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Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its
magnetosphere. The resulting photon flux is sensitive to the product of (i) the ALP-nucleon coupling Gan

which controls the production cross section in the core and (ii) the ALP-photon coupling gaγγ which
controls the conversion in the magnetosphere. We study such emissions in the soft-gamma-ray range
(300 keV to 1 MeV), where the ALP spectrum peaks and astrophysical backgrounds from resonant
Compton up scattering are expected to be suppressed. Using published quiescent soft-gamma-ray flux
upper limits in five magnetars obtained with CGRO COMPTEL and INTEGRAL SPI/IBIS/ISGRI, we put
limits on the product of the ALP-nucleon and ALP-photon couplings. We also provide a detailed study of
the dependence of our results on the magnetar core temperature. We further show projections of our result
for future Fermi-GBM observations. Our results motivate a program of studying quiescent soft-gamma-ray
emission from magnetars with the Fermi-GBM.
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I. INTRODUCTION

The axion arises as a solution to the strong CP problem
of QCD and is a plausible cold dark matter candidate [1–5].
The search for axions, and more generally axion-like-
particles (ALPs) (for which the relationship between
particle mass and the Peccei-Quinn scale is relaxed),
now spans a vast ecosystem including helioscopes, halo-
scopes, interferometers, beam dumps, fixed target experi-
ments, and colliders [6].
This paper concerns indirect detection of ALPs,

specifically their conversion into photons in the magneto-
spheres of neutron stars with strong magnetic fields
(magnetars) [7–9]. The mechanism is as follows1:

relativistic ALPs (a) emitted from the core by nucleon
(N) bremsstrahlung (from the Lagrangian term
L ⊃ Ganð∂μaÞN̄γμγ5N) escape into the magnetosphere,
where they convert to photons (from the Lagrangian
term L ⊃ − 1

4
gaγγaFμνF̃μν) in the presence of the neutron

star magnetic field B. The ALP emission rate strongly
depends on the core temperature, Tc, as T6

c [12,13] while
the conversion rate generally increases with stronger B,
making magnetars, with their high Tc ∼ 109 K and strong
B ∼ 1014 G, a natural target for these studies.
The purpose of this paper is to initiate an investigation

of the signals resulting from ALP-photon conversions in
the quiescent soft-gamma-ray spectrum (300 keV–
1 MeV) from magnetars, similar to probes in the x-ray
band in magnetars [7,8] and in pulsars [14]. Since the
peak of photon energies arising from ALP-photon con-
version lies in the soft-gamma-ray band, this is an
especially important regime to explore. Moreover, while
searches for new physics in the soft and hard x-ray
emission from magnetars must contend with background
from thermal emission and resonant Compton upscatter-
ing respectively, the astrophysical background in the soft-
gamma-ray regime is relatively suppressed as we discuss
in Sec. VII.
Starting with the photon polarization tensor, we

provide in Sec. VI expressions for the photon refractive
indices in the strong and weak magnetic field regimes for
photon energies ω≲ 2me, where me is the electron
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1The conversion of relativistic ALPs near neutron stars begins

with [10] where the probability of conversion was overestimated,
followed by the classic paper [11] which correctly accounted for
nonlinear QED and the photon mass in the ALP-photon con-
version equations. In [11] an order of magnitude calculation of
the conversion probability near the magnetar surface concluded
that it was too small to produce observable signals (the photon
mass term dominates over the ALP-photon mixing term at the
surface). However, the conversion becomes appreciable away
from the surface, due to the different scaling of the photon mass
(∼1=r6) compared to the ALP-photon mixing (∼1=r3).
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mass.2 In Sec. III, the coupled ALP-photon propagation
equations are then solved numerically using the appro-
priate refractive indices. In Sec. IV, the production in the
magnetar core is discussed: this proceeds via bremsstrah-
lung from neutrons ψn: ψn þ ψn ↔ ψn þ ψn þ a.
Combining all of the above ultimately yields the photon
luminosity coming from ALP-photon conversions La→γ ,
as well as the spectral energy distribution. These quan-
tities are obtained for a selection of five magnetars: 1E
2259þ 586, 4U 0142þ 61, 1E 1048.1-5937, 1RXS
J170849.0-400910 and 1E 1841-045. Using published
quiescent soft-gamma-ray flux upper limits (ULs), con-
straints are then put on the product of couplings Gan ×
gaγγ using a spectral analysis whose details are shown
in Sec. X.
The main message of our paper is that quiescent soft-

gamma-ray emission from magnetars is a fertile target to
investigate the physics of ALPs. The Fermi-GBM is a very
useful instrument to determine the UL soft-gamma-ray
fluxes of the 23 confirmed magnetars and such a study
could yield very restrictive constraints on Gan × gaγγ.

II. PHENOMENOLOGY

In this section, we discuss the predicted luminosity from
ALP-photon conversion in the magnetosphere. We assume
a dipolar magnetic field defined by

B ¼ Bsurf

�
r0
r

�
3

: ð1Þ

ALPs propagating radially outwards from a magnetar obey
the following evolution equations derived in [11]:

i
d
dx

0
B@

a

Ek
E⊥

1
CA¼

0
B@

ωr0 þΔar0 ΔMr0 0

ΔMr0 ωr0 þΔkr0 0

0 0 ωr0 þΔ⊥r0

1
CA

×

0
B@

a

Ek
E⊥

1
CA; where ð2Þ

Δa ¼ −
m2

a

2ω
; Δk ¼ ðnk − 1Þω;

Δ⊥ ¼ ðn⊥ − 1Þω; ΔM ¼ 1

2
gaγγB sin θ: ð3Þ

The parallel and perpendicular electric fields are denoted
by EkðxÞ and E⊥ðxÞ, respectively, while aðxÞ denotes the
ALP field. The distance from the magnetar is given by the
rescaled dimensionless parameter x ¼ r=r0, where r is

the distance from the magnetar and r0 its radius. The energy
of the photon is given by ω, the ALP mass by ma, and the
ALP-photon coupling by gaγγ. θ is the angle between the
direction of propagation and the B-field.
The refractive indices nk and n⊥ are obtained from the

photon polarization tensor, which can be worked out at one-
loop level in various limits of the photon energy ω and the
strength of themagnetic fieldB relative to the quantumcritical
magnetic field Bc, given by Bc ¼ m2

e=e ¼ 4.413 × 1013 G.
Here e ¼ ffiffiffiffiffiffiffiffi

4πα
p

and the fine structure constant α ≈ 1=137.
Near the surface, the B-field of the magnetars we consider

typically exceeds Bc, so that ω≲ 2me and B > Bc. The
corresponding refractive indices are given in Eq. (C15).
Given the spatial dependence from Eq. (1), the magnetic
field decreases to below the critical strength at a distance
∼3r0. Beyond that, we are in a regime where ω≲ 2me and
B ≪ Bc, with ð ω

