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Galactic core-collapse supernovae are among the possible sources of gravitational waves. We investigate
the ability of gravitational-wave observatories to extract the properties of the collapsing progenitor from the
gravitational waves radiated. We use simulations of supernovae that explore a variety of progenitor core
rotation rates and nuclear equations of state and examine the ability of current and future observatories to
determine these properties using gravitational-wave parameter estimation. We use principal component
analysis of the simulation catalog to determine the dominant features of the waveforms and create a map
between the measured properties of the waveform and the physical properties of the progenitor star. We use
Bayesian parameter inference and the parameter map to calculate posterior probabilities for the physical
properties given a gravitational-wave observation. We demonstrate our method on a random sample of the
waveform catalog that was excluded from construction of the principal component analysis and estimate
the ratio of the progenitor’s core rotational kinetic energy to potential energy (β) and the post bounce
oscillation frequency. For a supernovae at the distance of the galactic center (8.1 kpc) with β ¼ 0.02 our
method can estimate β with a 90% credible interval of 0.004 for Advanced LIGO, improving to 0.0008 for
Cosmic Explorer, the proposed third-generation detector. We demonstrate that if the core is rotating
sufficiently rapidly for a signal source within the MilkyWay observed by Cosmic Explorer, our method can
also extract the post bounce oscillation frequency of the protoneutron star to a precision of within 5 Hz
(90% credible interval) allowing us to constrain the nuclear equation of state. For a supernovae at the
distance of the Magellanic Clouds (48.5 kpc) Cosmic Explorer’s ability to measure these parameters
decreases slightly to 0.003 for rotation and 11 Hz for the postbounce oscillation frequency (90% credible
interval). Sources in Magellanic Clouds with β < 0.02 will be too distant for Advanced LIGO to measure
these properties.
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I. INTRODUCTION

When the core of a massive star exceeds its
Chandrasekhar mass, it begins to undergo gravitational
collapse [1–4]. The core collapse and subsequent bounce
can power a supernovae explosion that radiates light,
neutrinos, and gravitational waves (see, e.g., Refs. [5–8]
and references therein). Gravitational waves generated
during the supernovae travel unhindered through the stellar
envelope, carrying information about the structure and
dynamics of the collapsing star. Advanced LIGO will be
able to detect core-collapse supernovae out to 50 kpc if the
cores are rapidly rotating and the explosion is magneto-
rotationally driven, and to 5 kpc if the explosion is neutrino
driven [9,10]. Cosmic Explorer, a proposed third-gener-
ation detector, will be able to observe neutrino driven
explosion signals out to a few hundred kiloparsecs [11],

and the magnetorotationally driven explosion signals out to
2 Mpc. The estimated event rate for core-collapse super-
novae in the Milky Way is one to three per century [12–15].
While the probability of observing a signal within the reach
of these detectors is low, if the information about the
supernova can be extracted from the gravitational waves, it
would shed new light on the physical processes of core
collapse.
Significant advances have been made over the last two

decades in the simulation of core-collapse supernovae (see,
e.g., Refs. [16,17] and references therein). Abdikamalov
et al. [18] performed 132 simulations in which they studied
the dependence of the gravitational-wave signal at the core
bounce and postbounce on the rotational properties of the
progenitor core. They quantify rotation of the core by the
ratio of the rotational kinetic energy and the gravitational
potential energy β ¼ T=jWj and find that the gravitational-
wave strain amplitude at the bounce primarily depends on
β, while the degree of differential rotation only becomes*chafle@syr.edu
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relevant for cores with β ≳ 0.08. They use two equations of
state (LS220 and HShen) and explore the difference
between the waveforms associated with the two equations
of state. Richers et al. [19] used the progenitor star identical
to Ref. [18] in their simulations. They investigated the
dependence of the gravitational-wave signal on the nuclear
equation of state. They performed a total of 1764 simu-
lations exploring 18 equations of state and 98 rotation
profiles (varying β and differential rotation). They confirm
that the gravitational-wave signal at the bounce is most
sensitive to β, while the postbounce oscillations depends on
the equation of state, which manifests itself through the
characteristic frequency of the oscillations, fpeak.
Abdikamalov et al. attempted to determine if gravita-

tional-wave observations could be used to extract physical
information about the core rotation. They constructed a
template bank of waveforms spanning the range of rotation
rates in their simulations, projected signals against this
bank, and found that a signal observed at 10 kpc by
Advanced LIGO could be used to constrain β to within 20%
when β ≳ 0.05. Heng introduced the idea of using principal
component analysis to model a set of supernovae wave-
forms, rather than using the waveforms themselves as a
template bank [20]. Previous studies have used principal
component analysis to infer the core-collapse explosion
mechanism [21–24].
Edwards et al. [25] used a principal component basis of

the Abdikamalov et al. waveform catalog and Bayesian
parameter estimation [26] to determine if the core rotation β
could be extracted from the observation of a signal. Using a
linear model, they fit the posterior means of the principal
component coefficients to the known values of the physical
parameter. Then they sample from the posterior predictive t
distribution to make probabilistic statements about β
estimation. They test their method on signals observed
in Advanced LIGO with a signal-to-noise ratio of 20 and
are able to recover signals with β ¼ 0.02 with β ¼ 0.05�
0.03, improving the accuracy of measurement to β ¼
0.05� 0.04 for signals with β ¼ 0.05, with average 90%
credible interval widths of 0.06.
In this paper, we use the waveform catalog of Richers

et al. to determine how accurately Advanced LIGO and the
proposed third-generation detector Cosmic Explorer could
extract information about the nuclear equation of state and
the progenitor core rotation rate from observations of core-
collapse supernovae. Since the progenitor cores of super-
novae are expected to be rotating relatively slowly (core
rotation periods ≳30 s) [27–29], we focus on the wave-
forms in the Richers et al. set with 0 ≤ β < 0.07. We use a
total of 659 waveforms spanning 13 nuclear equations of
state. We use principal component analysis to construct a
model that captures the features of the Richers et al. catalog
and construct a map between the parameters measured by
the principal component model and the physical parameters
of the waveform fpeak and β. We use Monte Carlo methods

to perform Bayesian parameter estimation to measure the
posterior probability distribution of the principal compo-
nent model parameters and the constructed map to trans-
form these into the posterior probability distributions of the
physical parameters.
We find that for sources with β ≥ 0.02 at a distance of

