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3Cátedras Conacyt—Instituto de Física y Matemáticas,
Universidad Michoacana de San Nicolás de Hidalgo,

Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México
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The choked accretion model consists of a purely hydrodynamical mechanism in which, by setting an
equatorial to polar density contrast, a spherically symmetric accretion flow transitions to an inflow-outflow
configuration. This scenario has been studied in the case of a (nonrotating) Schwarzschild black hole as
central accretor, as well as in the nonrelativistic limit. In this article, we generalize these previous works by
studying the accretion of a perfect fluid onto a (rotating) Kerr black hole. We first describe the mechanism
by using a steady-state, irrotational analytic solution of an ultrarelativistic perfect fluid, obeying a stiff
equation of state. We then use hydrodynamical numerical simulations in order to explore a more general
equation of state. Analyzing the effects of the black hole’s rotation on the flow, we find in particular that the
choked accretion inflow-outflow morphology prevails for all possible values of the black hole’s spin
parameter, showing the robustness of the model.
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I. INTRODUCTION

Black hole accretion theory has been an important build-
ing-block of our current understanding of high-energy
astrophysical phenomena such as x-ray binaries, gamma
ray bursts, and active galactic nuclei [1]. In recent years, this
field of knowledge has gone through a revolution led by the
observational breakthrough of gravitationalwave astronomy,
that has allowed a systematic analysis of close to fifty binary
black hole mergers to date [2,3], as well as the extreme-
resolution imaging of the immediate environment of astro-
physical black holes achieved by the Event Horizon
Telescope [4].
Since the pioneering work of Bondi [5], the introduction

of exact, analytic solutions for modeling different astro-
physical scenarios has been instrumental in the continuous
development of accretion theory. Analytic models, by
transparently highlighting the role played by different
physical ingredients, are key in cementing our understand-
ing and building our intuition around the studied phenom-
ena. Moreover, analytic solutions are crucial tools as
benchmark tests for numerical codes [6].
Within the regime of Newtonian gravity, the Bondi

solution describes the stationary flow of a spherically
symmetric gas cloud accreting onto a gravitational object.

This solution was extended by Michel [7] to a relativistic
regime by considering a Schwarzschild black hole as central
accretor. On the other hand, analytic solutions to the
so-called wind accretion scenario have been introduced
by Bondi and Hoyle [8] and Hoyle and Littleton [9] in the
Newtonian context as well as by Tejeda and Aguayo-Ortiz
[10] in the relativistic context of a Schwarzschild black
hole.1 Several analytic and numerical investigations have
further extended the study of spherical accretion, e.g.,
[14–24], as well as of wind accretion, e.g., [25–30].
It is important to note, however, that although astrophysi-

cal black holes are expected to rotate in general, very few
analytic solutions exist for rotating black holes as described
by the Kerr metric. A notable exception is the analytic
solution introduced by Petrich, Shapiro and Teukolsky [31]
that describes, under the assumptions of steady-state and
irrotational flow, an ultrarelativistic stiff fluid accreting onto
a Kerr black hole.
Based on the general solution presented in [31], and

following on the work of [32,33], Tejeda, Aguayo-Ortiz
and Hernandez [34] presented a simple, hydrodynamical
mechanism for launching bipolar outflows from a choked
accretion flow onto a Schwarzschild black hole. This
model starts from a spherically symmetric accretion flow
onto a central massive object and introduces a deviation

*Corresponding author.
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1Also see [11–13] for a related, analytic model of a rotating
dust cloud accreting onto a rotating or a nonrotating black hole.
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away from spherical symmetry by considering a small-
amplitude, large-scale density gradient in such a way that
the equatorial region of the accreting material is over dense
as compared to the polar regions. This anisotropic density
field translates into a pressure-driven force that, provided a
sufficiently large mass accretion rate, can deflect a fraction
of the originally radial accretion flow onto a bipolar
outflow. The threshold value for the accretion rate deter-
mining whether the inflow chokes and the launching
mechanism is successful or not is found to be of the order
of the mass accretion rate corresponding to the spherically
symmetric cases discussed by Bondi and Michel.
Even though the approximation of a stiff fluid has a rather

limited applicability in astrophysics, the mechanism pre-
sented in [34] was shown to be valid for more general
equations of state by means of full hydrodynamic numerical
simulations.Moreover, as discussed in [33], this mechanism
is also valid in the context of Newtonian gravity.
In this work, we present an extension of the choked

accretion model introduced in [33,34] to the case of a
rotating central black hole as described by the Kerr metric.
We study this problem using both an analytic solution for
an ultrarelativistic stiff fluid as well as full hydrodynamic
numerical simulations for fluids described by more general
equations of state. In addition to demonstrating that the
choked accretion mechanism can successfully operate with
a central rotating black hole, we also analyze the effects of
the black hole rotation on the accretion flow.
We focus mostly on the case in which the axis of the

bipolar outflow is aligned with the black hole’s rotation
axis, although we also briefly discuss the case of a possible
misalignment between these two. Considering that the
infalling gas might come from the inner edge of an
accretion disk, we believe that the restriction of alignment
is well justified in view of the Bardeen-Petterson effect
[35,36], which foresees that the inner part of an accretion
disk around a rotating black hole will be aligned with the
equatorial plane of the central black hole.
The choked accretion mechanism introduced in [33,34]

can be considered as a hydrodynamic toymodel of the central
engine in astrophysical scenarios involving both equatorial
accretion flows and bipolar outflows. These scenarios can
range from the jets and winds associated with some young
stellar objects to the accretiondisk-jet systemsassociatedwith
stellar mass black holes (such as x-ray binaries and gamma-
ray bursts) as well as with supermassive black holes (such as
radio loud galaxies and other active galactic nuclei).
Even though the choked accretion model does not

account directly for fluid rotation, the assumption of an
anisotropic density field is motivated precisely as a way to
introduce indirectly one of the effects of fluid rotation and
angular momentum conservation, namely, the existence of
a well-defined symmetry axis (the rotation axis) and the
accompanying flattening of the accreting fluid that results
in an equator-to-poles density gradient (see, e.g., [37,38]).

Several works in the literature have studied before different
accretion scenarios featuring both equatorial inflows and
bipolar outflows, particularly within the regime of hot
accretion flows [39,40], that correspond to geometrically
thick, optically thin, and radiatively inefficient accretion
flows. These studies have been both analytic, with models
such as advection dominated accretion flows (ADAF) [41,42]
or adiabatic inflow-outflow solutions (ADIOS) [43–45], as
well as based on numerical simulations [46–51]. From the
point of view of the incorporated physical ingredients, these
models are more realistic than the choked accretion scenario
discussed here as they account for effects such as fluid
rotation, viscousdissipationof energy and transport of angular
momentum, interaction with a radiation field, magnetic
fields, among others. Nevertheless, we believe that, given
its simplicity and reliance on pure hydrodynamics, the choked
accretion mechanism might be already at work in some of
those systems, acting alongside more complex processes.
Also note that the choked accretion model shares some

broad, qualitative features with some versions of hot
accretion flows [40], namely, an accreting, quasispherical
gas distribution, with sub-Keplerian rotation, and with such
a large internal energy that parcels of it become gravita-
tionally unbound from the central object and can be ejected
as bipolar outflows.
The paper is organized as follows. Based on the approx-

imations of steady-state and irrotational flow, in Sec. II we
present the general solution of an ultrarelativistic stiff fluid in
Kerr spacetime. In contrast to [31], who adopted the Boyer-
Lindquist coordinates for this derivation, we shall employ
horizon-penetrating coordinateswhich are regular across the
black hole’s event horizon and allow for a clearer and, in fact,
simpler derivation of the solution. In Sec. III we restrict our
discussion on the axisymmetric, quadrupolar solution and
discuss its most salient properties. Based on this solution,
in Sec. IV we introduce and discuss the analytic model
describing choked accretion in a Kerr spacetime. In Sec. V
we complement this study by means of hydrodynamic
simulations for a more general equation of state. Finally,
in Sec. VI, we present a summary of the model and give our
conclusions. Technical details regarding the region of
validity of the analytic solution, a nonaxisymmetric exact
solution, and convergence tests of our numerical results are
discussed in three appendixes. Throughout this article we
use the signature convention ð−;þ;þ;þÞ for the spacetime
metric and work in geometrized units for whichG ¼ c ¼ 1.

II. STEADY-STATE, IRROTATIONAL SOLUTIONS
FOR AN ULTRARELATIVISTIC STIFF EQUATION

OF STATE ON A KERR BACKGROUND
SPACETIME

In this section, we review the analytic approach of [31]
for obtaining exact, irrotational, steady-state solutions of
the relativistic Euler equations on a Kerr black hole
background with an ultrarelativistic stiff equation of state.
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We start in Sec. II A with the derivation of the Petrich-
Shapiro-Teukolsky solution [31] in horizon-penetrating
coordinates. Next, in Sec. II B we compute the components
of the three-velocity of the fluid with respect to the
reference frame associated with zero angular momentum
observers (ZAMOs), which are naturally adapted to the
Killing symmetries of the Kerr geometry and reduce to the
usual static observers in the non-rotating limit. Finally, in
Sec. II C we discuss the conserved quantities obeyed by the
fluid field, such as the (rest) mass and energy accretion
rates which are important for the physical interpretation of
our model, as well as the angular momentum accretion rate.
An ultrarelativistic stiff equation of state is characterized

by the fluid’s pressure P ¼ Kρ2 being proportional to the
square of the rest-mass density ρ and the internal energy
dominating the rest mass energy. For a perfect fluid in
local thermodynamical equilibrium obeying the first law
dh ¼ dP=ρ, this implies that its specific enthalpy h ¼ 2Kρ
is proportional to ρ. Together with the irrotational condition
such a fluid can be described by a scalar potential Φ
satisfying the linear wave equation

∇μ∇μΦ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0: ð1Þ

The potentialΦ determines the fluid’s specific enthalpy and
four-velocity Uμ according to

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð∇μΦÞð∇μΦÞ

q
; Uμ ¼ 1

h
∇μΦ; ð2Þ

from which the rest-mass density and the pressure can also
be obtained. An important point to notice is that not every
solution of the wave equation (1) yields a valid solution for
the fluid; indeed, for h to be well-defined the gradient ∇μΦ
of Φ needs to be timelike.
The key observation in [31] is that for a steady-state

configuration on a Kerr background, Eq. (1) can be
decoupled into standard spherical harmonics (even though
the Kerr spacetime is not spherically symmetric), leading to
a general solution which can be expressed in terms of well-
known special functions. In the following, we briefly repeat
the arguments leading to this expression. However, unlike
the Boyer-Lindquist coordinates used in [31], we base our
calculations on the Kerr-type coordinates2 ðt;ϕ; r; θÞ. This

has at least two advantages. First, as we will see, the
derivation and final expression for the analytic solution of
Eq. (1) is clearer and simpler in terms of these coordinates.
Second, and most importantly, it greatly facilitates the under-
standing of the properties of the flow at the horizon, since
these coordinates cover the (future) event horizon r ¼ rþ in
addition to the outside region r > rþ (whereas the Boyer-
Lindquist coordinates are ill-defined at the horizon).

A. Derivation of the Petrich-Shapiro-Teukolsky
solution in the Kerr-type coordinates

In terms of the coordinates ðt;ϕ; r; θÞ, the Kerr metric
components have determinant g ≔ detðgμνÞ ¼ −ϱ4 sin2 θ
and the components of the inverse metric are

ðgμνÞ ¼ 1

ϱ2

0
BBB@

−ðϱ2 þ 2MrÞ 0 2Mr 0

0 1
sin2 θ a 0

2Mr a Δ 0

0 0 0 1

1
CCCA; ð4Þ

where we use the standard abbreviations3

ϱ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2:

Here, M and a are the mass and rotation parameter of the
Kerr spacetime, and we assume that a2 < M2 such that this
spacetime describes a nonextremal black hole with angular
momentum J ¼ aM.
With these coordinates, the wave equation (1) assumes

the following explicit form:

ðϱ2 þ 2MrÞΦ;tt − 2MrΦ;tr − ð2MrΦ;tÞ;r − 2aΦ;rϕ

− ðΔΦ;rÞ;r −
1

sin θ
ðsin θΦ;θÞ;θ −

1

sin2 θ
Φ;ϕϕ ¼ 0; ð5Þ

where, here and in what follows, subindices following a
coma refer to partial derivatives; for instanceΦ;tr ¼ ∂r∂tΦ.
For a stationary solution (such that h and Uμ are

independent of t), the scalar potential has the form

Φ ¼ e½−tþ ψðr; θ;ϕÞ�; ð6Þ
with a new function ψ which does not depend on t, and
where the positive constant e corresponds to the Bernoulli
constant (per unit mass), defined as

e ¼ −hUμKμ ¼ −hUt ¼ −Φ;t; ð7Þ

where K ¼ ∂t is the Killing vector field associated with the
time symmetry of Kerr spacetime.

