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Searches for gravitational waves from compact binaries focus mostly on quasicircular motion with the
rationale that wave emission circularizes the orbit. Here, we study the generality of this result, when
astrophysical environments (e.g., accretion disks) or other fundamental interactions are taken into account.
We are motivated by possible electromagnetic counterparts to binary black hole coalescences and orbits,
but also by the possible use of eccentricity as a smoking gun for new physics. We find that (i) backreaction
from radiative mechanisms, including scalars, vectors and gravitational waves, circularize the orbital
motion. (ii) By contrast, environmental effects such as accretion and dynamical friction increase the
eccentricity of binaries. Thus, it is the competition between radiative mechanisms and environmental
effects that dictates the eccentricity evolution. We study this competition within an adiabatic approach,
including gravitational radiation and dynamical friction forces. We show that there is a critical semimajor
axis below which gravitational radiation dominates the motion and the eccentricity of the system decreases.
However, the eccentricity inherited from the environment-dominated stage can be substantial, and in
particular can affect LISA sources. We provide examples for GW190521-like sources.
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I. INTRODUCTION

Merging black hole binaries (BHBs) are now “visible,”
thanks to gravitational-wave (GW) astronomy [1,2]. A
good modeling of the dynamics of such compact binaries is
important to increase our ability to actually see them, to
infer the properties of the merging objects and to impose
constraints on the underlying gravitational theory, or other
fundamental interactions [2].
It has long been known that orbits which are initially

eccentric will quickly circularize on relatively short time-
scales [3–5]. This is true in a vacuum, and thought to
describe well stellar mass BHBs, which form substantially
prior to merger and evolve mostly only via GW emission.
However, a reappreciation of eccentricity evolution is
required for different reasons. To begin with, the formation
of supermassive BHBs is poorly understood. Some of the
mechanisms that contribute to such binaries forming and
merging actually may also impart a substantial eccentricity,
specially in their initial stages [2]. In addition, observations
are progressively indicating that large eccentricities may
not be rare. One known supermassive BHB (OJ287) was
reported to have eccentricity e ∼ 0.65, while evolving
around the disk of the massive component [6]. Such
observations were made in the electromagnetic spectrum,
but there are indications that some of the GW events, such
as GW190521 [7,8] could also originate from eccentric
orbits [9,10]. It is interesting to note that this same event

may have an associated electromagnetic counterpart, prod-
uct of a nontrivial surrounding environment [11]. A non-
trivial environment leads to large center-of-mass drift
velocities [12] and may lead to large eccentricities during
evolution. Even in vacuum, spin-spin couplings at the
second post-Newtonian order may induce a nontrivial
eccentricity evolution [13–16].
The understanding of eccentricity evolution is also

important to constrain the presence of new fields. Under
the assumption of circular motion, it has been shown that
GW observations can impose severe limits on the dipolar
moment and charge of the inspiralling objects [17,18].When
the binary components are charged under new fields,
emission in such channels dominates of GW emission at
sufficiently low frequencies; hence the assumption that
circular remains circular (i.e., that radiative processes con-
spire to circularize the orbit) must be proved. The purpose of
this work is precisely to address the issues above.1

II. EVOLUTION DRIVEN BY
FUNDAMENTAL FIELDS

The problem of eccentricity and orbital radius evolution
is tightly connected to the ratio of energy to angular

1Throughout this work we use units c ¼ 1, but we shall write c
explicitly in some cases to facilitate the discussion.
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momentum loss during the binary evolution. Take a
compact binary of two objects of mass m1, m2, and define
the total mass and mass ratio

M≡m1 þm2; q ¼ m2

m1

: ð1Þ

For binaries dominated by the gravitational interaction, the
(Newtonian) orbital frequency ω0 satisfies Kepler’s law

ω0 ¼
ffiffiffiffiffiffiffiffi
GM
a3

r
; ð2Þ

where a is the orbital semimajor axis. In this case, the
conserved energy and angular momentum on Keplerian
motion are

E ¼ −
Gm1m2

2a
; ð3Þ

L2 ¼ Gm2
1m

2
2að1 − e2Þ
M

; ð4Þ

where e is the eccentricity.
Suppose now that the only decay channel available

for the binary evolution is a massless field of frequency
ω and azimuthal dependence eimϕ. This could be a GW, but
could include also a scalar or even a vector field. In this
circumstance, then the emitted angular momentum and
energy satisfy [19]

_Lrad

_Erad ¼
m
ω
¼ 1

ω0

: ð5Þ

How do the eccentricity and semimajor axis of the binary
evolve? Energy and angular momentum balance yield

_E ¼ − _Erad ≤ 0; _L ¼ − _Lrad; ð6Þ

so we find

_a ¼ −
2a2 _Erad

Gm1m2

≤ 0; ð7Þ

_e ¼
ffiffiffiffiffiffiffi
M
Ga

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e

_Erad

m1m2

�
_Lrad

_Erad −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ω0

�
: ð8Þ

We see immediately that, if _Lrad= _Erad have eccentricity-
dependence starting at order higher than e2, then circular
orbits are unstable (i.e., _e ≥ 0 for e ∼ 0) on account of
condition (5). In case of _Lrad= _Erad having eccentricity-
dependence starting at order e2, circular orbits will also be
unstable if the coefficient multiplying e2 is larger
than − 1

2ω0
.

We therefore start our analysis by asking how does the
emission of fundamental massless fields affect eccentricity
evolution.

A. Eccentricity evolution in a vacuum

Let us first assume that our system is in vacuum, isolated
from all other sources in the Universe. In this case, the
evolution is driven solely by GW emission. Eccentricity in
vacuumGR can be calculated in a two-step procedure. Take
a binary of pointlike objects of mass m1, m2. To lowest
post-Newtonian order, their motion is elliptical, of semi-
major axis a and eccentricity e. Their binding energy E and
angular momentum L are simply described by Eqs. (3)–(4).
Now, when relativistic effects are included, the system
radiates energy and angular momentum, via GWs, at a rate

h _Ei ¼ −
32

5

G4m2
1m

2
2M

a5ð1 − e2Þ7=2
�
1þ 73

24
e2 þ 37

96
e4
�
; ð9Þ

h _Li ¼ −
32

5

G7=2m2
1m

2
2M

1=2

a7=2ð1 − e2Þ2
�
1þ 7

8
e2
�
: ð10Þ

Assuming a slow, adiabatic evolution, one can now follow
Peters [3] and compute the major axis and eccentricity
evolution. For small eccentricity, one finds

h _ai ¼ −
64G3

5

m1m2M
a3

< 0; ð11Þ

h_ei ¼ −
304G3

15

m1m2M
a4

e ≤ 0: ð12Þ

In other words, the major axis decreases with time due to
energy loss in GWs. So does the eccentricity, thus orbits
tend to become circular on long timescales. Note, however,
that eccentricity evolution is very sensitive, in particular, it
hardly evolves for quasicircular orbits. One is thus forced to
consider what happens when other physics sets in.