8 kpc, β can be estimated with a 90% credible interval of
0.004 for Advanced LIGO, and 0.0008 for Cosmic
Explorer detectors. The precision of measurement for
signal sources at 48.5 kpc observed in Cosmic Explorer
deteriorates to 90% credible interval of 0.003. We can
constrain fpeak for sources within the Milky Way galaxy to
with 90% credible interval of 5 Hz for detections in the
third-generation detectors, if the β for the signal is more
than 0.02, thus allowing us to constrain the nuclear
equation of state.
This paper is organized as follows: in Sec. II we describe

the construction of a principal component basis set using
the Richers et al. waveforms from which we withhold a
random sample of 10% to test our method. In Sec. III we
describe the construction of the map between the param-
eters of the principal component model and the physical
waveform. In Sec. IV we describe our Bayesian parameter
estimation methods, and in Sec. V we present the results of
the methods using simulated signals in Advanced LIGO
and Cosmic Explorer. In Sec. VI we summarize our
findings and discuss directions for future work.

II. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis extracts the dominant
features from a set of waveforms as linearly independent
principal components [20]. In this study, we use singular
value decomposition to compute the principal components.
A set of discretely and evenly sampled-in-time waveforms
can be written as the columns of a matrix D which can be
written as

D ¼ UΣVT; ð1Þ

where the matrices U and V contain the orthonormal
eigenvectors of DDT and DTD, respectively, and the
diagonal matrix Σ contains the eigenvalues of DDT . The
orthonormal vectors in the matrix U are the principal
components, and are sorted in decreasing order of the size
of the square root of the eigenvalues. Hence, the first
principal component describes the most dominant feature
in the set of waveforms. If we have N waveforms in the
catalog D, then U contains N principal components. By
constructing a principal component decomposition of the
catalog, we attempt to construct a set of basis vectors that
captures the features of signals that lie in the space spanned
by the waveform catalog, without requiring modeling every
possible core collapse in the catalog space. The principal
component analysis provides us with a semianalytic model
for core-collapse waveforms, given by
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H ≈
XN
j¼1

αjUj; ð2Þ

where the αj are the coefficients of the signal H expressed
in terms of the basis vectors Uj. We can use Bayesian
parameter estimation to construct posterior probability
densities on the model parameters αj and hence the
gravitational-wave signal H. However, there are two
challenges to directly implementing this approach. First,
the number of waveforms used to construct the principal
component analysis N must be large enough to accurately
explore the features in the catalog (typically of order
102 − 103 waveforms), but this N may be significantly
larger than the number of basis vectors needed to capture
the essential features of the waveforms. Second, the
measured αj are parameters of the basis vectors and are
not directly related to physical parameters of the wave-
forms. As suggested in previous works, we address these
challenges in two ways. Since the principal component
analysis tells us which basis vectors capture the dominant
features of the catalog, we can construct an approximation
to each waveform h as a linear combination of a subset of
the principal components

h ¼
Xk
j¼1

αjUj; ð3Þ

where k < N. Here, we use two approaches to choose the
value of k; we study the overlap between the original
waveforms in the catalog and approximations to these
waveforms using a subset of basis vectors. If the overlap is
unity, then the approximate decomposition exactly repro-
duces the original waveforms. We use the overlap method
to make an initial choice of the number of basis vectors k
and then perform parameter estimation to confirm that the
choice is sufficient; that is, statistical error dominates over
the systematic error that arises from choosing k < N.
Finally, we determine which of the αi are needed to extract
the physical parameters β and fpeak and use the catalog to
construct the maps βðαiÞ and fpeakðαiÞ.
To construct the basis set, we use the axisymmetric

general-relativistic hydrodynamic simulations from
Richers et al. that span 18 different equations of state
and 98 rotation profiles [19]. They use a 12 M⊙ non-
rotating progenitor (model s12WH07 from [30]) in the
COCONUT code [31,32] once for each of the 18 equations of
state. Richers et al. imposed a rotation profile on the
progenitor according to the cylindrical rotation law [33]:

ΩðrÞ ¼ Ω0

�
1þ

�
r
A

�
2
�
−1
; ð4Þ

where A (measured in km) depicts the measure of degree of
differential rotation,Ω0 is the maximum initial rotation rate,
and r is the distance from the rotational axis in km.

