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In the current work an equation of state model with a first-order phase transition for astrophysical
applications is presented. The model is based on a two-phase approach for quark-hadron phase transitions,
which leads by construction to a first-order phase transition. The resulting model has already been
successfully used in several astrophysical applications, such as cold neutron stars, core-collapse supernova
explosions and binary neutron star mergers. Main goal of this work is to present the details of the model,
discuss certain features and eventually publish it in a tabulated form for further use.
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I. INTRODUCTION

The investigation of the equation of state (EOS) of
strongly interacting matter is an ongoing problem of
nuclear and high-energy physics. Direct approaches to
solve the underlying theory of quantum chromodynamics
(QCD) are only accessible at high temperatures and
vanishing densities or at asymptotically high densities.
For the region, which is relevant in astrophysics, mainly
effective and phenomenological approaches are in use (e.g.,
see reviews [1,2] for further reference).
Of particular interest is the possible transition from

ordinary hadronic matter at low densities/temperatures to
a phase of deconfined quarks. Numerical results from
lattice QCD predict a crossover transition with a pseudoc-
ritical temperature of TðμB ¼ 0Þ ¼ 156.5� 1.5 MeV [3].
However, these calculations are limited to small baryon
chemical potentials and can not reach densities relevant for
astrophysics. At asymptotically high densities perturbative
QCD (PQCD) can be applied, which predicts a phase of
deconfined quark matter [4,5]. Unfortunately, it is not
possible to reach densities, where the transition from
hadronic to quark matter occurs, and therefore both the
position and order of this transition at low temperatures are
currently speculative. The two possible scenarios are the
existence of at least one critical endpoint (CEP), changing
the crossover transition into a first-order transition, and the
absence of any CEP, which would result in the crossover
transition to span the entire phase diagram.
In the presentedmodel, the existence of a first-order phase

transition at high baryon densities is assumed as a working
hypothesis, in order to explore possible implications in
astrophysics, which might lead to measurable signals.
Contrary to the original publication of the model in [6],
where neutron star configurations are studied, here the
applicability is extended to such dynamic phenomena as

core-collapse supernova (CCSN) and binary neutron star
merger (BNSM), which reach not only high densities, but
also high temperatures. This extension broadens the spec-
trum of predictable signals from mass-radius relations and
tidal deformability (of neutron stars) to, e.g., gravitational
waves, neutrino signals and possibly electromagnetic
counter parts. Additionally, the hypothetical case ofmultiple
CEPs is covered, due to the possibility to probe the existence
of a first-order phase transition at various temperatures.
The material presented here was so far successfully

applied to BNSM in [7], suggesting a possible signal in
gravitational waves, which would unambiguously identify
the existence of a sudden softening in the EOS, which is
characteristic of a first-order phase transition. Furthermore,
it was applied to CCSN simulations in [8], predicting a
second shock wave, which leads to the successful explosion
of a 50 M⊙ progenitor star and a measurable neutrino
signal, originating from the phase transition. The additional
shock wave in the CCSN leads to an altered result of
nucleosynthesis analyses, bringing back supernovae as
source of r-process elements, as shown in [9].
The document is structured in the following way: first of

all, Sec. II presents the model in its current state, including
the description of each component and the realization of
phase transition. Afterwards, in Sec. III the created param-
eter sets and their properties are shown. Finally, in Sec. IVa
discussion is laid out about the consequences of certain
aspects of the model and possible alternative approaches.
Note, that in this publication natural units ℏ¼c¼kB¼1

and the unity volume V ¼ 1 is applied.

II. HYBRID EQUATION OF STATE MODEL

The particles involved in astrophysical systems can be
grouped into five classes. Due to the different nature of their
thermodynamic interactions it is reasonable to assume, that
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mixed terms in the thermodynamic potential are small and
their contributions can be addressed separately:

Ω ¼ Ωnucleons þ Ωnuclei þ Ωquarks þΩleptons þ Ωphotons: ð1Þ

Since photons do not carry any charge, they are only
included as thermal excitation at high temperatures and do
not affect the phase transitions. Included leptons, such as
electrons and neutrinos, are fully degenerate at our densities
and can be described as ideal gas. They carry electric and
leptonic charge and are (dependent on the system) in
chemical equilibrium with the strongly interacting par-
ticles. The separation of the strongly interacting part into
quarks and hadrons is an assumption of the presented
model, which is commonly used in astrophysics (so-called
two-phase approach).
In Sec. II A the relativistic density functional (RDF)

formalism is derived, which is used to describe homo-
geneous quark and hadron matter in a mean field approxi-
mation. Afterwards, the particular models used for Ωnucleons
(Sec. II B) and Ωquarks (Sec. II C) are shown. Section II D
presents the model which is used for nuclear cluster
formation Ωnuclei and Sec. II E explains the inclusion of
leptons Ωleptons.

