS, which directly outputs
both Eulerian and Lagrangian scale-dependent biases for
the input cosmologies. Here, RelicFast is included as a CLASS

module, executed after the LENSING module, which outputs
the realistic scale-dependent Lagrangian bias for requested
ranges of redshifts and halo masses. This output is
accessible from the python wrapper to facilitate interfacing
with MONTEPYTHON and other codes that take CLASS

outputs. Inverted, normal and degenerate neutrino scenarios
with lightest neutrino mass (m0 in the code), which sets the
full spectrum, are accepted as specifications at the input
level. Aside from neutrinos, RelicCLASS can also be used to
model other scale-dependent effects on the growth func-
tion, such as those induced by other light (but massive)
degrees of freedom.

FIG. 2. The GISDB for redshifts from 0.65 (lightest) to 1.65
(darkest) with massive neutrinos. The total neutrino mass is set at
90 meV and the degenerate scenario is assumed. As shown, the
GISDB is both scale and redshift dependent.
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III. DATASETS

In this section we describe the data sets used in
our analysis, code specifications, and discuss details of
likelihoods and nuisance parametrizations. We use mock
data from CMB-S4 as well as either DESI or Euclid for the
LSS component.

A. Galaxy data

For the LSS component we will use a modified version
of the basic PK likelihood implemented in MONTEPYTHON

v3 [54] adapted to mock data from the upcoming DESI [39]
and Euclid [40] surveys, assuming their most abundant
tracers. For this analysis we consider emission line galaxies
(ELGs) for DESI, and assume the baseline survey covering
14;000 deg2. Conversely, for Euclid we study Hα emitters
and assume the reference efficiency given in Ref. [40] with
15;000 deg2 coverage. The projected galaxy number den-
sities achievable by the DESI and Euclid surveys are given
in Table I. Somewhat more optimistic constraints could
potentially be achieved through multitracer techniques
[55]. Nonetheless, our goal in this work is to determine
whether the inclusion of different neutrino-induced effects
would bias the results from upcoming surveys, so we will
limit ourselves to the case of one tracer per survey.
The shot noise spectrum is given simply by the inverse of

the observed galaxy density,

n̄−1g ðzÞ ¼ dVðzÞ
dNgðzÞ

; ð8Þ

where dVðzÞ is the comoving volume of the shell at redshift
z in the fiducial cosmology, and dNgðzÞ is the total number
of tracer galaxies within the shell, as computed in Table I.
Galaxies are located in the line-of-sight n̂ direction at their

measured redshift z. Gravitational attraction of galaxies into
clusters, as well as bulk velocities of the clusters themselves,
give rise to distortions to the inferred 3D positions of
galaxies, which are usually termed redshift-space distortions
(RSD) [56]. To linear order we can relate the redshift-space
galaxy power spectrum to the CDMþ b one as

Pgðk; z; μÞ ¼ ½b1ðk; zÞ þ fcbðkÞμ2�2Pcbðk; zÞ; ð9Þ

where μ ¼ k̂ · n̂, and we have defined the growth factor of
CDMþ b fluctuations as

fcbðk; zÞ ¼ −
d log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pcbðk; zÞ

p
d log z

; ð10Þ

which we compute numerically using CLASS.
Additionally, the nonlinear integrated effect of RSD

(usually referred to as the finger-of-God effect), as well
as the intrinsic redshift uncertainty of the galaxy, can be
encoded as a multiplicative damping term [57]

P̃gðk; z; μÞ ¼ Pgðk; z; μÞ exp
�
−
μ2k2σ2vðzÞ
H2ðzÞ

�
;

with σv ¼ ð1þ zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þ

σ2fogð1þ zÞ
2

s
; ð11Þ

where σ0 ¼ 10−3 accounts for the resolution limits of
DESI [39] and Euclid [40], and σfog is related to the
velocities of galaxies and is treated as a nuisance parameter
in this work.
The physics of galaxy formation is known to produce an

additional scale dependence to the bias term, proportional
to k2 at high k. While unrelated to the effect of neutrinos on
the LSS, this k2 term is properly accounted for here
following the formulation of Ref. [58]. We follow their
prescription in writing the total Eulerian bias as

b1ðk; zÞ ¼ 1þ bLðk; zÞ þ α2k2; ð12Þ

where α2 is a free parameter that we marginalize over. At
large scales (k → 0), where both the growth-induced and k2