We exclude the prompt convection part of the waveforms
when building the principal component basis set. This part
of the signal is highly stochastic in nature making it
challenging to model with principal component analysis.
However, the prompt convection phase is retained in the
waveforms that are used as signals to test our method.
Richers et al. suggest that information on the progenitor
core rotation and the equation of state can be extracted from
the core bounce and the postbounce oscillations of the
protoneutron star. We therefore use the criteria proposed by
Richers et al. to truncate the waveform 6 ms after the third
zero crossing of the strain waveform after the bounce. We
resample the waveforms to 16384 Hz and ensure that the
length of all waveforms is 1 s by zero padding them with
the core bounce aligned at t ¼ 0.5 s for all the waveforms.
In our analysis, we only use the plus polarization of the
waveforms.
The general morphology of the waveforms can be seen in

Fig. 1. Prior to the core bounce, the strain increases slowly.
It decreases rapidly through the bounce to a local mini-
mum. The depth of the local minimum increases with the
rotation rate of the inner core at the time of the bounce. This
phase is followed by the postbounce ringdown oscillations
of the newly formed protoneutron star, which lasts ∼6 ms.
The characteristic frequency of these oscillations depends
on the equation of state of the inner core. The top panel of
Fig. 1 shows the waveforms for SFHx equation of state and
the rotation rates of the inner core between β ¼ 0.02 and
0.06. We can see that the depth of the first local minimum
immediately after the core bounce increases with the
rotation rate. However, the postbounce oscillations have
almost the same frequency irrespective of the rotation rate.
The bottom panel shows us the waveforms for Ω ¼
2.50 rad= sec and the precollapse differential rotation rate
A ¼ 467 km for various equations of state listed in Table I.
We can note that the depth of the first local minimum is
nearly the same for waveforms with different equation of
state since the rotation rate is the same while the post-
bounce oscillation frequency is different for different
equations of state.
In order to focus on slowly rotating progenitor cores, we

restrict the catalog to the set of simulations with β < 0.07.
We also exclude simulations whose equation of state is
ruled out by observations of GW170817 [34–36], giving us
659 waveforms in total. We select 60 waveforms at random
from this set and reserve them for testing our methods;
these test signals are not included in the construction of
either the principal component decomposition or the map
between principal component parameters and physical
parameters. We construct a principal component basis
set from the remaining 599 waveforms. We do not consider
the affects of the pre-collapse differential core rotation
since Refs. [18,19] show that the waveforms for slowly
rotating cores are only very weakly dependent on the
differential rotation profile. Therefore we consider
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parameterization of the catalog only by β, regardless of the
differential rotation. Figure 2 shows the values of β and
fpeak of the simulations used to construct the principal
component analysis and map (crosses) and the signals
reserved to test our method (dots).
Figure 3 shows the reconstruction of each of the 599

waveforms using the principal component basis set. The
horizontal axis represents the number of principal compo-
nents k used to generate the waveform by Eq. (3) and the
vertical axis represents the overlap between the original
catalog waveform H and the approximate reconstructed
waveform h for each value of k, where the overlap between
is defined as [37]:

TABLE I. The mean and standard deviation of the fpeak values
of the waveforms used to form the principal component basis
belonging to a particular equation of state with 0.02 ≤ β ≤ 0.06.

fpeak fpeak
Equation of state Mean value [Hz] Standard deviation [Hz]

SFHo 772.1 5.6
SFHx 768.9 6.2
LS180 728.4 6.4
HSIUF 724.2 8.4
LS220 723.7 6.4
GShenFSU2.1 723.2 11.1
GShenFSU1.7 721.1 10.3
LS375 709.1 8.1
HSTMA 704.1 5.7
HSFSG 702.1 7.9
HSDD2 701.6 8.3
BHBLP 699.7 8.6
BHBL 699.7 8.2

FIG. 2. Frequency of postbounce oscillations is plotted on the
vertical axis against β of the waveforms on the horizontal axis.
The crosses represent the waveforms that are used to build the
principal component basis. This also includes the green crosses,
showing the waveforms that are affected the most by only
considering 15 principal components and not more. The simu-
lations that use the SFHx equation of state are shown in brown
crosses. The fpeak value for a given equation of state is
independent of β for 0.02 ≤ β ≤ 0.06. The dashed lines represent
the average fpeak values of the waveforms of a given equation of
state in this range, also given in Table I. The orange dots represent
the parameter values of the waveforms that are used as astro-
physical signals in this study.FIG. 1. Gravitational wave strain assuming the distance to the

progenitor of 10 kpc as function of time for bounce and
postbounce oscillation phases of a core-collapse process. The
waveforms are zero buffered to make them 1 second long, and the
time of bounce is aligned at 0.5 seconds for all the waveforms.
The top panel shows the waveforms for the SFHx equation of
state with varying rotation rates between β ¼ 0.02 and β ¼ 0.06.
The strain amplitude at the bounce increases with increasing β,
while the postbounce oscillation frequency remains almost the
same for all the waveforms corresponding to a given equation of
state. Bottom panel shows the waveforms for Ω ¼ 2.50 rad= sec
and A ¼ 467 km for the equations of state listed in Table I. The
bounce amplitude remains almost the same for the waveforms
with the same core rotation rate, while the postbounce oscillation
frequency varies for different equations of state.

FIG. 3. The plot shows how well can a given number of
principal components (plotted on the horizontal axis) reconstruct
the original waveform. We quantify this by computing the
overlap between the original waveform and the reconstructed
waveform, and show it on the vertical axis. Each of the wave-
forms is represented by a gray line, and the mean overlap of all
the waveforms as a function of number of basis vectors used for
construction is represented by the red line.

