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General relativistic, axisymmetric flow of low angular momentum accretion around a Kerr black hole
can assume certain geometric configurations where the flow is maintained in hydrostatic equilibrium along
the vertical direction (the direction orthogonal to the equatorial plane of the flow). The flow thickness for
such accretion models becomes a function of the local radial distance measured from the black hole
horizon. There are three types of functions defined in the literature which resemble the thickness of the flow
for such a configuration. We formulate the equations governing the steady state astrophysical accretion
characterized by both the polytropic as well as the isothermal equation of state in classical thermodynamics.
We solve the equations within the framework of such geometric configuration for three different thickness
functions to obtain the multitransonic, shocked, stationary integral accretion solutions. Such solutions
enable us to study how flow thickness influences the dependence of the properties of postshock flows on
black hole spin angular momentum, i.e., the Kerr parameter. For temperature-preserving standing shocks,
we find that the postshock part of the disc can become luminous, and a considerable amount of gravitational
energy carried by the accreting fluid gets liberated at the shock. We find which kind of thickness function
produces the maximum liberated energy, making the disc most luminous.
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I. INTRODUCTION

Axially symmetric, low angular momentum accretion of
hydrodynamic fluid onto astrophysical black holes may
exhibit multitransonic features, and such multitransonic
accretion flow is endowed with a stationary shock. Such
low angular momentum, practically inviscid flow may be
observed in realistic astrophysical systems like detached
binaries fed by accretion from stellar winds ejected by OB-
type stars [1,2], semidetached low-mass nonmagnetic
binary systems [3] and supermassive black holes fed by
accretion from weakly rotating central stellar clusters ([4,5]
and references therein). For a standard Keplerian accretion
flow, various physical processes like turbulence produce
practically inviscid low angular momentum flow (see e.g.,
[6] and references therein). Several recent works on
accretion onto our Galactic Center black hole indicates
the presence of such flow as well [7–17].
The multitransonic features and the formation of the

corresponding standing shock have been studied extensively

by several authors in the last forty years. Such efforts were
initiated for black hole accretion under the influence of the
post-Newtonian, pseudo-Schwarzschild and pseudo-Kerr
potentials [9,18–40]. Eventually, shocked multitransonic
flows were studied for general relativistic accretion flows as
well [41–63], where the work by Fukue [20,64] may be
attributed to the first ever paper published in the field of
study ofmultitransonic shocked accretion flow.Of late, such
shocked flows have been studied for magnetohydrodynamic
black hole accretion and relativistic flows in other space-
times [65–70].
Geometrical configuration of axisymmetrically accreting

fluid can assume three different forms, see e.g., Sec. 4 of
[71], for detailed discussions on such configurations. Also
see [31,59] and references therein. In the present work, we
concentrate on axially symmetric flows under hydrostatic
equilibrium in the vertical direction, where the gravitational
force on the accreting fluid is balanced against the fluid
pressure force. These commonly used disc models, how-
ever, possess certain limitations, and there are certain
proposals available in the literature to calculate a more
realistic expression for the disc thickness, e.g., [72–76].
We, nevertheless, stick to the disc structure maintained in
hydrostatic equilibrium along vertical directions, since
dealing with the aforementioned alternate disc models is
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mathematically very difficult, if not impossible, while
obtaining the stationary integral flow solutions from the
general relativistic Euler and the continuity equations
through a noncomputational analytical approach.
The first ever detailed calculation of the flow structure

for general relativistic accretion onto rotating black holes
was obtained by Novikov and Thorne (hereafter NT). They
provided a particular expression of the disc thickness for
flow in hydrostatic equilibrium along the vertical direc-
tion [77].
Such an expression was slightly modified by Riffert and

Herold (hereafter RH) [78] since the later work directly
used the general relativistic Euler equation to derive the
gravity-pressure balance equation, whereas in the first work
the general relativistic version of the gravity-pressure
balance equation was not directly derived. NT took the
Newtonian gravity-pressure balance equation and replaced
the vertical component of gravity-pressure balance
with Rz

0z0z.
In recent years, Abramowicz, Lanza and Percival

(hereafter ALP) [79] have provided a novel expression
for disc thickness. In their calculations, ALP also derived
the same gravity-pressure balance equation from the gen-
eral relativistic equation. While simplifying the equation,
they replaced the four-velocity component in such a way
that no singularity in the disc height occurs at horizon. The
main modification, apart from this careful choice of four-
velocity, is that ALP used only one component of the
relativistic Euler equation whereas RH did not assume
trivial forms of four-velocities and solved two equations
simultaneously for two components of the relativistic Euler
equation.
In our present work, we will formulate and solve the

general relativistic Euler and the continuity equations to
observe how the aforementioned three different prescrip-
tions for flow thickness influence the properties of the
stationary integral flow solutions having more than one
sonic transition and incorporating standing shock.
Accretion flow governed by the polytropic as well as the
isothermal equation of state will be studied.
We shall learn that for shock formation in isothermal

flow, considerable amounts of energy may be released at
the shock, which may enhance the brightness of the
otherwise advection-dominated radiatively inefficient flow
near the shock, and such a mechanism may explain the
details of the flares emanating out of the black hole
accretion disc as observed in various wavebands of the
electromagnetic spectrum [80–83]. Our work, thus, sheds
light on how a proposed flow thickness may contribute to
understanding the variation of the disc luminosity during
the generation of flares.
It is, however, to be understood that a complete descrip-

tion of the accreting black hole system requires the study of
general relativistic magnetohydrodynamic flow under the
influence of strong gravity. Such a system is difficult to

study, even using large scale numerical simulations.
Our humble approach, which involves a semianalytical
study of the relativistic hydrodynamic flow of ideal fluid,
attempts to capture certain essential features of the flares
emanating out of our Galactic Center or from a similar
setup where low angular momentum, practically inviscid
accretion may be conceived. Our present work, thus,
concentrates on the purely astrophysical aspects of the
accretion phenomenon.
Nevertheless, our calculations may also find use in

studying an accreting black hole system in a completely
different context. It has been observed that a curved
acoustic metric may be embedded within the accreting
matter and such space-time may be generated through the
perturbation of accretion flow [84–91]. The present work
will also lead to the understanding of how the flow
thickness of axially symmetric accretion in the Kerr metric
may influence the properties of the analog surface gravity
of the corresponding sonic space-time. It is, however, to be
noted that analysis of such analog properties is beyond the
scope of the present manuscript. Work is in progress along
that direction and will be presented elsewhere [92].
Overall, the technical procedures followed to accomplish

our goal are summarized below.
For three expressions of the flow thickness as classified

in previous paragraphs, we shall formulate and solve the
general relativistic Euler equation and the equation of
continuity for relativistic ideal fluid, by assuming that
the viscous transport of angular momentum may not play a
significant role for low angular momentum advective
accretion flow. We shall then solve such equations for
the steady state flows and obtain stationary integral flow
solutions which may make transitions from subsonic to
supersonic state twice. We then introduce and discuss the
mathematical conditions governing the formation of gen-
eral relativistic standing shock, and solve such equations to
obtain the shock location as a function of black hole spin
angular momentum, i.e., the Kerr parameter. The properties
of hotter, denser and shock-compressed postshock flow is
then studied as the function of the Kerr parameter and the
influence of the expression to the flow thickness on such
properties is then realized.

II. FLOW MODEL

A. Background space-time

We represent the physical space-time of an uncharged,
rotating black hole along its equatorial plane using the Kerr
metric written in cylindrical Boyer-Lindquist coordinates
[93]. The choice of coordinates is in accordance with
cylindrical symmetry of the discs. Also for simplicity, we
are interested in projection of the flow variables on the
equatorial plane, obtained using vertical averaging tech-
nique as explained in subsequent sections. The line element
for such a metric is given by
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ds2 ¼ −
r2Δ
A

dt2 þ A
r2
ðdϕ − ωdtÞ2 þ r2

Δ
dr2 þ dz2; ð1Þ

where

Δ¼ r2−2rþa2; A¼ r2þr2a2þ2ra2; ω¼2ar
A

: ð2Þ

ω represents the rate of frame dragging by the black hole,
a being the Kerr parameter which in turn is related to the
spin angular momentum J of the black hole through the
relation a ¼ J=MBHc, where −1 < a < 1,MBH is the mass
of the respective black hole and c is the velocity of light in
vacuum. Calculations have been carried out using natural
units, i.e., for G ¼ c ¼ 1, where G is the universal
gravitational constant. All masses are measured in units
of MBH which has been set to 1 for algebraic convenience,
and can be easily substituted back using simple dimen-
sional analysis. Distances are measured in units of
GMBH=c2, times are measured in units of GMBH=c3 and
all velocities are scaled in units of c. For a Kerr black hole,
the horizon is located at the outer boundary of
grr ¼ Δ=r2 ¼ 0, which is defined as rþ and the expression
of which is given by

rþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
: ð3Þ

B. Choice of disc height

Weconsider the accretion disc around aKerr black hole in
hydrostatic equilibrium along vertical direction, i.e., the
gravitational force component is balanced by the pressure of
the fluid constituting the disc. The earliest general relativ-
istic formulation of this gravity-pressure balance and thus a
vertically averaged height prescription was proposed by
Novikov and Thorne (NT) [77], and is given by

HNTðrÞ¼
�
p
ρ

�1
2r3þa2rþ2a2

r
3
2þa

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6−3r5þ2ar

9
2

ðr2−2rþa2Þðr4þ4a2r2−4a2rþ3a4Þ

s
; ð4Þ

where p and ρ are pressure and rest-mass energy density of
the fluid, respectively. It is to be noted that accretion flow
described by the above disc thickness can not be extended up
to rþ. The flow will be truncated at a truncation radius rT ,
which is given by the solution of the equation

ðrTÞ12ðrT − 3Þ ¼ 2a; ð5Þ

and is greater than rþ. In reality, of course, the flowwill exist
up to rþ, but stationary integral flow solutions can not be
formulated in the vicinity of rþ for NT-type of discs, because
the disc height cannot be defined for r < rT.