terms are negligible, the bias is scale independent and we
choose a fiducial value that matches the simulations of each
specific tracer. For the DESI survey of ELGs we use the
parametrization b1ðzÞ ¼ β0=DðzÞ, where DðzÞ is the
growth function, and for the Euclid survey of Hα emitters
we use b1ðzÞ ¼ β0ð1þ zÞ0.5β1 , following the prescriptions
of their respective science books [39,40]. The nuisance
parameter β0 rescales the overall bias, and β1 parametrizes
any uncertainty in redshift dependence of the bias. We will
take as fiducial β0;DESI ¼ 1.0; β0;Euclid ¼ 1.7; β1 ¼ 1.0, con-
sistent with recent results from simulations [59].
Figure 3 shows the percent differences in P̃gðk; z; μÞwith

respect to a fiducial scenario of inverted neutrino hierarchy
with

P
mν ¼ 100 meV, upon changing the hierarchy

(while fixing the total neutrino mass) and switching off
the GISDB. Other cosmological parameters are held fixed,
and the shaded regions represent the shot noises expected
from DESI and Euclid. This figure shows that the effect of
the neutrino hierarchies, as well as the GISDB, is at the

TABLE I. Forecasted number of ELGs measurable by DESI
and Hα emitters measurable by Euclid per redshift per deg2 at
each redshift bin z, taken from Refs. [39,40].

z 0.65 0.75 0.85 0.95 1.05 1.15 1.25

dNELG

dz ddeg2 [DESI]
309 2269 1923 2094 1441 1353 1337

dNHα

dz ddeg2 [Euclid]
2434 4365 4729 4826 4729 4508 4270

z 1.35 1.45 1.55 1.65 1.75 1.85 1.95

dNELG

dz ddeg2 [DESI]
523 466 329 126 0 0 0

dNHα

dz ddeg2 [Euclid]
3721 3104 2309 1514 1475 894 498
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0.5% level. However, while the hierarchies affect the ratio
differently at different scales, the GISDB acts as an overall
change in normalization at k≳ 10−3 h=Mpc.
We also account for the Alcock-Paczynski effect

[60–62], which concerns the cosmology dependence of
inferring distance from angular-and redshift-space mea-
surements, by multiplying the power spectrum and the shot
noise at each bin by HðzÞ=D2

AðzÞ, dividing by the same
quantity evaluated at our fiducial cosmology, as well as
writing the inferred k, μ with respect to the fiducial k, μ by
the relation

kðz; μfidÞ
kfid

¼
�
ð1 − μ2fidÞ

D2
A;fidðzÞ
D2

AðzÞ
þ μ2fid

H2ðzÞ
H2

fidðzÞ
�1=2

; ð13Þ

μðzÞ
μfid

¼
�
ð1 − μ2fidÞ

D2
A;fidðzÞ
D2

AðzÞ
H2

fidðzÞ
H2ðzÞ þ μ2fid

�−1=2
: ð14Þ

Additionally, we stop our analysis at kmaxðzÞ ¼
0.2 × ð1þ zÞ2=ð2þnsÞ hMpc−1, safely within the linear
regime.
We compute the log-likelihood as [63]

− logL ¼ 1

2

X
z

Z
dkfidk2fid

Z
dμfid

VfidðzÞ
2ð2πÞ2

×

2
64

HðzÞ
D2

AðzÞ
P̃gðk; z; μÞ − HfidðzÞ

D2
A;fidðzÞ

P̃g;fidðkfid; z; μfidÞ
HðzÞ
D2

AðzÞ
P̃gðk; z; μÞ þ HfidðzÞ

D2
A;fid

n−1g ðzÞ

3
75
2

:

ð15Þ
Additional parameters, such as those accounting for non-

Poissonian shot noise or theoretical error in this likelihood
function, can be considered for more detailed analyses, as
in, e.g., Ref. [64].

B. CMB data

We complement the LSS information from galaxy
surveys with mock CMB data from the upcoming CMB-
S4 experiment, implemented with MONTEPYTHON’s
LIKELIHOOD_MOCK_CMB. We model the CMB-S4 simply
as a single effective frequency channel, with temperature
noise ΔT¼1μKarcmin and polarization noise ΔP¼

ffiffiffi
2

p
ΔT .