A. Relativistic density functional derived
from field theory

The RDF approach as introduced in [6] is a framework
capable of dealing with very complex interaction contri-
butions, e.g., confinement. Here the derivation is done in a
more thorough and complete manner, including isovector
couplings, which have major effects on the isospin asym-
metric phase diagram, relevant for astrophysics.
The derivation is done self-consistently from the path-

integral formalism, based on an effective Lagrangian of
low-energy QCD to obtain the partition function Z and
hence the thermodynamic potential

Ω ¼ −T lnZ: ð2Þ

Analogous to the treatment of the Walecka model of
nuclear matter in [10], the partition function takes the form

Z ¼
Z

Dq̄Dq exp

�Z
d4x½Leff þ q̄γ0μ̂q�

�
; ð3Þ

where in the case of a two-flavor quark model

q ¼
�
qu
qd

�
; ð4Þ

and μ̂ ¼ diagðμu; μdÞ is the diagonal matrix of the chemical
potentials conjugate to the conserved numbers of corre-
sponding quarks. The effective Lagrangian density is
given by

Leff ¼ Lfree −U; ð5Þ
Lfree ¼ q̄ðγμ∂μ − m̂Þq; ð6Þ

where m̂ ¼ diagðmu;mdÞ is the matrix of current quark
masses. The interaction is given by the potential energy
density U ¼ Uðq̄q; q̄ τ⃗ q; q̄γ0q; q̄ τ⃗ γ0qÞ, which in general is
a nonlinear functional of the field representationsof the scalar,
vector, and corresponding isovector quark currents. Note
here, that I restrict myself to quark fields out of readability of
the manuscript—the formalism can be written down for any
fermionic many-body system, which needs to be treated in a
relativistic scheme by exchanging the respective quark fields
q and q̄ by, e.g., nucleonic fields ψ and ψ̄ .
In the isotropic case, the vector four-current reduces to its

zeroth component and the gradients of the fields vanish, so
that γμ∂μ ¼ γ0∂0. Due to charge conservation, only the
third component of any isovector field would remain,
so that only the third component of the isospin vector
τ⃗ ¼ ðτ1; τ2; τ3ÞT remains, which is here written in short
hand as τ ¼ τ3.
To achieve a quasiparticle representation, the potential

energy density shall depend linearly on the Dirac spinor
bilinears representing the relevant currents of the system.
The linearization of the interaction is facilitated by a Taylor
expansion around the corresponding expectation values

hq̄qi ¼ ns ¼
X
i

ns;i ¼ −
X
i

T
∂

∂mi
lnZ; ð7aÞ

hq̄τqi ¼ nsi ¼
X
i

τins;i ¼ −
X
i

τiT
∂

∂mi
lnZ; ð7bÞ

hq̄γ0qi ¼ nv ¼
X
i

nv;i ¼
X
i

T
∂
∂μi lnZ; ð7cÞ

hq̄τγ0qi ¼ nvi ¼
X
i

τinv;i ¼
X
i

τiT
∂
∂μi lnZ; ð7dÞ

of the scalar density ns, the vector density nv, the scalar-
isovector density nsi and the vector-isovector density nvi,
respectively. Here τi is the isospin quantum number of the
particle species i. This expansion results in

U ¼ Ū þ ðq̄q − nsÞΣs þ ðq̄τq − nsiÞΣsi

þ ðq̄γ0q − nvÞΣv þ ðq̄τγ0q − nviÞΣvi þ…; ð8Þ

where the notation

Σs ¼
∂U

∂ðq̄qÞ
����
�
¼ ∂Ū

∂ns ; ð9aÞ

Σsi ¼
∂U

∂ðq̄ τ⃗ qÞ
����
�
¼ ∂Ū

∂nsi ; ð9bÞ
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Σv ¼
∂U

∂ðq̄γ0qÞ
����
�
¼ ∂Ū

∂nv ; ð9cÞ

Σvi ¼
∂U

∂ðq̄ τ⃗ γ0qÞ
����
�
¼ ∂Ū

∂nvi ; ð9dÞ

respectively, for the different self energies, is introduced.
The derivatives (marked by the asterisk �) are taken at
the expectation values of the field bilinears q̄q ¼ ns,
q̄τq ¼ nsi, q̄γ0q ¼ nv, and q̄τγ0q ¼ nvi. The newly defined
Ū ¼ Uðns; nsi; nv; nviÞ is the potential energy density at the
expectation values. The expansion is truncated at the
second term, assuming the fluctuations around the expect-
ation values of the fields are small. Applying this quasi-
particle approximation to the effective Lagrangian of
Eq. (5) and reordering the terms results in

Leff ¼ Lqu − Θðns; nsi; nv; nviÞ; ð10Þ

with the quasiparticle contribution

Lqu ¼ q̄ðγ0ð{∂0 þ Σv þ τΣviÞ − ðm̂þ Σs þ τΣsiÞÞq; ð11Þ

and the effective potential energy density,

Θ ¼ Ū − Σsns − Σsinsi − Σvnv − Σvinvi: ð12Þ

Now, the partition function from Eq. (3) takes the form

Z¼
Z

Dq̄Dqexp

�
Squ½q̄;q�−

1

T
Θðns;nsi;nv;nviÞ

�
; ð13Þ

where the quasiparticle action in Fourier-Matsubara rep-
resentation is given by [10]

Squ½q̄; q� ¼
1

T

X
n

X
p⃗

q̄ G−1ðωn; p⃗Þq; ð14Þ

G−1ðωn; p⃗Þ ¼ γ0ð−iωn þ ˆ̃μÞ − γ⃗ · p⃗ − M̂; ð15Þ

with the Dirac effective masses Mi ¼ mi þ Σs þ τiΣsi and
the renormalized chemical potential μ̃i ¼ μi − Σv − τiΣvi.
Note here that the hat notation of ˆ̃μ and M̂ stands again for
diagonal matrix over all species. For convenience, the
short-hand notations

Si ¼ Σs þ τiΣsi; ð16Þ

Vi ¼ Σv þ τiΣvi; ð17Þ

are introduced, defining the scalar shift Si and the vector
shift Vi, respectively, for each particle species i. The
functional integral can be performed in this quasiparticle
approximation with the result

Zqu ¼
Z

Dq̄Dq exp fSqu½q̄; q�g ¼ det

�
1

T
G−1

�
; ð18Þ

where the determinant operation acts in momentum-
frequency space as well as on the Dirac, flavor, and color
indices. Using the identity ln det A ¼ Tr ln A and the
representation of the gamma matrices, one obtains for the
thermodynamic potential (for details see, e.g., [10])

Ωqu ¼ −T lnZqu ¼ −TTr ln
�
1

T
G−1

�
;

¼
X
i

gi

Z
d3p
ð2πÞ3 Tðln ½1þ e−

1
TðE�

i−μ̃iÞ�

þ ln ½1þ e−
1
TðE�

iþμ̃iÞ�Þ; ð19Þ
where the so-called no sea approximation (as is customary in
the Walecka model) is tacitly used by removing the vacuum
energy term which corresponds to the phase space integral
over the kinetic one-particle energy E�

i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
.