B. Evolution in the presence of scalar
and vector radiation

Consider, then, binary components carrying some addi-
tional charge. The simplest examples include scalar charge,
as is the case in scalar-tensor theories, or electromagnetic
charge (the theory below also describes some dark matter
models with millicharged components [18]). We model this
via the theory of massless fields

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

8πG
−gμνΦ;μΦ;ν−

1

2
FμνFμν

−
2ffiffiffiffiffiffi−gp

X2
j¼1

ðmjþ4πq0jΦÞ
Z

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zjμ _zjν

q
δ4ðx− zjÞ

−
8πffiffiffiffiffiffi−gp

X2
j¼1

q1jAα

Z
dλ_zαjδ

4ðx− zjÞ
�
: ð13Þ

Here,Φ is a massless scalar, Aμ is a massless vector and the
Maxwell tensor Fμν ¼ ∇μAν −∇νAμ. Each of the binary
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components carries a charge qsi of the corresponding spin-s
field (s ¼ 0, 1 for scalar and vectors, respectively).
The details of the calculation are shown in Appendix A.

As might be anticipated, in the weak field regime the
motion is Keplerian with energy and angular momentum

E ¼ −
G̃m1m2

2a
; L2 ¼ G̃m2

1m
2
2að1 − e2Þ
M

; ð14Þ

where the effective Newton’s constant is now

G̃≡G − 4π
qs1q

s
2

m1m2

; ð15Þ

where we assume (without loss of generality) that only one
further interaction (s ¼ 0 or s ¼ 1) is turned on.
In the Newtonian approximation, radiation propagates in

flat space and the Green’s function for the problem is well
known. Averaging over an orbit, we find the surprisingly
compact expressions for the rate of energy and angular
momentum emission

h _Eradi¼ 2πðsþ1Þ
3

G̃2

a4
ðqs1m2−qs2m1Þ2

�
2þe2

ð1−e2Þ52
�
; ð16Þ

h _Lradi ¼ 4πðsþ 1Þ
3

G̃
3
2ffiffiffiffiffi

M
p

a
5
2ð1 − e2Þ ðq

s
1m2 − qs2m1Þ2; ð17Þ

resulting in the spin-independent dipolar ratio

h _Lradi
h _Eradi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ω0

�
1 − e2

1þ e2
2

�
: ð18Þ

The flux of scalar energy in the circular orbit limit agrees
with that of Refs. [20–22]. Our results for the electromag-
netic flux of energy and angular momentum agree with
those in Refs. [23,24] (after a proper redefinition of charge).
In the adiabatic approximation the major semiaxis and the
eccentricity follow

h _ai ¼ −
2a2h _Eradi
G̃m1m2

< 0; ð19Þ

h_ei ¼
ffiffiffiffiffiffiffi
M

G̃a

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
h _Eradi
m1m2

�h _Lradi
h _Eradi −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ω0

�
;

¼ −
ffiffiffiffiffiffiffi
M

G̃a

r �
1 − e2

eω0

� h _Eradi
m1m2

�
3e2

2þ e2

�
≤ 0: ð20Þ

Thus, the emission of massless radiation by a binary causes
the major semiaxis and the eccentricity to decrease in
time: the orbit shrinks and circularizes. Although we will
not explore the subject further, it is important to realize
that electromagnetic fields couple strongly to plasmas.

Thus, when applied to the Maxwell sector, the previous
results should be taken with care [25].

III. ECCENTRICITY EVOLUTION IN
CONSTANT-DENSITY ENVIRONMENTS:

ACCRETION AND DYNAMICAL FRICTION

The presence of surrounding dust or plasma affects the
above picture in different ways. Binaries, such as the event
GW190521 [7,8], may in fact evolve within accretion disks,
where the density of the surrounding environment may play
an important role. The presence of matter surrounding a
BHB will cause accretion to occur [26–28]. A second
mechanism at play is dynamical friction (DF), whereby the
moving BHs get dragged down by the surrounding matter
[27,29–31].
Consider first accretion. We assume that the surrounding

medium has constant density. This implies in particular that
there is a supply mechanism that keeps the density constant
even as the binary sweeps through and accretes some of the
particles. We neglect here the gravitational potential gen-
erated by the accretion disk or surrounding matter; this
approximation is expected to be extremely good for BHBs
close to merger. We focus on Bondi-Hoyle accretion [28].
The mass flux at the horizon is

_mi ¼ 4πG2ρ
m2

i

ðv2i þ c2sÞ3=2
; ð21Þ

when the binary components are BHs. These are
Newtonian formulas, expected to be valid up to factors
of order 1 when the binary is noncompact. Here, vi is the
relative velocity between BH “i” and the environment, and
cs is the sound speed in the medium. We will always
consider regimes for which vi ≫ cs. Numerical studies
indicate that the above description is solid, even in the
presence of wake instabilities [28].
Binaries in a medium are also subject to the gravitational

force due to the wakes generated by the moving bodies, as
we mentioned. This DF depends on the characteristics of
the fluid and on the moving bodies. In summary, DF can
usually be represented by a external force of the type

Fd;i ¼ −G2m2
i ρIdðviÞ_ri; ð22Þ

where the form of the function Id depends on the specifics
of the DF model at hand. We consider the dynamical
friction in a fluid (collisional) medium in the supersonic
regime (vi ≫ cs), for which [30,32–34]2