2These coordinates are related to the Kerr coordinates
ðv;ϕ; r; θÞ found in standard textbooks [52,53] by the trans-
formation v ¼ tþ r, and they are related to the standard Boyer-
Lindquist coordinates ðtBL;ϕBL; rBL; θBLÞ through the transfor-
mation r ¼ rBL, θ ¼ θBL, while

t ¼ tBL þ
2M

rþ − r−

�
rþ ln

�
r − rþ
rþ

�
− r− ln

�
r − r−
r−

��
; ð3aÞ

ϕ ¼ ϕBL þ
a

rþ − r−
ln

�
r − rþ
r − r−

�
: ð3bÞ

3We warn the reader that throughout this work we follow the
convention of Ref. [1] where the similar-looking symbols ρ and ϱ
denote the rest-mass density and the metric coefficient
ϱ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 cos2 θ

p
, respectively.
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Introducing the ansatz (6) into Eq. (5) yields

ðΔψ ;rÞ;r þ
1

sin θ
ðsin θψ ;θÞ;θ þ

1

sin2 θ
ψ ;ϕϕ þ 2aψ ;rϕ ¼ 2M:

ð8Þ

Despite of the presence of the rotation parameter a, this
equation can be separated into radial and angular parts by
means of a decomposition in terms of the standard spherical
harmonics Ylmðθ;ϕÞ:

ψðr; θ;ϕÞ ¼
X
lm

RlmðrÞYlmðθ;ϕÞ; ð9Þ

with the functions Rlm to be determined. Introduced into
Eq. (8) this gives4

d
dr

�
Δ
dR00

dr

�
¼ 2M; ð10Þ

for l ¼ 0, and

d
dr

�
Δ
dRlm

dr

�
þ 2i m a

dRlm

dr
− lðlþ 1ÞRlm ¼ 0; ð11Þ

for l ≥ 1. Integrating Eq. (10) once gives

dR00

dr
¼ 2Mrþ c0

ðr − rþÞðr − r−Þ
;

for some constant c0, where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
denote

the roots of Δ. In order for R00 to be regular at the event
horizon r ¼ rþ, one needs to choose c0 ¼ −2Mrþ, such
that the factor r − rþ in the denominator is canceled. This
yields

R00 ¼ 2M ln

�
r − r−
rþ − r−

�
ð12Þ

plus a constant which is irrelevant since the flow only
depends on the gradient ofΦ. Note that R00 is regular for all
r > r−, but diverges at the Cauchy horizon r ¼ r−.

5

Therefore, the “spherical” (l ¼ 0) piece of ψ is fixed to
the specific function (12) by the requirement of regularity at
the horizon.
Equation (11) describes the “nonspherical” (l ≥ 1)

contributions to ψ and can be brought into the hyper-
geometric differential equation by introducing the dimen-
sionless coordinate

x ≔
r − rþ
rþ − r−

; ð13Þ

which ranges from −1 to∞ as r varies from r− to∞ and is
zero at the event horizon r ¼ rþ. In terms of this, Eq. (11)
reads

xð1þ xÞ d
2Rlm

dx2
þ
�
1þ 2xþ 2i m a

rþ − r−

�
dRlm

dx

− lðlþ 1ÞRlm ¼ 0; ð14Þ

which, after the further substitution x ¼ −y, yields the
standard form of the hypergeometric differential equation
(see, for example [54], Sec. 15). The solutions which are
regular at the event horizon x ¼ 0 can be written in terms of
Gauss’ hypergeometric function F (as defined in [54],
Sec. 15):

RlmðrÞ ¼ AlmFð−l;lþ 1; 1þ i m α;−xÞ; ð15Þ

where Alm is a free (complex) constant and where we have
introduced the dimensionless quantity

α ≔
2a

rþ − r−
¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p :

Note that Eq. (15) is actually a polynomial in r of order l,6

since for any complex number c ≠ 0;−1;−2;…,

Fð−l;lþ 1; c;−xÞ ¼
Xl
n¼0

ðlþ nÞ!
ðl − nÞ!

1

ðcÞn
xn

n!
; ð16Þ

with ðcÞn ≔ cðcþ 1Þðcþ 2Þ � � � ðcþ n − 1Þ for n ≥ 1 and
ðcÞ0 ≔ 1. A few examples relevant for this article are

[l ¼ 0]: Fð0; 1; c;−xÞ ¼ 1 (“spherical” Bondi-Michel-
type accretion which will be discussed in a future
work)

[l ¼ 1]: Fð−1; 2; c;−xÞ ¼ 1þ 2x
c (wind accretion dis-

cussed in [31,55,56])
[l ¼ 2]: Fð−2; 3; c;−xÞ ¼ 1þ 6x

c þ 12x2
cðcþ1Þ (choked ac-

cretion, discussed in the Schwarzschild limit in [34],
and in the present paper for arbitrary rotation)

Summarizing, the general solution describing a steady-
state, irrotational flow on a Kerr background which is
regular at the horizon and which has an ultrarelativistic stiff
equation of state is characterized by the potential

Φ ¼ e½−tþ 2M lnð1þ xÞ þ F ðr; θ;ϕÞ�; ð17Þ

with
4For simplicity, we assume that Y00 ¼ 1 while for l > 0 the

spherical harmonics Ylm are defined with the usual normaliza-
tion.

5Note also that R00 and its gradient diverge at the horizon in the
extremal case a ¼ �M, when rþ ¼ r− ¼ M.

6These polynomials are related to the associated Legendre
functions of the first kind, see [31,54]. For the special case c ¼ 1
these polynomials are also related to the shifted Legendre
polynomials.
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F ðr; θ;ϕÞ ≔
X∞
l¼1

Xl
m¼−l

AlmFð−l;lþ 1; c;−xÞYlmðθ;ϕÞ;

ð18Þ

where we recall that Alm ∈ C, x ¼ ðr − rþÞ=ðrþ − r−Þ,
c ¼ 1þ i m α, and α ¼ 2a=ðrþ − r−Þ.
Except for the addition of an irrelevant constant, the

expression for the potential in Eq. (17) agrees with Eq. (30)
in [31], taking into account the relations (3a), (3b) between
the Kerr-type coordinates and the Boyer-Lindquist coor-
dinates used in that reference.
ForΦ as given in Eq. (17) to be real, the coefficients Alm

need to satisfy the reality conditions

Al−m ¼ ð−1ÞmA�
lm; ð19Þ

so that there are 2lþ 1 independent real constants for each
l. Note also that Fð−l;lþ 1; 1þ i m α; 0Þ ¼ 1 on the
event horizon; hence the coefficients Alm describe the lm
contributions of the fluid potentialΦwhen evaluated on the
horizon cross section.
The specific enthalpy and four-velocity are obtained

from substituting Eq. (17) into Eq. (2), which yields

h2

e2
¼ 1þ 2M

ϱ2
rðrþ rþÞ þ 2Mrþ

r − r−

þ 4M
ϱ2

�
rþF ;r −

a
r − r−

F ;ϕ

�

−
1

ϱ2

�
ΔF 2

;r þ 2aF ;rF ;ϕ þ F 2
;θ þ

F 2
;ϕ

sin2 θ

�
; ð20Þ

and

h
e
Ut ¼ 1þ 2Mr

ϱ2
rþ rþ
r − r−

þ 2Mr
ϱ2

F ;r; ð21aÞ

h
e
Ur ¼ 1

ϱ2
ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ; ð21bÞ

h
e
Uθ ¼ 1

ϱ2
F ;θ; ð21cÞ

h
e
Uϕ ¼ 1

ϱ2

�
2Ma
r − r−

þ aF ;r þ
1

sin2 θ
F ;ϕ

�
: ð21dÞ

Recall that the gradient of Φ needs to be timelike for the
solution to be well-defined, which is equivalent to the
requirement that the right-hand side of Eq. (20) be positive.
In general, this condition cannot be satisfied everywhere
outside the horizon. Since Fð−l;lþ 1; 1þ i m α;−xÞ
grows like rl at large distances, the right-hand side of
Eq. (20) is dominated by the term −ΔF 2

;r=ϱ2 ∼ −r2l−2 for a
solution containing multipoles up to a given l and hence

will eventually become negative, for a sufficiently large
radius, if l ≥ 2. However, since h2=e2 > 1 when F ¼ 0,
one can always choose the coefficients Alm small enough
such that the right-hand side of Eq. (20) is positive (and
hence h well-defined) within a finite spherical shell of the
form rþ ≤ r ≤ R containing the horizon.
A further restriction comes from the requirement that the

fluid should fall into the black hole at the horizon, such that
the four-velocity satisfies the inequality

Uμ∇μr ¼ Ur ¼ e
h
1

ϱ2
½−2Mrþ þ aF ;ϕ� < 0 ð22Þ

at the horizon r ¼ rþ, which is equivalent to the bound
aF ;ϕ < 2Mrþ at r ¼ rþ. We will show shortly that this is,
as expected, a consequence of the requirement for ∇μΦ to
be future-directed timelike.

B. ZAMO frame and three-velocity

For the results and calculations that follow, it is con-
venient to express the four-velocity in terms of an ortho-
normal frame instead of local coordinates. A very
convenient frame in the Kerr exterior spacetime is the
one associated with ZAMOs [57,58], that is, observers
whose world lines are tangent to a linear combination of the
Killing vector fields,

∂
∂tþ Ω

∂
∂ϕ ; with Ω ¼ 2Mar

Σ
; ð23Þ

and

Σ¼ðr2þa2Þ2−a2Δsin2θ¼Δϱ2þ2Mrðr2þa2Þ: ð24Þ

The ZAMO’s angular velocity Ω is singled out by the
requirement of zero angular momentum. These observers’
tangent vectors are also orthogonal to the tBL ¼ const.
Boyer-Lindquist time slices, and in this sense they general-
ize the “local Eulerian observers” used in [34] to discuss the
quadrupolar flow in a Schwarzschild background.
A natural orthonormal frame associated with the

ZAMOs is given by the following basis vectors (see
[57,58])7:

et̂ ¼
1

ϱ

ffiffiffiffi
Σ
Δ

r � ∂
∂tþ Ω

∂
∂ϕ

�
; ð25aÞ

er̂ ¼
ffiffiffiffi
Δ

p

ϱ

� ∂
∂rþ

2Mr
Δ

∂
∂tþ

a
Δ

∂
∂ϕ

�
; ð25bÞ

7Here and in the following, hatted indices refer to labels for
this orthonormal frame.
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eθ̂ ¼
1

ϱ

∂
∂θ ; ð25cÞ

eϕ̂ ¼ ϱffiffiffi
Σ

p
sin θ

∂
∂ϕ : ð25dÞ

The orthonormal components of the four-velocity are
given by

h
e
Ut̂ ¼ 1

ϱ

ffiffiffiffi
Σ
Δ

r
ð1 −ΩF ;ϕÞ; ð26aÞ

h
e
Ur̂ ¼ 1

ϱ
ffiffiffiffi
Δ

p ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ; ð26bÞ

h
e
Uθ̂ ¼ 1

ϱ
F ;θ; ð26cÞ

h
e
Uϕ̂ ¼ ϱffiffiffi

Σ
p

sin θ
F ;ϕ: ð26dÞ

On the other hand, the components of the three-velocity are
defined as

Vr̂ ¼ Ur̂

Ut̂
¼ −2Mrþ þ ΔF ;r þ aF ;ϕffiffiffi

Σ
p ð1 − ΩF ;ϕÞ

; ð27aÞ

V θ̂ ¼ Uθ̂

Ut̂
¼

ffiffiffiffi
Δ
Σ

r
F ;θ

1 −ΩF ;ϕ
; ð27bÞ

Vϕ̂ ¼ Uϕ̂

Ut̂
¼ ϱ2

ffiffiffiffi
Δ

p

Σ sin θ

F ;ϕ

1 −ΩF ;ϕ
; ð27cÞ

with the corresponding Lorentz factor

Γ ¼ Ut̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð28Þ

where

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVr̂Þ2 þ ðV θ̂Þ2 þ ðVϕ̂Þ2

q
: ð29Þ

A number of interesting conclusions can be drawn from
these representations of the four- and three-velocities. First,
the four-velocity vector is future-directed timelike outside
the horizon if and only ifUt̂ > 0 and if the magnitude of the
three-velocity V is smaller than one. This is equivalent to
the two conditions