The next prescription found in literature dealing
with gravity-pressure balance and proposing a height recipe
in the Kerr metric was by Riffert and Herold (RH) [78].
They modified the gravity-pressure balance condition of
the treatment done in NT. Their proposed disc height is
given by

HRHðrÞ ¼
�
p
ρ

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5 − 3r4 þ 2ar

7
2

r2 − 4ar
1
2 þ 3ar2

s
: ð6Þ

Here also, the flow can only be extended inwardly up to
rT , which has the same value for NT, and for RH discs
around the same black hole as given by Eq. (5).
Thus we see that both of the disc heights can be

expressed in the form by HðrÞ ¼ ðpρÞ
1
2fðr; aÞ. The differ-

ence between these two models of disc thickness in vertical
equilibrium is reflected by the difference in functional form
of two different fðr; aÞ. The essential difference arises
because whereas NT balanced the vertical component of
pressure with a particular Riemann tensor Rz

0z0, which was
equivalent to the vertical component of gravitational
acceleration, RH derived the gravity-pressure balance
equation by simultaneously solving two orthogonal pro-
jection components of the general relativistic Euler equa-
tion. Wewill observe that the Mach number evaluated at the
critical points corresponding to the flow described by the
thickness function proposed by NT will be identical with
that of the flow described by the thickness functions
proposed by RH. This is evident because the dynamical
equation will have the same form in terms of fðr; aÞ,
because the height prescription also has a similar form.
Abramowicz, Lanza and Percival (ALP) [79] introduced

an expression for the disc thickness, given by

HALPðrÞ ¼
�
p
ρ

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4

v2ϕ − a2ðvt − 1Þ

s
: ð7Þ

Here, vμ denotes the four-velocity of the fluid in an
azimuthally-boosted frame that corotates with the flow. vϕ
and vt are the azimuthal and temporal components of the
covariant four-velocity, respectively, which are related by
λ ¼ −vϕ=vt, where λ is the specific angular momentum of
the flow and vt is given by [94]

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
Bð1 − u2Þ

s
; ð8Þ

where B ¼ gϕϕ þ 2λgtϕ − λ2gtt and u denotes advective
velocity which is the three-component velocity in the
corotating frame [95]. As mentioned earlier, no singular-
ities in ALP-type disc heights occur at the horizon. Thus,
ALP discs do not have any truncation constraints and the
steady state accretion solutions can be obtained up to rþ.

INFLUENCE OF FLOW THICKNESS ON GENERAL … PHYS. REV. D 103, 023023 (2021)

023023-3



III. POLYTROPIC ACCRETION

A. Fluid equations

1. Fluid specification and sound speed

As specified earlier, we consider a low angular momen-
tum accretion disc. The low angular momentum does not
require the inward part of the disc to transfer momentum to
the outside region through viscosity. Thus we consider a
perfect fluid as the constituent of the accretion disc. The
energy momentum tensor for a perfect fluid is given by

Tμν ¼ ðpþ ϵÞvμvν þ pgμν; ð9Þ

where ϵ is the total energy density of the fluid given by
ϵ ¼ ρþ ϵthermal, and where ϵthermal is the internal thermal
energy density of the fluid.
The equation of state for adiabatic flow is given by p ¼

kργ where γ is the adiabatic index and k is a constant.
Whereas for the isothermal case p ∝ ρ, the sound speed for
adiabatic flow (isoentropic flow) is given by

c2s ¼
∂p
∂ϵ

����
entropy

¼ ρ

h
∂h
∂ρ ; ð10Þ

where h is the enthalpy given by

h ¼ pþ ε

ρ
: ð11Þ

2. Conservation of specific energy

The energy-momentum conservation equation can be
written as

DμTμν ¼ 0; ð12Þ
where Dμ is the covariant derivative operator with respect
to μ. Equation (12), in turn, can be written using the
definition of sound speed as

ðpþ ϵÞvμDμvν þ ðvμvν þ gμνÞ∂μp ¼ 0: ð13Þ

Now the thermodynamic equation of motion is given by

T∂μs ¼ ∂μh −
∂μp

ρ
; ð14Þ

where s is the specific entropy. In case of polytropic
accretion, the right-hand side of Eq. (14) is zero and
Eq. (13) can be rewritten using normalization of four-
velocity, which yields

uν½DνðhuμÞ −DμðhuνÞ� ¼ 0: ð15Þ

Using the time component of the equation and the fact
that the flow is stationary, the conserved quantity from the

energy-momentum conservation equation in case of poly-
tropic accretion turns out to be

E ¼ hvt ¼ constant: ð16Þ

Substituting for vt from Eq. (8) and h from Eq. (11) we
obtain

E ¼ γ − 1

γ − 1 − c2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

Bð1 − u2Þ

s
: ð17Þ

Taking logarithmic derivative of both sides of Eq. (17)
gives the gradient of adiabatic sound speed as

dcs
dr

¼ −
γ − 1 − c2s

2cs

�
u

1 − u2
du
dr

þ 1

2

�
Δ0

Δ
−
B0

B

��
: ð18Þ

3. Conservation of mass

The mass conservation equation is given by

DμðρvμÞ ¼ 0: ð19Þ

A vertical averaging is done for convenience by inte-
grating the flow equations over the z coordinate and the
resultant equation is described by the flow variables defined
on the equatorial plane (z ¼ 0). Furthermore, integration is
done over ϕ which gives a factor of 2π due to the axial
symmetry of the flow. We apply such vertical averaging as
prescribed in [77,94,96] to the continuity equation given by
Eq. (19). The vertically averaged z-component of the four-
velocity becomes vz ∼ 0. Thus for the stationary (t-inde-
pendent) and axially symmetric (ϕ-independent) flow, the
continuity equation turns out to be

∂
∂r ð4πHθ

ffiffiffiffiffiffi
−g

p
ρvrÞ ¼ 0: ð20Þ

Hθ arises due to the vertical averaging and is defined as
the local angular scale of flow. One can relate the actual
local flow thickness HðrÞ to the angular scale of the flow
Hθ asHθ ¼ HðrÞ=r, where r is the radial distance along the
equatorial plane from the center of the disc. g is the value of
the determinant of the metric gμν on the equatorial plane,
g ¼ detðgμνÞjz¼0 ¼ −r4. Equation (20) gives the mass
accretion rate _M as

_M ¼ 4π
ffiffiffiffiffiffi
−g

p
Hθρvr ¼ 4πHðrÞrρvr: ð21Þ

The r component of the four-velocity, vr is related to u
by the transformation law as

vr ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð1 − u2Þ

p ¼
ffiffiffiffi
Δ

p
u

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ; ð22Þ
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using grr ¼ r2=Δ. _M can be written as

_M ¼ 4πHðrÞΔ1=2ρ
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ¼ constant: ð23Þ

For adiabatic flow, a new quantity _Ξ is obtained from _M

by multiplying it with ðγkÞ 1
γ−1. _Ξ is a measure of the entropy

accretion rate and is typically called the entropy accretion
rate. The concept of the entropy accretion rate is widely
used in accretion astrophysics. The entropy accretion rate
was first defined in the literature by Blaes [23]. Expressing
ρ in terms of γ, k and cs gives

_Ξ¼
�ðγ−1Þc2s
γ−1−c2s

� 1
γ−1
4πHðrÞΔ1=2 uffiffiffiffiffiffiffiffiffiffiffiffi

1−u2
p ¼ constant: ð24Þ

To express the entropy density in terms of u, cs and r
only, the expression of height must be written in terms of u
and cs also. For this we first note that, for adiabatic
equation of state, p=ρ can be written as

p
ρ
¼

�
1

γ

�� ðγ − 1Þc2s
γ − 1 − c2s

�
: ð25Þ

This factor is common to all of the height prescriptions.
For convenience, we distinguish the height factors in two
classes: one consisting of the NT and RH models, and the
other with the ALPmodel as its member. The reason behind
this classification is that whereas the models in the first
category can be written in generally as HðrÞ ¼ ðpρÞ