2This expression assumes linear motion in an extended
medium. The fact that the binary components do not follow a
linear motion and are inside a (possibly thin) disk introduces
some modifications to the DF, which we neglect here for
simplicity. For a more careful analysis of the DF in these type
of systems, we direct the reader to, e.g., Ref. [35,36].
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IdðviÞ ¼
4πλ

v3i
; ð23Þ

where λ is the Coulomb logarithm. It is easy to see that, for
large velocities, the Chandrasekhar formula for collision-
less media [29] reduces to the last expression. We adopt
λ ∼ 20, unless stated otherwise, but note that changing λ is
equivalent to renormalizing the density in the DF expres-
sion. As we show below, even a factor 10 variation in this
parameter has only a mild effect on the overall evolution of
the system.
Taking then a binary evolving under the influence of

accretion and DF, the equations of motion can be written as

mi ̈ri þ _mi _ri ¼ �Gm1m2

r3
rþ Fd;i; ð24Þ

where r ¼ r2 − r1 is the orbital separation vector of the
binary. Introducing the center of mass of the binary

R ¼ m1r1 þm2r2
m1 þm2

; ð25Þ

we can write a system of equations describing the vectors r
and R, namely

̈r ¼ f1 _rþ f2 _Rþ f3r; ð26Þ

R̈ ¼ f4 _rþ f5 _Rþ f6r; ð27Þ

where the functions fi are given by

f1 ¼ −
G2MqρðIa1 þ Ia2 þ Id1 þ Id2Þ

ðqþ 1Þ2 ; ð28Þ

f2 ¼
G2Mρ½Ia1 þ Id1 − qðIa2 þ Id2Þ�

qþ 1
; ð29Þ

f3¼GM

�
G3Mqρ2ðIa1−qIa2Þ½Ia1þId1−qðIa2þId2Þ�

ðqþ1Þ4 −
1

r3

�
; ð30Þ

f4 ¼
G2Mqρ½qðIa2 − Id2Þ − Ia1 þ Id1�

ðqþ 1Þ3 ; ð31Þ

f5 ¼ −
G2Mρ½q2ðIa2 þ Id2Þ þ Ia1 þ Id1�

ðqþ 1Þ2 ; ð32Þ

f6 ¼ −
G4M2qρ2ðIa1 − qIa2Þ½q2ðIa2 þ Id2Þ þ 2qðIa1 þ Ia2Þ þ Ia1 þ Id1�

ðqþ 1Þ5 : ð33Þ

Here, we defined

Iai ¼
4π

ðv2i þ c2sÞ3=2
; Idi ¼ IdðviÞ: ð34Þ

Note that, due to accretion, both the mass ratio and the total
mass evolve in time. We can compute their evolution via
Eq. (22), obtaining

_q ¼ G2MqρðqIa2 − Ia1Þ
qþ 1

; ð35Þ

_M ¼ G2M2ρðq2Ia2 þ Ia1Þ
ðqþ 1Þ2 : ð36Þ

To investigate the evolution of the system, Eqs. (26),
(27), (35), and (36) must be solved together. Note that the
equations for the center of mass vector predict a boost, as
can be seen in [12]. To analyze the eccentricity evolution,
however, we have to focus into r instead. Before going into

the full regime, it is instructive to focus on some particu-
lar cases.

A. Equal-mass binaries

For equal mass ratio binaries, q ¼ 1 during the whole
evolution, due to symmetry [cf. Eq. (35)].3 In this case, the
center of mass remains at rest (or constant velocity) and
the equations simplify considerably. Considering R ¼ 0,
we have

̈r ¼ −
G2Mρ

2
ðIa þ IvÞ_r −

GM
r3

r; ð37Þ
where we dropped the particle label index because drag
and accretion forces are the same for both particles.
Additionally, the total mass of the particles also evolves
because of accretion. The total mass evolution is given by

3We note that we are considering a homogeneous medium.
Density lumps in the medium can introduce asymmetries that can
affect the outcome of the motion.
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_M ¼ G2M2ρIa
2

: ð38Þ

To track the eccentricity of the system, it is useful to
describe the evolution of the total mechanical energy and
the angular moment of the reduced mass. The evolution of
the mechanical energy can be found by analyzing the power
extracted by the external force. We have that the energy per
unit of reduced mass is determined by

_ε ¼ −
G2MρðIa þ IvÞ

2
_r · _r ¼ −

G2Mρk
2v

; ð39Þ

where v ¼ j_rj, and we considered ðIa þ IvÞ ≈ k=v3, which
is valid even for collisional DF in the limit v=cs ≫ 1.4 The
evolution of the angular momentum per reduced mass
(jr × _rj) follows from the differential Eq. (37),

_h ¼ −
G2Mρk
2v3

h: ð40Þ

Finally, the eccentricity can be found by tracking

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

εh2

G2M2

s
: ð41Þ

1. Averaging the energy and angular momentum
evolution for elliptic orbits

In a similar fashion to that of Sec. II where we dealt with
fundamental fields, we can consider Eqs. (39) and (40) as
“fluxes” in which the rhs is computed for a fixed orbit. For
simplicity, let us consider only DF, i.e., M is constant
during the evolution. For an elliptical orbit, using the
average defined in Appendix A, we find the energy and
angular momentum loss for one complete cycle

h_εi ¼ −
að1 − e2Þ2Gkρ

ffiffiffiffiffiffi
GM
a

q
4π

Z
2π

0

dφgε; ð42Þ

h _hi ¼ −
a2ð1 − e2Þ7=2Gkρ

4π

Z
2π

0

dφgh; ð43Þ

gh ¼ ð1þ e cosφÞ−2ð1þ e2 þ 2e cosφÞ−3=2; ð44Þ

gε ¼ ð1þ e cosφÞ−2ð1þ e2 þ 2e cosφÞ−1=2: ð45Þ

Finally, we can use the following relations

a ¼ −
GM
2ε

; e2 ¼ 1 − 2
εh2

G2M2
; ð46Þ

to rewrite Eqs. (42)–(43) in terms of a and e. For low-
eccentricity orbits, we find

h _ai ¼ −kρ

ffiffiffiffiffiffiffiffiffi
Ga5

M

r �
1þ 3e2

4
þOðe4Þ

�
; ð47Þ

h_ei ¼ 3

2
kρ

ffiffiffiffiffiffiffiffiffi
Ga3

M

r
e
�
1þ 3e2

8
þOðe4Þ

�
: ð48Þ

From the above relations, we see that eccentricity increases
in time under the effect of the dissipative environmental
forces. This has been observed in some works considering
motion under the influence of drag [12,27,37].
Using the formalism of adiabatic invariants (see e.g.,