ΩF ;ϕ < 1 ð30Þ

and

V2 ¼ 1

Σð1 −ΩF ;ϕÞ2
�
ð−2Mrþ þ ΔF ;r þ aF ;ϕÞ2

þ Δ
�
F 2

;θ þ
ϱ4

Σsin2θ
F 2

;ϕ

��
< 1: ð31Þ

In the axisymmetric case, when F ;ϕ ¼ 0, the first inequal-
ity is automatically satisfied and the second one simplifies
considerably:

V2 ¼ ð2Mrþ − ΔF ;rÞ2 þ ΔF 2
;θ

Σ
< 1: ð32Þ

Since Σ ≥ ð2MrþÞ2 þ Δϱ2 for r ≥ rþ, one can always
satisfy this inequality for small enough values of the
gradient of F . The restrictions implied by the inequalities

)30,31 ) for a quadrupolar solution (l ¼ 2) will be analyzed
in more detail in the next two sections.
The next property that can be inferred from Eqs. (30) and

(31) is obtained by taking the limit r → rþ. In this limit,
the inequality (30) yields ΩþF ;ϕjr¼rþ

≤ 1, where Ωþ ¼
a=ð2MrþÞ is the angular velocity of the event horizon. This
provides a bound for the value of F ;ϕ at the horizon, and
comparison with Eq. (22) reveals the meaning of this
bound: the fluid cannot flow out of the black hole, a
property that is, of course, expected on physical grounds.
By requiring that the four-velocity Uμ is everywhere
timelike on the horizon, one can further eliminate the
possibility that ΩþF ;ϕ ¼ 1 somewhere on the horizon;
otherwise Eq. (22) would imply that Uμ is tangent to
the horizon and thus cannot be timelike. Summarizing, the
requirement for Uμ to be future-directed timelike at the
horizon yields the strict inequality,

ΩþF ;ϕjr¼rþ
< 1 ð33Þ

which implies that the flow can only cross inwards the
event horizon.
Another point to notice from the expressions for the

three-velocity of the fluid in Eqs. (27a)–(27c) is that
the fluid is at rest with respect to a ZAMO if and only
if the function F satisfies

ΔF ;r þ aF ;ϕ ¼ 2Mrþ; F ;θ ¼ F ;ϕ ¼ 0: ð34Þ

Finally, we note that, even though the ZAMO frame is
very useful in many situations, this frame is not well
defined at the event horizon nor in the region inside the
black hole between the two horizons r− and rþ, where
Δ ≤ 0. In case one is interested in analyzing the flow at or
inside the horizon, one may use instead the orthonormal
frame adapted to local Eulerian observers relative to the
t ¼ const. Kerr-type coordinates.
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C. Conserved quantities

Due to the presence of the Killing vector fields K ¼ ∂t
and L ¼ ∂ϕ of the Kerr spacetime, the following four-
currents are divergence-free:

Jμ ¼ ρUμ; ð35aÞ

JμE ¼ −Tμ
νKν; ð35bÞ

JμL ¼ Tμ
νLν; ð35cÞ

corresponding to the rest-mass, energy, and angular
momentum current densities, respectively.
For an ultrarelativistic stiff fluid, the specific enthalpy

h ¼ 2Kρ is proportional to the particle density and
P ¼ ρh=2, such that

Jμ ¼ ρUμ ¼ ρ

h
∇μΦ; ð36aÞ

Tμ
ν ¼ ρhUμUν þ Pδμν

¼ ρ

h

�
ð∇μΦÞð∇νΦÞ − 1

2
δμνð∇αΦÞð∇αΦÞ

�
: ð36bÞ

In particular, using Eqs. (17) and (21b) we find

Jr ¼ ρe
h

1

ϱ2
½−2Mrþ þ ΔF ;r þ aF ;ϕ�; ð37aÞ

JrE ¼ eJr; ð37bÞ

JrL ¼ eF ;ϕJr: ð37cÞ

Since the flow is stationary, the equation∇μJμ ¼ 0 gives

ðϱ2 sin θJrÞ;r þ ðϱ2 sin θJθÞ;θ þ ðϱ2 sin θJϕÞ;ϕ ¼ 0: ð38Þ

Therefore, the mass accretion rate (current flux) associated
with J through a two-surface S is given by

_M ¼ −
Z
S
ðJrNr þ JθNθ þ JϕNϕÞϱ2 sin θdS; ð39Þ

with ðNr; Nθ; NϕÞ the unit outward normal field and dS a
differential area element of S. If S is closed, then _M is
independent of any deformations of S, since Jμ is con-
served. For example, if S is a constant-r surface, then

_M ¼ −
Z
S
Jrϱ2 sin θdθdϕ; ð40Þ

which is independent of r. Using now the orthogonality
relations of the spherical harmonics we can integrate
Eq. (40) as

_M ¼ 8πMrþ
ρe
h

¼ 4πðr2þ þ a2Þ ρe
h
; ð41Þ

which is constant since ρ=h ¼ 1=ð2KÞ.
Similarly, for the energy accretion rate we have

_E ¼ −
Z
S
JrEϱ

2 sin θdθdϕ ¼ 4πðr2þ þ a2Þ ρe
2

h
¼ e _M; ð42Þ

while, for the angular momentum accretion rate

_J ¼ −
Z
S
JrLϱ

2 sin θdθdϕ

¼ −a
ρe2

h

Z
r¼rþ

F 2
;ϕ sin θdθdϕ

¼ −a
ρe2

h

X∞
l¼1

Xl
m¼−l

m2jAlmj2: ð43Þ

Notice that the mass and energy accretion rates are
uniquely determined by the l ¼ 0 part of the solution
(they are independent of the coefficients Alm), which in
turn was determined by the regularity requirement at the
event horizon. In contrast to this, the angular momentum
accretion rate is solely determined by the l > 0 part of
the solution. Interestingly, the sign of _J indicates that the
accreted material always slows down the spin of the
black hole (unless the flow is perfectly axisymmetric in
which case _J ¼ 0). Therefore, the accretion flow described
by (17) always drives the Kerr black hole away from
extremality (jJj decreases, M increases, such that J=M2

decreases).

III. THE AXISYMMETRIC QUADRUPOLAR FLOW

In this section we shall focus on the axisymmetric
quadrupolar solution, i.e., the velocity potential Φ in
Eq. (17) for which all of the coefficients Alm vanish except
for the ðl; mÞ ¼ ð2; 0Þ contribution, which results in

Φ ¼ e

�
−tþ 2M ln

�
r − r−
rþ − r−

�
þ AFðr; θ;ϕÞ

�
; ð44Þ

with

Fðr;θ;ϕÞ ¼ ð3r2 − 6Mrþ 2M2 þ a2Þð3 cos2 θ− 1Þ; ð45Þ

where, as we shall see below, e can be identified as a
scaling factor for the gas’ thermodynamic state while A
determines the overall flow morphology.
We can now exploit all of the results derived in the

previous section. In particular, from Eqs. (27a)–(27c), we
obtain the following expressions for the spatial components
of the three-velocity as described by the ZAMOs
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Vr̂ ¼ −2Mrþ þ AΔF;rffiffiffi
Σ

p ; ð46aÞ

V θ̂ ¼
ffiffiffiffi
Δ
Σ

r
AF;θ; ð46bÞ

Vϕ̂ ¼ 0; ð46cÞ

where

F;r ¼ 6ðr −MÞð3cos2θ − 1Þ; ð47aÞ

F;θ ¼ −6ð3r2 − 6Mrþ 2M2 þ a2Þ cos θ sin θ: ð47bÞ

The value for the constant e can be set by specifying a
reference point at which the fluid state is known. Calling h0
the specific enthalpy and V0 the magnitude of the three-
velocity at this reference point, from Eq. (26), we have

e ¼ Γ0h0ϱ0

ffiffiffiffiffiffi
Δ0

Σ0

s
; ð48Þ

where Γ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

0

p
.

Using Eqs. (20) and (26a) we find that the specific
enthalpy in this case is given by

h2

e2
¼ Σð1 − V2Þ

Δϱ2

¼ 1þ 2Mr
ϱ2

þ 4M2

ϱ2
rþ rþ
r − r−

þ 4Mrþ
ϱ2

AF;r −
A2

ϱ2
ðΔF2

;r þ F2
;θÞ: ð49Þ

On the other hand, denoting by ρ0 the rest-mass density
at the reference point, from the equation of state we have
ρ=ρ0 ¼ h=h0. Using this, and substituting Eq. (48) back
into Eq. (26), we obtain

ρ

ρ0
¼ h

h0
¼ Γ0ϱ0

Γϱ

ffiffiffiffiffiffiffiffiffiffiffiffi
Σ
Σ0

Δ0

Δ

s
: ð50Þ

From Eq. (50), we note that the following combination of
variables

ρΓϱ
ffiffiffiffi
Δ
Σ

r
¼ const: ð51Þ

yields a global constant that characterizes the resulting
flow. Indeed, as follows from Eqs. (41) and (26a), this
constant is proportional to the total mass accretion rate.
Also note that, from Eq. (49), it is clear that both h and ρ are
completely regular (finite) quantities at the event horizon

(r ¼ rþ),
8 although they do become infinite at the Cauchy

horizon (r ¼ r−).
Provided that A ≠ 0, the flow structure described by

Eqs. (46a)–(46c) consists of an inflow-outflow morphol-
ogy. We can characterize this morphology in terms of the
location of the stagnation points, i.e., points at which the
three-velocity vanishes. From Eqs. (46b), (47b) we see that
V θ̂ vanishes only at points along the polar axis (θ ¼ 0; π)
and on the equatorial plane (θ ¼ π=2). Now it only remains
examining the points at which Vr̂ ¼ 0 restricted to either
θ ¼ 0; π or θ ¼ π=2. From Eqs. (46a), (47a) we can
distinguish two qualitatively different cases:
Case 1: When A > 0, the resulting structure consists of

inflow across an equatorial region and outflow confined to
the polar regions (bipolar outflow). In this case, Vr̂ vanishes
at two points along the polar axis symmetrically located
with respect to the origin at a coordinate distance r ¼ S that
satisfies

A ¼ Mrþ
6ðS − r−ÞðS − rþÞðS −MÞ : ð52Þ

See Fig. 1 for an example of the resulting flow for AM ¼
0.01 (which corresponds to S ≃ 4.24M) and a Kerr black
hole with a ¼ 0.5M.
Case 2: When A < 0, the scenario is reversed and one

has two bipolar inflow regions and outflow across the
equatorial region. In this case, we have that Vr̂ vanishes
now at an infinite number of points located on an equatorial
ring of radius r ¼ S satisfying

A ¼ −
Mrþ

3ðS − r−ÞðS − rþÞðS −MÞ : ð53Þ

In Fig. 2, we show an example of the resulting flow for
AM ¼ −0.01 (which corresponds to S ≃ 5M) and a Kerr
black hole with a ¼ 0.5M.
In both examples shown in Figs. 1 and 2, it is apparent

that V becomes luminal at two surfaces. From Eqs. (46a)–
(46c), and as discussed in the previous section, it is simple
to see that one such surface is the black hole’s event horizon
located at r ¼ rþ. This behavior is, however, a coordinate
effect related to the fact that the ZAMOs become ill defined
at this radius. Indeed, using Eqs. (21a)–(21b), it can be seen
that the fluid’s four-velocity is completely regular across
the event horizon.
On the other hand, the outer surface at which V ¼ 1

signals an unavoidable characteristic of the quadrupolar
solution. This surface, that in what follows we shall refer to
as E, marks the transition of the gradient Φ;μ from being
timelike (for points inner to E) to becoming spacelike (for