2me
Þ2ð BBc

Þ2 ≪ 1. The corresponding refractive
indices are given in Eq. (43). For further details, see Sec. VI.
After calculating the parallel refractive index nk, the

probability of conversion can be obtained as a function of
gaγγ and the mass ma by numerically solving Eq. (2). The
interesting regime for conversion is r ¼ ra→γ ∼Oð1000Þr0
(the “radius of conversion”), where the conversion prob-
ability becomes large. This arises from the ALP-photon
mixing becoming maximal when ΔM ∼ Δk. Far away from
the surface, ΔM ∼ 1=r3, while Δk ∼ 1=r6 from Eq. (43),
with the two becoming equal around ra→γ.
Along with the probability of conversion, we require the

normalized ALP spectrum and the number of ALPs being
produced from the magnetar core. Integrating the pro-
duct of these quantities over the ALP energy range
ω ⊂ ðωi;ωfÞ ¼ ð300 keV; 1000 keVÞ gives us the final
predicted luminosity from ALP-photon conversions. Our
master equations for the final predicted theory photon
luminosity are Eqs. (12)–(17), which we solve numerically.
A semianalytic calculation following [8] is also performed
to validate our results. We provide further details in Sec. III
and Sec. IV.

III. ALP-PHOTON PROBABILITY
OF CONVERSION

In this section, we provide details of the propagation of
the ALP-photon system through the magnetosphere, with
the aim of deriving the probability of conversion
Pa→γðω; θÞ. Our treatment largely follows the framework
developed by one of the authors in [7,8]. For later work that
followed these initial calculations, we refer to [14]. We note
that [15] performed detailed numerical computations of the
conversion probability in the soft x-ray thermal emission
band, and our results agree with theirs in the appropriate
limit. We note in passing that ALP decays can be neglected.
The propagation of the system is governed by Eqs. (2)

and (3), while the relevant refractive indices will be

2In the soft-gamma-ray regime, one has to start directly from
the photon polarization tensor and take appropriate limits, instead
of starting with the Euler-Heisenberg Lagrangian.
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presented in Sec. VI. It is clear from the structure of the
mixing matrix in Eq. (2) that E⊥ does not mix with the
ALP; we will thus not consider it any further. It is
convenient to reparametrize the other fields as follows:

aðxÞ ¼ cos½χðxÞ�e−iϕaðxÞ;

EkðxÞ ¼ i sin½χðxÞ�e−iϕEðxÞ; ð4Þ

where χðxÞ, ϕaðxÞ and ϕEðxÞ real functions. The propa-
gation equations then simplify to

dχðxÞ
dx

¼ −DðxÞ cos½ΔϕðxÞ�;
dΔϕðxÞ

dx
¼ AðxÞ − BðxÞ þ 2DðxÞ cot½2χðxÞ� sin½ΔϕðxÞ�;

ð5Þ

where χð1Þ is the initial state at the surface of the magnetar,
and we have defined the relative phase ΔϕðxÞ ¼
ϕaðxÞ − ϕEðxÞ. For pure initial states, the initial condition
for Δϕð1Þ satisfies Δϕð1Þ ¼ mπ with m ∈ Z. For a pure
ALP initial state it is therefore possible to set Δϕð1Þ ¼ 0.
The ALP-photon conversion probability is then simply

Pa→γðxÞ ¼ sin2½χðxÞ�: ð6Þ

Our results for the conversion probability will be based on a
full numerical solution to the evolution equations. The
probability of conversion Pa→γ is thus obtained by numeri-
cally solving the propagation equations in Eq. (2). For the
calculations, we need the refractive indices that appear in
Eq. (3). These refractive indices are derived in Sec. VI.
We now outline a semi-analytic solution that agrees very

well with our full numerical solution. The semianalytic
solution can be obtained by analogy with time-dependent
perturbation theory in quantum mechanics, leading to [11],

Pa→γðxÞ¼
����
Z

x

1

dx0ΔMðx0Þr0

×exp

�
i
Z

x0

1

dx00½Δa−Δkðx00Þ�r0
�����

2

¼ðΔM0r0Þ2
����
Z

x

1

dx0
1

x03
exp

�
iΔar0

�
x0−

x6a→γ

5x05

�	����
2

:

ð7Þ

These equations are accurate for small enough values of g,
which fall in the regime we are interested in. The second
expression utilized the dimensionless conversion radius,
where the probability of conversion becomes maximal,

xa→γ ¼
ra→γ

r0
¼

�
7α

45π

�
1=6

�
ω

ma

B0

Bc
j sin θj

�
1=3

: ð8Þ

This is valid when the conversion radius is much larger than
the radius of the magnetar. In that limit q̂k → 1 and the
integral in the exponential can be trivially calculated. The
conversion probability becomes

Pa→γðxÞ¼
�
ΔM0r30
r2a→γ

�
2
����
Z

∞

r0
ra→γ

dt
1

t3
exp

�
iΔara→γ

�
t−

1

5t5

�	����
2

;

ð9Þ

where the norm of the integral in (9) is order one for our
benchmark points. We can further simplify the expression
in the large jΔara→γj regime by using the method of
steepest descent, and the small jΔara→γj regime with a
change of variables,

Pa→γðxÞ ¼
�
ΔM0r30
r2a→γ

�
2

8>><
>>:

π
3jΔara→γ je

6Δara→γ
5 jΔara→γj≳ 0.45

Γð2
5
Þ2

5
6
5jΔara→γ j

4
5

jΔara→γj≲ 0.45
:

ð10Þ

We display the function χðxÞ and the probability of
conversion as a function of the radial distance in Fig. 1.
These plots are obtained from a full numerical solution to
the evolution equations.
Before closing this section, we also provide an heuristic

way of studying the conversion probability. The mixing
angle between EkðxÞ and the ALP aðxÞ is given by

tan 2θmix ¼
ΔM

ðΔa − ΔkÞ=2
∼

gB
ð1 − nkÞω

: ð11Þ

For benchmark values of the magnetic field and other
parameters relevant for this work, one can check that at the
surface of the magnetar the mixing is negligible. However,
the mixing (and hence the probability of conversion)
actually increases away from the surface. This can be
understood from the fact that the photon mass term Δk in
the denominator in Eq. (11) goes as Δk ∼ 1=r6, whereas the
ALP-photon mixing term in the numerator goes as
ΔM ∼ 1=r3. There is a point around r ∼Oð1000r0Þ where
the numerator and denominator become comparable, result-
ing in a large mixing angle. The probability of conversion
becomes large at this position, which we call the radius of
conversion ra→γ . Beyond ra→γ, the mixing angle again
becomes small since the ALP mass term Δa in the
denominator of Eq. (11) dominates over both Δk as well
as ΔM.
We note that a phase resolved analysis will require the