[38]) one may be led to expect eccentricity to be constant
under the adiabatic approximation (which would contradict
some of the results discussed here). While eccentricity is a
constant at leading order, the semimajor axis does evolve
one this timescale, and some conclusions can be drawn for
GW binary systems [39]. Although eccentricity is indeed
an adiabatic invariant at leading order, it does not need to be
(and it is not, in general) a constant of motion at next-to-
leading order [40,41]. Additionally, under the regime of
validity of the adiabatic approximation, it is true that the
eccentricity must change over a timescale much larger than,
for instance, the semimajor axis (which is not a constant of
motion at leading order). We have verified that eccentricity
indeed increase by considering, for instance, a system
subject to only accretion-driven forces (which is subdomi-
nant over DF), with the evolution of eðaÞ converging for
ρ → 0, indicating that indeed eccentricity does change
adiabatically.

2. Dissipative forces, GWs and the eccentricity evolution

As seen above, dissipative forces such as DF increase the
orbital eccentricity of the binary. On the other hand,
radiative mechanisms, such as GW emission, act to
decrease the orbital eccentricity. We now quantify the
combined effect, to understand how binaries behave in
astrophysical environments, focusing in the GW channel
only. We can use the equations for h _ai and h_ei to compute
da=de. When only GW emission contributes [3,42],

da
de

¼ 12a
19e

�
1þ 3323

912
e2 þOðe4Þ

�
ðGWonlyÞ: ð49Þ

On the other hand, DF alone produces

da
de

¼ −
2a
3e

�
1þ 3

8
e2 þOðe3Þ

�
ðDFonlyÞ: ð50Þ

Curiously, the DF result (expressed in this way) does not
depend explicitly on the medium density. At linear order,
we can combine the effects of GW emission and DF by

4For the model adopted here, considering only DF, we have
k ¼ 32πλ (note that vi ¼ v=2 for symmetric binaries).
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simply adding the energy and angular momentum loss, and
find, up to terms of order Oðe0Þ,

da
de

¼ 6að5c5kρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa11

p
þ 32G3M4Þ

eð304G3M4 − 45c5kρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMa11

p
Þ
ðGWþ DFÞ: ð51Þ

Interestingly, when the two effects are combined the
density of the medium manifests itself. This is because
the density balances the contribution from the energy and
angular momentum loss. For ρ ¼ 0, we recover the
standard GW case. Clearly, there is a critical value for
the distance as function of the medium density in which
da=de changes sign. We have

ac
ð100GM⊙

c2 Þ¼ 3×104k−2=11
�

M
100M⊙

�
7=11

�
ρ10
ρ

�
2=11

; ð52Þ

where ρ10 ¼ 10−10 g cm3. For a≲ ac, GW emission is
dominant over DF and the eccentricity decreases. The
factor k−2=11 ∈ ½0.1; 0.5� for most reasonable scenarios.5

The critical distance given by Eq. (52) dictates the
balance between environmental forces and GW emission,
indicative of whether quasicircular orbits are indeed
expected close to coalescence. However, other factors
may be important. One of them is the adiabatic assumption
(explored in the Appendix B, where we show evidence that
it does not impact our findings substantially), the other
concerns the eccentricity evolution, which depends on the
initial conditions and which may lead to extremely small
periastron distances.

Figure 1 shows the result of the integration of Eq. (51),
including corrections for the DF part up to order Oðe12Þ.
We focus on initial semimajor axis of aðe0Þ ¼ 107M, for
different values of the medium density and the initial
eccentricity of the system, but the results hold for other
initial distances, observing as the density scales with the
separation of the system. Note that

G3

c6
ρM2 ¼ 1.6 × 10−24

ρ

ρ10

�
M

100 M⊙

�
2

; ð53Þ

where we used values typical of event GW190521 [7,8,11]
as reference values.
It is clear from the figure that the eccentricity increases

when the environmental effects dominate, for separations
larger than those in Eq. (52). In this region e ∝ ða=MÞ−3=2,
regardless of the medium density and of the initial
eccentricity, as predicted by Eq. (50). It is also important
to note that, while for small separations GW drives the
process with e ∝ ða=MÞ19=12, the eccentricity inherited
from the environment-dominated phase may be substantial.
Thus, the system could still be observed with a consid-
erable eccentricity in a wide range of binary evolution
stages. Note that ρM2 ∼ 10−22 or larger are possible close to
the inner edge of thin accretion disks, thus eccentricities
larger than e ∼ 0.1 are expected during a substantial portion
of the time-in band for a detector such as LISA.
It is instructive to understand the initial and final stages

of the binary evolution analytically. As indicated previ-
ously, the GW and medium dominated regions can be
estimated by looking into their respective solutions for low
eccentricities [i.e., Eqs. (49) and (50)]. The link between
the two regimes can be estimated by analyzing Eq. (51),

100 1000 104 105 106 107
0.001

0.005
0.010

0.050
0.100

0.500
1

10–1 10–2 10–3 10–4 10–5 10–6 10–7 10–1 10–2 10–3 10–4 10–5 10–6 10–7

104 105

0.96

0.98

1

100 1000 104 105 106 107

10–4

0.001

0.010

0.100

1

FIG. 1. Eccentricity evolution of a binary system, with an initial semiaxis a=M ¼ 107. Bottom axis shows the semimajor axis as
function of eccentricity, top axis shows the GW frequency. We run the binary up to a distance of a ¼ 100M. Blue bands indicate LISA’s
frequency range [43]. Left panel: we consider a system with an initial eccentricity of e ¼ 10−3 and different values of the environment
density. Dashed line in inset shows threshold values for which periastron is 100M. Right panel: we fix the density to be ρM2 ¼ 10−29,
changing the initial eccentricity of the system. The vertical line indicates the critical distance, given by Eq. (52).

5Considering λ ∈ ½0.5; 2000�.