8Provided that jAj remains sufficiently small. See the dis-
cussion below Eq. (56) for conditions on A that guarantee that
h2=e2 > 0 near the horizon.
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points outside E). Moreover, from Eq. (50) we see that, at
this surface, the density ρ becomes zero and, for points
outside E, ρ ceases to be a real quantity. For these reasons,
we have to consider E as the outermost boundary delimiting
the spatial domain of applicability of the quadrupolar
solution.
An expression for E can be obtained by combining

Eqs. (49) and (50), and rewrite the condition V2 ¼ 1 as the
following second order polynomial in cos2 θ:

c2ðrÞcos4θ þ c1ðrÞcos2θ þ c0ðrÞ ¼ 0; ð54Þ

where

c0ðrÞ ¼ r2 þ 2Mrþ 4M2

�
rþ rþ
r − r−

�
− 24AMrþðr −MÞ − 36A2Δðr −MÞ2; ð55aÞ

c1ðrÞ ¼ a2 þ 72Aðr −MÞMrþ
− 36A2½ð3r2 − 6Mrþ 2M2 þ a2Þ2
− 6ðr −MÞ2Δ�; ð55bÞ

c2ðrÞ ¼ 36A2ðM2 − a2Þð3r2 − 6Mrþ 4M2 − a2Þ: ð55cÞ

From Eq. (54), one can show that, in the limit AM ≪ 1
(which necessarily implies S ≫ M and r ≫ M), E reduces
to the simple ellipsoid of revolution described by

r2ð1þ 3cos2θÞ ¼ x2 þ y2 þ 4z2 ¼ 1

ð6AÞ2 ; ð56Þ

where, within this same limit, from Eq. (52) in Case 1 we
have A ¼ M2=ð3S3Þ while, from Eq. (53) in Case 2 it
follows that A ¼ −2M2=ð3S3Þ.
On the other hand, by examining Eq. (54), it becomes

apparent that, for a sufficiently large value of jAj, the surface
E actually pierces through the event horizon.WhenA > 0, E
first touches the horizon at θ ¼ π=2 while, when A < 0, E
starts mergingwith the horizon at θ ¼ 0. This means that the
coefficient jAj cannot be arbitrarily large or, in other words,
that there is a minimum possible value Smin for S such that
Smin > rþ. In order to find the maximum value Amax, let us
first substitute θ ¼ π=2 in Eq. (54) and then evaluate the
result at r ¼ rþ. Doing this gives the condition c0ðrþÞ ¼ 0,
which can be solved explicitly for A as

Amax ¼
5M2 − a2 þ 3M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

24MðM2 − a2Þ : ð57Þ

Similarly, for finding theminimumvalueAmin, we substitute
θ ¼ 0 in Eq. (54) and then evaluate the result at r ¼ rþ. This
results in the condition c2ðrþÞ þ c1ðrþÞ þ c0ðrþÞ ¼ 0
which can be solved for A as

Amin ¼ −
M2 þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

12MðM2 − a2Þ : ð58Þ

For a Schwarzschild black hole, Amax ¼ 1=3
(S ≃ 2.32M) and Amin ¼ −1=6 (S ≃ 2.80M). On the other
hand, for a Kerr black hole with a ¼ 0.5M, we have Amax ≃
0.41 (S ≃ 2.18M) and Amin ¼ −0.21 (S ≃ 2.61M). Finally,
note that in the extremal limit a → M, A actually becomes
unbounded, i.e., ðAmin; AmaxÞ → ð−∞;∞Þ. In Fig. 3 we

FIG. 1. Example of the axisymmetric quadrupolar flow with
AM ¼ 0.01 and a central Kerr black hole with a ¼ 0.5. The
stagnation points in this case are located along the polar axis at a
coordinate distance r ¼ S ≃ 4.2M. The figure shows isocontours
of the three-velocity’s magnitude V. Note that V becomes luminal
at the event horizon (r ¼ rþ) and at the outer ellipsoid indicated
by a black, thick line. Fluid streamlines are indicated by thick,
solid lines with an arrow. The axes correspond to the cylindrical-
like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, z ¼ r cos θ.

FIG. 2. Same as in Fig. 1, except that AM ¼ −0.01 is negative.
The stagnation points in this case are located on an equatorial ring
at a coordinate distance r ¼ S ≃ 5M.
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show examples of the boundary E for different values of A
for a Kerr black hole with a ¼ 0.5M.
We conclude this section with some words regarding the

case in which there is a misalignment between the accretion
flowmorphology and the black hole spin axis.Aswe show in
further detail in the Appendix A, this case still allows for the

same kind of inflow-outflow solutions. However, the result-
ing expressions become more involved as lack of axisym-
metry forces us to consider, in addition to the ðl; mÞ ¼ ð2; 0Þ
mode, the contributions from the m ¼ −2;−1, 1, 2 modes.
As an example of the resulting accretion flow, in Fig. 4
we show the result of considering a misalignment angle of
θ0 ¼ 30° for the same flow parameters as in Fig. 1.

IV. CHOKED ACCRETION

Here we apply the results obtained in the previous
section to the choked accretion scenario discussed in
[34] for a Schwarzschild spacetime. The idea is the
following: a gas flow is injected radially inwards from
points lying close to the equator of a sphere of certain
coordinate radius r ¼ R > rþ (the “injection sphere”)
toward the black hole. Part of this flow will be accreted
by the black hole and disappears through the event horizon.
However, when the injection rate is sufficiently large, it has
been shown in [34] that (due to an anisotropic density field)
part of the flow is diverted and ejected toward the poles.
Under these conditions, the resulting flow is characterized
by an inflow region originating from an equatorial belt in
the injection sphere and a bipolar outflow region (Case 1
discussed in the previous section).
For the reasons mentioned in the introduction, we shall

limit the rest of this work to the case in which the black
hole’s angular momentum is perpendicular to the injection
plane, that is, the equator of the injection sphere lies inside
the equatorial plane θ ¼ π=2 of the Kerr spacetime.
For given values of the black hole parameters ðM; aÞ, we

characterize the resulting flow by specifying the fluid
properties at the equator of the injection sphere, i.e., at
r ¼ R; θ ¼ π=2. At this reference point, we prescribe the
thermodynamic variables ρ0 ¼ ρðR; π=2Þ, h0 ¼ hðR; π=2Þ,
and the magnitude of the fluid’s three-velocity V0 as
measured by a ZAMO at this location. See Fig. 5 for a
schematic representation of the setup.
By imposing these boundary conditions in Eqs. (46a)

and (48), it follows that

e ¼ Γ0h0R

ffiffiffiffiffiffi
Δ0

Σ0

s
; ð59aÞ

A ¼
ffiffiffiffiffi
Σ0

p
V0 − 2Mrþ

6ðR −MÞΔ0

; ð59bÞ

where

Δ0 ¼ ðR − r−ÞðR − rþÞ; ð60aÞ

Σ0 ¼ðR2 þ a2ÞR2 þ 2MRa2; ð60bÞ

Γ0 ¼ð1 − V2
0Þ−1=2: ð60cÞ

FIG. 3. Outermost boundary E of the axisymmetric, quadru-
polar flow for several values of the coefficient A. Solid, colored
lines represent cases with A > 0, while dashed colored lines
correspond to A < 0. The central black hole has a spin parameter
a ¼ 0.5M. The event horizon is indicated by a solid black line.
Note that the curves E corresponding to A ¼ Amax ≃ 0.41 and
A ¼ Amin ≃ −0.21 touch the event horizon at the equator and
pole, respectively. Curves with A > Amax or A < Amin actually
pierce through the horizon. The axes correspond to the cylin-
drical-like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ, z ¼ r cos θ.

FIG. 4. Same as in Fig. 1, except that now we consider an
inclination angle θ0 ¼ 30°. In order to show the stagnation points,
the plot corresponds to the plane ϕ ¼ ϕðϵÞ ¼ −0.15882 (see
Table II and accompanying discussion).
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With the values for the model parameters in Eqs. (59a)
and (59b), all of the results derived in the previous section
can be directly adopted. In particular, the velocity field of
the corresponding solution is given by Eqs. (46a)–(46c),
the fluid enthalpy by Eq. (49), and the density field by
Eq. (50). Also note that the location of the stagnation points
in this case follows by combining Eq. (52) and Eq. (59b),
which results in

ffiffiffiffiffi
Σ0

p
V0

Mrþ
− 2 ¼ ðR − r−ÞðR − rþÞðR −MÞ

ðS − r−ÞðS − rþÞðS −MÞ : ð61Þ

This equation can be explicitly solved for S as

S ¼ M þ
�
ξþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

ðM2 − a2Þ3
27

r �1=3

þ
�
ξ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 −

ðM2 − a2Þ3
27

r �1=3

; ð62Þ

where

ξ ¼ ðR − r−ÞðR − rþÞðR −MÞMrþ
2ð ffiffiffiffiffi

Σ0

p
V0 − 2MrþÞ

: ð63Þ

Finally note that, following a procedure analogous to that
described in [34], one can obtain an expression for the
projection of a streamline onto the r − θ plane given by

Ψ ¼ cos θ

�
1þ ðr − r−Þðr − rþÞðr −MÞ

ðS − r−ÞðS − rþÞðS −MÞ
sin2θ
2

�
; ð64Þ

where Ψ is an integration constant. Streamlines with
jΨj < 1 accrete onto the central black hole, those with
jΨj > 1 escape along the bipolar outflow, while those
with Ψ ¼ 1 (Ψ ¼ −1) are connected to the stagnation
point at θ ¼ 0 (θ ¼ π).

A. Parameter range

The solution described by Eq. (44) with e and A as given
in Eqs. (59a)–(59b) is characterized by six parameters: M
and a describing the black hole, and R, ρ0, h0 and V0

specifying the boundary conditions at the injection sphere.
As discussed in [34], the obtained solution is actually scale-
free with respect to the model parameters M (that sets the
overall length scale), ρ0, and h0 (that set the thermody-
namic state of the fluid).
Once a Kerr background metric has been fixed with M

and a (satisfying jaj < M), our next goal is to determine the
range for the parametersR and V0 leading to solutions that:
(1) Are well-defined within the domain r ∈ ½rþ;R�.
(2) Present the inflow-outflow morphology of the

choked accretion mechanism.
To this end, it is convenient to examine the ejection velocity
defined as

Vej ≡ Vr̂ðR; 0Þ ¼ 2V0

ffiffiffiffiffi
Σ0

p
− 6Mrþ

R2 þ a2
; ð65Þ

where we have used Eqs. (46a) and (59b).
Condition 1 is satisfied by requiring that the gradient of

the potential function remains timelike within the domain
of interest, which is equivalent to the condition that the
right-hand side of Eq. (49) is positive for all r ∈ ½rþ;R�
and all θ ∈ ½0; π�. In Appendix B we prove that this can be
guaranteed by requiring

R ≥ 3M þ rþ ð66Þ
and demanding that Vej < 1. From Eq. (65), this last
condition in turn is equivalent to

V0 <
R2 þ a2 þ 6Mrþ

2
ffiffiffiffiffi
Σ0

p : ð67Þ

On the other hand, since we have already assumed inflow
across the equator of the injection sphere, condition 2 is
satisfied by requiring Vej > 0. Again, from Eq. (65), this
condition translates as

V0 >
3Mrþffiffiffiffiffi

Σ0

p : ð68Þ

Therefore, the injection velocity parameter is restricted as

V0 ∈ ðVmin; VmaxÞ; ð69Þ

FIG. 5. Schematic representation of the choked accretion model
in the polar plane. Shown are the black hole region (r < rþ), the
location of the injection sphere (r ¼ RÞ, the location of the
reference point ðr ¼ R; θ ¼ π=2Þ where the data ðρ0; h0; V0Þ
characterizing the solution are specified, the location of the
stagnation point at r ¼ S and the critical angle θc which separates
the inflow from the outflow regions on the injection sphere.
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with

Vmin ¼
3Mrþffiffiffiffiffi

Σ0

p ; Vmax ¼
R2 þ a2

2
ffiffiffiffiffi
Σ0

p þ Vmin: ð70Þ

B. Mass accretion, injection, and ejection rates

The accretion rate follows by substituting Eq. (59a) into
Eq. (41), which results in

_M ¼ 8πMrþ
ρe
h

¼ 8πMrþΓ0ρ0R

ffiffiffiffiffiffi
Δ0

Σ0

s
: ð71Þ

By considering the flux of mass across the injection
sphere, we can distinguish between the inflow and outflow
fluxes, _Min and _Mej, respectively, defined in such a way that

_Min − _Mej ¼ _M: ð72Þ

We can calculate both fluxes explicitly by examining the
radial component of the fluid velocity at the injection
sphere. From Eq. (46a), it follows the existence of a critical
angle θc given by

θc ¼ arccos

�
3

�
1 −

2Mrþffiffiffiffiffi
Σ0

p
V0

��
−1=2

; ð73Þ

such that there is inflow (Vr̂ < 0) for the equatorial belt
defined by θ ∈ ðθc; π − θcÞ and outflow (Vr̂ > 0) for the
polar regions θ ∈ ð0; θcÞ and θ ∈ ðπ − θc; πÞ.