We additionally assume a resolution of θFWHM ¼ 3 arcmin.

CMB data will not only help break the degeneracies
between cosmological parameters, but can also measure the
matter power spectrum directly through CMB lensing.
These data will, for instance, break the degeneracy between
the Hubble parameter and

P
mν. We perform iterative

delensing as in Refs. [65,66] to obtain the deflection field
with nearly optimal noise. Finally, we do not account for
modes below l ¼ 30 from CMB-S4, as it will be ground
based, and instead add a Gaussian prior on τreio with a width
of 0.01 to account for low-lCMB data. This width is
reflective of current Planck sensitivities [23] but
conservative in light of future measurements.

IV. RESULTS

In this section we perform Markov chain Monte Carlo
(MCMC) analyses on mock data for CMB-S4 added to
either DESI or Euclid galaxy power spectra, for cosmol-
ogies with massive neutrinos. We consider parameters
fωb;ωcdm; h; As; ns; τreio;

P
mνg as well as nuisance

parameters fβ0; β1; αk2; σfogg, and show our fiducial values
in Table II. We vary our model in three types of ways. First,
we attempt to distinguish between the normal, inverted, and
degenerate hierarchies. Second, we study if the recovered
parameters would be shifted if the GISDB was not
included, both with and without marginalizing over the
redshift-dependence uncertainty β1. Additionally, we omit
the τreio prior in one case with CMB-S4þ Euclid, to
investigate the importance of additional optical depth
information in the presence of the existing CMB lensing
and LSS shape information.
These different runs are designed to explore the set of

physical effects that will appear in upcoming measurements
of neutrino masses. A table of relevant reconstructed
parameters and associated best-fit log-likelihoods for
selected models is shown in Table III for runs with
Euclid data, and in Table IV for those with DESI. We
emphasize that in all cases our fiducial model corresponds
to the inverted hierarchy with its lightest neutrino taken as
massless, and thus represents a plausible model of nature;
shifts from the best-fit in other models can be seen as the
expected shift one would observe in a realistic analysis.
We find that with CMB-S4þ DESI data the total

neutrino mass is expected to be measured up to uncertainty
of 26 meV, while for CMB-S4+Euclid data that would be
improved to 20 meV. For

P
mν¼98meV this corresponds

TABLE II. Fiducial cosmology used in generation of mock data for MCMC analysis. Consistent cosmologies are used for DESI and
Euclid analyses except for β0, which is matched to simulation results.

Nuisance parameters

Cosmological parameters Euclid DESI

ωb ωcdm h As ns τreio
P

mν [meV] Hierarchy β0 β1 β0 α2 σfog [km=s]

2.226×10−2 0.1127 0.701 2.2321×10−9 0.967 0.0598 98.5 Inverted 1.7 1.0 1.0 1.0 250
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to a 4σ and 5σ detection, respectively, and the minimum-
mass scenarios of normal and inverted hierarchy (with
total masses 60 and 100 meV) can be distinguished at the
1.5σ and 2σ level. We note that neglecting the nuisance
parameter β1 results in an overtightening of

P
mν

resolution to an uncertainty of 15 meV. Finally, the
omission of a τreio prior results in a

P
mν uncertainty of

27 meV for the combined CMB-S4+Euclid data; equiv-
alently showing that these data are able to measure τreio
to the 10% level despite the lack of low-l information.
Conversely, we find that a stricter τreio prior of width
0.006 would tighten, e.g., CMB-S4þ DESI sensitivities
to 20 meV.

A. Differentiation of hierarchy

We first consider whether we can differentiate the neutrino
hierarchies, if they had the same

P
mν. In Fig. 4(c), we show

a corner plot comparing posteriors for the three hierarchies
(the two physical ones plus the degenerate one), where the
underlying fiducial cosmology is IH. Due to the physical
lower bounds for the total mass of neutrinos in the IH, the
posteriors for that case are notably one sided, and as a result

TABLE III. Comparison of reconstructed mean and error of cosmological and nuisance parameters as well as best-fit log-likelihoods
with respect to the fiducial for different models, with Euclid mock data. The fiducial for all these cases is the same and is given in
Table II, which is exactly recovered by the inverted model tabulated here. The Σmν posterior of this model (denoted by an asterisk), is
truncated by the prior at its minimum mass and thus is narrower than its normal and degenerate hierarchy counterparts.