CARDOSO, MACEDO, and VICENTE PHYS. REV. D 103, 023015 (2021)

023015-6



imposing the initial eccentricities e0 ¼ eða0Þ. Let us
assume that the motion starts far from the critical distance
(52). We obtain the following simple expressions for the
two regimes

e ¼
(
e0ð aa0Þ−3=2; a ≫ ac;

0.35e0ã
3=2
0 ã19=12ðkρ̃Þ37=66; a ≪ ac;

ð54Þ

with ã ¼ a=ðGM=c2Þ, and ρ̃ ¼ G3M2ρ=c6. The above
solutions are valid mostly for low densities and low initial
eccentricities. These expressions can be used to understand
all of the peculiarities of Fig. 1.
For very large eccentricities, it is conceivable that the

distance of closest approach would be so small that the
components would effectively collide. For the systems we
explored, this possibility is not realized. The minimum
distance rmin obeys

rmin > 100
GM
c2

; ð55Þ

which can be translated to maximum eccentricity of
e ¼ 1–100ðGM=c2Þ=a, represented by the dashed line in
the inset of the left panel of Fig. 1. This indicates that we
can expect the objects to pass relatively close to each other
without colliding during the evolution, for the density range
investigated in the figure. Interestingly, this collision
avoidance is only possible due to the GW effect of
decreasing the binary eccentricity: if only the medium
effects were in play, the objects would collide much sooner
and during a highly eccentric motion.
Newtonian circular binaries emit GWs at a frequency

fGW ¼ ω0=π. Eccentricity makes the spectrum more com-
plex. Elliptical orbits will in general generate a spectrum

fGW ¼ n
ω0

2π
; with n ≥ 1: ð56Þ

Therefore, in general, all harmonics of the orbital frequency
contribute to the GW frequency. The dominant frequency,
or equivalently the n ¼ n̄, depends on the eccentricity of
the system. The higher the eccentricity, the higher the value
of n̄. In other words, high-frequency bursts are emitted at
periastron [44], which means in practice that the source can
enter the LISA band much sooner than what seems to be
implied by the figure. In Fig. 1 we also show the frequency
of the system normalized by the value of n. We highlight
that the frequencies fall into the LISA band while having a
considerable eccentricity.

B. Asymmetric binaries and accretion

To implement the simple adiabatic approximation
described in the previous sections, we have focused on
symmetric binaries and neglected accretion. This approxi-
mation enabled us to understand the evolution under the

effect of both dynamical friction and GW backreaction.
However, asymmetry leads to novel, important effects. It was
realized recently that unequal-mass binaries may acquire a
large center-of-mass velocity as the evolution proceeds [12].
We can also verify here that accretionmight not play a central
role in the earlier stages of eccentricity gain.
In order to understand asymmetric binaries and the

influence of accretion, we integrate the full system of
equations given by Eqs. (26)–(27) and (35)–(36), neglecting
possible GW backreaction into the system. This approxi-
mation should be valid far from the critical distance (52),
where the environmental effects dominate over GW.We also
focus in a regime in which the adiabatic approximation is
valid for symmetric binaries in the absence of accretion.
In Fig. 2 we plot the eccentricity as function of the orbital

distance for a medium with density ρM2 ¼ 10−29, with
initial separation major semiaxis a0 ¼ 107M and eccen-
tricity e ¼ 0.001. We verify that the results remain essen-
tially the same for ρM2 ∈ ½10−28; 10−30�, indicating that we
are in the regime in which the adiabatic approximation is
valid (see Appendix B). We also consider initial mass ratios
q ¼ 1, 1.5 and 2. For higher mass-ratios eccentricity grows
faster as the distance decreases, which is evident by
analyzing the slope of the curves in Fig. 2. We also display
this eccentricity growth by using a fit (dashed lines in
Fig. 2) to extrapolate the evolution data up to higher
eccentricities. This implies that asymmetric binaries will
reach highly eccentric motion faster than symmetric ones.
Accretion has little impact in the evolution of eccen-

tricity, when compared to dynamical friction, for the
density range considered in this paper. However, we should
highlight that this is model dependent: to perform the
computations, we fix the DFmodel with λ ¼ 20. In general,
in the high-velocity limit, the ratio between the DF force
and accretion force is λ, and, as such, λ ¼ 20 indicates a
medium in which dynamical friction generally dominates

1 105 5 105 1 106 5 106 1 107
0.001

0.005

0.010

0.050

0.100

0.500

1

FIG. 2. Eccentricity evolution for different initial mass ratios
(q ¼ 1.0, 1.5 and 2.0), when accretion is included. The dashed
line is an analytical fit that enable us to predict at which distance
the system will reach highly eccentric motion.
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over accretion. Additionally, because λ appears combined
with the medium density in the DF force, it also influences
the density scales in which the orbits evolve adiabatically.

IV. DISCUSSION

We studied the evolution of eccentricity of compact
binaries, evolving via emission of massless fields and of
environmental accretion and gravitational drag. We proved
that the emission of massless scalars, vectors of tensors
circularizes the orbits. In particular, the critical distance at
which the orbits start to circularize is larger when additional
scalar or vector charges are considered. The integration of
Eqs. (19)–(20) shows that

a=M ¼ c
e4=3

1 − e2
; ð57Þ

with c a constant, for scalar or vector-driven binaries.
Compare this against the gravitational-driven result, a=M ∼
ce12=19=ð1 − e2Þ at small eccentricities [3]. The eccentricity
for these channels thus decays less quickly than in vacuum.
Nevertheless, even when additional massless fields are
considered, circular orbits remain stable.
By contrast, we show that sources of interest for GW

detectors, evolving in thin accretion disks or other relatively
large-density environment may inherit a substantial eccen-
tricity by the time they reach the mHz band. As we showed,
high eccentricity is also a key feature of large mass ratio
binaries, which is one possible explanation of the
GW190521 event [45]. Together with previous results on
the center-of-mass velocity of asymmetric binaries [12],
these results show that modeling binaries in accretion disks
or nontrivial environments is challenging but crucial. In
particular, these effects may have an important impact in
attempts at constraining environmental properties [31,46–
48] or on testing fundamental properties of compact
binaries [25,49].
Our results complement previous findings [50,51]. In

particular, eccentricity excitation via asymmetric torques
from circumbinary discs was found to keep supermassive
black holes on eccentric orbits for a relevant fraction of
their evolutionary phase [50]. Along the same line, it was
recently shown that circumbinary disk torques may lead an
equal-mass binary to evolve towards an equilibrium orbital
eccentricity of e ≃ 0.45 [51]. Interestingly, in that same
analysis it was found that, when the circumbinary gas is in a
thin disk, DF causes a damping in the eccentricity if the
orbital eccentricity is e > 0.45. This effect is not captured
by our model, as we do not consider the full modeling of
the fluid perturbations and its gravitational effects.
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APPENDIX A: SCALAR AND VECTOR
RADIATION