1
2fðr; aÞ,

the model in the other category cannot be written as such.
Thus we proceed separately for these two categories and
derive the desired velocity gradients.
NT and RH-type of discs.— For these two models, we

can write HðrÞ from Eq. (4) and Eq. (6) as

HðrÞ ¼
�
1

γ

�
1=2

� ðγ − 1Þc2s
γ − 1 − c2s

�
1=2

fðr; aÞ; ð26Þ

where for NT

fNTðr;aÞ¼
r3þa2rþ2a2

r
3
2þa

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6−3r5þ2ar

9
2

ðr2−2rþa2Þðr4þ4a2r2−4a2rþ3a4Þ

s
;

ð27Þ
and for RH

fRHðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5 − 3r4 þ 2ar

7
2

r2 − 4ar
1
2 þ 3ar2

s
: ð28Þ

Using the expression of HðrÞ for both these models, _Ξ
can be written as

_Ξ ¼
ffiffiffi
1

γ

s � ðγ − 1Þc2s
γ − 1 − c2s

� γþ1

2ðγ−1Þ
4πΔ1=2 uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p fðr; aÞ: ð29Þ

Taking the logarithmic derivative of both sides of the
above equation and substituting dcs=dr using Eq. (18)
gives

du
dr

¼
uð1 − u2Þ½ 2

γþ1
c2sðΔ0

2Δ þ f0
fÞ þ 1

2
ðB0
B − Δ0

ΔÞ�
u2 − c2s

ðγþ1
2
Þ

¼ N
D
: ð30Þ

ALP-type of discs.— From Eq. (7) and using the relation
λ ¼ − vϕ

vt
, we have

HðrÞ¼HALPðrÞ

¼
�
1

γ

�
1=2

�ðγ−1Þc2s0
γ−1−c2s0

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4

λ2v2t −a2ðvt−1Þ

s
: ð31Þ

Thus using this expression ofHðrÞ, the entropy accretion
rate ( _Ξ) can be obtained as

_Ξ ¼
ffiffiffi
1

γ

s � ðγ − 1Þc2s
γ − 1 − c2s

� γþ1

2ðγ−1Þ
4πΔ1=2 uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4

λ2v2t − a2ðvt − 1Þ

s
: ð32Þ

Taking the logarithmic derivative of Eq. (32), we obtain

ðγ þ 1Þ
ðγ − 1 − c2sÞcs

dcs
dr

¼ Pvtð2λ2vt − a2Þ
4F

−
Δ0

2Δ
−
2

r
−
du
dr

1

uð1 − u2Þ

×

�
1 −

u2vtð2λ2vt − a2Þ
2F

�
; ð33Þ

where P ¼ Δ0
Δ − B0

B and F ¼ λ2v2t − a2ðvt − 1Þ. Solving for
dcs
dr from Eq. (33) and equating with Eq. (18), we yield

du
dr

¼
2c2s
γþ1

ð− Pvtð2λ2vt−a2Þ
4F þ Δ0

2Δ þ 2
rÞ − P

2

u
1−u2 −

2c2s
γþ1

1
ð1−u2Þu ð1 −

u2vtð2λ2vt−a2Þ
2F Þ

¼ N
D
: ð34Þ

B. Critical point conditions

In this section, we will present the scheme and calcu-
lations for finding the stationary transonic flow solutions
for all three flow thicknesses considered in this work. We
present NTand RH discs in the first category and ALP discs
in the second category for reasons stated earlier.
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1. NT and RH-type of discs

Borrowing a standard procedure from dynamical sys-
tems theory [97–99], we set the numerator and denominator
of du=dr to zero separately in order to obtain the necessary
conditions to be satisfied at the critical points of the system.
Setting D ¼ 0 we get

u2jc ¼ c2s jc=
�
γ þ 1

2

�
; ð35Þ

where the suffix c denotes its value evaluated at the critical
point. By setting N ¼ 0, we yield

c2s jc ¼
�
γ þ 1

4

� B0
B − Δ0

Δ

ðΔ0
2Δ þ f0

f Þ
: ð36Þ

In order to solve for the critical points, the critical point
condition (35) is used in (17), which gives

E ¼ γ − 1

γ − 1 − ðc2sÞc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ þ 1ÞΔc

Bcðγ þ 1 − 2ðc2sÞcÞ

s
; ð37Þ

where ðc2sÞc is a function of r (evaluated at the critical point
rc) and the Kerr parameter a obtained from (36). The
solutions of this equation for a given set of system
parameters ½E; λ; γ; a� provide the critical points. The
number of such critical points may be more than one,
depending on the parameter values.
The value of du

dr at the critical point is obtained by using
l’Hôspital’s rule in (30) as both the numerator and
denominator tends to zero at the critical point. One obtains
a quadratic equation for ðdudrÞc of the form

α1

�
du
dr

�
2

c
− α2

�
du
dr

�
c
− α3 ¼ 0; ð38Þ

where

α1 ¼ 2ðuÞc
�
1 −

ððc2sÞc − γ − 1Þ
ðγ þ 1Þð1 − ðu2ÞcÞ

�
; ð39Þ

α2¼
ððc2sÞc−γ−1Þ

ðγþ1Þ
�
Δ0

Δ
−
B0

B
þ
�
Δ0

Δ
þ2f0NT

fNT

�
ðu2Þc

�

þ
�

2

γþ1
ðc2Þc

�
Δ0

2Δ
þf0NT
fNT

�
þ1

2

�
B0

B
−
Δ0

Δ

��
ð1−3ðu2ÞcÞ;

ð40Þ

α3 ¼ ðuÞcð1 − ðu2ÞcÞ
�
1

2

α0

α

2

−
α00

2α

þ 2ðc2sÞc
γ þ 1

�
Δ00

2Δ
þ f00

f
−
1

2

Δ0

Δ

2

−
f0

f

2
�

þ ððc2sÞc − γ − 1Þ
ðγ þ 1Þ

�
Δ0

2Δ
þ f0

f

��
Δ0

Δ
−
B0

B

��
: ð41Þ

The two roots of the quadratic equation (38) signify two
different slopes of two different integral solutions passing
through each critical point, while such slopes are measured
at the respective critical points only.
Once we are equipped with the values of the critical

points and the critical gradients, the phase portrait (i.e., the
u vs r diagram) can be plotted by numerically integrating
the expression of du=dr [Eq. (30)] for a particular set of
½E; λ; γ; a�, as will be illustrated in the subsequent sections.
Here we substitute the value of c2s from Eq. (24) as a
function of parameters E, r and u. While addressing
transonicity-related aspects of the flow, it is usually
convenient to use the Mach number (M ¼ u=cs) instead
of the advective flow velocity u.

2. ALP-type of discs

By setting N ¼ 0 and D ¼ 0, the critical conditions turn
out to be

u2jrc ¼
P

Δ0
Δ þ 4

r

����
rc

; ð42Þ

and

c2s jrc ¼
ðγ þ 1Þð2Fu2Þ

2ð2F − u2vtð2λ2vt − a2ÞÞ
����
rc

: ð43Þ

To find the critical point we use the critical condition
(43) in Eq. (17) and then solve the equation.
As observed from Eqs. (35), (42) and (43), the value of

the Mach number at the critical point differs from unity for
all three disc models considered in the present work. Hence
the critical points do not coincide with the sonic points (by
definition the sonic point is the location where the Mach
number becomes unity). The value of the Mach number at
critical points are found to be less than unity for all three
types of disc thicknesses. For NT and RH kind of flow, the