CHAITANYA AFLE and DUNCAN A. BROWN PHYS. REV. D 103, 023005 (2021)

023005-4



hHjhi ¼ 4R
Z

∞

0

h̃ðfÞH̃ðfÞ
SnðfÞ

dx; ð5Þ

where H̃ðfÞ and h̃ðfÞ are the Fourier transforms of the
waveforms and SnðfÞ is the power spectral density of the
Cosmic Explorer (CE1) detector noise. This figure shows
that by using the first 50 of the 599 principal components,
we are able to reconstruct the all 599 original waveforms
with more than 90% overlap. However, we find that using
50 basis vectors in the Bayesian parameter estimation is
computationally expensive and note that if only 15 basis
vectors are used, 96% of the waveforms are reconstructed
with an overlap greater than 90%. In Fig. 2 the catalog
waveforms for which 15 basis vectors are sufficient to
reconstruct the overlap to ≥ 90% are shown with blue
crosses and the catalog waveforms that fail this criteria are
shown with green crosses. We see that all the waveforms
that require more than 15 principal components to repro-
duce the waveform with at least 90% overlap lie in the
region of slowest core rotation β. These are the waveforms
for which it is most challenging to extract β and fpeak [19].
However, we still include these waveforms in our analysis.
Previous studies have used principal component analysis

to construct a gravitational-waveform model for rotating
core-collapse supernovae that is used for Bayesian
reconstruction of the signal observed in the detector.
Röver et al. [26] also used overlaps between the original
waveforms and the waveforms generated through a subset
of principal component basis to determine the number of
basis vectors to be used in their waveform model. They
used 128 waveform simulations from Dimmelmeier et al.
[38] to construct their basis set and used 10 basis vectors.
Edwards et al. [25] used a constrained optimization
approach to select the number of basis vectors in their
study. They used 132 waveforms in the Abdikamalov et al.
catalog [18] to construct their basis set and used the first 14
of the basis vectors in their model.

III. MAPPING TO PHYSICAL PARAMETERS

Having constructed a principal component model and
determined that 15 basis vectors are adequate to capture the
essential features of the catalog space, we construct a map
between the unphysical parameters of our model αj and the
physical parameters of interest β and fpeak. The ratio of the
rotational kinetic energy to the gravitational potential
energy of the inner core β, is a robust way of quantifying
the rotation rate of the inner core [18,19]. β is a time
dependent quantity that evolves during the core-collapse
event. In our work we quantify the rotation rate of the core
of the progenitor with β at the time of the core bounce.
Figure 4 shows the values of the coefficients of the first

four principal components αi (i ¼ 1, 2, 3, 4) as a function
of the rotation rate β for the waveforms in the catalog. We
see that α1 is the parameter most strongly correlated with β,

exhibiting a roughly linear dependence across the catalog
space. The increase in the spread of points in α1 as β
increases is caused by waveforms with similar values of β
but different equations of state; the change in equation of
state weakly affects the map between the two parameters.
The correlation between the other three model parameters
and β is not as obvious. We use the data shown in Fig. 4 to
construct a map βðα1;…; αkÞ, where k ≤ 8.
To construct the map using just the first model parameter

βðα1Þ, we use the least square fit for a straight line, obtaining
the slope 0.0326 and the intercept 0.0007. If we want to
incorporate more than one model parameters to construct the
map, we use interpolation to find βðAÞ for an arbitrary point
A ¼ ðα1;…; αnÞ with 2 ≤ n ≤ 8 using the known values of
β and ðα1;…; αnÞ. This interpolation is performed using the
linear method of SCIPY.INTERPOLATE.GRIDDATA, which finds
the convex hull of A, which consists of the nearest nþ 1
neighbors ofA that containA:A1;…;Anþ1, for which the β
values are known.A can be written as a weighted average of
A1;…;Anþ1:

A ¼
Xnþ1

i¼1

γiAi; ð6Þ

where γi > 0 and
P

γi ¼ 1. Themap for an arbitrary point is
then generated using the linear interpolation with the γis as
the weights in the interpolation:

βðAÞ ≈
Xnþ1

i¼1

γiβðAiÞ: ð7Þ

The interpolation fails ifA does not lie within a convex hull
of points with known values of β. Finding the convex hull of
A becomes increasingly computationally expensive as the
number of model parameters (and hence, the number of
dimensions) used in the interpolation increases. To determine

FIG. 4. The coefficients of the first four principal components
as a function of β. The coefficient of the first principle
component, α1 (shown in blue) is most strongly correlated with
β, exhibiting a roughly linear relation. The correlation between
the other three coefficients and β can be seen to be weaker. The
values of the coefficients spread as β increases because of
different equations of state used in simulation of the waveforms.
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how many model parameters should be used in the map to
construct a robust and sufficiently accurate map, we perform
the following test. We first note that since our waveform
catalog is large, the omission of one waveform from the
construction of the principal component basis does not
significantly change the principal component decomposi-
tion. Given this, we can exclude a waveform from the
principal component analysis, construct the interpolation
function using the remaining waveforms, and use this
interpolating function to estimate the known value of β for
the waveform excluded from our algorithm. We repeat this
procedure for each of the waveforms in the catalog used to
construct the principal component basis and the interpolation
function. Note that we do not use the 10% of the catalog
reserved for astrophysical testing here, as we reserve those
waveforms for use until our method is fully tuned.
The outcome of this test is shown in Fig. 5. The

horizontal axis shows the number of model parameters
used to construct the map βðα1;…;αkÞ for k ≤ 8. The
median error in reconstructing β from each of these maps
for the waveforms in the catalog is plotted on the vertical
axis. The failure rate of interpolation corresponding to each
map is also shown. We see that as the number of model
parameters used to construct the map increases, the
interpolation error decreases. Maps that use interpolation
with two or more model parameters have significantly less
error as compared to the map βðα1Þ constructed using the
least square fit. Hence we do not use the map βðα1Þ in our
analysis. However, with increasing number of model
parameters, the failure rate for interpolation also increases.
The interpolation fails for more than 80% of the cases when
we use eight model parameters. The failure rate of the map
constructed by using nine model parameters or more is