1. Self-consistency

In order to evaluate the thermodynamics of the RDF
approach, one has to solve a self-consistency problem,
since the thermodynamic potential is a functional of the
scalar and vector densities, which themselves are defined as
derivatives of the thermodynamic potential by Eqs. (7). The
thermodynamic potential takes now the form

Ω ¼ −
X
i

gi

Z
d3p
ð2πÞ3 T

�
ln½1þ e−

1
TðE�

i−μ̃iÞ�

þ ln½1þ e−
1
TðE�

iþμ̃iÞ�
�
þ Θ; ð20Þ

while its derivatives are

ns;iðT; fμjgÞ ¼
�∂ΩðT; fμjgÞ

∂mi

�
T;fμjg;fmj≠ig

;

¼
Z

d3p
ð2πÞ3

Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p ðfi þ f̄iÞ; ð21Þ

nv;iðT; fμjgÞ ¼ −
�∂ΩðT; fμjgÞ

∂μi
�

T;fμj≠ig
;

¼
Z

d3p
ð2πÞ3 ðfi − f̄iÞ; ð22Þ

with the Fermi distributions for particles and antiparticles

fi ¼
1

eð
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
−μ̃iÞ=T þ 1

; ð23Þ

f̄i ¼
1

eð
ffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p
þμ̃iÞ=T þ 1

: ð24Þ
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Once this set of equations is solved, one can compute all
thermodynamic quantities explicitly.
Based on this formalism, the specific interaction poten-

tial for the hadronic and quark models are introduced and
the resulting self energies Si and Vi are discussed in the
next section.

B. Hadron model—Walecka model
in the RDF formulation

Within this section it will be shown how the DD2 EOS
can be written in the RDF formalism. While the relativistic
mean field (RMF) approach with density-dependent cou-
plings was already depicted in [11], the current para-
metrization can be found in [12]. In this work, DD2 is
the hadronic EOS of choice, because it is well established
in astrophysics and provides an excellent reproduction of
nuclear properties as well as withstands all constraints,
which are important in astrophysical applications, except
the flow constraint, that has been corrected in the DD2F
parametrization (see next section).
Both DD2 and DD2F models can be expressed in the

RDF formalism with the potential

U ¼ −
1

2

Γ2
σ

m2
σ
n2s þ

1

2

Γ2
ω

m2
ω
n2v þ

1

2

Γ2
ρ

m2
ρ
n2vi; ð25Þ

with the density-dependent coupling parameters Γfσ;ω;ρg,
the meson massesmfσ;ω;ρg and the corresponding densities.
It results in the scalar self energy

S ¼ −
Γ2
σ

m2
σ
ns; ð26Þ

and the species-dependent vector self energy

Vi ¼
Γ2
ω

m2
ω
nv þ τi

Γ2
ρ

m2
ρ
nvi −

ΓσΓ0
σ

m2
σ
n2s þ

ΓωΓ0
ω

m2
ω

n2v þ
ΓρΓ0

ρ

m2
ρ
n2vi:

ð27Þ

Using these quantities, one can formulate all thermody-
namic observables, as described in Sec. II A.
The form of the coupling terms is not altered in this

representation and can be used from the original work.

1. Corrections due to flow constraint—DD2F

With regard to the flow constraint [13], the behavior at
supersaturation densities was altered in [14] by redefining
the coupling parameters as

ΓDD2f
i ¼ FiΓDD2

i ; ð28Þ

with Fi as new density-dependent function

Fi ¼

8>><
>>:

1þkð1þpÞym
1þkð1−pÞym for i ¼ σ

1þkð1−pÞym
1þkð1þpÞym for i ¼ ω

1 for i ¼ ρ

; ð29Þ

and

y ¼
�
n=nref − 1 ∀ n > nref

0 ∀ n ≤ nref
: ð30Þ

The occurring parameters are set to k ¼ 0.04,p ¼ 0.07, and
m ¼ 2.25. The reference density nref ¼ nsat ¼ 0.149 fm−3

is again set to the model’s saturation density. One can see,
that for n ≤ nref → Fi ¼ 1 it returns to original DD2, so the
change does not touch the behavior below saturation density,
where DD2 is already a very sophisticated model. The
coupling to the ρ field is not altered at all, resulting in an
unchanged asymmetry behavior.

2. Nuclear properties

Both DD2 and DD2F models give the same nuclear
properties. The nuclear saturation density is nsat ¼
0.149 fm−3 and the corresponding binding energy is
EB ¼ 16.02 MeV. The incompressibility and symmetry
energy at saturation can be found as K ¼ 255.3 MeV and
ESym ¼ 31.674 MeV. Furthermore, they feature a critical
endpoint of the liquid-gas phase transition at baryon density
ncrit ¼ 0.0448 fm−3 and temperature Tcrit ¼ 13.71 MeV.
Important information for astrophysics are the maximal
mass for neutron stars MDD2

max ¼ 2.44 M⊙, MDD2F
max ¼

2.08 M⊙, and the direct-Urca threshold density nDU ¼ ∞.
For a recent overview on this class of hadronic EOS

models and how they are adjusted to nuclear observables,
please see [15].