Mach number at the critical point is a constant ð
ffiffiffiffiffiffi
2

γþ1

q
Þ for a

fixed value of γ. The departure of the value of the Mach
number from unity has the same numerical value for all
three critical points and hence three critical points lie on the
same horizontal line parallel to the abscissa. For isothermal
accretion, the value of the adiabatic index γ will be one, and
hence for isothermal flow the critical and the sonic points
will be the same for NT as well as for RH-type of flow.
For ALP-type of disc, however, the amount of departure

of Mach number (measured at the critical points) from unity
is not constant. It rather depends on the value of the critical
point itself, and thus on ½E; λ; γ; a�. Thus for ALP-type of
disc, three different critical points for multicritical accretion
will assume three different values of the Mach number, and
three critical points will not lie of the same horizontal line
for such a disc model. For ALP-type of disc, even for the
isothermal flow, theMach number does not become unity at
the critical point.
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Given a set of values of ½E; λ; γ; a�, one obtains the
location of the critical point through the critical point
analysis, and it is not required to integrate the fluid
equations (the Euler equation or the equation of continuity).
Among three critical points, the middle one is of center-
type and hence no physical accretion solution can pass
through it. Accretion solution can pass through the inner
and the outer critical points only. Hence, one can have the
sonic points corresponding to these two critical points,
since both the innermost and the outermost critical points
are of saddle-type. One thus computes the location of
the critical point algebraically as discussed in Secs. III.B.1
and III.B.2, and then integrates the flow equations, starting
from the critical point, up to the value of r where the value
of the Mach number becomes unity. That point is defined as
the sonic point. We thus need to construct the integral
accretion solution to find out the location of the sonic
points corresponding to the inner-type and the outer-type
critical points.
By following the same procedure as used to derive the

slopes of trajectories through critical points, we find

du
dr

����
rc

¼ −
βVE
2αVE

� 1

2αVE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2VE − 4αVEΓVE

q
; ð44Þ

where the coefficients αVE, βVE and ΓVE are given by
αVE¼ 1þu2

ð1−u2Þ2−
2nD2D6

2nþ1
, βVE¼2nD2D7

2nþ1
þτ4, ΓVE¼−τ3, n ¼ 1

γ−1,

D2 ¼ c2s
uð1−u2Þ ð1 −D3Þ, D6¼ 3u2−1

uð1−u2Þ−
D5

1−D3
− ð1−nc2sÞu

nc2sð1−u2Þ, D7 ¼
1−nc2s
nc2s

P1
2
þ D3D4vtP1

2ð1−D3Þ , τ3 ¼ 2n
2nþ1

ðc2sτ2 − vtP1v1
2nvt

ð1 − nc2sÞ−
c2sv5vt

P1
2
Þ − P10

2
, τ4 ¼ 2n

2nþ1
vtu
1−u2 ð v1nvt

ð1 − nc2sÞ þ c2sv5Þ,
v1 ¼ Δ0

2Δ þ 2
r − ð2λ2vt − a2Þvt P14F, D3 ¼ u2vtð2λ2vt−a2Þ

2F , D4 ¼
1
vt
þ 2λ2

2λ2vt−a2
− 2λ2vt−a2

F , D5 ¼ D3ð2u þ D4vtu
1−u2 Þ, τ2¼τ1−

vtð2λ2vt−a2Þ
4F P10, v5¼ð2λ2vt−a2ÞP14Fv4, τ1¼ 1

2
ðΔ00
Δ − ðΔ0Þ2

Δ2 Þ− 2
r2,

v4 ¼ v3
ð2λ2vt−a2ÞF, v3 ¼ ð4λ2vt − a2ÞF − ð2λ2vt − a2Þ2vt.

C. Parameter space

Having presented the complete scheme of drawing the
phase portrait numerically, we focus our attention to the
analysis of the parameter space of the system. E is scaled by
rest-mass energy, which includes both rest-mass energy and
thermal energy components. Setting E ¼ 1 corresponds to
an initial state where no thermal energy is present.
Furthermore, setting E < 1 corresponds to initial condi-
tions with negative energy. In this case, a dissipative
mechanism is needed to extract energy from the flow so
that a flow solution is obtained with positive energy. For
our system of inviscid flow, this is not possible, and we
consider flows with E > 1 only. All values of E greater than
2, although possible, correspond to extremely high initial
thermal energy. Since this is not a common feature of

accreting black hole systems, it is customary to restrict the
system within the parameter range 1 < E < 2.
λ ¼ 0 implies a spherically symmetric flow, where λ > 4

(in G ¼ MBH ¼ c ¼ 1 scaling) implies that the flow is not
anymore in the Keplerian regime. In this region, multi-
critical solutions do not generally occur. Thus we restrict
ourselves to the parameter range of 0 < λ < 4.
In isothermal fluids, adiabatic index γ ¼ 1. γ > 2 cor-

responds to extremely dense fluids where comparatively
large magnetic fields with direction dependence, i.e.,
anisotropic pressure are present. As we are not considering
general relativistic magnetohydrodynamics, we should
constrain ourselves in the domain 1 < γ < 2. Moreover,
throughout literature, the realistic limits to adiabatic index
for accretion astrophysics is γ ¼ 4

3
for ultra-relativistic

flows and γ ¼ 5
3
for nonrelativistic flows. Thus we will

limit ourselves in the parametric range between 4
3
< γ < 5

3
.

Here we mention pro-grade flows, i.e., where the flow
corotates with black hole and retrograde flows, i.e., where
the flow counterrotates with the black hole. We consider
both of these flows and in order to distinguish between the
two we allow positive and negative values of a, whereas
only positive values of λ are allowed. Thus the range of a is
−1 < a < 1. An upper limit of 0.998 of a has been set in
some literature where interaction with the accretor and the
accreting material has been considered [100]. In his work,
Thorne considered the interaction of the accretion flow
with the hole in such a way that the accretion flow can alter
the mass and spin of the hole, which, however, we do not
consider in our present work, since we are interested in non
self-gravitating flow only. Thus, the present system of
polytropic fluid accretion is studied within the parameter
range ½1 < E < 2; 0 < λ < 4; 4

3
< γ < 5

3
;−1 < a < 1�.

Fig. 1 depicts the characteristic parameter space diagram
for a polytropic NT disc. The NT disc has been selected for
the purpose of demonstration because it is the oldest
prescription of hydrostatic equilibrium models available
in literature. All other prescriptions display the same
general properties in this regard. For a fixed set of ½γ; a�,

FIG. 1. E vs λ plot for polytropic NT disc with a ¼ 0.3 and
γ ¼ 4=3.
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possible multicritical solutions form a wedge-shaped pro-
jection on the E − λ plane. The multicritical solutions
constitute a set of three critical points, viz. rinc , rmind

c and
routc , such that rinc < rmind

c < routc . The region A represents
the “accretion solutions” for which the entropy accretion
rate _Ξðrinc Þ > _Ξðrinc Þ. The region W consists of those
solutions for which _Ξðrinc Þ > _Ξðrinc Þ. Such solutions are
known as “wind solutions”. The curve dividing regions A
and W covers those critical points through which hetero-
clinic orbits are formed in phase-space. Slight perturbations
in the flow due to turbulence or other physical factors can
push such solutions into either accretion or wind regime.
Regions outside the wedge (O and I) contain monocritical
solutions. Inside regionO, the critical point is of outer-type,
which means it forms far away from the horizon, whereas
inside region I, the critical points are formed nearer to the
horizon and are known as inner-type. Both regions O and I
contain single critical points (corresponding to monotran-
sonic accretion/wind) up to a certain limit of flow param-
eters beyond which critical solutions cease to exist.
However, since we are interested only in the A region, a
detailed discussion regarding the relation between system
parameters and the existence or nonexistence of critical
points lies beyond the scope of the present article.

D. General relativistic polytropic shock conditions

Since we have assumed a nondissipative, inviscid flow,
the specific energy and mass accretion rate are conserved.
Thus, shocks formed in such flows must also preserve the
conserved quantities. We consider the shock surface to be
infinitesimally thin such that there are no temperature
gradients within shock leading to any unwanted dissipa-
tion. Hence the discontinuity must satisfy the general
relativistic Rankine-Hugoniot conditions [101–107] given
below.

⟦ρvμημ⟧ ¼ ⟦ρvr⟧ ¼ 0;

⟦Ttμη
μ⟧ ¼ ⟦ðpþ εÞvtvr⟧ ¼ 0;

⟦Tμνη
μην⟧ ¼ ⟦ðpþ εÞðvrÞ2 þ pgrr⟧ ¼ 0; ð45Þ

where ημ ¼ δrμ is orthonormal to the surface of shock
formation. For any arbitrary flow variable f, ⟦f⟧ is defined
as ⟦f⟧ ¼ fþ − f−, where fþ and f− are values of f just
outside and inside the shock, respectively. The difference
measures the discontinuity in the flow variable due to
shock. The first condition is conservation of mass accretion
rate and the other two conditions are energy-momentum
conservation. These conditions must be satisfied at the
location where the shock forms. In order to find out the
location of shock formation, a shock invariant quantity,
which depends only on u, cs and γ, is constructed using the
conditions above. The first and second conditions are
trivially satisfied owing to the constancy of the mass
accretion rate and the specific energy. The first condition

is basically ð _MÞþ ¼ ð _MÞ− and the third condition is
ðTrrÞþ ¼ ðTrrÞ−. Thus a shock invariant quantity Ssh can
be defined as

Ssh ¼ Trr= _M; ð46Þ

which also satisfies ⟦Ssh⟧ ¼ 0.
In order to calculate the shock invariant quantity we note

that h corresponds to the enthalpy of the stationary
solutions of the steady state flow, given by Eq. (11).
cs ¼ ð1=hÞdp=dρ ¼ ð1=hÞkγργ−1, which gives ρ (and
hence also p and ϵ) in terms of k, γ and cs. Thus,

ρ ¼ k−
1

γ−1

� ðγ − 1Þc2s
γðγ − 1 − c2sÞ

� 1
γ−1

p ¼ k−
1

γ−1

� ðγ − 1Þc2s
γðγ − 1 − c2sÞ

� γ
γ−1

ε ¼ k−
1

γ−1

� ðγ − 1Þc2s
γðγ − 1 − c2sÞ

� 1
γ−1
�
1þ c2s

γðγ − 1 − c2sÞ
�
: ð47Þ

Now _M¼constant×rHðrÞρvr and Trr ¼ ðpþ εÞðvrÞ2þ
pgrr, where vr ¼ u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrð1 − u2Þ

p
.