In addition to GW emission, many theories predict that
binary could also emit through other channels, such as
scalar and vector radiation. These additional emission can
take place, for instance, if the BHs composing the binaries
have scalar charges, as it is the case for self-interacting
scalar fields, or even electromagnetic charges, as predicted
by the Kerr-Newman class of BHs. In what follows, we
explore the consequences of additional radiative sectors for
the evolution of binaries.

1. Scalar charge

a. The theory

Consider the following theory describing a real massless
scalar field Φ sourced by two particles moving on a curved
spacetime with metric gμν:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

8πG
−gμνΦ;μΦ;ν

−
2ffiffiffiffiffiffi−gp

X2
j¼1

ðmjþ4πq0jΦÞ
Z

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zjμ _zjν

q
δ4ðx− zjÞ

�
;

ðA1Þ

withΦ;μ ≡ ∂Φ=∂xμ and the determinant g≡ detðgμνÞ. Here
zμj ðλÞ is the world line of the particle j ¼ f1; 2g para-
metrized by λ, with _zμj ≡ dzμj =dλ. Particle j has mass and
scalar charge, respectively,mj and q0j . This theory has been
extensively studied (see, e.g., Refs. [52,53]).
Taking the variation of the action with respect

to gμν yields

CARDOSO, MACEDO, and VICENTE PHYS. REV. D 103, 023015 (2021)

023015-8



Gμν ¼ 8πG

�
TS
μν þ

1ffiffiffiffiffiffi−gp
X2
j¼1

ðmj þ 4πq0jΦÞ

×
Z

dλ
ð_zjÞμð_zjÞνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ _zjα _zjβ

q δ4ðx − zjðλÞÞ
�
; ðA2Þ

with the scalar stress-energy tensor

TS
μν ¼ Φ;μΦ;ν −

gμν
2

gαβΦ;αΦ;β: ðA3Þ

The variation of S with respect to δΦ gives

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ

¼ 4πffiffiffiffiffiffi−gp
X2
j¼1

q0j

Z
dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zjμ _zjν

q
δ4ðx − zjðλÞÞ; ðA4Þ

and with respect to δzμj gives

ðmj þ 4πq0jΦÞuαj∇αu
μ
j ¼ −4πq0jðgμα þ uμju

α
j ÞΦ;α; ðA5Þ

where ∇ is the Levi-Civita covariant derivative, uμj ≡
dzμj =dτj is the 4-velocity of particle j and τj is its proper
time.

b. Newtonian binary with no radiation

Consider a slowly moving, Newtonian binary, such that
energy and angular momentum fluxes can be neglected at
leading order. In this limit Eq. (A2) becomes a simple
Poisson equation [54].

∇2U ¼ 4πG
X2
j¼1

mjδ
3ðx − rjðtÞÞ; ðA6Þ

where zμj ≡ ðt; rjðtÞÞ. The gravitational potential Uðt; xÞ is
weak, i.e., jUj ≪ 1, and enters in the Newtonian metric

ds2 ¼ −ð1þ 2UÞdt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ðA7Þ

There is a (slowly time-varying) scalar field sourced by the
point charges described by Eq. (A4), which in this limit
becomes also a Poisson equation

∇2Φ0 ¼ 4π
X2
j¼1

q0jδ
3ðx − rjðtÞÞ: ðA8Þ

The equation of motion of the particles (A5) simplifies to a
geodesic equation

uαj∇αu
μ
j ¼ −

4πq0j
mj þ 4πq0jΦ0

gμαΦ;α: ðA9Þ

We see that the particles are accelerated by the scalar.
With the Newtonian metric (A7) and assuming
q1; q2 ≪ jr2 − r1j, this equation can be written in a
familiar form6

d2

dt2
rj ¼ −∇Uðt; rjÞ − 4π

q0j
mj

∇Φ0ðt; rjÞ; ðA11Þ

where ∇ is the usual three-dimensional gradient operator.
Using Eq. (A6) we obtain7

Uðt;r1Þ¼
Gm2

jr2ðtÞ− r1j
; Uðt;r2Þ¼

Gm1

jr2− r1ðtÞj
; ðA12Þ

Φ0ðt;r1Þ¼
q02

jr2ðtÞ− r1j
; Φ0ðt;r2Þ¼

q01
jr2− r1ðtÞj

; ðA13Þ

c. Elliptic motion and orbit averaging

As one expects, (A11) with (A13) describes the
Keplerian orbital motion with energy and angular momen-
tum given in Eq. (14). These differ from (3) and (4) due to
the scalar interaction. Using spherical coordinates with
origin at the center of mass the trajectories can be written as
r1 ¼ ðr1ðφpÞ;φp; π=2Þ and r2 ¼ ðr2ðφpÞ;φp þ π; π=2Þ
with

r1 ¼
m2

M
rp; r2 ¼

m1

M
rp; ðA14Þ

rpðφpÞ ¼
að1 − e2Þ

1þ e cosφp
: ðA15Þ

Their angular velocity is

6One can see this directly by plugging the Newtonian metric
(A7) inside the particle’s action in (A1), obtaining

Spart ¼
X
j

mj

Z
dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2UÞ − jdrj=dtj2

q

≃
X
j

mj

Z
dt

�
1þ U −

1

2
jdrj=dtj2

�
: ðA10Þ

This is just the action describing a nonrelativistic system of
particles in a gravitational potential U.

7Actually, in this step we cannot really consider point sources,
otherwise we would find problems with a diverging “self-force.”
Fortunately, this is not a real problem, and we can proceed by
assuming that the particles have a small, but finite, size.