introduction of a viewing angle and a time-dependent
rotational phase that is related to the magnetar angular
velocity. If one assumes that the emission region is
localized on the magnetar surface, an opening angle will
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also be introduced. The spectrum will therefore be func-
tions of these extra parameters, and it is possible that a
careful investigation of phase-resolved data will yield
constraints stronger than the ones we are achieving in
the current work. We leave this analysis for future work.
We briefly comment on the subsequent propagation of

unconverted ALPs after they leave the magnetosphere.
ALPs with masses≲10−12 eV emanating from the magnet-
ars in our sample can convert to photons in the magnetic
field of the Milky Way, and this may yield constraints on
gaγγ . Such constraints depend on several astrophysical
parameters, such as the coherent and random magnetic
fields, electron density, the distance of the source, the exact
value of the Galactic magnetic field, the clumpiness of the
interstellar medium, and the warm ionized medium and the
warm neutral medium. A full study of these effects may be
interesting. We refer to [16,17] for further details of these
topics.

IV. NUCLEON BREMSSTRAHLUNG
AND ALP PRODUCTION

In this section, we outline our calculation of the predicted
photon luminosity coming from ALP-photon conversions,
which we denote by La→γ. The observed luminosity of
photons produced by the conversion process can be
schematically written as

La→γ ¼ ðproduction of aÞ × Pa→γ; ð12Þ

where Pa→γ is the conversion probability calculated earlier.

The production in the magnetar core proceeds via
bremsstrahlung from neutrons ψn: ψn þ ψn ↔ ψnþ
ψn þ a. The coupling term in the Lagrangian is L ¼
Gan∂μaψ̄nγ

μγ5ψn [13]. The interaction between the spec-
tator nucleon and the nucleon emitting the axion is modeled
by one-pion exchange (OPE) with a Lagrangian Lnπ ¼
ið2mn=mπÞfγ5π0ψ̄nψn, where f ≈ 1. We refer to [18,19]
and references therein for more details. The relevant tree-
level Feynman diagrams are given in [13].
The photon luminosity from axion conversion is [20]

La→γ ¼
Z

∞

0

dω
1

2π

Z
2π

0

dθ · ω ·
dNa

dω
· Pa→γðω; θÞ; ð13Þ

where Na is the axion emission rate (number per time) and
dNa=dω is the axion energy spectrum,

dNa

dω
¼ Na

T
x2ðx2 þ 4π2Þe−x

8ðπ2ζ3 þ 3ζ5Þð1 − e−xÞ ; ð14Þ

where x ¼ ω=T and is a dimensionless quantity. The total
emission rate of ALPs Na can be obtained from the
following emissivity formula [20]:

Q ¼ 1.3 × 1019 erg · s−1 · cm−3
�

Gan

10−10 GeV−1

�
2

×

�
ρ

ρ0

�
1=3

�
T

109 K

�
6

; ð15Þ

which is the axion emission rate per volume. Here ρ is the
magnetar density and ρ0 ¼ 2.8 × 1014 g · cm−3 is the
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FIG. 1. We show χðxÞ (left panel) and cos2½χðxÞ� and sin2½χðxÞ� (right panel, blue and red curve respectively) as a function of the
dimensionless distance x from the magnetar surface, obtained from a full numerical solution to the evolution equations. The benchmark
point is taken to be ω ¼ 500 keV, ma ¼ 10−8 keV, gaγγ ¼ 10−9 GeV−1, r0 ¼ 10 km, B0 ¼ 0.59 × 1014 G and θ ¼ π=2 for Magnetar
1E-2259þ 586.
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nuclear saturation density. For a magnetar with radius r, the
axion emission rate is then given by

Z
∞

0

dωω
dNa

dω
¼ Q ×

4

3
πr3; ð16Þ

which is proportional to G2
an. For the range of ALP-photon

couplings gaγγ we are interested in, we can use the semi-
analytic expression for the conversion probability given in
Eq. (10). Then, it is clear that Pa→γ ∝ g2aγγ . It then follows
that La→γ ∝ G2

ang2aγγ. Assuming the distance of the mag-
netar is d, then the νFν spectrum is given by

νFνðωÞ ¼ ω2
1

4πd2
1

ω

dLa→γ

dω
; ð17Þ

and we choose the unit MeV2 cm−2 s−1MeV−1.

V. ALP EMISSIVITY IN MEAN
FIELD THEORY

In this section, we discuss the steps involved in the
calculation of the ALP emissivity Q from a magnetar core
in mean field theory, following the results recently obtained
in [21]. Although we do not use this more sophisticated
treatment for the production process in this paper, we
include this discussion for completeness and for use in
future work.
To be specific, the discussion will model the nuclear

matter inside a neutron star with the NLρ equation of state
[22], which is a relativistic mean field theory where
nucleons interact by exchanging the scalar σ meson and
the ω and ρ vector mesons. Our equation of state supports a
neutron star of mass 2 M⊙ with pressure consistent with
GW170817 and NICER data for posterior distributions of
the pressure at 0.5,1,2,3 times nuclear saturation density.
In the mean field approximation, we can take the neutron

and proton as free particles with effective Dirac masses
given by m� ¼ m − gσσ and with effective chemical
potentials μ�n ¼ μn −Un and μ�p ¼ μp −Up. Here, Ui are
the nuclear mean fields,

Un ¼ gωω0 −
1

2
gρρ03; ð18Þ

Up ¼ gωω0 þ
1

2
gρρ03: ð19Þ

The chemical potentials μi and μ�i are relativistic and
contain the rest mass of the particle. The energy dispersion
relations are given by

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2�

q
þUn; ð20Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2�

q
þUp: ð21Þ

Note that they have been modified by the presence of the
nuclear mean field and that the ρ meson distinguishes the
neutron from the proton by creating a difference in mean
field experienced by the respective particles.
The formalism for calculating the rate of particle

processes is given in [23], which uses parameter set I of
the model in [22]. For the calculations, the energies in the
matrix element should use E� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2�
p

, while the
energy factors in the delta functions and Fermi-Dirac
factors should use E ¼ E� þ Un. The emissivity is given
by [13]

Q ¼
Z

d3p1

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3
d3ω
ð2πÞ3

S
P jMj2

25E�
1E

�
2E

�
3E

�
4ω

ω

× ð2πÞ4δ4ðp1 þ p2 − p3 − p4 − ωÞf1f2
× ð1 − f3Þð1 − f4Þ: ð22Þ

Here, the pi and Ei are the momenta of the nucleons
participating in the Feynman diagram. The Fermi-Dirac
factors are given by fi ¼ ð1þ eðEi−μnÞ=TÞ−1. The matrix
element is given by