Data Model Mean and error

LSS CMB Hierarchy Nuisance GISDB
−2Δ
logL

P
mν [meV] τreio β0 β1

Euclid CMB-S4
þτreio

Degenerate fβ0; β1g Yes 1.3 103.6�20.1 5.85×10−2�5.96×10−3 1.702�2.97×10−3 1.005�3.08×10−3
No 1.3 104.2�21.9 5.97×10−2�6.47×10−3 1.704�3.14×10−3 1.003�3.24×10−3

fβ0g Yes 1.5 102.8�16.5 5.93×10−2�5.1236×10−3 1.699�2.71×10−3 -
No 1.9 114.5�15.6 6.25×10−2�4.96×10−3 1.707�2.59×10−3 -

Inverted fβ0;β1g Yes 0.0 113.0þ9.06�
−0.72 6.30×10−02�3.34×10−03 1.700�3.07×10−03 9.99×10−1�2.64×10−3

Normal fβ0;β1g Yes 0.9 98.90�21.3 5.89×10−2�6.18×10−3 1.701�3.13×10−3 1.00�3.09×10−3

CMB-S4 Degenerate fβ0;β1g Yes 1.3 102.9�27.5 5.95×10−2�8.29×10−3 1.699�3.31×10−3 1.001�2.94×10−3

FIG. 3. Percent differences in galaxy power spectra P̃gðk; z; μÞ
between the various neutrino hierarchies (at fixed

P
mν ¼

100 meV), as well as with and without the GISDB, compared
to a fiducial case of inverted hierarchy with GISDB, at z ¼ 0.75.
The shot noises associated with DESI and Euclid are shown as the
shaded areas. Here the cosmological parameters fωb;ωcdm;
h; As; ns;

P
mνg as well as all bias and RSD nuisance parameters

are held fixed.

TABLE IV. Similar to Table III, with DESI used as LSS data. The fiducial for all these cases is the same and given in Table II. Note that
as before, the Σmν posterior of the inverted model (denoted by an asterisk) is prior informed and thus narrower than those of other
hierarchies. In addition, the cases with Planck CMB data (denoted by a dagger) are reported as Fisher forecasts only, without an MCMC
analysis.

Data Model Mean and error

LSS CMB Hierarchy Nuisance GISDB −2Δ logL
P

mν [meV] τreio β0

DESI CMB-S4þ τreio Degenerate fβ0g Yes 0.9 107.6� 26.7 5.99 × 10−2 � 7.20 × 10−3 1.000� 1.70 × 10−3
No 1.1 112.0� 26.1 6.07 × 10−2 � 6.93 × 10−3 1.003� 1.73 × 10−3

Inverted fβ0g Yes 0.0 107.2þ15.2�
−0.42 6.16 × 10−2 � 3.84 × 10−3 1.001� 1.63 × 10−3

Normal fβ0g Yes 1.0 99.7� 28.6 5.89 × 10−2 � 6.52 × 10−3 1.000� 1.68 × 10−3

Planck† Degenerate fβ0g Yes … �27.44 �8.99 × 10−3 �7.62 × 10−3
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themeanvalue ofmost cosmological parameters for the other
two hierarchies are shifted relative to the inverted one. This is
because all cosmological parameters other than ωb exhibit
significant degeneracy with

P
mν. However, as Table III

shows, these near-future surveys show at most a 1σ prefer-
ence for the fiducial choice of hierarchy, as far as best-fit
likelihoods are concerned. This agrees with the recent
Bayesian analysis done in Ref. [32].

B. Effect of GISDB

We then look more in detail into the runs with and
without the GISDB. In this case the effects are twofold: a
scale-dependent step that counteracts the scale-dependent
suppression induced by neutrinos, and a redshift-dependent
amplitude of the step that enhances the redshift-dependence
induced by neutrinos at the smallest scales. Omission of the
GISDB in the analysis is then expected to underpredict

(a) (b)

(c) (d)