ECCENTRICITY EVOLUTION OF COMPACT BINARIES AND … PHYS. REV. D 103, 023015 (2021)

023015-9



_φp ¼
ffiffiffiffiffiffiffiffi
G̃M
a3

s
ð1 − e2Þ−3=2ð1þ e cosφÞ2: ðA16Þ

Finally, we define the average of a quantity X over one
period T as

hXi ¼ ω0

2π

Z
2π

0

dφ
_φ
XðφÞ; ðA17Þ

where ω0 is the (Keplerian) orbital frequency.

d. Radiation emitted by a Newtonian binary

A Newtonian binary sources a scalar field described by
Eq. (A4), which can be put in the form

□Φ ¼ 4πρðt; xÞ≡ 4πffiffiffiffiffiffi−gp
X2
j¼1

q0jδ
3ðx − rjðtÞÞ: ðA18Þ

Thus, the binary will lose energy and angular momentum
through this channel and the motion will not be truly
Keplerian; the radiation reaction force entering (A5) (which
we are neglecting in the computation of the radiation,
because we are using an adiabatic approximation) will be
responsible for a deviation to the Keplerian orbit. Let us
compute the radiation emitted by this binary of scalar
charges in the (leading) dipole approximation.
In the Newtonian approximation the scalar radiation

propagates in flat space. So, the solution of (sourced) scalar
wave equation is

Φðt; xÞ ¼
Z

d3x0
ffiffiffiffiffiffiffi
−g0

p ρðt − jx − x0j; x0Þ
jx − x0j : ðA19Þ

In the dipole approximation it is easy to see that

Φðt; r → ∞; θ;φÞ ≃ 1

r
er · _pðt − rÞ; ðA20Þ

with the dipole moment

pðtÞ≡
Z

d3x0
ffiffiffiffiffiffiffi
−g0

p
ρðt; x0Þx0 ¼

�
q01m2 − q02m1

M

�
rpðtÞ:

This approximation is valid for scalar waves with frequency
ω ∼ ω0 ≪ 1=a, where ω0 is the orbital frequency (which is
compatible with the Newtonian approximation). The radi-
ated energy flux is

_Erad ¼ − lim
r→∞

r2
Z

dΩTS
rt; ðA21Þ

and the angular momentum through

_Lrad ¼ lim
r→∞

r2
Z

dΩTS
rφ: ðA22Þ

Plugging the dipole approximation in the scalar’s stress-
energy tensor (A3) we can write the last two expressions in
the form

_Erad ¼
�
q01m2 − q02m1

M

�
2
Z

dΩ½er · ̈rp�2;

¼ 4π

3

G̃2

r4p
ðq01m2 − q02m1Þ2; ðA23Þ

where we used ̈rp ¼ −G̃Mrp=r3p and integrated over the
sphere, and

_Lrad ¼ −
�
q01m2 − q02m1

M

�
2
Z

dΩðer · ̈rpÞ∂φðer · _rpÞ

¼ 4π

3
G̃

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ

p
ffiffiffiffiffi
M

p
r3p

ðq01m2 − q02m1Þ2: ðA24Þ

Averaging over an orbit we find

h _Eradi ¼ 2π

3

G̃2

a4
ðq01m2 − q02m1Þ2

�
2þ e2

ð1 − e2Þ52
�
; ðA25Þ

h _Lradi ¼ 4π

3

G̃
3
2ffiffiffiffiffi

M
p

a
5
2ð1 − e2Þ ðq

0
1m2 − q02m1Þ2; ðA26Þ

resulting in the ratio

h _Lradi
h _Eradi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ω0

�
1 − e2

1þ e2
2

�
: ðA27Þ

In the adiabatic approximation the major semiaxis and the
eccentricity follow

h _ai ¼ −
2a2h _Eradi
G̃m1m2

< 0; ðA28Þ

h_ei ¼
ffiffiffiffiffiffiffi
M

G̃a

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
h _Eradi
m1m2

�h _Lradi
h _Eradi −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ω0

�
;

¼ −
ffiffiffiffiffiffiffi
M

G̃a

r �
1 − e2

eω0

� h _Eradi
m1m2

�
3e2

2þ e2

�
≤ 0: ðA29Þ

Thus, the emission of scalar radiation by a binary causes the
major semiaxis and the eccentricity to decrease in time: the
orbit shrinks and circularizes. In the circular orbit limit our
results are in agreement with those of Refs. [20–22].
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2. Electric charge

a. Theory

Here we consider the theory of an electromagnetic field
Aμ sourced by two electric charges moving on a curved
spacetime with metric gμν,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
8π

−
1

2
FμνFμν

−
2ffiffiffiffiffiffi−gp

X2
j¼1

mj

Z
dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _zjμ _zjν

q
δ4ðx − zjÞ

−
8πffiffiffiffiffiffi−gp

X2
j¼1

q1jAα

Z
dλ_zαjδ

4ðx − zjÞ
�
; ðA30Þ

where Fμν ≡ ∂μAν − ∂νAμ and q1j is the electric charge of
particle j.
Taking the variation of the action with respect to Aμ

yields the (sourced) Maxwell equations

∂μFμν ¼ 4πJν; ðA31Þ

Jν ≡ 1ffiffiffiffiffiffi−gp
X2
j¼1

q1ju
ν
jδ

3ðx − rjÞ; ðA32Þ

where uj is the 4-velocity of particle j. In the Newtonian
approximation and neglecting radiation (valid for slowly
moving charges) we can repeat the exact same steps that we
applied to the scalar charges to find that the electric charges
also describe a Keplerian orbit; the only difference being
that in the definition of G̃ we have now electric charges
instead of scalar charges.
The stress-energy tensor of the electromagnetic field is

TEM
μν ¼ −

1

4
FαβFαβgμν þ FμαFν

α: ðA33Þ

b. Radiation emitted by a Newtonian binary

Again, the binary will radiate energy and angular
momentum—in this case through electromagnetic waves—
and the motion will not be truly Keplerian; in the regime we
are considering, the orbits will change adiabatically.
Using the Lorenz gauge ∂μAμ ¼ 0 the sourced Maxwell

equations become

□Aα ¼ 4πJα; ðA34Þ
which we can decompose into

□Φ ¼ 4πρðt; xÞ≡ 4πffiffiffiffiffiffi−gp
X2
j¼1

q1jδ
3ðx − rjÞ; ðA35Þ

□A ¼ 4πjðt; xÞ≡ 4πffiffiffiffiffiffi−gp
X2
j¼1

q1jvjδ
3ðx − rjÞ; ðA36Þ

where we used that the sources are nonrelativistic. In the
Newtonian approximation we consider that the electro-
magnetic waves propagate in flat space. So, the solution to
the (sourced) Maxwell equations is