S
X
spins

jMj2 ¼ 256

3

f4m4
nG2

an

m4
π

�
k4

ðk2 þm2
πÞ2

þ l4

ðl2 þm2
πÞ2

þ k2l2 − 3ðk · lÞ2
ðk2 þm2

πÞðl2 þm2
πÞ
	
; ð23Þ

where k and l are three-momentum transfers k ¼ p2 − p4
and l ¼ p2 − p3. The symmetry factor for these diagrams
is S ¼ 1=4.
We outline four different regimes in which we compute

Q. The first is relativistic matter with arbitrary degeneracy
in the Fermi surface approximation, when neutrons are
strongly degenerate, in which case only neutrons near the
Fermi surface participate in the bremsstrahlung process.
The axion emissivity is

QFS ¼
31

2835π

f4G2
anm4

n

m4
π

pFnFðyÞT6; ð24Þ

where

FðyÞ ¼ 4 −
1

1þ y2
þ 2y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2y2
p arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2y2
p

�

− 5y arcsin

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p

�
; ð25Þ

with y ¼ mπ=ð2pFnÞ.
The Fermi surface approximation extends the lower

end point of integration of neutron energy to −∞.
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An improvement to the Fermi surface approximation can be
obtained, which keeps the neutron energy bounded by
m� þUn < En < ∞. The ALP emissivity in this improved
approximation is [21]

QFS;improved ¼
2

3π7
f4G2

anm4
n

m4
π

pFnFðyÞT6K2ðŷÞ; ð26Þ

where

K2ðŷÞ ¼
Z

∞

−2ŷ
du

1

1 − eu
ln

�
cosh ðŷ=2Þ

cosh ½ðuþ ŷÞ=2�
�

×
Z

uþ2ŷ

0

dw
w2

1 − ew−u
ln

�
cosh ½ðuþ ŷ − wÞ=2�

cosh ðŷ=2Þ
�
:

ð27Þ

The third approximation we discuss assumes non-
relativistic neutrons. The full momentum dependence of
the matrix element in Eq. (23) is retained when evaluating
the emissivity from Eq. (22). The expression obtained in
this case is [21]

Qnon-rel ¼
32

ffiffiffi
2

p

3π8
f4m4

nG2
an

m4
π

m1=2
� T6.5

Z
∞

0

dudv
Z

v

0

dw
Z

1

−1
drds

Z
2π

0

dϕu1=2v3=2w3=2ðv − wÞ2

×
ðα4ðr2 þ 3Þ − 6α2ðr2 − 1Þðvþ wÞ − 3ðr2 − 1Þð2ð1 − 2r2Þvwþ v2 þ w2ÞÞ

½2wðα2 − 2r2vþ vÞ þ ðα2 þ vÞ2 þ w2�2
× ½ð1þ eβðE1−μnÞÞð1þ eβðE2−μnÞÞð1þ e−βðE3−μnÞÞð1þ e−βðE4−μnÞÞ�−1; ð28Þ

where α ¼ mπ=
ffiffiffiffiffiffiffiffiffiffiffiffi
2m�T

p
. This integral can be performed numerically.

The final approximation we discuss involves a calculation of the fully relativistic phase-space integration in Eq. (22),
performed with a constant matrix element in Eq. (23). The result is (we refer to [21] for a full derivation)

Qrel ¼
�
1 −

β

3

�
f4m4

nG2
an

8π7m4
π

�
1þ m2

π

k2typ

�−2 Z ∞

m�
dq0

Z
∞

0

dq
Z ffiffiffiffiffiffiffiffiffiffi

q2
0
−m2�

p

0

dk
Z

q0

m�
dl0

Z ffiffiffiffiffiffiffiffiffi
l2
0
−m2�

p

0

dl
Z

ωþðl0;lÞ

ω−ðl0;lÞ
dω

× kωðq0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2�

q
Þ θð2kq − jq20 − q2 − 2q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2�

p
jÞθð2ql − jm2� þ q2 þ l2 − q20 − l20 þ 2q0l0jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2�
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2� þ q20 − 2q0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2�

pq

× ½ð1þ eð
ffiffiffiffiffiffiffiffiffiffi
k2þm2�

p
−μ�nÞ=TÞð1þ eð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2�þq2

0
−2q0

ffiffiffiffiffiffiffiffiffiffi
k2þm2�

pp
−μ�nÞ=TÞð1þ e−ðq0−l0−μ�nÞ=TÞð1þ e−ðl0−ω−μ�nÞ=TÞ�−1: ð29Þ

This integral can also be performed numerically.
The emissivities resulting from the four approxima-

tions described were compared in [21], and it was found
that they show remarkable convergence for temperatures
T ≲ 10 MeV, which is the regime we are mainly interested
in for the magnetar core. Using these results, one can
calculate the normalized ALP spectrum and ALP emissiv-
ity to yield a constraint on the product Gan × gaγγ. We
leave this for future work.

VI. CALCULATION OF REFRACTIVE INDICES

In this section, we provide general expressions for the
photon refractive indices in the parallel and perpendicular
directions. We are interested in several different regimes of
the photon frequency and the strength of the external
magnetic field:

(i) ω ≪ 2me and B ≪ Bc: soft x-rays in an external
magnetic field that is much weaker than the critical
strength. This regime is relevant for the conversion
of less energetic ALPs into photons at the radius of

conversion ∼500r0, where B ∼ 10−5Bc. Since the
photon energies are much smaller than me, the
Euler-Heisenberg approximation can be used to
calculate the refractive indices.

(ii) ω≲ 2me and B ≪ Bc, with ð ω
2me

Þ2ð BBc
Þ2 ≪ 1: hard

x-rays and soft gamma-rays in an external magnetic
field that is much weaker than the critical strength.
This regime is relevant for the conversion of en-
ergetic ALPs with ω ∼Oð100Þ keV–Oð1Þ MeV
into photons at the radius of conversion ∼500r0,
where B ∼ 10−5Bc. This regime is relevant for the
observational signatures considered in this paper.

(iii) ω≲ 2me and B > Bc: hard x-rays and soft gamma-
rays in an external magnetic field that is stronger
than the critical strength. This regime is relevant for
the conversion of energetic ALPs with ω ∼Oð100Þ
keV—Oð1Þ MeV into photons from the magnetar
surface to a distance of ∼3r0.