C. Quark model—confinement as density functional

The nature of quarks and gluons, which are strongly
interacting particles, is yet little understood. The QCD as
underlying theory of strong interaction can only be solved
numerically at vanishing baryon-chemical potential, or
with perturbative methods in the asymptotic limit of infinite
temperature or density. For the region of dense, yet non-
perturbative matter, recently most of the approaches
employ Nambu-Jona-Lasinio (NJL)-type models for the
description of chiral symmetry breaking (restoration) but
lack the deconfinement. The aim of the current work is to
describe all phenomena, known for quark interaction, in a
consistent way. To this end I adopt the following density
functional for the interaction energy:

Uðns; nv; nviÞ ¼ Cn4=3s þDðnvÞn2=3s þ ω4n2v

þ ω8

1þ ω0
8n

2
v
n4v þ ρ4n2vi: ð31Þ
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Because of the number of terms occurring in Eq. (31), each
representing a physical effect, I will go through them in
several subsections.

1. Quark confinement

The first terms in Eq. (31)

USFMðns; nvÞ ¼ Cn4=3s þDðnvÞn2=3s ; ð32Þ

represent the so-called string-flip model (SFM) as intro-
duced in [6]. It captures aspects of (quark) confinement
through its resulting density-dependent scalar self energy
contribution to the effective quark mass M:

SSFM ¼ 4

3
Cn1=3s þ 2

3
DðnvÞn−1=3s : ð33Þ

Here the first term is motivated by the Coulomb-like one-
gluon exchange, while the second term represents the linear
string potential between quarks. The effective mass
diverges for densities approaching zero, see Fig. 1, and
thus suppresses the occurrence of the quasiparticle excita-
tions corresponding to these degrees of freedom. For color
neutral hadrons this divergence of the self energy is entirely
compensated by that of the confining interaction in the
equation of motion [16]. For quark matter in compact stars,
such a mechanism has been used in [17]. Note that in its
nonrelativistic formulation with energy shifts [18], the SFM
has already been applied successfully to describe massive
hybrid stars with quark-matter cores [19].
The SFM modification takes into account the occupation

of the surrounding medium by color fields, which leads to
an effective reduction of the in-medium string tension. This
is achieved by multiplying the vacuum string tension
parameter D0 with the available volume fraction ΦðnvÞ:

DðnvÞ ¼ D0ΦðnvÞ: ð34Þ

This reduction of the string tension is understood as a
consequence of a modification of the pressure on the color
field lines by the dual-Meissner effect since the reduction of
the available volume corresponds to a reduction of the
nonperturbative dual superconductor QCD vacuum that
determines the strength of the confining potential between
the quarks.
A standard ansatz for the volume fraction is the Gaussian

approach,

ΦðnvÞ ¼
�
exp ½−αðnv − nrefÞ2� nv > nref

1 nv ≤ nref
; ð35Þ

dependent on the vector density nv, a volume fraction
parameter α, which scales the reduction and a reference
density nref from which the effect starts. The reference
density is set to zero in the presented models.

2. Vector repulsion

The following contribution in Eq. (31), as it was already
introduced in [6]

UvðnvÞ ¼ ω4n2v þ
ω8

1þ ω0
8n

2
v
n4v; ð36Þ

stands for the repulsion stemming from a four-fermion
interaction in the Dirac vector channel and a higher-order
(eight fermion) repulsive interaction in the vector channel.
Such higher-order vector mean fields have already been
considered in the description of nuclear matter (see, e.g.,
[20]), and it is therefore natural to invoke them also in the
description at the quark level. The higher-order quark
interactions have been introduced in [21] for the description
of hybrid stars in order to provide a sufficient stiffening at
high densities required to fulfil the 2 M⊙ mass constraint
from the precise mass measurement of [22,23]. This allows
one to obtain a separate third family of high-mass hybrid
stars [24]. The denominator ð1þ ω0

8n
2
vÞ−1 in the higher-

order term compensates its asymptotic behavior to ensure
the speed of sound cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂P=∂εp
does not exceed the

speed of light. It can be seen as a form factor of the eight-
fermion interaction vertex.

3. Isospin mean field

The last contribution in Eq. (31),

UviðnviÞ ¼ ρ4n2vi; ð37Þ

is representing a vector-isovector interaction, comparable
to the ρ-meson interaction in Walecka-type models. An
isovector mean field is usually not considered in quark

0 0.2 0.4 0.6 0.8 1
nB [fm-3]

0

100

200

300

400

500

600

M
 [

M
eV

]