We can thus calculate _Min in terms of θc as

_Min ¼ −4π
Z

π=2

θc

ρUrϱ2 sin θdθ ¼ Λ _M ð74Þ

where

Λ ¼ 2cos3θc
3cos2θc − 1

¼
ffiffiffiffiffi
Σ0

p
V0

3
ffiffiffi
3

p
Mrþ

�
1 −

2Mrþffiffiffiffiffi
Σ0

p
V0

�
−1=2

: ð75Þ

Clearly, in view of Eq. (72), it follows that

_Mej ¼ ðΛ − 1Þ _M: ð76Þ

In Fig. 6 we show the isocontour levels of the rest-mass
density field, as well as the magnitude of the three-velocity
V, and the resulting fluid streamlines (black solid arrows) for
a representative case with model parameters a ¼ 0.99M,
R ¼ 10M, and V0 ¼ 0.2.
In Fig. 7 we represent the regions in the parameter space

ða; V0Þ that lead to the choked accretion solution as
discussed in Sec. IVA. The plotted isocontours correspond
to the mass accretion rate _M expressed in units of
_M0 ¼ 8πM2ρ0. Each panel corresponds to a different value
of the injection radiusR, from top to bottom R=M ¼ 4, 8,
100. The boundary lines delimiting each region correspond
to theVmin andVmax limits given inEq. (70). From this figure
we can see a general trend for increasing values of _M as the
value of V0 increases, while _M decreases as the spin
parameter a=M grows from zero to 1. Also note that the
dependence on a of the limits Vmin and Vmax becomes less
noticeable as increasingly larger values ofR are considered.

FIG. 6. Analytic model of choked accretion for a Kerr black hole with a ¼ 0.99M and flow parametersR ¼ 10M and V0 ¼ 0.2. The
figure shows isocontours of the fluid’s normalized rest-mass density (left panel) as well as the magnitude of the three-velocity (right
panel). The stagnation points are located on the symmetry axis with radius S ≃ 4.6011M. Fluid streamlines are indicated by thick, solid
lines with an arrow. The axes correspond to the cylindrical-like coordinates R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin θ and z ¼ r cos θ.
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In Fig. 8 we show three different properties of the choked
accretionmodel as a function of the spin parameter a=M, for
an injection sphere atR ¼ 10M. Each color line represents a
different value of the injection velocity. The quantities
correspond to: the mass accretion rate _M (in units of _M0)
in the top panel, the location of the stagnation pointsS in the
middle panel, and the ejection-to-injection mass rate ratio
η ¼ _Mej= _Min in the bottompanel. For comparison, in the top

FIG. 7. Mass accretion rate as a function of the model
parameters (a, V0) in units of _M0 ¼ 8πM2ρ0. The value of the
injection radius R in each case is indicated by a central label
on each panel. The solid, black lines in each panel indicate the
range of validity of the model parameters according to
V0 ∈ ðVmin; VmaxÞ, with the lower boundary corresponding to
Vmin and the upper one to Vmax.

FIG. 8. Dependence of different properties of the choked
accretion model on the spin parameter a=M and the injection
velocity V0, for an injection sphere at R ¼ 10M. From top to
bottom, each panel shows: the mass accretion rate _M in units of
_M0 ¼ 8πM2ρ0, the location of the stagnation points S=M, and
the ejection-to-injection mass rate ratio η ¼ _Mej= _Min. The black
line in the first panel corresponds to the “spherical” case
ðl; mÞ ¼ ð0; 0Þ, for which V0 ¼ 2Mrþ=

ffiffiffiffiffi
Σ0

p
≃ 0.0003.
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panel we also show, in a black solid line, the accretion rate
for the “spherically symmetric” case ðl; mÞ ¼ ð0; 0Þ corre-
sponding to A ¼ 0 and V0 ¼ 2Mrþ=

ffiffiffiffiffi
Σ0

p
(note that there is

no ejection for V0 in the range between this value and Vmin).
From the previous discussion we note that, as the

injection velocity grows from Vmin to Vmax, we have:
(i) The radii of the stagnation points decrease from S ¼

R to Smin.
(ii) The critical angle increases from θc ¼ 0 to

θmax ¼ arccos

�
3

�
R2 þ a2 þ 2Mrþ
R2 þ a2 þ 6Mrþ

��−1=2
; ð77Þ

that, in the limit R ≫ M, converges to θmax ¼
arccosð1= ffiffiffi

3
p Þ ≃ 54.7°.

(iii) The mass injection rate increases from _Min ¼ _M to

_Min ¼
½1
3
ð1þ 4Mrþ

ðR−rþÞðR−r−ÞÞ�
3=2

2Mrþ
ðR−rþÞðR−r−Þ

_M: ð78Þ

On the other hand, from Figs. 7 and 8, we note that, as
the spin parameter a=M increases from zero to 1, the mass
accretion rate onto the central black hole decreases down to
∼50%, the location of the stagnation point S decreases by a
factor of ∼10%, while the ejection-to-injection mass rate
ratio η increases by up to ∼30%.
The analyticmodel studied in the previous sections allows

us to explore in detail the effect of the black holes’s rotation
on the choked accretion mechanism. Unfortunately, this
model cannot easily be extended to perform a more general
study including a more realistic equation of state. Keeping
the irrotational assumption one can still formulate the
problem in terms of a scalar potential; however, this potential
satisfies a wave equation which is nonlinear for a realistic
equation of state. Clearly, this makes it much harder to find
an analytic treatment. For this reason, in the next section, we
extend our study to the case of a general polytropic fluid by
performing numerical simulations of the choked accretion
scenario.

V. NUMERICAL SIMULATIONS

The general solution presented by Petrich, Shapiro and
Teukolsky [31] revisited in Sec. II and, in particular, the
choked accretion scenario discussed in Sec. IV, are limited
by the assumption of an ultrarelativistic gas with a stiff
equation of state, which leads to an unphysical speed of
sound. In this section we show, by means of full hydro-
dynamic numerical simulations, that the main features of
the choked accretion model are maintained when the
adopted equation of state is extended to consider a general
polytropic gas. Moreover, we make use of the analytical
solution presented above as a 2D benchmark test for the
validation of the code.

We perform full hydrodynamic numerical simulations
with the open source code AZTEKAS

9 [10,60], which solves
the general relativistic hydrodynamic equations using a grid
based finite volume scheme, with a high resolution shock
capturing (HRSC) method.10 The set of equations are
written in a conservative form using a variation of the
“3þ 1 Valencia formulation” [61] for time independent,
fixed metrics [62]. The time integration is achieved by
adopting a second order total variation diminishing Runge-
Kutta method [63]. The fluid evolution is performed in a
fixed background metric corresponding to a Kerr black hole
using the same (horizon-penetrating) Kerr-type coordinates
adopted in Sec. II. The code uses as primitive variables the
rest-mass density, pressure and the locally measured three-
velocity vector ðρ; P; viÞ, where vi ¼ γijvj and

vi ¼ Ui

αUt þ
βi

α
; i ¼ r; θ;ϕ; ð79Þ

with α, βi and γij the lapse, shift vector and three-metric of
the 3þ 1 formalism [64], written in these coordinates. See
[10,33,34,60], for more details about the characteristics,
test suite, and discretization method of AZTEKAS.
For all the simulations presented in this section, we adopt

an axisymmetric 2D numerical domain ðr; θÞ ∈ ½Racc;R�×
½0; π=2�, with a uniform polar grid and an exponential radial
grid (see [33] for details), whereR is the radius of the outer
boundary at which we implement a free outflow condition
for the velocities and a fixed profile for the density and
pressure. The inner boundary, set at Racc ¼ 1.1M, for
which we impose free outflow in all the variables, is chosen
such that r− < Racc < rþ for all the explored values of a.
We fix reflection conditions at both polar boundaries. A
dissipative, second-order piecewise linear reconstruction
for the primitive variables is used in order to avoid spurious
oscillations due to these fixed boundary conditions.
In all the simulations, we evolve the equations from an

initial state consisting of a constant density and pressure
gas cloud, with zero initial three-velocity vi ¼ 0. The
convergence to a steady-state is monitored by computing
the mean mass accretion rate _M all over the domain, until
its variation drops below 1 part in 104.

A. Benchmark test

Taking advantage of the exact analytic description
presented in the previous sections, we use the solution
in Eq. (44) as a benchmark test to prove the convergence
and stability of the AZTEKAS code for this type of problems.
Moreover, this test is important in order to validate the

9The code can be downloaded from Ref. [59].
10Note that, even though we may expect smooth steady state

solutions based on the analytical results, we are exploring an
a priori unknown scenario in which shock fronts might develop
during the evolution, or even persist in the stationary state.
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subsequent simulations discussed in this article. For these
tests we implement the ultrarelativistic stiff equation of
state in the numerical code.
We reproduce the analytic solution corresponding to the

choked accretion model with R ¼ 10M, V0 ¼ 0.2 and a
black hole spin a ¼ 0.99M. We run the simulations in units
such that M ¼ 1 and set the value ρ0 ¼ 1 for the density at
the reference point, although we remark here that, just as in
the analytic case, the resulting steady-state solution is scale-
free with respect to this specific value of ρ0. We perform
four tests varying the spatial resolution by a factor of 2 each
time (with number of grid points in the radial and polar
directions 64 × 64, 128 × 128, 256 × 256, 512 × 512,
respectively). The values for ðρ; P; viÞ from the analytic
solution are imposed at the injection sphere as the boundary
condition, and these values are extended into the whole
numerical domain as the initial condition.
In Fig. 9 we show the isocontour levels of the density

field and of the magnitude of the three-velocity V (as
measured by a ZAMO) of the AZTEKAS simulations when
the steady-state is reached at t ¼ 180M. Likewise, the
streamlines of the stationary flow are shown in both figures.
From these simulations we obtain the stagnation point at
S ≃ 4.6015M which coincides with the analytical value
within the resolution uncertainty (see Fig. 6).
In Fig. 10 we show the evolution in time of the relative

error between the numerical mass accretion rate _M and the
analytic value _MA, for all of the resolutions considered
here. As expected, the relative error decreases for larger
resolutions. Indeed, as further shown in Appendix C, from
this benchmark test we confirm a second order convergence
rate, as expected from the adopted numerical scheme.

B. Polytropic fluid

In order to explore the behavior of the choked accretion
mechanism for a gas with a less restrictive equation of state,
we perform numerical simulations of an ideal gas with a
polytropic relation P ¼ Kργ , where γ is the adiabatic index.