We now turn to a discussion of the refractive indices in
regimes (ii) and (iii), which are relevant for this paper.
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Quantum corrections to the photon propagator can be
studied using the photon polarization tensor Πμν, defined in
the following way [24]:

L ⊃ −
1

2

Z
x0
AμðxÞΠμνðx; x0ÞAνðx0Þ; ð30Þ

where Aμ is the propagating photon. To evaluate Πμν, we
can consider the perpendicular and parallel components of
the momentum four-vector kμ. We note that these compo-
nents are defined with respect to the external magnetic field
B⃗, which we take to point in the direction e⃗1: kμ ¼ kμk þ kμ⊥,
kμk ¼ ðω; k1; 0; 0Þ, and kμ⊥ ¼ ð0; 0; k2; k3Þ. The metric ten-

sor can likewise be decomposed into the parallel and
perpendicular directions: gμν ¼ gμνk þ gμν⊥ , where gμνk ¼
diagð−1;þ1; 0; 0Þ and gμν⊥ ¼ diagð0; 0;þ1;þ1Þ.
We will assume a pure and homogeneous external

magnetic field to work out the photon polarization tensor,
since taking into account the spatial variation of the
magnetic field would be significantly more complicated.
This is justified, since the dipolar magnetic field varies at a
scale given by the magnetar radius, while the photon
wavelength is much smaller in the soft gamma-ray regime.
At one loop, the polarization tensor is given by [25–28]

ΠμνðkÞ ¼ α

2π

Z
1

−1

dν
2

Z
∞−iη

0

ds
s
fe−iΦ0s½−N0kμkν

þ ðN1 − N0Þðgμνk k2k − kμkk
ν
kÞ

þ ðN2 − N0Þðgμν⊥ k2⊥ − kμ⊥kν⊥Þ�
þ ð1 − ν2Þe−iðm2

e−iϵÞskμkνg; ð31Þ

whereΦ0 ¼ m2
e − iϵþ n1k2k þ n2k2⊥, s is the proper time, ν

governs the loop momentum distribution, and ϵ and η are
parameters that tend to 0þ. The external magnetic field
appears in the scalar functions N0, N1, N2, n1 and n2. In
terms of the variable z ¼ eBs, these functions are given by

N0ðzÞ ¼
z

sin z
ðcos νz − ν sin νz cot zÞ; n1ðzÞ ¼

1 − ν2

4
;

N1ðzÞ ¼ zð1 − ν2Þ cot z; n2ðzÞ ¼
cos νz − cos z

2z sin z
;

N2ðzÞ ¼
2zðcos νz − cos zÞ

sin3z
: ð32Þ

The polarization tensor is most compactly expressed in
terms of the projection operators Pμν

k and Pμν
⊥ , defined in the

following way:

Pμν
k ¼ gμνk −

kμkk
ν
k

k2k
and Pμν

⊥ ¼ gμν⊥ −
kμ⊥kν⊥
k2⊥

; ð33Þ

in terms of which the tensor can be reexpressed as [25]

ΠμνðkÞ ¼ Pμν
k Πk þ Pμν

⊥Π⊥; ð34Þ

where

�Πk
Π⊥

�
¼ α

2π

Z
1

−1

dν
2

Z
∞−iη

0

ds
s

�
e−iΦ0s

� k2kN1 þ k2⊥N0

k2kN0 þ k2⊥N2

�	
:

ð35Þ

The expression in Eq. (35) is amenable to a perturbative
expansion, which we now explore.

A. ω≲ 2me and B ≪ Bc, with ð ω
2me

Þ2ðBBc
Þ2 ≪ 1

We first note that a perturbative expansion of Πpert
p

(where p ¼ k;⊥) in powers of the magnetic field can be
obtained by an expansion in powers of ðeBÞ2n,

Πpert
p ¼

X∞
n¼0

Πð2nÞ
p ; ð36Þ

with the even powers being due to Furry’s theorem, and

Πð2nÞ
p ¼ ðeBÞ2n

n!

�� ∂
∂ðeBÞ2

�
n
Πp

	
eB¼0

: ð37Þ

Since the limit z → 0 does not admit any poles in the
complex s plane for the integrands, the integration over s
can be performed on the real positive axis. This yields the

following expressions for the Πð2nÞ
p [29]:

�Πð2nÞ
k

Πð2nÞ
⊥

�
¼ α

2π

Z
1

−1

dν
2

Z
∞

0

ds
s
e−iϕ0s

z2n

n!

×

�� ∂
∂z2

�
n
�� k2kN1 þ k2⊥N0

k2kN0 þ k2⊥N2

�
e−isk

2⊥ñ2
�	

z¼0

;

ð38Þ

where ñ2 ¼ n2 − 1−ν2
4

¼ Oðz2Þ.
The integral over s in Eq. (38) can be performed

explicitly. Using the expressions in Eq. (32), one obtains

Πð2nÞ
p ¼ α

2π

Z
1

−1

dν
2

Xn−1
l¼0

ð2nþ l − 1Þ!
ð−1Þnþl ½k2kckðn;lÞp ðν2Þ

þ k2⊥c
⊥ðn;lÞ
p ðν2Þ�

�
eB
m2

e

�
2n
�
k2⊥
m2

e

�
l

; ð39Þ

where the coefficients ckðn;lÞp ðν2Þ and c⊥ðn;lÞ
p ðν2Þ can be

obtained explicitly from expanding Eq. (32).
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We note that a perturbative expansion can be obtained
when both expansion parameters in Eq. (39) are small,

eB
m2

e
≡ B

Bc
≪ 1 and

�
B
Bc

�
2 ω2 sin2 θ

m2
e

≪ 1; ð40Þ

where we have introduced the angle θ between the
magnetic field and the photon propagation direction. The
leading order tensor is

�Πð2Þ
k

Πð2Þ
⊥

�
¼ −

α

12π

Z
1

−1

dν
2

�
eB
ϕ0

�
2

ð1 − ν2Þ2

×

�� −2
1−ν2

1

�
k2k þ

�
1

5−ν2
2ð1−ν2Þ

�
k2⊥

	
: ð41Þ

The integration over ν finally yields [30,31]

�Πð2Þ
k

Πð2Þ
⊥

�
¼ −

α

2π

�
B
Bc

�
2

ω2sin2θ
2

45

�
7

4

�
: ð42Þ

The corresponding indices of refraction are given by
np ¼ 1 − 1

2ω2 ℜðΠpÞ, which yields

�
nk
n⊥

�
¼1þ α

4π

�
B
Bc

�
2

sin2θ
2

45

�
7

4

�
þOððeBÞ4Þ: ð43Þ

B. ω≲ 2me and B > Bc

This regime is relevant for the conversion of energetic
ALPs with ω ∼Oð100Þ keV–Oð1Þ MeV into photons
from the magnetar surface to a distance of ∼3r0. We only
quote the final answer here, referring to [32] for a full
derivation,

�
nk
n⊥

�
¼1þ α

4π
sin2θ

��
2

3

B
Bc

−Σ
��

1

0

�

−
�
2

3
þBc

B
ln

�
Bc

B

�	�
1

−1

�
þO

�
1

eB

�
þOðω2Þ

	
:

ð44Þ

Here, Σ ∼Oð1Þ is a constant.

