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Thermal distortion of test masses, as well as thermal drift of their vibrational mode frequencies, present a
major challenge for operation of the Advanced LIGO and Advanced VIRGO interferometers, reducing
optical efficiency, which limits sensitivity and potentially causing instabilities which reduce duty-cycle. In
this paper, we demonstrate that test-mass vibrational mode frequency data can be used to overcome some of
these difficulties. First, we derive a general expression for the change in a mode frequency as a function of
temperature distribution inside the test mass. Then we show how the mode frequency dependence on
temperature distribution can be used to identify the wave function of observed vibrational modes. We then
show how monitoring the frequencies of multiple vibrational modes allows the temperature distribution
inside the test mass to be strongly constrained. Finally, we demonstrate using simulations, the potential to
improve the thermal model of the test mass, providing independent and improved estimates of important
parameters such as the coating absorption coefficient and the location of point absorbers.
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I. INTRODUCTION

During Advanced LIGO’s [1] first and second observing
runs, about 100 kW of optical laser power circulated in
the Fabry Perot arm cavities of the interferometers [2].
During observation run 3, 200–250 kW circulated in the
arm cavities [3]. It is planned that this power will increase
to 0.5–1 MW [4]. The heating of mirror surfaces of the test
masses associated with this circulating power presents a
significant technical challenge, since the thermal deforma-
tion of mirror leads to the loss of optical efficiency. Optical
efficiency is reduced by increased scattered light losses
from nonuniform absorption on the mirrored surfaces
thermally deforming the surface and by reduced optical
coupling between cavities as the beam is altered by thermal
lensing. The reduced optical efficiency ultimately leads
to a loss of interferometer sensitivity [5]. To address this
problem, extra heating is applied to the test masses using

specially positioned ring heaters and compensation plates.
This is done in such a way that the thermal distortion
caused by the ring heaters and compensation plates
partially compensates that caused by the laser beam [6,7].
The test masses support a large and complex spectrum of

vibrational modes in the frequency range 5–100 kHz. The
frequency of these modes depends on the temperature
distribution inside the test mass. Some of these modes are
the drivers of parametric instability [8,9], the control of
which was limited by thermal transients [10,11]. Therefore
it is useful to monitor the three-dimensional temperature
field inside each test mass for optical efficiency and
parametric instability control.
In this paper we show that components of this temper-

ature field can be measured in real time by monitoring the
frequencies of multiple vibrational modes of the test
masses. Some effort has already been spent designing
and implementing a system that monitors small changes in
mode frequencies [12,13]. It was shown that hundreds of
vibrational modes are visible at the interferometer output at
quiescent amplitudes.
These measurements can by extension allow estimates

of the thermal distortion of the test-mass mirror surfaces
and distortion in thermo-optic lens in transmission of the
test mass. Hartmann wave front sensors [14] are currently
used to monitor wave front distortion in the test masses.
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The method proposed here compliments wave front sen-
sors, providing independent parameter estimates and infor-
mation from the temperature field dimension along the
optic axis.
The plan of the paper is as follows. In the next section we

develop the mathematical formalism for computing the
changes in mode frequencies. In Sec. III the formalism is
tested against a COMSOL [15] eigenfrequency analysis. In
Sec. IV we show how to use the frequency changes to make
inferences about the temperature distribution inside the test
masses, and we discuss limitations of these inferences due
to symmetries of the test masses. In Sec. V the estimated
temperature distribution from a realistic scenario is exam-
ined, and in Sec. VI a Bayesian method for refining test-
mass thermal model parameters is described.

II. GENERAL FORMALISM

A. The preamble: Linearity

The changes in the mode frequencies δωi are linear
functions of the changes in the temperature inside the test
mass, δTðrÞ (here and onwards bold-faced letters denote
three-dimensional vectors). Mathematically this can be
expressed as follows:

δωi ¼
Z

ρðrÞfiðrÞδTðrÞd3r; ð2:1Þ

where ρðrÞ is the density, and functions fiðrÞ are form
factors that will be discussed in the next subsection. It
is convenient to introduce an inner product between
functions,

hf; gi≡
Z

ρðrÞfðrÞgðrÞd3r; ð2:2Þ

and similarly between vector fields,

ha;bi≡
Z

ρðrÞaðrÞ · bðrÞd3r: ð2:3Þ

The factor ρðrÞ ensures that the integral is restricted to
the test-mass volume, and as will be seen below, is useful
for expressing orthogonality relations between the test-
mass mode displacements. Equation (2.1) can be written
simply as

δωi ¼ hfi; δTi: ð2:4Þ

We show in the next subsection how to compute the form
factors.