even higher and we do not consider that in our analysis. We
also note that the error in reconstruction of β using the
interpolation increases as β increases. This can be attributed
to the fact that the volume of parameter space sampled is
sparser as β increases.
We use the maps βðα1;…; αkÞ with k ≤ 8 to translate the

posteriors obtained for the model parameters from the
Bayesian inference of simulated signals to the posteriors on
β. We constrain the samples to be in the convex hull of the
first two model parameters, as shown in Fig. 6 in order to
successfully interpolate using the first three parameters. We
first use the map constructed by using eight model
parameters, which would result in some samples in the
posteriors getting rejected because of the failure in inter-
polation. We then use the map formed by seven model
parameters for the samples for which the interpolation
failed previously, and repeat the procedure with maps
constructed using fewer model parameters for the samples
for which interpolation fails. Eventually, all the remaining
samples are successfully interpolated by using the map
βðα1; α2; α3Þ. Constraining the samples within the convex
hull using four parameters or higher is computationally
expensive. A much more robust map can be constructed by
using machine learning and by populating the parameter
space with more simulations. We leave the construction and
testing of that map for future work.
The postbounce oscillation frequency fpeak is the l ¼ 2

f-mode peak frequency of the protoneutron star after the
core bounce [39,40]. Richers et al. observed that for
simulations with 0.02 ≤ β ≤ 0.06, fpeak for a given nuclear
equation of state is independent of the value of β (see
Fig. 2), with the softer equations of state having a higher
postbounce oscillation frequency. We use this relation
between fpeak and the equation of state, shown in
Table I, to infer the equation of state dependence on

FIG. 5. For each waveform in the catalog, a principal compo-
nent basis set is constructed using all remaining waveforms.
Using this basis set, βðα1;…; αkÞ maps are constructed using
interpolation with the first k ¼ 2;…; 8 model parameters, and β
of the excluded waveform is estimated using these maps. Least
square fit for a straight line is used while using just the first model
parameter to construct the map βðα1Þ. The median error in
reconstructing β through various maps and the respective failure
rate in interpolation are plotted on the vertical axes. Using more
number of model parameters reduces the error in interpolation,
however increases the number of times the interpolation fails.

FIG. 6. The α2 (vertical axis) vs α1 (horizontal axis) parameter
plane for the waveforms in the catalog. The colorbar shows the β
corresponding to each of the waveforms. The two dimensional
convex hull of the all the points is shown by the dashed black line.
Interpolation fails for a point outside the convex hull. We can
construct a three-dimensional convex hull if we also incorporate
α3. We constrain our MCMC samples to be within the three
dimensional convex hull.
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fpeak. To measure fpeak, in our analysis, we the method of
Richers et al. We first isolate the postbounce oscillation
from the earlier bounce and the later convection phases of
the waveform by taking the Fourier transform of the
waveform up to the end of the bounce phase tbe (taken
to be the third zero crossing after the core bounce) and,
separately, the Fourier transform of the waveform up to
tbe þ 6 ms, in order to include a few cycles of the
postbounce oscillations and isolate them from the con-
vective phase. The Fourier transform of the waveform up to
the bounce phase is subtracted from the Fourier transform
that includes postbounce oscillations and the largest spec-
tral feature within the window 600–1075 Hz is fpeak. As
found by Richers et al., for slowly rotating cores with β ≤
0.02 this method to extract fpeak is unreliable since the
protoneutron star oscillations are only weakly excited. For
β ≥ 0.06, centrifugal forces start affecting the postbounce
oscillations and the fpeak value depends on differential
rotation in addition to the equation of state.
In our analysis, we measure fpeak of a signal observed in

a detector by applying the method of Richers et al. to the
waveform reconstructed by our Bayesian parameter esti-
mation. For each sample in our posterior probability
distribution, we construct the approximate signal given
by Eq. (3) using all 15 measured principal component
parameters. We then determine the postbounce oscillation
frequency using the approximate posterior waveform.
Evaluating fpeak for all the samples gives a posterior
probability distribution for fpeak. Comparing the posterior
with Table I enables us to rule out the equations of state
inconsistent with the signal waveform. In this way gravi-
tational waves from core collapse provide us a different
regime than binary neutron star mergers to study the
nuclear equation of state.

IV. PARAMETER ESTIMATION

By combining the methods described above with
Bayesian parameter estimation [41,42] we can estimate
the posterior probability distributions for the physical
parameters of astrophysical signals. Our Bayesian param-
eter estimation samples the probability of the modeled
parameter values given a model and set of detectors’ data
using Markov chain Monte Carlo methods. We calculate
the posterior probability density function, pðϑ⃗jd⃗ðtÞ; HÞ, for
the set of parameters ϑ⃗ for the gravitational-waveform
model, H, given the gravitational-wave data from the
detectors d⃗ðtÞ

pðϑ⃗jd⃗ðtÞ; HÞ ¼ pðd⃗ðtÞjϑ⃗; HÞpðϑ⃗jHÞ
pðd⃗ðtÞjHÞ

; ð8Þ

where pðϑ⃗jHÞ is the prior—the assumed knowledge of the
distributions for the parameters ϑ⃗ describing the signal,

before considering the data. pðd⃗ðtÞjϑ⃗; HÞ is the
likelihood—the probability of obtaining the data d⃗ðtÞ given
the model H with parameters ϑ⃗. We use the Gaussian
likelihood in this analysis, which is given by [43]:

pðd⃗ðtÞjϑ⃗; HÞ

¼ exp

�
−
1

2

XN
i¼1

hñiðfÞjñiðfÞi
�
;