α = 0
α = 0.2 fm6

α = 0.4 fm6

FIG. 1. Effective quark mass due to confinement for different
color screening parameters α, see Eq. (35). The effective confine-
ment manifests itself by a divergence of the quasi-particle mass at
low densities. Here

ffiffiffiffiffiffi
D0

p ¼ 240 MeV and C ¼ 0, see Eq. (32).
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models, since the symmetry energy of quark matter is not
known. On the other hand, such models are often designed
to fit only neutron stars, in which case the contribution of
the isovector mean field can be absorbed in the usual
vector mean field and its explicit contribution is hidden.
To achieve the goal of a unified EOS for both astrophysics
and heavy-ion collisions (HIC), the introduction of this
term is crucial. Now it is possible to adjust the parameters
for symmetric matter applications and constraints inde-
pendently of the neutron-rich scenarios, e.g., in neutron
stars. Furthermore the shape of the deconfinement phase
transition can be adjusted by this contribution, hence is
has shown that a model without isovector interaction gives
unreasonable onset densities for neutron matter, even
below saturation density. Additionally, the composition
of matter in neutron stars, e.g., the baryonic charge
fraction

yc ¼
1

nB

X
i

Cinv;i; ð38Þ

with Ci being the charge number and nB the total baryon
density, strongly depends on this field, as it can be seen in
Fig. 2. Without any coupling to the vector-isovector mean
field, the quark model does not even reach a charge
fraction of 1%.
Still, the question of parametrization is open. One

possibility is to utilize the coupling parameter of a baryonic
model and scale by the factor 3 (“quarks counting rule”).
Another possibility to fit the parameter (which is used, e.g.,
in [7,8]), is to demand an approximately smooth transition
of the symmetry energy Esym at the deconfinement phase
transition, as it can be seen in Fig. 3. Without a sufficiently
large coupling to the vector-isovector mean field, the
symmetry energy would have a significant jump at the
quark-hadron phase transition by a factor of up to 5.

D. Nuclear clusters at subsaturated densities

In astrophysical applications the description of nuclear
cluster formation is of special importance. It does not only
change the EOS itself, but also significantly influences such
aspects like neutrino response, for details see, e.g.,
Furusawa et al. [25] and Fischer et al. [26].
The current work focuses on the description of high

density matter and possible phase transitions to deconfined
quark matter. For the low density problem of nuclear cluster
formation, the established model of Hempel and Schaffner-
Bielich [27] is used. Here a nuclear statistical equilibrium
(NSE) is assumed, where any bound state is considered a
new species (chemical picture). The model takes into
account experimental values of Audi et al. [28] and
theoretical values of Moller et al. [29]. At nuclear satu-
ration density, all clusters should have dissolved and the
system should form homogeneous matter of neutrons and
protons. In order to obtain such a Mott transition, the model
uses a classic excluded volume approach for the bound
states, which suppresses them at higher densities.

E. Leptonic degrees of freedom

In the current model, leptons are not taken into account
for the phase transition. In the published tabulations, one
version is completely without leptons, because some
applications need to add them during the evolution and
treat them out of equilibrium. The other version has
electrons added to fulfil electric charge neutrality after
the phase transition is constructed. Muons and neutrinos are
not included.

F. Chemical equilibrium and phase transitions

In order to obtain a phase transition from hadronic to
quark matter, the so-called two-phase approach is applied.
Within this approach, which is commonly used in

FIG. 2. Charge fraction as a function of baryon density at
neutron star conditions. The different lines correspond to the
strength of the vector-isovector parameter ρ4.

FIG. 3. Symmetry energy of quark and hadron matter of
hadronic EOS (DD2) and parametrizations of the quark model
with different values of the vector-isovector parameter ρ4 depend-
ing on the baryon density.
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astrophysics, both phases are derived independently and
then merged on a thermodynamic level, applying Gibbs
conditions of phase equilibrium. The fact that hadrons are
composite particles made of quarks is not considered in this
description.
In the case of chemical equilibrium, the distribution

function of all present particles can be expressed by the
chemical potentials of their charge numbers as μi ¼P

j Aijμj for each particle i, the chemical potential μj of
its charges j and the associated charge number Aij.
Considered here is baryon number, lepton number, and
electric charge, resulting in the definition of the particle
chemical potentials as

Proton∶ μp ¼ μB þ μC; ð39aÞ

Neutron∶ μn ¼ μB; ð39bÞ

Up quark∶ μu ¼
1

3
μB þ 2

3
μC; ð39cÞ

Down quark∶ μd ¼
1

3
μB −

1

3
μC; ð39dÞ

Electron∶ μe ¼ μl − μC; ð39eÞ

Neutrino∶ μνe ¼ μl: ð39fÞ

Aspects of strangeness are not considered in the current
work. Nevertheless, strangeness is not a conserved charge
in astrophysical applications due to weak equilibrium.
Baryon and charge number are conserved charges.
Lepton number is in astrophysical applications not a
conserved charge, and the lepton chemical potential is
dictated by charge neutrality. Furthermore, neutrinos can
not always be considered in chemical equilibrium.
Gibbs conditions of phase equilibrium involve thermal

equilibrium TH ¼ TQ, mechanical equilibrium pH ¼ pQ,
and chemical equilibrium μHB;C ¼ μQB;C for baryon and
charge chemical potential simultaneously. Since leptons
(particularly neutrinos) cannot be assumed in equilibrium,
they are not taken into account for the phase transition. At
this point, the quark-hadron phase transition is considered
to be a phenomenon of strongly interacting particles.
In Fig. 4 the black lines show a resulting phase diagram

in the charge fraction over baryon density plane. For every
given charge fraction of the hadronic side, a corresponding
EOS point on the quark side was obtained, which is shown
as blue lines. Generally, these pairs do not have the same
charge fraction, because they have equal charge chemical
potentials and the dependency of charge chemical potential
to charge fraction is system/model dependent. Note that in
two-flavor quark matter the charge fraction can go from
yC ¼ −1 (pure down quark matter) to yC ¼ þ2 (pure up
quark matter)

The resulting tabulation of the EOS needs to have
isothermal lines of constant charge fraction. To obtain
those, new pairs of points on the phase boundary were
selected, which have the same charge fraction but are not in
Gibbs-equilibrium. With those points the mixed phase
points were obtained via linear interpolation (in density
dimension).
An alternative strategy would be to use the original pairs

(as shown in Fig. 4) and interpolate until you get the wanted
configuration of baryon density and charge fraction. But
despite the additional numerical overhead and errors due to
additional interpolations, the effect should be small, due to
the small difference in charge fractions in our models.
These small differences are a result of the choice of the
parameter ρ4, which controls the symmetry energy of the
quark model. Without this parameter, the effect would be
much more drastic.