VII. SOFT GAMMA-RAY BACKGROUND

Magnetars exhibit thermal x-ray emission below 10 keV
and a hard pulsed nonthermal x-ray emission with power
law tails above 10 keV. This hard x-ray emission can extend
to between 150–275 keV [33–35] and appears to turn over
above 275 keV due to ULs being obtained with
INTEGRAL SPI (20–1000 keV) and CGRO COMPTEL
(0.75–30 MeV) [36]. A spectral break above 1 MeV is also

inferred by the nondetection of 20 magnetars using Fermi-
LAT above 100 MeV [37]. The hard x-ray emission is most
likely caused by resonant Compton up scattering (RCU) of
surface thermal x-rays by nonthermal electrons moving
along the magnetic field lines of the magnetosphere. The
initial modeling of [38], using B field strengths typical of
magnetars, at 3 times the quantum critical field strength Bc
produces flat differential flux spectra with sharp cutoffs at
energies directly proportional to the electron Lorentz factor
(γe) and places the maximum extent of the Compton
resonasphere within a few stellar radii of the magnetar
surface.
In [39], Monte Carlo models of the RCU of soft thermal

photons, incorporating the relativistic QED resonant cross
section, produces flat spectra up to 1 MeV for highly
relativistic electrons (γe ¼ 22), whilst mildly relativistic
electrons (γe ¼ 1.7) demonstrate spectral breaks at
316 keV. In [40], an analytic model of RCU, considering
relativistic particle injection (γe ≫ 10) and deceleration
within magnetic loops predicts a spectral peak at ∼1 MeV
and a narrow annihilation line at 511 keV (both as yet
unobserved). This model also places the active field loops
emitting photons at 3–10 stellar radii for a surface B field
of ∼1015 G.
The analysis of [38] is recently extended in [41],

allowing for a QED Compton cross scattering section
which incorporates spin-dependent effects in stronger B
fields. Electrons with energies ≲15 MeV will emit most
energy below 250 keV which is consistent with the hard
inferred x-ray turnover above. In [41], the maximum
resonant cutoff energy can reach a peak of 810 keV, for
γe ¼ 10 at some magnetar rotational phases and viewing
angles which violates COMPTEL ULs; however the model
neglects the effects of Compton cooling and attenuation
processes such as photon absorption due to magnetic pair
creation (γ → eþe−) and photon splitting ð⊥ → kkÞ. Also,
the effect of electron Compton cooling is expected to
steepen the cutoffs seen in the predicted hard x-ray spectral
tails and allow the models to then be in agreement with the
COMPTELULs. The emission region is placed at 4–15 and
2.5–30 stellar radii for γe values of 10 and 100 respectively.
The attenuation processes of magnetic pair creation and

photon splitting which act to suppress photon emission in
RCU are considered in detail in [42] for typical magnetar
surface B fields of 10 Bc. In this case, the photon splitting
opacity alone constrains the emission region of observed
250 keV emission in magnetars to be outside altitudes of
2–4 stellar radii and photons emitted from the magnetar
surface at magnetic colatitudes <20° can escape with
energies >1 MeV for typical magnetar surface B fields
of 10 Bc. Also the emission of photons from field loops at
<2 stellar radii is suppressed with photon escape energies
of no greater then 287 keV. In contrast, emission regions at
altitudes of >5 stellar radii guarantee escape of 1 MeV
photons at nearly all colatitudes. The photon opacity caused
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by pair creation is shown to be much less restrictive and
does not impact the <1 MeV band. Finally Fig. 8 of
Ref. [42] shows the maximum energies produced by the
resonant Compton process alongside the photon escape
energies allowed by the photon splitting process (i.e., the
maximum photon energies which can escape to an
observer) as a function of magnetar rotational phase and
obliqueness of rotation (which is the misalignment of the
magnetic and rotational axis) and observer angle. It shows
that photon emission >1 MeV is permitted at some but not
all rotational phases in the meridional case, and that in most
cases the RCU emission will vary with rotational phase in
the 300 keV–1 MeV band.
Therefore, the RCU process may produce a background

to the signal we wish to measure, and this background
might be expected to produce pulsed emission when photon
opacity due to photon splitting is taken into account. On the
other hand, a spectral turn over is possible if the electrons in
the magnetosphere field loops are mildly relativistic. In
addition, pulsed emission in magnetars has not been
observed in the 300 keV–1 MeV band which would be
suggestive of an RCU emission mechanism. We also note
that photon splitting/pair creation opacity will not attenuate
photon emission <1 MeV at >10 stellar radii [42]. As
axion to photon conversion will occur at ∼300 stellar radii,
photon opacity processes can be disregarded. In addition,
the 440 magnetar bursts observed with the Fermi-GBM
over 5 years have been spectrally soft with typically no
emission above 200 keV [43].
A reasonable assumption resulting from the above dis-

cussion would be that there is no RCU background and that
all emission in the 300 keV–1 MeV band results from ALP
to photon conversion. We instead opt for a slightly more
conservative approach and require that any emission from
ALP-photon conversion be bounded by the observed emis-
sion. This results in ULs on the ALP-photon coupling.

VIII. MAGNETAR CORE TEMPERATURES

We now summarize the need for a magnetar heating
mechanism over and above that found in conventional
pulsars and discuss temperature modeling which supports
the range of values we have chosen for the magnetar core
temperature (Tc).
The quiescent x-ray luminosity of magnetars of

1034–1035 erg s−1 exceeds the spin down luminosity of
1032–1034 erg s−1, thus excluding rotation spin down as the
sole magnetar energy source. Furthermore, the lack of
Doppler modulation in x-ray pulses arising from magnetars
indicates a lack of binary companions, which combined
with the slow periods of magnetars (2–12 s) excludes an
accretion powered interpretation [44,45].
In Ref. [46], the authors show the need for heating by

theoretical cooling curves for neutron stars of mass
1.4 M⊙, with and without proton superfluidity in the core,
which yield effective surface temperatures below those

observed in seven magnetars (including four in our selec-
tion, namely: 1E 1841-045, 1RXS J170849.0-400910, 4U
0142þ 61 and 1E 2259þ 586). They then use a general
relativistic cooling code which accounts for thermal losses
from neutrino and photon emission and allows for thermal
conduction to show that magnetars are hot inside with Tc ¼
108.4 K at age 1000 yr and temperatures of 109.1 K in the
crust, where the heat source should be located for efficient
warming of the surface, to offset neutrino heat losses from
the core.
The authors of [47] consider the case of magnetars born