¼ exp

�
−
1

2

XN
i¼1

hd̃iðfÞ − s̃ðf; ϑÞjd̃iðfÞ − s̃ðf; ϑÞi
�
; ð9Þ

where N is the number of detectors (in our case, N ¼ 1),
and d̃iðfÞ and ñiðfÞ are the Fourier transforms of the data
and the noise in the detector. We sample the posterior
probability distribution using stochastic sampling methods.
Our choice of sampler in PYCBC INFERENCE [44] is guided
by the fact that the default parallel tempered MCMC
sampler EMCEE_PT [45–47] can experience problems con-
verging for signals with signal-to-noise ratios greater than
100. To address this, we use the dynamic nested sampling
package DYNESTY [48–50], which provides posterior prob-
ability distributions for all the signals explored here. For
signals with very high signal-to-noise ratio, the detector
noise becomes negligible and so it is possible to obtain a
point estimate of the signal parameters by directly comput-
ing the inner product between the signal and the basis
vectors. By performing this spot-check for the high signal-
to-noise ratio signals, we find that these point estimates
agree with the posteriors obtained by the DYNESTY sampler.
In our analysis, we assume that any gravitational-wave

signal from a core-collapse supernova will be accompanied
by a neutrino signal detected by neutrino observatories such
as IceCube [51], Super-Kamiokande [52], or DUNE [53].
The neutrino observations can estimate the time of the core
bounce to within 3–4 ms [6,54,55]. Our analysis only
considers the core bounce and the next 5–7 ms, and we use
assume that information from the neutrino observations can
provide a narrow prior of 8 ms for the time of the bounce.
We also assume that the distance and sky location to the
source are known and we do not include them in the
parameter estimation.
We use PYCBC INFERENCE [44] to obtain posteriors for

the coefficients of the first 15 principal components of the
waveform catalog. We use uniform priors for all the 15
coefficients as shown in Table II, in addition to the
constraint that the samples are restricted with the convex
hull formed by the point cloud of the first three model
parameters for the waveforms in the catalog. Using the map
discussed in Sec. III and the methods to extract fpeak values,
we translate the posteriors on the coefficients to posteriors
on β and fpeak.
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V. RESULTS

We test our method using the 60 signal waveforms
reserved from above. Each waveform, consisting of the
core collapse, postbounce oscillation, and prompt convec-
tion phases, is used to create a simulated observation by
adding it to Gaussian noise colored to the strain sensitivity
of the Advanced LIGO detectors and the third-generation
detectors: CE1, and Cosmic Explorer 2 (CE2). Cosmic
Explorer is the proposed third-generation detector which is
planned to begin observing in 2030s [56]. The first stage of
the observatory, CE1, is the scaling up of the Advanced
LIGO technologies to an interferometer with 40 km arm
length. The second stage of the observatory, CE2, will be an
upgrade on the core optics of Cosmic Explorer 1 by using
cryogenic technologies and new mirror substrates. The
predicted noise power spectral densities of the three
detectors used in this study are shown in Fig. 7. We place
the sources at distances corresponding to the center of the
Milky Way galaxy (8 kpc), far edge of the Milky Way from
the Earth (23 kpc), the Large Magellanic Cloud (48.5 kpc),
and out to 242 kpc to capture the dwarf satellite galaxies of
the Milky Way in the local group. In addition, we place the
sources at the distances of 40.5 and at 115 kpc. The sources
are assumed to be optimally oriented for the detector. The

signal-to-noise ratio of the signal waveforms and its varia-
tion with β is plotted in Fig. 8. We do not perform the
analysis if the simulated signal has a signal-to-noise ratio
less than 8 (shown as purple points in the figure). We note
that more sensitive interferometers are able to detect more
number of signals with low β. Advanced LIGO is not able to
detect any sources at 115 kpc or beyond. It is also unable to
detect the sources with β < 0.02 at 40.5 kpc and beyond.
The signal-to-noise ratios and detection ranges in our study
are consistent with those obtained for comparable signals in
previous core-collapse supernovae search studies [9,10].
We summarize our results in Table III. We measure the

median values and the 90% credible intervals from the
posteriors obtained from MCMC for β and fpeak. The width
of 90% credible intervals show how precisely we can
measure the parameters. 90% credible interval of fpeak is
useful to determine the equations of state consistent with
the signal, using Table I. The mean of the median values
provides an estimate of the accuracy of the measurement of
the parameters. We present our results by classifying the
signals in two sets: β < 0.02, and β ≥ 0.02.

FIG. 7. Predicted noise power spectral densities for Advanced
LIGO, CE1, and CE2 detectors.

TABLE II. Upper and lower bounds on the uniform priors used
for the model parameters αi and tbounce in Bayesian parameter
estimation. The values for αi were chosen based on the range of
values obtained from the construction of principal component
basis set. tbounce has a uniform prior width of 8 ms. All signals are
aligned such that the bounce is at tGPS ¼ 1126259469.5þ
0.02125 where 0.02125 is the light travel time between the
center of the Earth and the detectors. Note that an additional
constraint on the priors is to restrict the samples with the convex
hull formed by the first three model parameters of the waveforms
in the catalog (see Sec. III).