III. RESULTS

Main result of this work is the presentation and tabulated
publication of a variety of EOS models, which can be used
in astrophysical applications to study the influence of a
first-order phase transition at high densities. Publication of
tabulated data will be done on the specialized website
http://eos.bastian.science, which intends to collect all future
tabulations for both astrophysical applications and HIC as
well as the CompOSE [30] database, which is a widely used
repository in astrophysics, after this work is published.

A. Nomenclature

Further publications with equation of states are planned,
both for astrophysical applications as well as for HIC,
which are based on different hadronic and quark models
and can vary in the type of phase transition. To form a
unified nomenclature of the current and following EOS the

FIG. 4. Phase diagram (Charge fraction yc vs baryon density n)
of asymmetric matter at zero temperature. The boundary of the
phase transition is shown as black lines, while the light blue lines
connect corresponding quark and hadron points that fulfil the
Gibbs conditions.
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naming scheme RDF a,b,c is introduced. Here a is the
index of the set of parametrizations, which mostly have the
same formalism and are presented in the same publication,
here is always a ¼ 1. The index b is the running index
inside a published set and c is occurring only in the
published file names, in case of technical updates, which do
not affect the physics description.

B. Parameters

In Table I one can find all considered sets of parameters.
The sets RDF 1.1 and RDF 1.2 are the initial ones, which
were developed for supernova simulations by Fischer et al.
[8]. For the later study of binary neutron star mergers [7] the
amount of sets was supplemented by RDF 1.3… RDF 1.7,
which represent a systematic variation of onset density and
latent heat (density jump). Finally, here two more sets of
parameters (RDF 1.8 and RDF 1.9) are added to address the
demand of a very early onset densities, e.g., to studymergers
of hybrid compact stars.
RDF 1.1… RDF 1.7 use the softer DD2F as hadronic

model, while RDF 1.2 has an excluded volume version of
DD2F with its parameters αdd2fev ¼ 2.0 fm6 and ndd2fev0 =
nsat ¼ 2.5, but which has only minimal effect on the onset
density (visible in Fig. 5).RDF1.8 andRDF1.9 use the stiffer
DD2 to obtain a significantly lower onset density of the phase
transition. The parameters of the quark model are already
thoroughly discussed in [6]. Here α varies the onset of the
phase transition, ω4 is linear and ω8 is higher order vector
coupling, while parameter ω0

8 ensures causality. The highest-
order of vector interaction adjusts the maximal neutron star
mass, while the lower order modifies the mixed phase
behavior. The new parameter ρ4 is the coupling strength to
the isovector-vector mean field and therefore varies the
behavior of the symmetry energy, as discussed later.
All sets of parameters are designed to fulfil common

constrains. By the choice of hadronic EOS the behavior

until saturation is determined, which fulfils the boundary of
chiral effective field theory (χEFT) [31], constraints on the
symmetry energy and its slope [32,33] and other properties
of saturation density, which are well within the margins of
experimental data. Relevant for densities above saturation
density are the maximal mass of neutron stars [23,34] and
the flow constraint [13]. Causality is always preserved,
meaning the speed of sound in medium c2s ¼ ð∂p∂εÞfs=njg is

always smaller then the speed of light in vacuum.
An overview of the phase diagrams of all parameter sets

can be found in Fig. 9. The intended variation of low
temperature phase transition can be clearly seen in the
different panels. Furthermore, one can see the typical
temperature dependant features of two-phase approaches,
which are in detail explained in Sec. IVA. Note here, that
by construction the transition is always of first order. This is
contradicting the results of lattice QCD calculations
[35,36], which predict a smooth crossover transition at

TABLE I. List of parameters for each of the sets presented in the current work. The first two columns show the name of the set and the
hadronic model, see details in the main text. Columns 3–8 present the parameters of the quark model, which are explained in Sec. II C.
The last four columns show some representative observables of the parameter sets. Here n1 and Δn are the onset density and the density
jump of the quark-hadron phase transition at neutron star conditions. For resulting cold neutron star configurations, the maximal massM
is presented, as well as the lowest mass M1 of neutron stars with a quark core.

ffiffiffiffiffiffi
D0

p
α ω4 ω8 ω0

8 ρ4 n1 Δn Monset Mmax

Name Hadron [MeV] ½fm6� ½MeV fm3� ½MeV fm9� ½fm6� ½MeV fm3� ½fm−3� ½fm−3� ½M⊙� ½M⊙�
RDF 1.1 DD2F 265 0.39 −4 1.6 0.025 80 0.530 0.109 1.57 2.13
RDF 1.2 DD2Fvex 250 0.6 10.0 0.0 0.0 80 0.466 0.057 1.37 2.15
RDF 1.3 DD2F 240 0.36 1.0 0.5 0.015 80 0.536 0.125 1.58 2.02
RDF 1.4 DD2F 240 0.34 1.0 0.5 0.015 80 0.579 0.083 1.68 2.02
RDF 1.5 DD2F 240 0.38 1.0 0.5 0.015 80 0.498 0.106 1.48 2.03
RDF 1.6 DD2F 240 0.30 −3.0 0.8 0.015 80 0.545 0.120 1.60 2.00
RDF 1.7 DD2F 240 0.47 7.0 0.2 0.015 80 0.562 0.030 1.62 2.11
RDF 1.8 DD2 240 0.45 1.0 0.5 0.015 55 0.285 0.255 0.94 2.06
RDF 1.9 DD2 240 0.63 10.0 0.0 0.0 55 0.265 0.189 0.81 2.17