NT & RH discs.— The shock-invariant quantity Ssh ¼
Trr= _M becomes

Ssh ¼
ðu2ðγ − c2sÞ þ c2sÞ

ucs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2Þðγ − 1 − c2sÞ

p ; ð48Þ

where we have removed any overall factor of r as shock
invariant quantity is to be evaluated at r ¼ rsh for different
branches of flow.
ALP discs.— In this case, the shock-invariant quantity

turns out to be

Ssh ¼
ðu2ðγ − c2sÞ þ c2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2v2t − a2ðvt − 1Þ

p
ucs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − u2Þðγ − 1 − c2sÞ

p ; ð49Þ

where vt is given in (8).
Fig. 2(a) shows edge-on view of the polytropic NT

disc for flow with a given value of ½E; λ; γ; a� in the
presence of shock. Since specific energy is conserved in
polytropic accretion, the postshock flow encounters a
discontinuous increase in temperature, density and pres-
sure. Consequently, the disc gets “puffed-up” at the shock
location as is evident from the plot. A closer look at the
central region of the disc [Fig. 2(b)] reveals that the disc
gets terminated abruptly at the “truncation radius” (rT) as
defined in previous sections. It limits the use of such discs
for analytically obtaining flow variables in close vicinity of
the horizon (the quasi-terminal values) that are essential to
constructing the image of the shadow of black holes [59].
Please refer to Sec. V for further discussions in this context.
Figure 2(c) depicts a face-on view of one of the quadrants
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of the same disc on a logarithmic scale. The regions colored
in cyan (lighter shade) and red (darker shade) represent
regions of subsonic and supersonic flows, respectively. The
solid boundary curves lie over points of continuous
transonicity (transonic points corresponding to routc and
rinc ), while the dashed boundary curve lies over the points of
discontinuous transonicity, i.e., shock. The flow profile
becomes more explanatory in Fig. 2(d) where a complete
phase-space diagram (u=cs vs r) for the given combination
of flow parameters has been presented. Trajectory of the
physical flow (marked in red) in the presence of shock has
been indicated with arrows. The flow starts subsonically
through the point A and proceeds to cross the first transonic
point O (corresponding to the outer critical point routc )
beyond which it attains supersonic velocities until point B.
Here the flow encounters shock, causing a discrete jump
onto point C on the homoclinic orbit. The shock (dashed
line BC) lies at the location routsh , which can be calculated by
looking for those values of r where Ssh on the upper and
lower branches become equal in magnitude. Using this
procedure, a second shock location (rinsh, shown with the
black dashed line DE) is sometimes obtained such that
rinsh < routsh . But such inner second shocks have been found
to be unstable. In the absence of shock, the flow would
have continued supersonically along the upper branch

through B, effectively resulting in monotransonic accretion.
However, transition onto C brings the flow down to
subsonic regime, and subsequently it follows the trajectory
of the lower branch through the second transonic point I
(corresponding to the inner critical point rinc ) and proceeds
beyond to fall into the horizon.
In Fig. 3, we plot the variation of the flow velocity u

[Fig. 3(a)], flow temperature T [Fig. 3(b)], matter density ρ
[Fig. 3(c)] and the fluid pressure P [Fig. 3(d)] as a func-
tion of the radial distance as measured from the horizon in
terms of the Schwarzschild radius Rg (¼ 2GMBH=c2). In
Figs. 3(a)–3(d), the variation is shown as a combination of
two solid lines connected by a vertical dashed line. The
solid line at the right of the dashed vertical line represents
the variation along the flow solution passing through the
outer sonic point (starting point of the solid line) and
ending at the shock. The dashed vertical line corresponds to
the discontinuous jump of the physical variable (u, T, etc.)
at the shock location. The solid line to the left of the dashed
vertical line represents the variation along the integral flow
solution starting from the shock location and ending at the
corresponding truncation radius for NT/RF discs given by
Eq. (5). It is evident from the figure that the accretion flow
slows down at the shock and gets compressed. Such
relatively slow, shock-compressed postshock flow becomes

FIG. 2. (a) Disc height vs radial distance, (b) Central region in (a) is magnified, (c) Transonic boundaries–Cyan (lighter shade) region
represents subsonic flow and red (darker shade) region represents supersonic flow, (c) Phase space trajectories–Mach number vs radial
distance.

FIG. 3. Generic flow profiles–(a) Advective velocity (u) vs Rg, (b) Flow ion temperature (T) vs Rg, (c) Rest mass density (ρ) vs Rg,
(d) Pressure (P) vs Rg. u is in units of 1010 cm= sec, T is in units of 1010 Kelvin, ρ is in units of gm=cc and P is in units of dyn=cm2.
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hotter and denser. The energy-preserving hotter flow
adiabatically expands and hence the postshock part of
the disc gets puffed-up, as explained earlier.
As mentioned in the Introduction, our motivation is to

compare various astrophysical properties of the shocked
flow for three different disc thicknesses. We thus need to
find out the region of the parameter space (parameters for
which the shock forms) common to all such three different
flow thicknesses.
In Fig. 4(a), we plot the ½E; λ� regions for which the shock

forms for the flow having thickness as prescribed by NT
(blue dashed curve in the online version of this article), RH
(green dotted curve in the online version) and ALP (red
solid curve in the online version). It is to be mentioned that
from now onwards, the line types (solid, dotted and dashed)
and the line colors (red, green and blue) corresponding to
the three different disc models (ALP, RH and NT respec-
tively) will be used in the same order (as used in the present
diagram) throughout the paper, be it for polytropic or
isothermal flow.
In Fig. 4(a), the overlap of the parameter spaces for the

shock-forming flow corresponding to three different disc
models is shown using a dark gray shade. The gray shaded
common region has also been demonstrated in the inset of
the figure. The figure has been drawn by keeping the values
of the black hole spin and the adiabatic index of the flow to
be fixed. The values of such fixed parameters are shown in
the figure. Such values are representative values only, i.e.,
the shocked flow can be obtained for the other set of values
of ½a; γ� as well.
Fig. 4(b) shows the parameter space diagram spanned by

the flow angularmomentumand the spin angularmomentum
of the black hole for a fixed set of values of ½E; γ� as specified
in the figure. The set of values of ½E; γ� is representative and
similar. ½λ; a� space can be obtained for other values of
½E; γ� as well. We choose the particular set of values

½E ¼ 1.0001; γ ¼ 4=3� so that we can cover an extended
range of theKerr parameter to identify the shocked solutions.
It is evident from the figure that the lower values of the black
hole spin allow shock formation for relatively larger values of
flow angularmomentum, aswell as for a relatively large span
of values of the angularmomentum.This is probably obvious
because a lower spin accretor effectively reduces the influ-
ence of the flow angular momentum.
We conclude our discussions on parameter dependence

of the shock solutions by studying the role of adiabatic
index γ and specific energy E. Figure 5 depicts ½γ; a� space
with shock solutions for different values of E and λ
corresponding to the ALP-type of discs. Similar panels
can be constructed for NT and RH discs as well, but the
trends of variation have been found to be similar. Due to the
quality of not being constrained with any truncation radius
and thus providing the maximum scope to look for shocks
in terms of radial distance, the ALP disc has been chosen
for the purpose of demonstration in this regard.
In Fig. 5(a), we see that the relevant adiabatic indices

anticorrelate with the black hole spin parameter. Flows with
four different values of specific energy (E1> E2 > E3> E4,
values provided in the respective figures and marked with
blue, green, yellow and red colors, respectively) have been
studied. We find that flows with lower values of E can lead
to formation of shocks over a greater range of γ from the
fully relativistic limit of γ ¼ 4=3 until other intermediate
values below the nonrelativistic limit of γ ¼ 5=3. The
lowest value of E considered here (E4 ¼ 1.00001) serves
our purpose of explanation. However, even lower values of
specific energy can be considered to predict shock solutions
theoretically almost over the entire astrophysically relevant
range of γ (from fully relativistic to nonrelativistic flows).
This, of course, comes with an obvious trade-off between
the spans of results achieved and the computational costs
incurred.