Parameter
Lower bound

on prior
Upper bound

on prior

α1 0.0 10.5
α2 −5.0 3.55
α3 −2.0 2.0
α4 −1.5 2.0
α5 −1.0 1.75
α6 −0.85 1.05
α7 −0.75 1.5
α8 −0.75 0.75
α9 −0.75 0.75
α10 −0.75 0.75
α11 −0.75 0.75
α12 −0.75 0.75
α13 −0.75 0.75
α14 −0.75 0.75
α15 −0.75 0.75
tbounceðGPS timeÞ 1126259469.517 1126259469.525

FIG. 8. The vertical axis shows the signal-to-noise ratios of
waveforms used as astrophysical signals. The horizontal axis
shows the β of the core progenitor at bounce. These sources are
assumed to be at distances of 8.1 kpc, 23 kpc, 40.5 kpc, 48.5 kpc,
115 kpc, and 242 kpc and the signals are observed in the CE1,
CE2, and Advanced LIGO (ALIGO) gravitational wave detec-
tors. We ignore the waveforms with signal-to-noise ratios below 8
(shown as purple dots) and do not perform parameter estimation
on them.
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The mean width of the 90% credible interval for β for
signals sources at the center of the Milky Way with β ¼
0.04 is 0.004 when observed in Advanced LIGO, improv-
ing to a width of 0.0008 if observed in Cosmic Explorer
detectors. For sources at 48.5 kpc it increases to 0.02 for
Advanced LIGO detections and 0.003 for Cosmic Explorer
detections. We note that the width of the 90% credible
intervals increases as the source distance increases. In
addition to that, as the value of β of the injected signal
increases the 90% credible interval width also increase,
even though the signal-to-noise ratio also increases. As
discussed in Sec. III, this is because the coefficients for
known values of β used to construct the map become sparse
for higher values of β and the interpolation suffers. On an
average, the 90% credible interval width for signals
observed in Cosmic Explorer 1 is 1.5 times that of the
signals observed in Cosmic Explorer 2. Figure 9 shows the
90% credible interval width of the posteriors of β as a

function of the injected value of β for all the signals. For the
sources at a given distance observed in a particular detector,
the 90% credible interval does not vary significantly across
the range of injected values of β. For some signals with
β < 0.02, the signal-to-noise ratio is less than 8, and hence
we do not perform parameter estimation on them.
For signals sources at a distance of 23 kpc with β < 0.02

observed in Cosmic Explorer 1, we estimate β with an error
of 21%. This increases to 24% for Cosmic Explorer 2. For
signal sources at 23 kpc with β > 0.02, we can estimate β
with 6% error for Cosmic Explorer detectors. The error
increases as the source distance increases. Figure 10 shows
the α1 and α2 posteriors obtained for the signal with β ¼
0.0299 at a distance of 23 kpc observed in Cosmic Explorer
1 (blue) and Cosmic Explorer 2 (orange). Since the signal is
observed with higher signal-to-noise ratio in Cosmic
Explorer 2 than in Cosmic Explorer 1, the posteriors
obtained for the former are smaller in area. However, the

TABLE III. The table summarizes the results of parameters estimation of β and fpeak for signal sources at 8, 23, 48.5, and 242 kpc. We
have categorized the results for the all the signals on basis of the detector they are observed in, their distance and the corresponding value
of β. We present the mean of the 90% credible interval widths and the mean value of the errors and from the posteriors obtained for fpeak
and β. The average 90% credible interval width of β for sources at 8 kpc observed in Advanced LIGO is 0.004, while for the third-
generation detectors its an order of magnitude less. The precision to which β can be measured decreases when the β of the signal
waveform increases, or the source distance increases. Note that the method to measure fpeak for signals with β < 0.02 is unreliable. We
include these results here for completeness.

Detector

Source
distance
[kpc] β range

Number
of signals

β fpeak

Mean 90%
credible interval

Mean
fractional error

Mean 90% credible
interval [Hz]

Mean fractional
error

Advanced LIGO 8 β < 0.02 13 0.004 22% 289 26%
β ≥ 0.02 35 0.004 10% 7 4%

23 β < 0.02 5 0.01 19% 780 3%
β ≥ 0.02 35 0.009 13% 39 4%

48.5 β < 0.02 0 � � � � � � � � � � � �
β ≥ 0.02 25 0.02 12% 57 3%

Cosmic Explorer 1 8 β < 0.02 25 0.0004 26% 37 18%
β ≥ 0.02 35 0.0008 6% 2 3%

23 β < 0.02 20 0.001 21% 147 11%
β ≥ 0.02 35 0.002 6% 5 3%

48.5 β < 0.02 17 0.002 15% 167 5%
β ≥ 0.02 35 0.003 7% 11 3%

242 β < 0.02 5 0.007 6% 205 2%
β ≥ 0.02 35 0.009 8% 64 2%

Cosmic Explorer 2 8 β < 0.02 25 0.0002 27% 4 21%
β ≥ 0.02 35 0.0005 7% 1 3%

23 β < 0.02 24 0.0005 24% 120 14%
β ≥ 0.02 35 0.001 7% 3 3%

48.5 β < 0.02 18 0.001 18% 22 10%
β ≥ 0.02 35 0.002 7% 6 3%

242 β < 0.02 11 0.004 8% 227 3%
β ≥ 0.02 35 0.006 8% 51 3%
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point with α1 and α2 values corresponding to the signal
(shown as the red star) is within the 90% credible region of
both posteriors. When these posteriors are translated to the
posteriors of β, using the map discussed in Sec. III, the
difference between the median value of β obtained and
the β of the injected signal is higher for Cosmic Explorer 2
than that for Cosmic Explorer 1. Such error is introduced
for several signals and leads to lower overall error for
Cosmic Explorer 1 than its upgraded counterpart. For
Advanced LIGO, β is measured with an error of 9%.
For signals with β ≥ 0.02 observed in the third gener-