We run experiments using a 256 × 256 grid resolution, for a
wide range of values of the spin parameter a=M ∈ ½0; 1Þ and
two different values of the adiabatic index γ ∈ f4=3; 5=3g.
The main feature of the choked accretion mechanism

relies on the existence of a density contrast at the external
boundary. Following closely the boundary treatment of
[33,34], we fix the gas rest-mass density at the outer
boundary as

ρbðθÞ ¼ ρ0ð1 − δ cos2 θÞ; ð80Þ

where ρ0 is the rest-mass density at the reference point
ðR; π=2Þ and δ is the density contrast defined as

FIG. 9. Validation test of the AZTEKAS code. In this figure we show the steady state of numerical simulation for the benchmark test,
which corresponds to the analytic solution presented in Sec. IV, with parameters R ¼ 10M, V0 ¼ 0.2, and a ¼ 0.99M (compare with
Fig 6). The figure shows the isocontour levels of the normalized rest-mass density ρ=ρ0 (left panel) and the magnitude of the three-
velocity (right panel) V, as measured by a ZAMO at this location. The fluid streamlines are indicated with black solid arrows. The
simulation reached the stationary state at t ¼ 180M, showing a good agreement with the analytic solution.

FIG. 10. Validation test for the AZTEKAS code. In this figure we
show the evolution in time of the relative error between the
numerical mass accretion rate _M and analytic value _MA for the
solution with parameters R ¼ 10M, V0 ¼ 0.2, and a ¼ 0.99M.
The four different resolutions used for this benchmark test are
represented with different dashed lines, showing a diminishing of
the error as the resolution increases which, as shown in
Appendix C, is consistent with second order convergence.
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δ ¼ 1 −
ρbð0Þ
ρ0

: ð81Þ

As mentioned in Sec. I, this density profile is motivated
as a way to introduce the axisymmetric anisotropy asso-
ciated with fluid rotation. In particular, it has been shown
that low angular momentum fluids accreting onto a central
massive object give rise to a quasispherical, oblate density
distribution, as long as the angular momentum is suffi-
ciently low as to avoid encountering the centrifugal
barrier [37,38].
The pressure at this boundary is then determined by

the polytropic relation P ¼ Kργ, where K is computed
as [10]

K ¼ 1

ργ−10

�
c20ðγ − 1Þ

γðγ − 1Þ − c20

�
ð82Þ

with c0 the speed of sound at the reference point.
An extensive exploration of the choked accretion mech-

anism’s dependence on R, δ and c0 can be found in [33]
for the nonrelativistic regime and in [34] for the case
of a Schwarzschild black hole. We performed a quick
exploration of these three parameters, for a rotating black
hole with a ¼ 0.99M, and found essentially the same
results as reported in those previous works. Moreover,
we noticed that it is more intuitive, in order to compare with
possible astrophysical settings, to use the dimensionless

temperature11 Θ0 ¼ P0=ρ0 rather than specifying c0. For
this reason, in what follows, we shall take as representative
values R ¼ 10M for the domain size, δ ¼ 0.5 for the
density contrast and Θ0 ¼ 1 for the temperature of the gas
at the reference point. This value of the dimensionless
temperature corresponds to c0 ≈ 0.52 and c0 ≈ 0.69, for
γ ¼ 4=3 and 5=3, respectively. Furthermore, in order to
have an appropriate baseline reference for each combina-
tion of the γ and a parameters, we also run simulations
corresponding to “spherical” accretion in each case (i.e.,
same values for γ and a but a δ ¼ 0 density contrast).
We evolve all the simulations until the stationary state

has been reached (within the previously mentioned limit of
accuracy in which variations in the mean accretion rate
drop below 1 part in 104). The relaxation time depends on
γ, as well as on the value of a, but in all cases it is found to
conform to 500M < t < 1500M. We also perform a self-
convergence test which is presented in Appendix C.
In Fig. 11 we show the resulting steady-state, rest-

mass density field and magnitude of the three-velocity V
for the a ¼ 0.99M case. The top panels show the results

FIG. 11. Stationary state of the numerical simulations of the choked accretion mechanism for a rotating black hole with a ¼ 0.99M, an
injection radius of R ¼ 10M, a dimensionless temperature of Θ0 ¼ 1 at the equator of the injection sphere, and a polytropic fluid with
γ ¼ 4=3 (top panels) and 5=3 (bottom panels). On the left panels of this figure we show the isocontour levels of the normalized rest-mass
density ρ=ρ0 while, on the right panels, the magnitude of the three-velocity V as measured by the ZAMO. The fluid streamlines are
indicated with black solid arrows, while a white solid line shows the location of the event horizon rþ.

11Note that our definition of the dimensionless temperature is
only valid for an ideal gas equation of state. In terms of natural
units, the general definition of the dimensionless temperature [1]
is Θ ¼ kBT=mbc2, with T the fluid temperature, c the speed of
light, kB Boltzmann’s constant, and mb the average baryonic
mass.
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corresponding to γ ¼ 4=3while the bottom panels those for
γ ¼ 5=3. The black solid arrows represent the fluid stream-
lines and the solid white line the location of the outer
horizon rþ. As we can see from these figures, there is not a
strong qualitative difference in the flow morphology for
different values of γ, neither for the one presented in the
nonrotating black hole case [34]. Moreover, although the
streamlines configuration are similar to the analytical case,
the ejection velocity at the polar region is larger for the
polytropic fluid (see Fig. 6).
In Fig. 12 we show the dependence of the mean mass

accretion rate _M on the spin parameter a, for all the
simulations performed in this study. The blue dots corre-
spond to γ ¼ 4=3, while the red crosses to γ ¼ 5=3. The
points joined by the dashed lines represent the correspond-
ing “spherical” accretion case (δ ¼ 0). It is interesting to
notice from this figure that, for each value of γ, the
dependence on a remains the same regardless of the value
of δ (except for a re-scaling factor that depends on γ). This
suggest that the change in the mass accretion rate with the
spin parameter is an intrinsic characteristic of the accretion

onto a Kerr black hole, and not of the choked accretion
mechanism. A more complete study of the “spherical”
accretion case onto a rotating black hole will be explored
elsewhere.
In addition to the mass accretion rate, we compute the

mass injection rate _Min and the mass ejection rate _Mej at the
injection sphere (as defined in Sec. IV B). We also extract

FIG. 12. Mass accretion rate as a function of the spin parameter.
The blue and red dotted lines correspond to γ ¼ 4=3 and 5=3,
respectively. The black dashed lines represent their respective
“spherical” accretion values, i.e., δ ¼ 0.

TABLE I. Results for our simulations with parameters
R ¼ 10M, δ ¼ 0.5 and Θ0 ¼ 1.

γ ¼ 4=3 γ ¼ 5=3

a=M S=M _M _Mej
_Min S=M _M _Mej

_Min

0.0 5.781 5.052 2.195 7.246 5.247 2.919 2.768 5.687
0.25 5.770 5.033 2.201 7.234 5.231 2.892 2.777 5.670
0.5 5.734 4.977 2.220 7.197 5.179 2.808 2.805 5.614
0.75 5.672 4.876 2.256 7.132 5.083 2.647 2.857 5.504
0.99 5.581 4.725 2.308 7.032 4.905 2.343 2.947 5.289

NOTE—The quantities _M, _Min and _Mej are given in units
of _M0 ¼ 8πM2ρ0.

FIG. 13. Dependence of different properties of the choked
accretion simulations on the spin parameter a=M and γ. From top
to bottom, each panel shows: the mass accretion rate _M, the
location of the stagnation point S=M, and the ejection-to-
injection mass rate ratio η ¼ _Mej= _Min. Each panel is normalized
by its corresponding nonrotating case value, which is denoted
with the subscript S. The black solid line represents the analytic
solution presented in Sec. IV for an ultrarelativistic stiff fluid.
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from the simulation’s results the location of the stagnation
point S. In Table I we present a summary of these results for
a representative set of the performed simulations. We also
measure the magnitude of the three-velocity at the equator
V0 and at the pole Vej, which do not present a significative
dependence on the spin parameter, maintaining a value
around V0 ¼ 0.30 and Vej ¼ 0.54, for γ ¼ 4=3; and
V0 ¼ 0.29 and Vej ¼ 0.48, for γ ¼ 5=3.
In Fig. 13 we show the dependence on a for the mass

accretion rate _M (top panel), the location of the stagnation
point S (middle panel), and the ejection-to-injection mass
rate η (bottom panel), for both values of γ. In order to
clearly see the change with a for these quantities, we
normalize them by _MS, SS and ηS, respectively, which
correspond to the values obtained in the non-rotating case
(a ¼ 0). Moreover, we also include the stiff analytic
solution obtained in Sec. IV, using as the V0 parameter
the value found for γ ¼ 5=3.
As we can see from Fig. 13, the mass accretion rate

decreases with the spin parameter down to a factor of∼10%
(20%) for the γ ¼ 4=3 (γ ¼ 5=3) case as the spin parameter
increases to its maximum value. On the other hand, the
location of the stagnation point only decreases down to a
factor of ∼5% for both values of γ. In contrast, the ejection-
to-injection mass rate (η) increases up to a factor of 10 to
15% as a → M.
Even though it is not possible to make a direct com-

parison of the numerical simulations with the analytic
model of an ultrarelativistic stiff fluid, since in each case we
are using different equations of state and the boundary
conditions are not exactly the same, there are still some
observations that can be drawn from Fig. 13. First of all,
there is a shared, qualitatively consistent dependence of the
different quantities shown in this figure on the spin
parameter a, both for the polytropic gas and the stiff fluid.
Moreover, it is also clear that there is a stronger response
from the stiff fluid to the black hole rotation. Indeed, from
this figure we see that the analytic solution presented in
Sec. IV can be used as a lower limit for the mass accretion
rate and for the location of the stagnation point that would
follow for a polytropic gas, whereas it can be used as an
upper limit for the ejection-to-injection mass rate ratio.
Finally, we note that there is a clear trend for a stronger
dependence on the spin parameter a as the fluid stiff-
ens (γ → 2).

VI. SUMMARY AND CONCLUSIONS

The choked accretion model is a purely hydrodynamical
mechanism with which it is possible to obtain a bipolar
outflow by perturbing an originally radial inflow. The
necessary conditions for this mechanism to operate consist
of a sufficiently large mass accretion rate onto a central
massive object (as compared to the Bondi accretion rate),
and an anisotropic density field in which the equatorial

region is at a higher density than at the poles. Potential
astrophysical applications of this model for outflow-gen-
erating phenomena are mentioned in the introduction and
have been discussed in further detail in [33,34].
In this article we have presented a generalization of the

choked accretion mechanism for the case of a rotating Kerr
black hole, extending the perturbative study initiated by
Hernandez et al. [32] and the subsequent analytical and
numerical studies at the nonrelativistic level [33] and in the
Schwarzschild case [34]. Here we have shown, using both
analytic solutions and numerical simulations, that the
choked accretion’s main features are recovered in the
presence of a rotating black hole, regardless of the value
of the spin parameter.
Our analytic model is based on the steady-state, irrota-

tional solution for an ultrarelativistic stiff fluid presented by
Petrich, Shapiro and Teukolsky [31]. We have derived the
general equations of the model using horizon-penetrating
Kerr-type coordinates and then mostly focused on the
axisymmetric quadrupolar case, studying the dependence
of the flow morphology on the unique parameter A that
remains free (we have also briefly discussed the misaligned
quadrupolar case at the end of Sec. III and in Appendix A).
Depending on the sign of this parameter, the flow describes
an equatorial inflow-bipolar outflow solution (A > 0) or an
equatorial outflow-polar inflow solution (A < 0). Given
that it has a wider applicability in an astrophysical context
and corresponds to the choked accretion scenario discussed
in this article, we have mainly focused on the case A > 0
and discussed the physical properties of the choked
accretion model, including its mass accretion rate, location
of the stagnation points and ejection-to-injection mass rate
ratio. We have also extended the present study to a perfect
fluid obeying a polytropic relation with adiabatic index
γ ¼ 4=3 and 5=3, by performing full hydrodynamic,
relativistic numerical simulations of an ideal gas in a
Kerr background metric.
In previous works, it was found that the total mass

accretion rate in the choked accretion model has a threshold
value close to the one found in the spherical accretion
scenario. In this study, based on both analytic and numeri-
cal analysis, we have extended this result to the case of a
rotating black hole and shown that the accretion rate
obtained from the “spherically symmetric” case, in which
the density contrast is set to zero at the injection sphere, still
yields a lower limit for the threshold value for the choking
mechanism to work (see Figs. 8 and 12). Note, however,
that in the case of the Kerr spacetime there is no analytic
equivalent to Michel’s solution in the Schwarzschild case.
Therefore, this problem has to be studied by numerical
means as we have briefly discussed here and will further
address in a future work.
Most of the configurations analyzed in this article have

focused on the aligned case, in which the axis of the bipolar
outflow coincides with the rotation axis of the black hole, in
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which case the fluid elements have zero angular momentum
and hence would not affect the black hole’s spin during
their accretion. However, in Appendix A we have also
analyzed a misaligned configuration, and it is interesting to
note that such an accretion flow would slow down the black
hole’s rotation, as the results in Sec. II C show.
This work continues a series of analytic and numerical

studies of the choked accretion model as a purely hydro-
dynamical mechanism for generating axisymmetric out-
flows. In future work we intend to expand the ingredients
involved in this model, by including additional physics
such as fluid angular momentum, viscous transport, and
magnetic fields, in order to explore the applicability of the
model in outflow-generating astrophysical systems.
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APPENDIX A: THE MISALIGNED
QUADRUPOLAR FLOW