FIG. 4. Parameter space overlap for shocked solution–(a) E − λ plot and (b) λ − a plot. Insets and shaded areas depict the common
regions of shock solutions. ALP shown by red solid lines, RH shown by green dotted lines and NT shown by blue dashed lines.
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Figs. 5(b)–5(d) show similar γ vs a plots depicting the
shock-forming regions. The four separate figures (a)–(d) in
the panel indicate the successively decreasing values of the
flow angular momentum λ. We have already shown in
Fig. 4(b) that the flow angular momentum and black hole
spin anticorrelate with each other in the context of shock
formation. Hence it is expected that as the value of λ is
decreased for a given set of ½E; γ�, shocks will be obtained
at higher values of a. That is exactly what we see along
Figs. 5(b)–5(d). However, it should also be noted that the
range of a over which such solutions are obtained
decreases significantly with decreasing flow angular
momentum. The interrelationships between all the system
parameters are extremely complex for such highly non-
linear systems. A definitive picture can only be procured
through generation of a complete four-dimensional
parameter space diagram. Scanning the entire possible
parameter space is heavily time-consuming and computa-
tionally exhausting, and hence is beyond our present
theoretical scope. However, an integrated study of various
parameter combinations as presented in our work provides
a sufficiently comprehensive assessment of the relevant
shock regimes.
In Fig. 6(a), we plot the shock locations (measured from

the horizon in units of the Schwarzschild radius Rg

[¼ 2GMBH=c2]), and other shock-related quantities as a
function of the black hole spin for three different disc
models. The set of values of ½E; λ; γ� are kept fixed, and
their fixed values are shown in the respective figures.
We observe that the shock location (rsh) correlates with

the spin parameter of the black hole. This is intuitively
obvious because higher spin effectively enhances the effect
of flow angular momentum. The greater the angular
momentum, the larger will be the distance at which the
centrifugal barrier forms. The shock under consideration is
centrifugal pressure supported. Hence, rsh is pushed farther
away from the horizon with increasing values of a. For
fixed values of ½E; λ; γ; a� the shock forms farthest for ALP-
type of disc, whereas it forms closest for RH discs. For NT-
type discs, the shock forms at an intermediate distance. rsh
vs a curve for ALP-type discs approaches that for NT-type

discs asymptotically but they never intersect. This has been
investigated for values of ½E; λ; γ; a� other than those used to
generate Fig. 6. With decreasing λ, the overall set of rsh-a
curves shift towards higher values along the a and rsh axes.
Thus, we find that rsh anticorrelates with λ as expected
since rsh correlates with a and a anticorrelates with λ.
Similarly, the authors have verified that rsh anticorrelates
with γ and correlates with E (since γ anticorrelates and E
correlates with a, as shown in Fig. 5).
At the shock location, directed flow velocity gets

randomized and the gravitational potential energy available
at the shock location determines the shock strength. The
closer the shock forms to the horizon, the stronger it should
be. Hence the strength should anticorrelate with the shock
location and thus with the black hole spin parameter. This is
exactly what we observe in Fig. 6(b). The shock strength is
defined as the ratio of the pre- to postshock Mach number
of the flow. We plot the shock strength (M−=Mþ, hereafter
any accretion variable with a subscript “-” would indicate
that it has been measured at the shock location before the
shock is formed, i.e., it has been measured on the integral
solution passing through the outer sonic point, and vari-
ables with subscript “+” would refer to the postshock
values measured at the shock location on the integral
solution passing through the inner sonic point) as a function
of the Kerr parameter for both prograde and retrograde
flow. As argued above, we clearly see that the shock
strength anticorrelates with the black hole spin for both
corotating as well as counterrotating flows. We observe an
intersection of the M−=Mþ vs a curve for the ALP and NT
disc models. Such intersection, by any means, does not
indicate any degeneracy in the disc models, i.e., it does not
mean that for certain values of ½E; λ; γ; a� two or more
separate disc models provide the same value of any
significant accretion variable. It is important to note that
the ratio of Mach numbers can assume same values at the
point of intersection, but not the value of any individual
quantity. The ratio of Mach numbers can be the same for
two (or more) different sets of postshock values. The shock
strength is found to correlate with λ and γ, and anticorrelate
with E as expected from the relation between the

FIG. 5. γ-a plot with different E values (E1 ¼ 1.001, E2 ¼ 1.0005, E3 ¼ 1.0001, E4 ¼ 1.00001) for (a) λ ¼ 3.6, (b) λ ¼ 3.3,
(c) λ ¼ 3.0 and (d) λ ¼ 2.7.
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corresponding parameters with a shown previously in the
respective parameter space diagrams. In Fig. 6(c) and 6(d),
the post- to preshock temperature and shock compression
ratio (ratio of flow densities after and before the shock)
have been plotted against the change of black hole spin. As
expected, these quantities anticorrelate with a because the
greater the amount of available gravitational potential
energy at the shock, the higher the amount of temperature
changes and the larger the amount of compression. It is
evident from the figure that the RH-type of discs become
most dense and hot after the shock forms whereas the ALP-
type of discs change their temperature and density in
minimum amounts at the shock. The NT kind of flow
assumes an intermediate value for these two ratios. More or
less, similar trends are observed for the variation of the ratio
of the post- to the preshock fluid pressure for three different
disc models. Here too, we find intersection among the two
curves, but as explained earlier, it does not indicate any type
of degeneracy. Finally, in Fig. 6(f) we plot the ratio of the
post- to preshock entropy accretion rates for three disc
models as a function of the black hole spin. The ratio of the
entropy accretion rate is a measure of entropy production at
the shock. As we observe, such a measure may not have any
one-to-one correspondence with the shock strength. The

entropy is directly related to the expression of the mass
accretion rate of the steady-state flow.
In passing, we would like to mention that the set of

½E; λ; γ� used to draw this figure is not unique by any means.
We chose this set of values just to have a reasonable span of
the black hole spin covering both prograde as well as
retrograde flows. It is to be noted that shock does form for
accreting black holes with intermediate as well as for higher
values of spin, for both co- and counterrotating flows. One
can obtain shocked flows for high-spin accretors using a
suitable set of ½E; λ; γ�.

IV. ISOTHERMAL ACCRETION

A. Fluid equations

The equation of state characterising isothermal fluid flow
is given by

p ¼ c2sρ ¼ R
μ
ρT ¼ kBρT

μmH
; ð50Þ

where T is the bulk ion temperature, R is the universal gas
constant, kB is Boltzmann constant, mH is mass of the
hydrogen atom and μ is the mean molecular mass of fully

FIG. 6. Shock location–(a) rsh (in terms of Rg) vs a, Ratios at shock–(b)M−=Mþ vs a, (c) Tþ=T− vs a, (d) ρþ=ρ− vs a, (e) Pþ=P− vs a
and (f) _Ξþ= _Ξ− vs a. “−” and “þ” refer to values “before” and “after” the shock respectively. ALP shown by red solid lines, RH shown
by green dotted lines and NT shown by blue dashed lines.
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ionized hydrogen. The temperature T as introduced in the
above equation, and which has been used as one of
the parameters to describe the isothermal accretion, is
the temperature-equivalent of the bulk ion flow velocity.
That is the reason why the value appears to be high
(1010–1011 K) in this work. The actual disc temperature
is the corresponding electron temperature, which should be
of the of the order of 106–107 Kelvin. Now using the
equation of state (50), the equations needed to draw the
phase portrait will be derived.

1. Energy-momentum equation

Using Eq. (50), Eq. (13) can be rewritten as

uν½Dνðρc2s uμÞ −Dμðρc2s uνÞ� ¼ 0: ð51Þ

Using the time component of this equation and the
stationary nature of the flow one obtains the conserved
quantity

ξ ¼ vtρc
2
s : ð52Þ

Taking the logarithmic derivative of Eq. (52), the
derivative of density ρ0 is obtained as

ρ0

ρ
¼ u0

uðu2 − 1Þ −
�
f0

f
þ Δ0

2Δ

�
: ð53Þ

2. Continuity equation

In this section we again derive the velocity gradient for
two separate classes, one consisting of NT and RH and the
other consisting of theALP height prescription.We note that
we can still integrate continuity equation and the conserved
quantity mass accretion rate _M as defined in Eq. (23).
For NT & RH discs.—Using the fact that pρ is the constant

c2s , the height of the disc for these two height prescriptions
in case of isothermal accretion can be written as

HðrÞ ¼ csfðr; aÞ: ð54Þ

Using Eq. (54) and putting the value of ρ0
ρ in the

logarithmic derivative of Eq. (23), we obtain

du
dr

¼
uð1 − u2Þ½c2sðΔ0

2Δ þ f0
fÞ þ 1

2
ðB0
B − Δ0

ΔÞ�
u2 − c2s

¼ N
D
: ð55Þ

Again we mention that for NT height recipe, fðr; aÞ is
replaced by fNTðr; aÞ as defined in Eq. (27) and for RH
height recipe, we replace fðr; aÞ by fRHðr; aÞ as defined
in Eq. (6).
For ALP discs.—For this recipe, the height function in

the case of isothermal acretion is

HðrÞ ¼ c2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4

λ2v2t − a2ðvt − 1Þ

s
: ð56Þ

Following the same procedure as used in previous class
of height recipes, one yields

du
dr

¼ cs2cðΔ0
2Δ þ 2

r − ð2λ2vt − a2Þ vtP
4F Þ − P

2

u
1−u2 −

cs2c
uð1−u2Þ ð1 − ð2λ2vt − a2Þ u2vt

2F Þ
; ð57Þ

where P ¼ Δ0
Δ − B0

B and F ¼ λ2v2t − a2ðvt − 1Þ.