FIG. 5. Equation of state shown as pressure p versus baryon
density nB for each parameter set. The grey shaded area denotes
the flow constraint [13].
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vanishing densities. Therefore, the presented EOS is not
applicable for high energy HIC, but rather specialized in the
investigation of astrophysical phenomena.
In Fig. 5 is shown how the EOS behaves at zero temper-

ature for the isospin symmetric case. Until the onset density,
theEOS follows exactly the purely hadronic reference curve.
All parametrizations which are based on the DD2F EOS are
fulfilling well the flow constraint [13]. The hadronic EOS
DD2 is rather stiff at supersaturated densities and violates
the flow constraint. Anyway, the two parametrizations (RDF
1.8 and RDF 1.9), which are based on it, have a phase
transition before the applicability of the constraint, resulting
in a significant softening. Because the phase transition is
rather big, it is eventually too soft to perfectly lie within the
constraint, which is an acceptable discrepancy.
Figure 6 compares the mass-radius relations for cold

neutron stars, together with the highest neutron star masses,
which could be measured precisely [22,23,34]. Results

from radius measurements, done by the NICER mission
[37], were not taken into account, while creating the
parameter sets, but they do not contradict our results within
given accuracy. The baryonic charge fraction yC for neutron
star conditions is shown in Fig. 7, calculated as an example
for RDF 1.9 and its hadronic reference EOS DD2. As one
can see, the two kinks coincide with the phase boundaries,
but no discontinuities are observed. The difference of the
charge fraction between DD2 and RDF 1.9 is visible,
however it is not as extreme as it would be without vector-
isovector couplings (compare with Fig. 2).

IV. DISCUSSION

Aim of the discussion section is to address particular
features which occur in the presented EOSs. The discussed
parameter set is RDF 1.9, because particular effects are
most pronounced.

A. Temperature dependence of the phase transition

In Fig. 8 it is shown how the phase transition is
constructed. For a given set of temperatures the pressure
over baryon chemical potential is shown for both (hadronic
and quark) EOSs. Here only low and intermediate temper-
atures are discussed, because at high temperatures the
applicability of the two-phase approach ends. For simplic-
ity only pure symmetric matter is shown, because the
charge chemical potential can then be assumed to be zero
for both phases. This simplification is only used in this
picture for presentation and not used in the actual data or
any other pictures, because the charge chemical potential of
the hadronic model is not zero (≈ −1 MeV), due to the
mass difference of neutrons and protons.
The hadronic model features at low temperatures

(Tc ≈ 14.5 MeV) the liquid gas phase transition in the

FIG. 6. Mass-radius relations MðRÞ for cold neutron star
configurations for each parameter set including the two hadronic
reference EOSs. Also shown are the experimental constraints of
precise high mass measurements and the recent NICER results.

FIG. 7. Baryonic charge fraction yc for neutron star conditions
[see Eq. (38)] for the hadronic reference EOS DD2 and the hybrid
EOS RDF 1.9.

FIG. 8. Phase construction for different temperatures in the
RDF 1.9 set of the model, in the case of symmetric matter. The
solid lines show the hadronic EOS, while the corresponding
dashed lines are from the quark EOS. The grey dash-dotted line
represent the phase transitions, here following the crossings of
hadronic and quark EOS for each value of temperature.
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form of a van-der-Waals wiggle. For temperatures beyond
the critical temperature, the lines are monotonously rising
with an increasing gradient. The quark model always
shows a rather steep gradient, starting from negative
pressures. This bag-model-like behavior originates from
the confinement mechanism and is explained in details in
Kaltenborn et al. [6]. It can also be seen, that the quark
model is much more affected by temperature than the

hadron model, which can be explained by the lower masses
of quarks.
Applying Gibbs conditions and assuming that temperature

and charge chemical potential are already equal in both
phases, the phase transition is at the crossing point of hadronic
and quark line in Fig. 8. With rising temperature, one can
clearly see, that the model features a monotonous decrease of
transition pressure and (baryon) chemical potential.

FIG. 9. Phase diagrams of symmetric matter for all parameter sets. Each panel shows all sets, but highlights a single one. Details about
the parametrizations can be found in the text. The numerical values of the parameters together with characteristic quantities are listed in
Table I. The lines enclose the mixed phase of the quark-hadron phase transition. At lower densities and temperatures one has the pure
hadronic phase and at high densities and temperatures the pure quark phase appears. The gap at high temperatures, which are most
pronounced for RDF 1.1 and RDF 1.9, are a numerical artefact due to the sudden drop in density. The dotted line at low temperatures and
densities is the mixed phase of the liquid-gas phase transition of the hadronic model for comparison.
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The baryon density in Fig. 8 can be derived from its
gradient nB ¼ ð∂p=∂μBÞT;μC . Given that the gradient of the
quark model, especially around the crossing points, does
not have a strong temperature dependence, the transition
density from mixed phase to pure quark matter is rather
constant with respect to temperatures, as it can be seen in
the phase diagram in Fig. 9. The hadron model, on the other
hand, has its crossing point at different areas of the EOS,
which feature different gradients. Therefore, the onset
density of the phase transition is highly temperature
dependent. Note here, that this is a typical feature of
two-phase constructions, as discussed in Sec. IV D.