In Sec. III we discussed the axisymmetric quadrupolar
flow solution and some important properties regarding its
morphology, and in Sec. IV this solution was applied to the
choked accretion scenario. This flow has the property of
being reflection-symmetric about the equatorial plane of
the Kerr black hole, such that the bipolar outflow regions
are aligned with the symmetry axis. In this appendix, we
discuss an example in which the flow discussed in Secs. III
and IV is “rotated” by an angle θ0 about an axis within the
plane θ ¼ π=2 (in a sense made precise below).
When the black hole is nonrotating, the aforementioned

rotation can be carried out exactly and is simply a rigid
rotation of the (spherically symmetric) Schwarzschild
geometry the Kerr metric reduces to in the limit a ¼ 0.
We may construct this rotated solution explicitly by writing
the angular dependency in the axisymmetric quadrupolar
flow solution (45) in the form

3 cos2 θ − 1 ¼ 2P2ðcos θÞ ¼ 2P2ðx0 · xÞ; ðA1Þ

with P2 denoting the Legendre polynomial Pl with l ¼ 2
and x ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ and x0 ≔ ð0; 0; 1Þ.
Applying a rotation by the angle θ0 about the y axis is
equivalent to replacing the vector x0 ¼ ð0; 0; 1Þ with the
vector x0 ¼ ðsin θ0; 0; cos θ0Þ in the right-hand side of
Eq. (A1). Recalling the addition theorem for spherical
harmonics (see, for instance, chapter 3.6 in Ref. [65])

Plðx0 · xÞ ¼ 4π

2lþ 1

Xl
m¼−l

ðYlmÞ�ðθ0;ϕ0ÞYlmðθ;ϕÞ; ðA2Þ

we can write the rotated quadrupolar flow solution on a
Schwarzschild background as in Eq. (44) with a ¼ 0 and
Fðr; θ;ϕÞ given by

Fðr; θ;ϕÞ ¼ 8π

5
ð3r2 − 6Mrþ 2M2Þ

Xl
m¼−l

dmYlmðθ;ϕÞ

ðA3Þ

with the coefficients dm ≔ ðYlmÞ�ðθ0; 0Þ. This has again
the form of the general solution in Eq. (17) when a ¼ 0,
and hence it describes a solution of the potential flow
equation (1). However, it bears exactly the same physical
content as the original axisymmetric quadrupolar flow
solution discussed in Secs. III and IV, since it is obtained
from it by an isometry.
When a ≠ 0, the method we have just described cannot

be performed, since merely replacing x0 ¼ ð0; 0; 1Þ ↦
x0 ¼ ðsin θ0; 0; cos θ0Þ in the right-hand side of Eq. (A1)
would not yield a solution of Eq. (1). This is due to the
m-dependency in the radial functions appearing in the
expansion (18) which, in turn, arises because of the lack of
spherical symmetry of the Kerr metric when a ≠ 0. On the
other hand, we still have the freedom of choosing the five
complex constants A2m in Eq. (18), as long as they satisfy
the reality conditions (19). In particular, we can choose
these coefficients such that the function Fðr; θ;ϕÞ has the
same weights dm as in Eq. (A3) on some particular
constant r surface. This is equivalent to applying the
rotation x0 ¼ ð0; 0; 1Þ ↦ x0 ¼ ðsin θ0; 0; cos θ0Þ on this
particular surface only, which yields

Fðr; θ;ϕÞ ¼ 4π

5
ðrþ − r−Þ2Fð−2; 3; 1;−x�Þ

×
X2
m¼−2

Fð−2; 3; 1þ i m α;−xÞ
Fð−2; 3; 1þ i m α;−x�Þ

dmY2mðθ;ϕÞ;

ðA4Þ

where we recall that α ¼ 2a=ðrþ − r−Þ and x ¼
ðr − rþÞ=ðrþ − r−Þ and x� is the value of x corresponding
to the location of the surface where the rotation is applied.
Note that for x ¼ x� the weight functions are the same as in
Eq. (A3), as required. Notice also that when θ0 ¼ 0 (in
which case only the m ¼ 0 mode contributes and
ðY20Þ�ð0; 0ÞY20ðθ;ϕÞ ¼ 5P2ðcos θÞ=ð4πÞ), the function F
in Eq. (A4) reduces to the function F in Eq. (45) in the
aligned case.
To determine uniquely the solution it remains to choose

the value for x�. One possibility is to choose it such that it
corresponds to the radius of the injection sphere r ¼ R.
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However, note that for finite r, the two-surfaces ðt; rÞ ¼
const are not strict metric spheres in the Kerr geometry, so
we argue that only in the asymptotic limit r → ∞ does it
make sense to apply the rotation in a sensible way. Hence,
even though the flow is only well defined inside a finite
region, we exploit the fact that the potential Φ itself is well
defined for all r > r− and thus we take the limit x� → ∞ in
Eq. (A4). This finally yields

Fðr;θ;ϕÞ¼ 4π

5

X2
m¼−2

½6r2−6ð2M− imaÞr

þ4M2þ2a2−2m2a2−6imaM�dmY2mðθ;ϕÞ:
ðA5Þ

Using the explicit representation of the spherical harmonics
one can write the result in the form

Fðr; θ;ϕÞ ¼ 1

4
a0ðrÞð3cos2θ0 − 1Þð3cos2θ − 1Þ

þ 3½a1ðrÞ cosϕþ b1ðrÞ sinϕ�
× cos θ0 sin θ0 cos θ sin θ

þ 3

4
½a2ðrÞ cosð2ϕÞ þ b2ðrÞ

× sinð2ϕÞ�sin2θ0sin2θ; ðA6Þ
with the radial functions

amðrÞ ¼ 6r2 − 12Mrþ 4M2 þ 2ð1 −m2Þa2; ðA7Þ
bmðrÞ ¼ −6maðr −MÞ: ðA8Þ

Another useful representation of the solution is obtained
by writing it in terms of the “rotated” Cartesian coordinates
ðrξ; rη; rζÞ, where0
B@

ξ

η

ζ

1
CA ¼

0
B@

cos θ0 0 − sin θ0
0 1 0

sin θ0 0 cos θ0

1
CA
0
B@

sin θ cosϕ

sin θ sinϕ

cos θ

1
CA: ðA9Þ

This gives

Fðr; θ;ϕÞ ¼ 2ð3r2 − 6Mrþ 2M2 þ a2ÞP2ðζÞ
− 6ε½3ðr −MÞηþ a cos θ0ξ�ζ þ 6ε2ðη2 − ζ2Þ;

ðA10Þ
with ε ≔ a sin θ0. Note that for ε ¼ 0 (which is the case if
the black hole is nonrotating or the inclination angle θ0
vanishes), the second line in Eq. (A10) vanishes and one
recovers the axisymmetric quadrupolar flow solution (45)
with the rotated symmetry axis rζ.
We conclude this appendix by showing that for small

values of jεj the solution Eq. (44) with A > 0 and F as in
Eq. (A10) still has two stagnation points whose location
can be determined by a perturbative method. To this

purpose we introduce the vector-valued function Hðε;wÞ
with w ¼ ðr; ξ; ηÞ, defined as

Hðε;wÞ ≔
�
Δ
∂F
∂r −

2Mrþ
A

;
∂F
∂ξ ;

∂F
∂η

�
; ðA11Þ

where the constraint ζ2 ¼ 1 − ξ2 − η2 should be taken into
account (since the function F is symmetric with respect to
ðξ; η; ζÞ ↦ −ðξ; η; ζÞ it is sufficient to perform the analysis
for the case ζ > 0). The location of the stagnation points
(for a given value of ε) is characterized by a zero of the
function Hðε; ·Þ, see Eq. (34). For ε ¼ 0 one can check that
the zero lies at

w ¼ w0 ¼ ðr0; 0; 0Þ; ðA12Þ

with r0 ¼ S as in Eq. (52). To determine the location wðεÞ
of the zero for small values of jεj one can differentiate both
sides of the equation Hðε;wðεÞÞ ¼ 0 with respect to ε,
which gives

DHðε;wðεÞÞ dw
dε

ðεÞ þ ∂H
∂ε ðε;wðεÞÞ ¼ 0; ðA13Þ

where DH refers to the Jacobi matrix of H with respect to
w. Evaluating at ε ¼ 0 yields

DHð0;w0Þw1 ¼ −
∂H
∂ε ð0;w0Þ; w1 ≔

dw
dε

ð0Þ: ðA14Þ

Since DHð0;w0Þ ¼ 6Kdiagð2;−1;−1Þ with K ≔ 3r20−
6Mr0 þ 2M2 þ a2 > 0, the first-order correction w1 is
uniquely determined by this equation (and according to
the implicit function theorem, the function Hðε; ·Þ has a
unique zero for small enough values of jεj). By further
differentiation of Eq. (A13) one can compute the higher-
order corrections of wðεÞ. Up to terms of order ε3 this gives

rðεÞ ¼ r0 þ
Mrþ
4AK2

ð3M2 − 2a2Þε2 þOðε3Þ; ðA15Þ

ξðεÞ ¼ −
a
K
εþOðε3Þ; ðA16Þ

ηðεÞ ¼ −
3ðr0 −MÞ

K
εþOðε3Þ: ðA17Þ

A few numerical examples for the case AM ¼ 0.01 and
a=M ¼ 0.5 are given in Table II. The particular entry
corresponding to θ0 ¼ 30° corresponds to the flow shown
in Fig. 4.
Finally, we point out that the characterization of the

stagnation point we have used so far, based on the
vanishing of the ZAMO’s three-velocity, might not be
the most adequate definition from a conceptual point of
view when ε ≠ 0. This is due to the fact that a ZAMO
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rotates around the black hole with angular frequencyΩ [see
Eq. (23)], and hence such an observer which is located at
r ¼ rðεÞ and θ ¼ θðεÞ only sees the fluid at rest in its frame
at the moments it crosses the plane ϕ ¼ ϕðεÞ. In other
words, the world line of the stagnation point defined in this
way does not agree with the one of the ZAMO. An
alternative definition of the stagnation point which does
not suffer from this problem can be given by requiring the
fluid’s three-velocity of a static observer (as opposed to a
ZAMO) to vanish. The location of this point can be
determined perturbatively by the same method as the
one we have just described; however we adopt the former
definition in view of the compatibility with Fig. 4 in which
the ZAMO’s three-velocity is shown.