with initial periods of ≤3 ms combined with a strong
internal toroidal B field of ≥3 × 1016 G and an exterior
dipole B field of ≤2 × 1014 G. In this case, efficient heating
of the core can occur via ambipolar diffusion which has a
time varying decay scale as a function of Tc and B field
strength. As the core cools, an equilibrium is established
between increasing B field decay and reducing neutrino
emission, leading to reduced cooling which can keep Tc at
108.9 K 2250 yr after magnetar creation.
The magnetar temperature modeling of [48] considers

heating throughout the magnetar core arising from mag-
netic field decay and ambipolar diffusion, together with the
cooling caused by the neutrino emission of the modified
URCA process and Cooper pairing of nucleons. In this
case, the authors find that strong core heating cannot
account for the observed surface temperatures and conclude
that, as in the case of [46], high surface temperatures
require heating of the crust, rather than the core, with the
crust and the core being thermally decoupled from one
another. However the authors of [48] show that Tc at 104 yr
can vary between 0.8 × 108 K with no heating of the
superfluid core, 1.4 × 108 K with heating of the crust and
5 × 108 K with core heating. At 103 yr, with heating of the
superfluid core, Tc can reach 7 × 108 K.
The strong B field of magnetars can produce strongly

anisotropic thermal conductivity in the neutron star crust
whilst also allowing the synchrotron neutrino process to
become a predominant cooling mechanism while other
contributions to the neutrino emissivity are far more weakly
suppressed. These effects allow the temperature at the base
of the crust heat blanketing envelope to reach 109.6 K while
the surface temperature remains at 105 and 106.7 K [49], for
a B field parallel and radial to the neutron star surface
respectively. This is compatible with the observed surface
temperatures of 106.5–106.95 K for the seven magnetars in
[46] and could allow Tc to exceed 109 K.
Finally, the quiescent luminosity of magnetars 1034 –

1035 erg s−1 implies a Tc of ð2.7 − ≥8.0Þ × 108 K for a
magnetar with an accreted iron envelope and ð1.0–5.5Þ ×
108 K for an accreted light element envelope [50].
There are no published Tc values for the magnetars in

our selection. We therefore study the dependence of our
results on a range of core temperatures.

AXION CONSTRAINTS FROM QUIESCENT SOFT GAMMA-RAY … PHYS. REV. D 103, 023010 (2021)

023010-9



TABLE I. Magnetar sample with sum of UL flux in the 300 keV–1 MeV band. UL fluxes and distances are from
the references shown, surface B field and age are from the online27 version of the McGill magnetar catalog [52].

Magnetar
Distance

kpc
Surface B
field 1014 G

Age
kyr

UL Flux
300 keV–1 MeV 10−10 erg cm−2 s−1

1E 2259þ 586 3.2þ0.2
−0.2 [53] 0.59 230 1.17 [51]

4U 0142þ 61 3.6þ0.4
−0.4 [54] 1.3 68 8.16 [36]

1RXS J170849.0-400910 3.8þ0.5
−0.5 [53] 4.7 9 1.92 [51]

1E 1841-045 8.5þ1.3
−1.0 [55] 7 4.6 2.56 [51]

1E 1048.1-5937 9.0þ1.7
−1.7 [54] 3.9 4.5 3.04 [51]

10−2 10−1 100 10110−6

10−5

10−4

10−3

4U 0142+61

10−2 10−1 100 10110−6

10−5

10−4

10−3

1E 2259+586

10−2 10−1 100 10110−6

10−5

10−4

10−3

1E 1048.1−5937

10−2 10−1 100 10110−6

10−5

10−4

10−3

1RXS J170849.0−400910

10−2 10−1 100 10110−6

10−5

10−4

10−3

1E 1841−045

FIG. 2. The spectral energy distributions of the five magnetars from Refs. [36,51]. The ULs within the analysis band, 300 keV–1 MeV
(grey shaded region, with legend showing relevant experiments) or immediately adjacent to it, are used in the analysis. For each
magnetar, the gray line is an example spectrum from axion conversion for the mass and coupling labelled out, which falls on the limit
curve in Fig. 3 of the main paper, with the corresponding UL responsible for it denoted by the green thick line.
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IX. MAGNETAR SELECTION AND UL SOFT-
GAMMA-RAY FLUX DETECTION

We select five magnetars which have published ULs for
differential energy fluxes between 300 keV–1MeV (Table I).
These are obtained from the INTEGRAL soft-gamma-ray
imager (ISGRI) detector, its Image on Board instrument
(IBIS) and spectrometer (SPI); and from the noncontempora-
neous observations of the COMPTEL instrument on the
Compton Gamma-Ray Observatory CGRO [36,51].
We extract UL fluxes from the spectral energy distribu-

tions of [36,51] using an energy resolved analysis as
described in Sec. X.

X. SPECTRAL ANALYSIS

For the five magnetars, the experimental ULs are taken
from Refs. [36,51] and are shown in Fig. 2. We select the
ULs which fall within or overlap with the range range
300 keV–1 MeV. For each magnetar and for each axion
mass, we require that the spectrum does not exceed any of
the ULs on the log-log νFν plot in Fig. 2. The maximal
coupling Gangaγγ satisfying above criterion is chosen as the

exclusion UL for the coupling product. In comparing the
spectrum with each UL in energy bin, say, “i”, we compare
the averaged spectrum within that bin with the experimen-
tal UL there. More precisely speaking, for each magnetar
and each ALP mass, we find the largest coupling Gangaγγ
compatible with the following condition:R

ω−
i <ω<ω

þ
i
log½νFνðωÞ�d logω

logωþ
i − logω−

i
≤ ULi; for all i; ð45Þ

where ULi is the upper limit for the ith bin ðω−
i ;ω

þ
i Þ. This

denotes a direct comparison of the photon spectrum from

10−9 10−8 10−7 10−6 10−5 10−4 10−3

10−22

10−21

10−20

10−19

10−18

10−17

10−16

10−15

10−14

10−13

1E 2259+586

4U 0142+61

1RXS J170849.0−400910

1E 1841−045

1E 1048.1−5937

FIG. 3. The 95% C.L. upper limits on the coupling Gan × gaγγ for our sample of five magnetars, obtained for emissions falling within
experimental exclusion bins which overlap with the range 300 keV–1 MeV assuming Tc ¼ 5 × 108 K.

TABLE II. Results: The 95% C.L. UL on the product of
couplings Gan × gaγγ obtained from conversions for the magnet-
ars in our sample. The ALP mass is chosen to be 10−7 eV for all
benchmarks shown in this table. The assumed Tc is 5 × 108 K.