FIG. 4. MCMC Posteriors for h, τreio, and
P

mν for CMB-S4 and various LSS experiments. For each, the fiducial cosmology has an
Inverted hierarchy in the minimum-mass configuration, with total neutrino mass 98 meV.
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P
mν if the former effect is dominant, and overpredict if

the latter effect is. However, the former effect is largely
rendered insignificant due to cosmic variance—the scale-
dependence of the bias plateaus at scales smaller than
Oð10−2 hMpc−1Þ, which is the regime with strongest
statistical power. Thus, it is the latter small-scale, red-
shift-dependent effect that becomes relevant.
The most evident effect of neglecting this growth-

induced step is a misreconstruction of the normalization

bias, resulting in a shift towards larger b̄LðzÞ, and in turn the
incorrect values of β0 and its redshift dependence β1, as
seen in Fig. 5. If the nuisance parameter β1 was not
marginalized over, this would further result in a significant
shift of reconstructed cosmological parameters such as
As; h, and τreio, notably overestimating the total neutrino
mass by≳1σ, as expected. This effect is shown in Fig. 4(a),
where we show the ellipses with and without the GISDB,
although as opposed to Fig. 5 we did not marginalize over

FIG. 5. Posteriors for CMB-S4þ Euclid with a prior on τreio with a width of 0.01, assuming degenerate hierarchy with and without
GISDB, and assuming the IH with total neutrino mass 98 meV as fiducial.
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β1. As the DESI bias prescription does not include a degree
of freedom to vary the redshift dependence, neglecting the
GISDB induces a shift in the aforementioned cosmological
parameters, albeit at the sub-σ level, due to the smaller
signal-to-noise. We illustrate this point in Fig. 4(b). We
note that the same shifts can be recovered using a simpler
Fisher-matrix formalism, as we show in our companion
paper [43].
In general, we expect the DESI and Euclid prescriptions

for analysis of real data, when collected, to be more
sophisticated than those presented in the science books.
Nonetheless, this is additional reason for the analyses of
upcoming, e.g., DESI data to marginalize over the redshift
dependence of the bias, or parametrize the bias at each
redshift bin independently, to avoid cosmological-parameter
shifts due to the neutrino GISDB. Note, however, that even
when marginalizing over β1 there is a leftover shift on the
scale-independent bias β0, as seen in Fig. 5. The value of this
parameter affects other observations, such as galaxy high-
order functions and cross correlations with other data sets, so
if one requires an unbiased estimate of β0 the full GISDB
ought to be accounted for.

V. CONCLUSIONS

In this work we presented forecasts on the ability of
current and upcoming CMB and LSS experiments to
measure neutrino masses, both in total and individually.
We included all known linear effects induced by neutrinos
in the treatment of galaxy survey data, specifically assess-
ing the impact of the scale-dependent bias induced by the
effect of neutrinos in the growth function. We also inves-
tigated the effect and detectability of realistic neutrino
hierarchies in the analysis of these survey data.
Starting with the different neutrino hierarchies, we have

shown that, for the data considered, the total neutrino mass
is determined up to an uncertainty of σ

P
mν ∼ 20 meV at

a fiducial of
P

mν ¼ 98 meV, the minimum-mass scenario

of the inverted hierarchy. While this is a 5σ detection away
from 0, the minimum-mass scenario of the normal hier-
archy (

P
mν ¼ 60 meV) is excluded only at the 2σ level.

Furthermore, for a fixed total neutrino mass of 98 meV, a
different choice of hierarchy constitutes a difference of
∼0.3% in the power spectrum amplitude, and we show that
this is expected to result in a 1σ shift in inferred cosmo-
logical parameters. As such, more advanced surveys are
necessary to definitively distinguish between the two
hierarchies, particularly in the case that the total neutrino
mass is the same.
As for the GISDB, we find that, while cosmic variance

limitations render the data insensitive to the scale-dependent
shape of the halo bias for allowable neutrino masses,
upcoming surveys are expected to be highly sensitive to
the redshift dependence of theGISDBat small scales. In joint
analyses of CMB-S4 data with large-scale surveys such as
DESI or Euclid, not including this GISDB step can result in a
Oð1σÞ overprediction of total neutrino masses, as well as
similarly shifted reconstructions for degenerate parameters
such as h and τreio. If one marginalizes over the redshift
dependence of the bias, these shifts can be removed, although
the resulting analysis will retain a Oð1σÞ shift in the
magnitude and redshift dependence of the Eulerian bias of
the relevant tracers. Thus it is imperative to include these
effects in order to accurately recover galaxy and cosmology
parameters simultaneously, or otherwise marginalize over
bias redshift dependence if the latter is prioritized.
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