APPENDIX B: BOUNDS ON THE PARAMETER A

In this appendix we prove that for sufficiently large radii
R of the injection sphere, the maximum range A−ðRÞ <
A < AþðRÞ for the parameter A in the axisymmetric
quadrupolar potential Φ in Eq. (44) to yield a well-defined
flow on the domain rþ ≤ r ≤ R is determined by the
requirement for the magnitude of the three-velocity V to be
subluminal at the poles of the injection sphere. That is, we
show that for any large enough value of R, V < 1 at the
poles of the sphere r ¼ R guarantees that the gradient of Φ
is everywhere timelike on the domain rþ ≤ r ≤ R.
To prove this claim, we go back to the investigation

toward the end of Sec. III, from which it follows that the
gradient ∇μΦ is timelike if and only if

ϱ2
h2

e2
¼ c2ðrÞ cos4 θ þ c1ðrÞ cos2 θ þ c0ðrÞ > 0: ðB1Þ

In the limit AM ≪ 1 it was shown that the outer boundary
of the region for which (B1) holds describes a large
ellipsoid of revolution with semi-axes equal to 1=ð6jAjÞ,
1=ð6jAjÞ, 1=ð12jAjÞ in the x, y, z-directions, respectively. It

is then clear that for R large enough, the outer boundary
first intersects the sphere r ¼ R at the poles θ ¼ 0; π. The
corresponding values for A can be determined by evalu-
ating the condition c2ðRÞ þ c1ðRÞ þ c0ðRÞ ¼ 0, which
yields

A�ðRÞ ¼ � 1

12ðR −MÞ
�
1þ 2MðR� rþÞ

ðR − rþÞðR − r−Þ
�
; ðB2Þ

and hence for large R the gradient ∇μΦ is timelike on the
sphere r ¼ R if A−ðRÞ < A < AþðRÞ. We now prove the
following statements, which show that these conditions are
also sufficient for the flow to be everywhere well defined in
the shell delimited by the event horizon and the injection
sphere.
Theorem 1

(a) Suppose R > rþ is large enough such that
12rþAþðRÞ ≤ 1, and let 0 ≤ A < AþðRÞ. Then the
right-hand side of Eq. (B1) is strictly positive for all
rþ ≤ r ≤ R and all 0 ≤ θ ≤ π.

(b) SupposeR > rþ and A−ðRÞ < A ≤ 0. Then the right-
hand side of Eq. (B1) is strictly positive for all rþ ≤
r ≤ R and all 0 ≤ θ ≤ π.

Proof. For the proof it is convenient to rewrite the right-
hand side of Eq. (B1) in the following form:

EAðr; ξÞ ≔ d2ðrÞξ2 þ d1ðrÞξþ d0ðrÞ; ðB3Þ
where ξ ≔ sin2 θ and the coefficients d0ðrÞ ≔ c0ðrÞþ
c1ðrÞ þ c2ðrÞ, d1ðrÞ ≔ −c1ðrÞ − 2c2ðrÞ and d2ðrÞ ≔
c2ðrÞ are explicitly given by

d0ðrÞ ¼ −144A2ΔðΔþ b2Þ þ 48AMrþðr −MÞ
þ Δþ 4Mrþ 4M2

rþ rþ
r − r−

; ðB4aÞ

d1ðrÞ ¼ 36A2ð3Δ2 − 4b4Þ − 72AMrþðr −MÞ − a2;

ðB4bÞ

TABLE II. Location of the stagnation point for the parameter values AM ¼ 0.01 and a=M ¼ 0.5. Five significant figures are shown.
The perturbative calculation refers to the expansion (A15)–(A17), truncating the Oðε3Þ terms and translated back to the angle
coordinates θðεÞ and ϕðεÞ by means of Eq. (A9). The numerical calculation is based on the fsolve routine in MAPLE, using 15 digits of
precision and the seed values provided by the perturbative calculation. As can be appreciated from the table, the values provided by the
quadratic expansion (A15)–(A17) give a very good approximation [less than 1% relative error in the quantities ðrðεÞ; θðεÞ;ϕðεÞÞ].

Perturbative calculation Numerical calculation

θ0 rðεÞ=M θðεÞ − θ0 ϕðεÞ rðεÞ=M θðεÞ − θ0 ϕðεÞ
0° 4.2242 0.0 (undefined) 4.2242 0.0 (undefined)
10° 4.2243 0.00073719 −0.15890 4.2243 0.00075882 −0.15886
20° 4.2244 0.0012597 −0.15902 4.2244 0.0014289 −0.15884
30° 4.2245 0.0013812 −0.15919 4.2245 0.0019307 −0.15882
40° 4.2247 0.00096893 −0.15939 4.2247 0.0022033 −0.15879
50° 4.2249 −0.000035935 −0.15959 4.2249 0.0022116 −0.15875
60° 4.2250 −0.0016067 −0.15972 4.2251 0.0019516 −0.15872
70° 4.2252 −0.0036296 −0.15979 4.2253 0.0014526 −0.15870
80° 4.2253 −0.0059139 −0.15974 4.2254 0.00077429 −0.15868
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d2ðrÞ ¼ 36A2b2ð3Δþ 4b2Þ: ðB4cÞ

In order to shorten the notation we have also introduced
the quantity b ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
> 0 (remember that we are

excluding the extremal case from our analysis).
It is simple to verify that EAðr; ξÞ > 0 for all r ≥ rþ and

all 0 ≤ ξ ≤ 1 when A ¼ 0. Therefore, in the following we
assume A ≠ 0 which implies d2ðrÞ > 0 for all r ≥ rþ. The
strategy of the proof is to provide a positive lower bound for
the quantity

fAðrÞ ≔ min
0≤ξ≤1

EAðr; ξÞ ðB5Þ

for each rþ ≤ r ≤ R. For this, we distinguish between the
following three cases:

Case A: d1ðrÞ ≥ 0: In this case the minimum (B5) occurs
at the poles ξ ¼ 0:

fAðrÞ ¼ EAðr; 0Þ ¼ d0ðrÞ: ðB6Þ

Case B: −2d2ðrÞ < d1ðrÞ < 0: The minimum occurs at
ξ ¼ ξ� ¼ −d1ðrÞ=ð2d2ðrÞÞ; hence

fAðrÞ ¼ EAðr; ξ�Þ ¼ d0ðrÞ −
d1ðrÞ2
4d2ðrÞ

: ðB7Þ

Case C: d1ðrÞ ≤ −2d2ðrÞ: The minimum occurs at the
equator ξ ¼ 1; thus

fAðrÞ ¼ EAðr; 1Þ ¼ d0ðrÞ þ d1ðrÞ þ d2ðrÞ: ðB8Þ

We start with case A, for which EAðr; ξÞ ≥ d0ðrÞ.
Denoting by A�ðrÞ the same function as the one defined
in Eq. (B2) with R replaced with r, one has

d0ðrÞ ¼ 144Δðr −MÞ2½AþðrÞ − A�½A − A−ðrÞ�: ðB9Þ

As one can easily verify, A−ðrÞ is an increasing function of
r while AþðrÞ is a decreasing function of r. Therefore,
A−ðrÞ ≤ A−ðRÞ < A < AþðRÞ ≤ AþðrÞ for all rþ ≤ r ≤
R, which implies that d0ðrÞ > 0 for all rþ < r ≤ R. At the
horizon,

d0ðrþÞ ¼ 48AMrþbþ 4Mrþ þ 8M2
rþ
b
; ðB10Þ

which is obviously positive when A > 0. When A < 0 we
use the fact that

jA−ðRÞj ≤ jA−ðrþÞj ¼
1

12b

�
1þM

b

�
ðB11Þ

to conclude that d0ðrþÞ ≥ 4M2rþ=b > 0.

Next, we analyze case B for which 0 < −d1ðrÞ <
2d2ðrÞ. This allows us to estimate

fAðrÞ ¼ d0ðrÞ þ
d1ðrÞ
2

ð−d1ðrÞÞ
2d2ðrÞ

≥ d0ðrÞ þ
1

2
d1ðrÞ ≥ d0ðrÞ þ

4

3
d1ðrÞ: ðB12Þ

Explicitly, this yields

fAðrÞ ≥ −144A2b2
�
Δþ 4

3
b2
�
− 48AMrþðr −MÞ

þ Δþ 4Mrþ 4M2
rþ rþ
r − r−

−
4

3
a2: ðB13Þ

For positive A we have the bounds 12A ≤ 1=rþ ≤ 1=b
which yields the estimate

fAðrÞ ≥ −Δ −
4

3
b2 − 4Mðr −MÞ þ Δþ 4Mr

þ 4M2 −
4

3
a2 ¼ 16

3
M2 > 0: ðB14Þ

This bound still holds for negative A, provided
12jA−ðRÞjb ≤ 1 which is the case if R ≥ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2MÞp

. If rþ < R ≤ M þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðbþ 2MÞp

we use
instead the bound (B11) and the fact that rþ ≤ r ≤ R
implies Δ ≤ 2Mb to conclude

fAðrÞ ≥ −
�
1þM

b

��
Δþ 4

3
b2
�
þ Δþ 4Mr

þ 4M2
rþ rþ
r − r−

−
4

3
a2

≥ −
M
b
Δþ 4Mrþ 4

3
M2 −

4

3
Mb

≥ 2Mð2r −MÞ > 0:

Finally, in case C the condition 2d2ðrÞ þ d1ðrÞ ≤ 0
yields

108A2ΔðΔþ b2Þ ≤ 108A2

�
ðΔþ b2Þ2 þ 1

3
b4
�

≤ 72AMrþðr −MÞ þ a2: ðB15Þ

Therefore,
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fAðrÞ ¼ d0ðrÞ þ d1ðrÞ þ d2ðrÞ
¼ −36A2ΔðΔþ b2Þ − 24AMrþðr −MÞ þ r2

þ 2Mrþ 4M2
rþ rþ
r − r−

≥ −48AMrþðr −MÞ − a2

3
þ r2 þ 2Mr

þ 4M2
rþ rþ
r − r−

;

which is clearly positive when A < 0. For A > 0 we use the
bound 12Arþ ≤ 1 and obtain for all r ≥ rþ

fAðrÞ ≥ −4Mðr −MÞ − a2

3
þ r2 þ 2Mrþ 4M2

¼ Δþ 8M2 −
4

3
a2 > 0: ðB16Þ

This concludes the proof of the theorem. ▪
One can verify that the required hypothesis

12rþAþðRÞ ≤ 1 is always satisfied for R ≥ 3M þ rþ ¼
4M þ b. Although this bound is not optimal, the condition
A < AþðRÞ ceases to be sufficient for small R − rþ, as
can be understood from the plots in Fig. 3 which show that
in this case, the upper bound on A comes from the equator
(case C in the proof) instead of the poles.

APPENDIX C: NUMERICAL
CONVERGENCE TESTS

In this appendix we present the convergence and self-
convergence tests that are necessary to validate our
numerical results.
For the benchmark test presented in Sec. VA we

compute, for each resolution studied, the relative error
between the numerical and analytic values of the mass
accretion rate, once the steady state has been reached. In
Fig. 14 we present the results of these values as a function
of the radial resolution Nr, from which we obtain second
order convergence, as expected for smooth solutions
considering the numerical methods used in AZTEKAS.
On the other hand, in order to validate the numerical results

of the polytropic fluid simulations reported in Sec. V B, we
perform a series of self-convergence tests in which, using
three different consecutive resolutions, we compute the
convergence rate of the solution.We carry out the simulations
using resolutions R1 ¼ 64 × 64, R2 ¼ 128 × 128, and
R3 ¼ 256 × 256, for each studied value of the adiabatic
index γ and three different values of the spin parameter
a=M ¼ 0, 0.5, 0.99.
In Fig. 15 we show the evolution in time of the

convergence rate Q, which is computed as

2Q ¼ j _M1 − _M2j
j _M2 − _M3j

; ðC1Þ

FIG. 14. L1-norm of the error in the mass accretion rate, for the
benchmark test presented in Sec. VA. The test is performed using
the radial resolutions Nr ¼ 64, 128, 256, 512. The black dashed
lines represent the expected tendency for a first (top) and second
order (bottom) convergence.

FIG. 15. Self-convergence tests of the polytropic fluid simu-
lations, for both values of γ: 4=3 (top panel) and 5=3 (bottom
panel). In this figure we show the evolution in time of the
convergence rate Q for three different values of the spin
parameter a. The gray stripe shows the expected convergence
zone (given the numerical methods used in AZTEKAS).
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where _M1, _M2, and _M3 are the values of the mass
accretion rate as obtained from resolutions R1, R2, and
R3, respectively. As can be seen from this figure, the
time evolution of the simulations’ convergence rate
rapidly becomes confined within the gray stripe. Note
that in this case, since we have set free-outflow boundary

conditions for the velocity field, the simulations develop
sharp global oscillations throughout the domain during
their evolution, causing the convergence rate to be less
than second order, which would have been otherwise
expected since we obtain a smooth final steady state
solution.
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