Φðt; xÞ ¼
Z

d3x0
ffiffiffiffiffiffiffi
−g0

p ρðt − jx − x0j; x0Þ
jx − x0j ; ðA37Þ

Aðt; xÞ ¼
Z

d3x0
ffiffiffiffiffiffiffi
−g0

p jðt − jx − x0j; x0Þ
jx − x0j : ðA38Þ

In the dipole approximation one can show that

Φðt; r → ∞; θ;φÞ ≃ 1

r
er · _pðt − rÞ; ðA39Þ

Aðt; r → ∞; θ;φÞ ≃ 1

r
_pðt − rÞ; ðA40Þ

with the dipole moment

pðtÞ≡
Z

d3x0
ffiffiffiffiffiffiffi
−g0

p
ρðt; x0Þx0 ¼

�
q11m2 − q12m1

M

�
rpðtÞ:

Now, the magnetic field is

Bðt; r → ∞; θ;φÞ≡ ∇ × A ≃ −
1

r
er × p̈ðt − rÞ; ðA41Þ

and using Ampère-Maxwell’s law we have

_Eðt; r → ∞; θ;φÞ ¼ ∇ × B ¼ _B × er; ðA42Þ

which, integrating in time, gives the electric field

Eðt; r → ∞; θ;φÞ ¼ B × er: ðA43Þ

These result in the Poynting vector

Sðt; r → ∞; θ;φÞ≡ E × B ¼ jBj2er; ðA44Þ

where we used Lagrange’s rule for the triple cross product
and that ðB · erÞ ¼ 0. Now using the scalar quadruple
product identity we have

jBj2 ¼ 1

r2
ðjp̈j2 − ðp̈ · erÞ2Þ: ðA45Þ

So the radiated energy flux is
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_Erad ¼ − lim
r→∞

r2
Z

dΩTEM
rt ¼ lim

r→∞
r2
Z

dΩS · er;

¼
�
q11m2 − q12m1

M

�
2
Z

dΩ½j̈rpj2 − ð̈rp · erÞ2�;

¼ 8π

3

G̃2

r4p
ðq11m2 − q12m1Þ2; ðA46Þ

where we used ̈rp ¼ −G̃Mer=r2 and integrated over the
sphere. The radiated angular momentum flux

_Lrad ¼ lim
r→∞

r2
Z

dΩTEM
rφ ;

¼ 2

�
q11m2 − q12m1

M

�
2

×
Z

dΩ½ðer · ̈rpÞ∂φðer · _rpÞ − ðer · ̈rpÞðeφ · ̈rpÞ�;

¼ 8π

3
G̃

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1 − e2Þ

p
ffiffiffiffiffi
M

p
r3p

ðq11m2 − q12m1Þ2: ðA47Þ

Thus, averaging over one orbital period, we conclude that
the electric charges radiate twice the energy and twice
the angular momentum per unit of time in comparison with
the scalar charges [compare with Eqs. (A23) and (A24)].
So, the ratio between the angular momentum and energy
carried by the radiated electromagnetic field h _Lradi=h _Eradi
is the same as for the scalar field and is given by (A27).
So, the emission of electromagnetic waves by a binary
causes both the major semiaxis and eccentricity to decrease
in time: the orbit shrinks and circularizes [see (A28) and
(A29)]. Our results for the electromagnetic radiation
emitted by a binary are in agreement with the ones of
Refs. [23,24].

APPENDIX B: WHEN THE ADIABATIC
ASSUMPTION FAILS

We have made extensive use of the adiabatic approxi-
mation in the main text to analyze the evolution of the
eccentricity of the system subjected to the GW and
environmental forces. However, depending on the envi-
ronmental density and the initial separation of the binary,
this approximation may not be valid. In this subsection, we
address how much the adiabatic approximation may
underestimate the eccentricity increase in the system. In
order to investigate the validity of the adiabatic approxi-
mation for equal mass binaries, we integrate Eq. (37)
(neglecting accretion), considering specific initial condi-
tions. With the numerical solution, we construct the
eccentricity as function of the orbital distance, by tracking

the expression (41). Since this system only takes into
account the environmental effects, we compare this sol-
ution to the one obtained from the adiabatic approach by
integrating Eq. (50) under similar conditions (with higher
order of eccentricity included). With the results, we
compute the relative deviation of the eccentricity, i.e.,

δe
ea

¼ jen − eaj
ea

; ðB1Þ

where en is the result from Eq. (37) and ea the one from the
adiabatic approximation [considering terms up to Oðe12Þ].
The deviation depends on the medium density and the
initial conditions, but we expect it to approach zero as the
medium density decreases.
In Fig. 3 we plot the eccentricity deviation, considering

initial separation of a ¼ 107M and initial eccentricity
e0 ¼ 0.001. For the dynamical friction, we consider
λ ¼ 20. We can see that for densities of ρM2 ¼ 10−27 the
adiabatic approximation fails to quantitatively describe
the eccentricity evolution of the system, underestimating
the eccentricity increasing from the DF. For densities as
small as ρM2 ¼ 10−29 the adiabatic approach works mostly
in the initial stages of the binary evolution. At late times,
meaning short distances, we can see that the eccentricity
deviation increases, indicating a possible breaking of the
adiabatic approximation.
The discrepancy between the adiabatic and the numerical

computation of the eccentricity increases at late times
(smaller orbital distances), showing that we cannot under-
estimate the contribution from the environmental forces.
Going beyond the adiabatic approximation shows that the
eccentricity increases even further; this effect is enhanced
for asymmetric binaries and accretion, as we discussed in
the main text.
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FIG. 3. Comparison between the numerical integration of
Eq. (37) and the result from the adiabatic approach. We plot
the deviation normalized by the adiabatic result.
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