B. Critical point conditions

Following the same scheme as in polytropic process, we
find the slopes of directrices at critical points, solve for the
radial position of critical point rc and draw the phase
portrait. Again we present NT- and RH-type of discs in the
first class and ALP-type of discs in the next class for
reasons stated earlier.

1. For NT & RH discs

Setting D ¼ 0 in Eq. (55) yields

u2jc ¼ c2s jc: ð58Þ
Setting N ¼ 0 yields

c2s jc ¼
Δ0
Δ − B0

B

ðΔ0
2Δ þ f0

f Þ
: ð59Þ

To find the critical points for isothermal accretion the
method followed is different from that of polytropic
accretion as the basic parameter characterizing the flow
is different for polytropic and isothermal accretion. In
polytropic accretion, the parameters are E and λ, whereas
the isothermal flow is characterized by the parameters T
and λ. So, by substituting the chosen value of the temper-
ature T in Eq. (50) we find the constant sound speed. Then,
either the obtained value of c2s is used in Eq. (59), or
alternatively, the chosen value of T is used in the following
equation

R
μ
T ¼

Δ0
Δ − B0

B

ðΔ0
2Δ þ f0

f Þ
: ð60Þ

The right hand side of Eq. (60) is a function of the
variable r and by solving this equation the critical points are
obtained.
The two values of the slopes at the critical point are

obtained from the quadratic equation

α1

�
du
dr

�
2

− α2

�
du
dr

�
− α3 ¼ 0; ð61Þ

where
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α1 ¼ 4uc; ð62Þ

α2 ¼
�
B0

B
−
Δ0

Δ
þ
�
Δ0

Δ
þ 2f0

f

�
u2c

�
ð1 − 3u2cÞ; ð63Þ

α3 ¼ ucð1 − u2cÞ
�
2u2c

�
Δ00

2Δ
þ f00

f
−
1

2

�
Δ0

Δ

�
2

−
f0

f

2
�

−
Δ00

Δ
þ B00

B
þ
�
Δ0

Δ

�
2

−
�
B0

B

�
2
�
: ð64Þ

Thus we are equipped with all the information needed to
draw the phase portrait diagram for a given parameter set
of ½T; λ; a�.

2. For ALP discs

The critical point conditions obtained by setting N ¼ 0
and D ¼ 0 are

u2cjVE ¼ P1
Δ0
Δ þ 4

r

ð65Þ

cs2cjVE ¼ u2c

1 − u2cvtð2λ2vt−a2Þ
2F

: ð66Þ

Velocity gradient at critical points:

�
du
dr

�
c

����
VE

¼ −
βVE
2αVE

� 1

2αVE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2VE − 4αVEΓVE

q
; ð67Þ

where, αVE ¼ 1þu2c
ð1−u2cÞ2 −D2D6, βVE ¼ D2D7 þ τ4,

ΓVE ¼ −τ3, D2 ¼ c2s
uð1−u2Þ ð1 −D3Þ, D6 ¼ 3u2−1

uð1−u2Þ −
D5

1−D3
,

D7 ¼ D3D4vtP1
2ð1−D3Þ , τ3 ¼ ðc2sτ2 − c2sv5vt P12 Þ − P10

2
, τ4 ¼ c2sv5vtu

1−u2 ,

v1 ¼ Δ0
2Δ þ 2

r − ð2λ2vt − a2Þvt P14F, D3¼ u2vtð2λ2vt−a2Þ
2F , D4 ¼

1
vt
þ 2λ2

2λ2vt−a2
− 2λ2vt−a2

F , D5 ¼ D3ð2u þ D4vtu
1−u2 Þ, τ2¼ τ1−

vtð2λ2vt−a2Þ
4F P10, v5¼ð2λ2vt−a2ÞP14Fv4, τ1¼ 1

2
ðΔ00
Δ − ðΔ0Þ2

Δ2 Þ− 2
r2,

v4 ¼ v3
ð2λ2vt−a2ÞF, v3 ¼ ð4λ2vt − a2ÞF − ð2λ2vt − a2Þ2vt.

The location of critical points are solved just as described
before; by putting appropriate T in Eq. (50) and then
solving Eq. (66) by using the corresponding value of cs.

C. The parameter space

In Fig. 7, we show that the parameter space spanned by
the (constant) bulk flow temperature and the flow angular
momentum for a particular value of the black hole spin
(a ¼ 0.2). Similar diagrams can be produced for other
values of a, both for prograde as well as retrograde flows.
As discussed in Sec. III. C, the parameter space is divided
into four different regions, O, I, A and W as shown in the
figure. The parameter space has been constructed for discs
with NT-type of flow thickness.

Both regions O and I produce a single sonic (critical)
point. For O, the sonic point is outertype, i.e., it forms far
away from the horizon.Whereas for I, it is inner-type, i.e., it
forms very close to the horizon. Parameter space region
marked by A designates accretion flow with three critical
points. If shock forms, then the largest (outermost) and
smallest (innermost) critical pointsmay become sonic points
and two different integral accretion solutions, passing
through the outermost and the innermost critical (sonic)
points respectively, may be joined using a stationary shock
solution. For flow characterised by parameters chosen from
region A, the quasi-specific energy measured along the
integral accretion solution passing through the inner sonic
point is less than the same measured along the solution
passing through the outer sonic point (ξðrinc Þ < ξðroutc Þ). The
situation is just opposite for flows characterized by param-
eters taken from the region W. When parameters are taken
from regionW, the accretion flow can pass through only one
sonic point, however thewind (outgoing) solutions can have
three critical points. Outgoing solutions passing through the
inner and the outer critical points may be joined through a
stationary shock. We will, however, not discuss multitran-
sonic shocked wind in the present work.

D. General relativistic isothermal shock conditions

We note that h ¼ 1 for isothermal process, which in turn
yields

Trr ¼ ρððvrÞ2 þ c2sgrrÞ: ð68Þ

1. NT & RH discs

In this case the shock-invariant quantity turns out to be

Ssh ¼
ðu2ð1 − c2sÞ þ c2sÞ

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ; ð69Þ

FIG. 7. T − λ parameter space plot for accretion and wind in
isothermal NT disc at a ¼ 0.2.
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where we have removed any overall factor of r as shock
invariant quantity is to be evaluated at r ¼ rsh for different
branches of flow.

2. ALP discs

In this case, the shock-invariant quantity turns out to be

Ssh ¼
ðu2ð1 − c2sÞ þ c2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2v2t − a2ðvt − 1Þ

p
u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ; ð70Þ

where vt is given in (8).
We show the multitransonic flow topology with shock

for a set of ½T; λ; a� as specified in the diagram. We also
show the segregated disc structure [the edge-on view in
Fig. 8(a), and the face-on view in Fig. 8(c)] for various
subsonic and supersonic parts of the flow, as clarified in
much detail in Sec. III. D while describing features of
Fig. 2. There is, however, a major difference between
postshock disc structure in polytropic flow with energy-
preserving shock and for isothermal flow with temperature-
preserving shock. We have seen that for polytropic shocked
accretion, lack of dissipation of energy increases the
postshock flow temperature and the postshock part of the

disc expands to produce a torus-kind of geometry. For
isothermal shock, however, the thermal energy generated at
the shock is allowed to liberate in order to maintain
invariance of the flow temperature. Since no additional
thermal energy gets trapped, the postshock disc, unlike its
polytropic counterpart, does not get puffed-up. The energy
liberated at the shockmay power the strong flares emanating
out of the axisymmetric accretion around supermassive
black holes at the center of the galaxies. We shall elaborate
this aspect in subsequent sections. In Fig. 8(b), the innermost
part of the disc has been shown separately along with the
termination radius (RT) of the disc.
Fig. 9 shows the variation of the dynamical velocity u,

the matter density ρ and the fluid pressure P, as a function
of the radial distance (measured from the horizon) for the
shocked branch. The vertical dashed line signifies the
discontinuous shock transition which joins the preshock
flow solution passing through the outer sonic point with the
postshock flow solution passing through the inner sonic
point. For isothermal accretion, the sound speed remains
invariant, hence the Mach number profile turns out to be
just a scaled down version of the velocity profile.
Fig. 10(a) shows the parameter space (spanned by the

flow temperature and flow angular momentum) for

FIG. 8. Isothermal NT disc–(a) Disc height vs radial distance (in units of Rg) with vertical dotted lines depicting the shock locations
(rsh ¼ 24.15), (b) Magnified view of the central region depicting the truncation radius (RT ) and inner critical point (rinc ), (c) Face-on view
of the disc (solid curves represent sonic points and dashed curve represents shock front. Regions shaded in cyan and red depict subsonic
and supersonic flows respectively), (d) Mach number vs radial distance profile (red path depicts physical flow in the direction indicated
with arrows).