B. Leptonic contributions and charge neutrality

In this work, the QCD phase transition is considered a
phenomenon of strong interacting particles. This
assumption has several reasons and implications. One of
them is the fact that in dynamical applications, such as
supernovae, even electrons can not be considered to be in
chemical or even thermal equilibrium with the system. In
such case, the leptons need to be treated separately, e.g., via
a Boltzmann equation, and the discussion of nonequili-
brium effects goes beyond the scope of this manuscript.
Problematic here is the appearance of an additional

charge—the lepton number—which needs to be taken into
account while fulfilling Gibbs conditions, even though, in
astrophysical applications, the lepton chemical potential is
dictated by the assumption of electric charge neutrality of
the system. A most appropriate construction would be
done with three chemical potentials, resulting in a four-
dimensional (additionally temperature) phase diagram. For
astrophysical applications a three dimensional cut of
electric charge neutrality can then be extracted.
If taken into account, at constant chemical potential, the

quark EOS has a higher particle density. This leads to a
stronger contribution (like pressure) by leptons and a
resulting lowering of the onset of the phase transition.
Not including leptons during the construction of the phase
transition and adding them afterwards always results in a
smearing effect, hence all resulting effects are weaker than
in a more appropriate treatment and presented results can be
seen as conservative. Eventually the position or even
existence of the phase transition is not known and its
effects can be studied by the systematic variation of also
unknown parameters of quark couplings at high density.
The inclusion of leptons would have the need of readjusting
these parameters.

C. Description of nuclear clusters

The current work focuses on the high density part of the
equation of state and implications of a possible phase
transition to deconfined quark matter. In order to have clear
signatures of these high density features, a well-established

treatment of the nuclear cluster formation at low densities
was chosen.
Direct improvements can be achieved by using

updated experimental and theoretical data for nuclear
binding energies [38,39]. More sophisticated models are
direct quantum-statistical descriptions of light clusters
[40–42] or generalized density functionals with a deplet-
ing binding energy, which significantly change the
composition [43,44].

D. The two-phase approach

As was discussed in Sec. II F, the current work is based
on the so-called two-phase approach, where the quark
model and the hadron model are completely independent.
Even though it is a commonly used approach, particularly
in astrophysics, it has some well-known disadvantages,
which significantly limit its usability.
The most obvious problem is that it always gives a first-

order transition by construction, which is a contradiction to
the lattice QCD results, predicting a smooth crossover at
low densities. In this publication the construction of a first-
order transition is the goal and therefore the work is focused
on the high-density regime of the QCD transition, which is
relevant for astrophysics. Making the model applicable for
HIC would demand a crossover transition at low densities
and hence imply a critical endpoint, in case of the existence
of a first-order phase transition at high densities.
Another problem, as already discussed by Bastian and

Blaschke [45], is the fact that both hadron and quarkEOS are
modeled completely separately and their physics does not
need to have the same footing. Effects of one model might
occur in the other phase and is by construction suppressed.
An example would be chiral restoration, which is usually
modeled for quarks, but might occur already in the hadronic
phase [46]. Furthermore, substructure effects in the hadronic
phase like Pauli blocking are not taken into account, as well
as possible remaining bound states or resonances in the
quark phase. The effect of Pauli blocking has been explored
in a nonrelativistic approximation [18,47] and shows similar
effects as excluded volume models, e.g., by Typel [48].
A solution to most of those problems can be achieved by

applying a unified approach, where quarks and hadrons are
introduced on the same level, preferably where hadrons are
described as bound states of quarks as in the cluster-
expansion of Bastian et al. [49]. This approach obtains a
CEP, depending on the parametrization of the interactions
[50]. Substructure effects can be included by the appropriate
exchange diagrams. Finally, a sophisticated formulation of
clustermean fieldwould allow to formulate quark andhadron
interactions consistently, which makes it possible to adjust
quark interaction parameters to hadronic constraints and have
effects like chiral restoration already in the hadronic phase.
A more pragmatic approach is presented by Typel and

Blaschke [51], where a density-dependent excluded volume
formalism is used to achieve a phase transition on a

PHENOMENOLOGICAL QUARK-HADRON EQUATIONS OF STATE … PHYS. REV. D 103, 023001 (2021)

023001-11



thermodynamic level. Due to the temperature dependence of
thismodel, it features a critical endpoint at finite temperature.
Since it does not actually describe quarks, this model is
limited to applications, which are only sensitive to thermo-
dynamic quantities and not to microscopic quantities.

V. SUMMARY

A microscopical quark-hadron model with an effective
interaction potential on the level of the mean-field approxi-
mation is presented. The descriptions of quark matter and
hadron matter are done separately and the resulting EOSs
are merged via a thermodynamically consistent two-phase
construction. Dependencies on temperature and baryonic
charge fraction are included naturally by use of fermion
distribution functions.
Alternative attempts to study the effect of first-order

quark-hadron phase transitions in hot astrophysics are done
by Roark and Dexheimer [52], using a chiral mean-field

model to describe quark matter and applying a two-phase
approach to obtain a first-order phase transition with differ-
ent incorporation of leptonic degrees of freedom. The work
of Sagert et al. [53] also applies a two-phase approach for the
phase transition, but uses a thermodynamic bag model to
describe quark matter, which cannot describe neutrons
stars of two solar masses and should therefore be consi-
dered outdated. The alternative scenario of a crossover at
low temperatures is explored for hyperonic models by
Marques et al. [54] or for quark-hadron EOS in, e.g.,
Baym et al. [55].
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