ation detectors, we can measure fpeak with an mean error of
up to 3%. The average 90% credible intervals obtained for

fpeak for such signals within the galaxy is 5 Hz. Estimating
fpeak with such precision restricts the possible equations of
state consistent with the fpeak values, specially for signals
with 0.02 ≤ β ≤ 0.06. We obtain an average 90% credible
intervals for fpeak of 7 Hz for signals at the center of
Milky way observed in Advanced LIGO noise, with a
systematic error of 4%. For sources that are further away,
the average 90% credible interval are more that 35 Hz. The
systematic error is larger that the range spanned by the
mean fpeak values of various equations of state listed in
Table I and we conclude that third-generation gravitational-
wave detectors are required to extract nuclear physics from
core-collapse supernovae. The method to extract fpeak for
any waveform with a corresponding β ≤ 0.02 is unreliable,
and hence we get large systematic errors and 90% credible
intervals for such signals. We include these results for
completeness.

VI. CONCLUSION

Practical implementation of Bayesian inference relies on
the existence of parameterised gravitational-waveform
models that are inexpensive to compute. Such models,
with parametrization for the core rotation rate and the
postbounce oscillation frequency, do not exist for complete
core-collapse supernovae waveforms due to the complexity
of the physics involved. In this paper, we address this
problem for the first two phases of core-collapse signals,
namely the core bounce and the postbounce oscillations.
We use principal component analysis to create a para-
meterized model that extracts the most common features of
the bounce signal onto the principal components. We
construct a map between the physical parameters and the
model parameters (principal components and their coef-
ficients). We use Bayesian inference to measure the
coefficients of the first 15 principal components for a
signal observed in gravitational-wave detectors, and use the
inverse of the aforementioned map to obtain posteriors of
the physical parameters. In particular, we obtain posterior
probability distributions for the ratio of rotational kinetic
energy to the potential energy of the core at bounce (β) and
the peak frequency of the post bounce oscillations of the
protoneutron star (fpeak).
β depicts the rotation rate of the inner core of the star at

the core bounce. We find the relationship between the
model parameters and β by interpolating known values of β
from the hypervolume formed by the model parameters.
fpeak encodes useful information about the nuclear equation
of state, and tells us about the behavior of hot, dense
nuclear matter in the core of the star. We can successfully
measure fpeak for waveforms with β ≥ 0.02, however the
method to extract it fails for waveforms of extremely slowly
rotating cores.
For signals with β ≥ 0.02 at a distance of 8 kpc detected

in Advanced LIGO, β can be estimated with a 90% credible

FIG. 9. The 90% credible interval width of the posteriors
obtained for β as a function of the β of the injected signal
waveform. We note that the signals observed in Cosmic Explorer
1 (blue) and Cosmic Explorer 2 (orange) are measured an order of
magnitude more precisely than the signals in Advanced LIGO
(shown in green). On an average, the 90% credible interval width
for signals observed in Cosmic Explorer 1 is 1.5 times that of the
signals observed in Cosmic Explorer 2.

FIG. 10. The α1 and α2 posteriors obtained for the signal with
β ¼ 0.0299 at 23 kpc observed in Cosmic Explorer 1 (shown in
blue) and Cosmic Explorer 2 (shown in orange). The ðα1; α2Þ
point corresponding to the injected signal (shown as the red star)
is within the 90% contour region of both posteriors. The 90%
contour region for the posterior of signal observed in Cosmic
Explorer 2 is smaller than that of Cosmic Explorer 1 because the
signal has higher signal-to-noise ratio in the former. However,
when these posteriors are transformed into the posteriors of β, the
error in median values of β is larger for Cosmic Explorer 2 than
Cosmic Explorer 1.
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interval of 0.004 for Advanced LIGO, and 0.0008 for
Cosmic Explorer detectors. The width of the 90% credible
interval for β increases to 0.002 (0.003) for sources at
23 kpc (48.5 kpc). On an average, the 90% credible interval
for β for signals observed in Cosmic Explorer 1 is 1.5 times
larger than that for signals observed in Cosmic Explorer 2.
We can also estimate fpeak to within ∼6 Hz for signals
sources upto the distance of 48.5 kpc with β ≥ 0.02
observed in the third-generation detectors. Using the
posteriors on fpeak, we can successfully rule out the nuclear
equations of state that are inconsistent with the signal. The
error in measuring fpeak for the signals observed in
Advanced LIGO is 4% with an average 90% credible
interval width of 6 Hz for sources at the center of the
Milky Way. For sources that are further away, the 90%
credible interval width increases to more than 20 Hz. We
conclude that third-generation detectors are required to
constrain the nuclear equation of state from gravitational-
wave observations of core-collapse supernovae.
Previous studies have used principal component analysis

in Bayesian reconstruction of the signal observed in the
detectors [26,57] or to infer the core-collapse explosion
mechanism [21–24]. Edwards et al. [25] used principal
component analysis to measure β for signals observed in
Advanced LIGOwith signal-to-noise ratio 20, and obtained
the 90% confidence interval width of 0.06. We demonstrate

a method that uses principal component analysis in
Bayesian estimation of physical parameters β and fpeak,
and to find the dependence of gravitational-waveform
morphology on these physical parameters. For a signal
comparable to the ones in Edwards et al. study, our method
yields a confidence interval of 0.02, which is three times
smaller than that found by Edwards et al.
A more robust map between the model parameters and β

can be constructed my populating the model parameter
space and using machine learning. We leave the construc-
tion of this map and analysis of signals observed in Einstein
telescope for future work.

Supporting data for this manuscript is available
from [58].
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