FIG. 9. Isothermal NT flow profile–(a) Advective flow velocity (u) vs r, (b) Rest mass density (ρ) vs r, (c) Pressure (P) vs r. u in units
of cm= sec, ρ in units of gm=cc, P in units of dyn=cm2 and r in units of Rg.
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multitransonic shocked flow for three different disc thick-
nesses as considered in our work. The figure has been
obtained for a fixed value of black hole spin a ¼ 0.2.
Similar figures can be obtained for any other value of a for
both prograde as well as retrograde flows. The region of
parameter space common to all three disc thicknesses has
been shaded in dark gray color.
The parameter space spanned by the flow angular

momentum λ and the black hole spin a has been depicted
in Fig. 10(b), for a fixed value of flow temperature
T ¼ 1010 K. This value is only representative and similar
diagrams with the same general features can be obtained for
other values of T as well. The particular value of T has been
chosen to cover an extended range of a allowing shock
solutions. Similar to the polytropic case [Fig. 4(b)], lower
values of the Kerr parameter permit shock formation
for flows with higher values of the specific angular
momentum.
Fig. 11(a) shows the variation of shock location with the

black hole spin for both the corotating as well as counter-
rotating flows. Faster rotating black holes produce the
shock at larger distances for prograde flow whereas the
trend is reverse in case of retrograde accretion. It should be
noted that the NT- and RH-type discs produce shocks in

extremely nearby locations for isothermal flows. Similar
conclusions are drawn while observing the variation of the
ratios of the pre-(post-) to the post-(pre-) shock accretion
variables as a function of the Kerr parameter. Such
variations are shown in Figs. 11(b)–11(d). The shock
becomes stronger and the postshock flow becomes denser,
as the shock location approaches towards the horizon. This
is physically consistent as larger amounts of gravitational
potential energy will be available for liberation when shock
forms closer to the horizon. The results have been obtained
for a particular set of ½T; λ�. But results with the same
variational trends can be obtained for any other relevant
values of the given flow parameters.

E. Energy dissipation at the
temperature-preserving shock

The quasi-specific energy ξ plays a role similar to that
played by the entropy accretion rate _Ξ for a polytropic flow.
ξ decreases after the flow encounters a shock. The differ-
ence of values of ξ computed along the integral accretion
solutions passing through the outer and the inner sonic
points, respectively, is a measure of the flow energy
liberated at shock. Such energy liberation mechanism
may explain the formation and dynamics of flares (as
observed in various wavelengths) emanating out from the
proximity of our own Galactic Center black hole.
In Fig. 12, we plot the ratio of the pre- to postshock

values of ξ as a function of the Kerr parameter. As a
reference, we also show the variation of corresponding
shock locations with the black hole’s spin. Three sets of
figures have been produced for three different values of the
flow angular momentum λ and for the same value of the
temperature as shown in the figure.
We expect that the ratio of ξ at shock might anticorrelate

with the shock location rsh, since for smaller values of rsh
(forming closer to the horizon, in a relatively stronger
gravity regime), the gravitational potential energy available
for liberation is higher. Also, values of the effective
centrifugal barrier, i.e., (λ� a), determine the amount of
energy dissipated at the shock. For lower values of (λ� a),

FIG. 10. Parameter space for shocked accretion flows–(a) Flow
temperature (T) vs λ (a ¼ 0.2), (b) λ vs a (T ¼ 1010 K). Solid red
curves, green dotted curves and blue dashed curves represent
ALP, RH and NT discs respectively. Shaded regions depict
overlap zones for the three disc models.

FIG. 11. Shock location–(a) rsh (in terms of Rg) vs a, Ratios at shock–(b)M−=Mþ vs a, (c) ρþ=ρ− vs a and (d) Pþ=P− vs a. “−” and
“þ” refer to “before” and “after” shock respectively. ALP shown by red solid lines, RH shown by green dotted lines and NT shown by
blue dashed lines.
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accretion flow has larger values of the radial advective
velocity. This velocity is directed, and gets randomized at
the shock. The larger the value of the directed bulk velocity,
the higher the amount of energy liberated when it gets
randomized through shock formation. The value of the ratio
of the pre- to postshock quasi-specific energy, should thus
anticorrelate with λ, as well as with (λ� a).
This is exactly what we observe in the figure [see three

consecutive panels (a)–(c) in Fig. 12]. We also see that the
amount of energy liberated can be as large as (approx-
imately) 9%. Thus the disc may become considerably
luminous (on the corresponding wavelength) at the shock,
and can also produce a radiatively efficient postshock flow,
at least at the shock location. It has been found (see the
figures) that among the three different disc-height recipes,
the NT-type of disc liberates maximum amount of energy,
and hence becomes maximally luminous at the shock,
provided the initial set of boundary conditions remain
the same.
It also requires to be mentioned that the aforementioned

energy-liberation process is not similar to the Blandford-
Znajek (BZ) mechanism [108], where the rotational energy
of the black hole is extracted to power jets. BZ mechanism
requires the presence of poloidal magnetic field lines
around a spinning black hole, which extracts the rotational
energy of the hole itself. On the contrary, our simple
theoretical model of purely general relativistic hydrody-
namic flow does not include any magnetic energy

component. The energy-liberation mechanism discussed
in our work is not similar to the Penrose process [109]
either, since in our model energy gets liberated at the shock
location residing well outside the ergosphere.

V. CONCLUDING REMARKS

Among various proposals to describe the geometrical
configuration of matter accreting onto astrophysical black
holes, flow in hydrostatic equilibrium along the vertical
direction has been playing a crucial role in the study of
accreting black hole systems. The local thickness of such
flow configurations have been characterized using various
height functions proposed in the literature over a time span
of the last fifty years or so since the first-ever compre-
hensive work on this topic was accomplished by Novikov
& Thorne [77]. The present work demonstrates that various
properties of general relativistic black hole accretion, as
observed in the close proximity of the hole itself, are
significantly influenced by such aforementioned height
functions. Our work also identifies the specific height
function for which the maximally energetic flares from
our Galactic Center may be determined. Properties of
general relativistic postshock flows close to the astrophysi-
cal black holes have never been studied in such a
comprehensive manner in the literature, as we believe.
Among the different height functions considered in the

present work, the expressions of HðrÞ as proposed by

FIG. 12. Energy dissipation at shock–ξ−=ξþ vs a along with the corresponding rsh (in terms of Rg) vs a for T ¼ 1010 K and
(a) λ ¼ 3.95, (b) λ ¼ 3.75 and (c) λ ¼ 3.45. “-” and “+” represent quantities “before” and “after” shock respectively. ALP shown by red
solid lines, RH shown by green dotted lines and NT shown by blue dashed lines.
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Novikov & Thorne (NT) [77] and Riffert & Herold (RH)
[78] possess a certain truncation radius (rT), which is a
function [Eq. (5)] of black hole spin angular momentum,
i.e., the Kerr parameter. The presence of the truncation
radius does not mean that the flow itself is disconnected
from the horizon. The matter does accrete up to the horizon
and plunges through it. Theoretical models of the flow
thickness such as NTand RH, however, do not exist beyond
rT . For any r < rT, the height function cannot be defined in
these two cases. It is to be understood that this is a
limitation of the disc models. Infalling matter does flow
through the horizon–the only thing is that for all
rþ ≤ r < rT , the axisymmetric disc structure remains
undefined. The flow joins the horizon to infinity (i.e., with
the source of accreting matter like the donor, as an example,
for wind driven accretion) smoothly, except at shock
location where values of the flow variable change dis-
continuously (flow does not exhibit formation of any
physical “gap”). Since the expressions for flow thickness
remain undefined beyond rT for NT and RH height
prescriptions, we cannot obtain the integral flow solutions
for r < rT. Although black hole shadow imaging involves
integration of photon geodesics over the entire domain of
space-time containing accreting matter, this might impose
limitations while determining the exact boundary of the
event horizon shadow using our flow model when

characterized by the presence of rT (the Abramowicz-
Lanza-Percival or ALP [79] model does not impose such
limitations). This is due to the fact that the shadow of the
horizon can be realized as a dark disc upon a background
illuminated by photons emitted from the accreting matter.
Sharpness of the peripheral boundary of such shadow will
be enhanced as one can track the integral solutions closer
and closer to the horizon. The nearer we will be able to get
our integral stationary flow solutions to the horizon, the
sharper will be the distinction between bounding lines of
the shadow and the illuminated background. Hence, for
accretion characterized by NT and RH discs, although
overall features of the shadow will remain unchanged, the
theoretically acquired distinctive sharpness of the shadow
boundary will be determined by the truncation radius.
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