Magnetar Gangaγγ (GeV−2)

1E 2259þ 586 1.71 × 10−14

4U 0142þ 61 2.42 × 10−19

1RXS J170849.0-400910 2.20 × 10−15

1E 1841-045 1.64 × 10−14

1E 1048.1-5937 8.44 × 10−15

FIG. 4. The 95% C.L. UL on the coupling product Gan × gaγγ
as Tc is varied, for the magnetars in our study. The ALP mass is
fixed at 10−7 eV, and the luminosity from ALP-photon con-
version is assumed to saturate UL luminosity listed in Table I.
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axion conversion with the upper limits in Fig. 2. For the
most constraining UL, the spectrum at the found coupling
product gives the same area as the corresponding UL on the
log-log plot. This is illustrated by the example spectrum in
each plot (gray curve) for a chosen mass ma and coupling
product. Note that the peaks of the gray line are at around
0.2 KeV for all example spectra shown, and for the four
magnetars excluding 4U 0142þ 61, the peaks are at a
much higher amplitude, outside the plot range of these
plots. For the example spectra in each plot, the correspond-
ing most constraining UL is highlighted with a thick green
line. This UL and the associated coupling product, as
explicitly written out on each plot, is the 95% exclusion UL
for the corresponding ALP mass. This analysis is done for a
range of ALP masses, and the limits thus obtained from the
five magnetars in Fig. 2 (1E 2259þ 586, 4U 0142þ 61, 1E
1048.1-5937, 1RXS J170849.0-400910 and 1E 1841-045)
are shown in Fig. 3.

XI. RESULTS

From the procedure of spectral analysis in previous
section, we present the 95% C.L. ULs on Gan × gaγγ with
Tc ¼ 5 × 108 K for the five magnetars in Fig. 3. For
ma ≲ 10−4 eV, the ULs are flat when varying ma as the
spectra remain roughly unchanged. The constraints become
weak and taper off for ma ≳ 10−4 eV. This is because the
ALP-photon mixing angle becomes small for large ALP
masses and the probability of conversion becomes highly
reduced. Most of the results shown in this figure can be
summarized by the UL at the region when the curves are
flat, and we present the 95% C.L. ULs onGan × gaγγ for the
magnetars in Table II, for ma ¼ 10−7 eV.
To see how this result changes when using a different

core temperature Tc, we show in Fig. 4 the 95% C.L. UL on
Gan × gaγγ as a function of Tc, with the ALP mass fixed at
10−7 eV. As Tc is increased, the ALP production from the
core increases appreciably and to saturate the UL on the
luminosity, the product of couplings Gan × gaγγ must show
a corresponding decrease and leads to a more stringent
constraint.3

XII. DISCUSSION: PROPOSED MAGNETAR
OBSERVATIONS WITH THE GBM

The GBM is a nonimaging instrument with a wide field
of view. However, it is possible to assign detected events to
individual pulsars using the Earth occultation technique
(EOT) or pulsar timing models. EOT uses a catalog of
sources which exhibit step like changes in photon count
rate as seen by the GBM, when the sources are eclipsed by
or rise above the Earth limb. In 3 years, EOT has detected 9
of 209 sources between 100–300 keV [57].
The orbital precession of Fermi can be used to apply

EOT without a predefined source catalogue. By imaging
with a differential filter using the Earth occultation method
(IDEOM), the Earth limb is projected onto the sky and used
to determine count rates from 600,000 virtual sources with
a 0.25° spacing [58], identifying 17 new sources.
The Fermi-GBM Occultation project now monitors 248

sources in the energy range 8 keV–1MeVwith the majority
of the signal seen between 12–50 keV.4

In contrast, the author of [59] uses a pulsar timingmethod
instead. The GBM CTIME data are used to provide photon
counts for four magnetars, 1RXS J170849.0-400910, 1E
1841-045, 4U 0142þ 61 and 1E 1547.0-5408. The photon
counts are attributed to the peak pulsed emission of each
magnetar by epoch folding and using timing models
(obtained with the Rossi x-ray timing explorer), which tags
each event by pulsar phase. This count rate is converted to an
energy flux for seven energy channels between 11 keV–
2MeV by determining the GBM effective area as a function
of photon direction, energy and probability of detection of a
photon with a given energy. This yields pulsed ULs, just
above those obtained byCOMPTEL for J170849.0-400910,
1E 1841-045 and 4U 0142þ 61.
The GBM is thus a very useful instrument to determine

the UL soft-gamma-ray fluxes of the 23 confirmed magnet-
ars5 in the McGill Magnetar Catalog [52], most of which
have no ULs defined in the 300 keV–1 MeV band of
interest. We project the possible UL values of Gan × gaγγ

TABLE III. Predicted 3σ UL on Gangaγγ (GeV−2) for our original magnetar sample for future GBM observations
at ma ¼ 10−7 eV.

Magnetar
UL luminosity at

300–500 keV 1035 erg s−1 Gangaγγ (GeV−2)

1E 2259þ 586 6.9 1.24 × 10−18

4U 0142þ 61 8.8 1.17 × 10−18

1RXS J170849.0-400910 9.8 1.06 × 10−18

1E 1841-045 49.0 2.16 × 10−18

1E 1048.1-5937 55.0 2.41 × 10−18

3See also [56] for the constraint from diffuse supernova flux.

4https://gammaray.msfc.nasa.gov/gbm/science/earth_occ.html
accessed on 25th November 2019.

5http://www.physics.mcgill.ca/pulsar/magnetar/main.html ac-
cessed on 25th November 2019.
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that can potentially be obtained using our original
sample of magnetars, as well as a wider magnetar
sample in Tables III and IV respectively. We use a 3σ
UL flux sensitivity of 118 mCrab (equivalent to 3.5 ×
10−4 MeVcm s−1 assuming the Crab spectrum in [60]),
between 300–500 keV determined from 3× the error of 3 yr
of GBM EOT observations of 4 sources including the
Crab [57].

XIII. CONCLUSIONS

In this paper, we have explored constraints on the
product of the ALP-nucleon and ALP-photon couplings.
The constraints are obtained from the conversion of ALPs
produced in the core of magnetars into photons in the
magnetosphere. When interpreting our results in Fig. 3, the
following caveats apply: since the magnetars in our
selection have no published values of Tc, the results are
displayed for a benchmark Tc of 5 × 108 K. We further
show the limits that can be obtained by varying Tc in Fig. 4
for a fixed ALP mass of 10−7 eV. We also note that a more

stringent limit can be obtained by a combined analysis of
the upper limits from all magnetars.
Our results motivate a program of studying quiescent

soft-gamma-ray emission from magnetars in the 300 keV–
1 MeV band with Fermi-GBM. The GBM will be able to
determine the UL soft-gamma-ray fluxes of confirmed
magnetars, most of which have no ULs defined in soft
gamma-rays. With these ULs, it is possible that even more
stringent constraints on the product of the ALP couplings
may be obtained.
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