B. Computation of the form factors f iðrÞ
Consider a vector Lagrangian displacement ξðr; tÞ of the

test mass from its position of rest. In the linear approxi-
mation, the elastodynamic equations of motion are

ρðrÞ ∂
2ξ

∂t2 ¼ L̂ðξÞ; ð2:5Þ

where L̂ is the operator representing the elastic restoring
force and given by

L̂ðξÞm ≡ ∂σmn

∂xn ¼ ∂½cmnklϵkl�
∂xn ; ð2:6Þ

where

ϵkl ¼ ðξk;l þ ξl;kÞ=2 ð2:7Þ

is the shear tensor, cmnkl is the elasticity tensor, and

σmn ¼ cmnklϵkl ð2:8Þ

is the elastic stress tensor. Here the Einstein convention of
summing over the repeating tensorial indices is assumed.
A normal mode with angular frequency ωi is characterized
by the wave function ξðiÞðrÞ that satisfies the following
eigenequation:

L̂ðξðiÞÞ ¼ −ω2
i ρðrÞξðiÞ: ð2:9Þ

Importantly, the normal modes satisfy orthogonality
relation,

hξðiÞ; ξðjÞi ¼ hξðiÞ; ξðiÞiδij: ð2:10Þ

Consider now a perturbation δL̂ due to the change in
temperature of the test mass,

δL̂ðξÞm ¼ ∂
∂xn

�
δTðrÞ ∂cmnkl

∂T ϵkl

�
: ð2:11Þ

Here we take into account the fact that the elasticity
tensor is temperature-dependent. Strictly speaking, there
is another contribution to the change in L̂ that is due to
thermal expansion of the test mass. However, the thermal
expansion coefficient LIGO test-mass substrate is very
small. Numerically, it is about 0.003 × dE=dT, where E is
the Young modulus of the fused silica test-mass substrate.
Therefore we safely neglect the thermal expansion effect as
subdominant.
Consider now the first order perturbation theory for

Eq. (2.9), with the perturbed elasticity operator L̂þ δL̂
and perturbed normal-mode wave functions ξðiÞ þ δξðiÞ.
This gives

δL̂ðξðiÞÞ þ L̂ðδξðiÞÞ ¼ −ω2
i ρðrÞδξðiÞ − 2ωiδωiρðrÞξðiÞ:

ð2:12Þ

By requiring that the perturbed eigenfunction has the
same norm as the unperturbed one, we impose an extra
constraint,
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hξðiÞ; δξðiÞi ¼ 0: ð2:13Þ

We now multiply Eq. (2.12) by ξðiÞ, and integrate over the
volume. Using the orthogonality relations Eqs (2.10) and
(2.13), and the self-adjointness of ½1=ρðrÞ�L̂, we get

�
ξðiÞ;

1

ρðrÞ δL̂ðξ
ðiÞÞ

�
¼ −2ωiδωihξðiÞ; ξðiÞi: ð2:14Þ

Therefore, the change of the mode’s angular frequency is
given by

δωi ¼ −
1

2ωi

hξðiÞ; ½1=ρðrÞ�δL̂ðξðiÞÞi
hξðiÞ; ξðiÞi : ð2:15Þ

We are now ready to determine the form factor fiðrÞ. To
achieve this, we write down the numerator of the above
equation explicitly as an integral over volume,

hξðiÞ; ½1=ρðrÞ�δL̂ðξðiÞÞi ¼
Z

ξðiÞm δL̂ðξðiÞÞmd3r

¼
Z

ξðiÞm
∂
∂xn

�
δTðrÞ ∂cmnkl

∂T ϵðiÞkl

�
d3r

¼ −
Z

δTðrÞ ∂cmnkl

∂T ϵðiÞmnϵ
ðiÞ
kl d

3r:

The last step is obtained by integrating by parts, using
Gauss’ theorem, recalling that σmn ¼ δσmn ¼ 0 at the sur-
face of the test mass, and using the symmetry of the
elasticity tensor with respect to the indices m and n (the
latter insures that the stress tensor is symmetric). From this
expression, we conclude that the form factor is given by

fiðrÞ ¼
1

NiρðrÞ
∂cmnklðrÞ

∂T ϵðiÞmnðrÞϵðiÞkl ðrÞ; ð2:16Þ

where the normalization factor is given by

Ni ¼ 2ωi

Z
ρðrÞjξðiÞðrÞj2d3r ¼ 4Ei

ωi
; ð2:17Þ

where Ei is the total energy of the mode. It is worth noting
that

cmnklϵmnϵkl ¼ 2UðrÞ; ð2:18Þ

where UðrÞ is the energy density of elastic deformation.
For an isotropic medium such as fused silica glass,

cmnklϵmnϵkl ¼ 2UðrÞ ¼ YðϵllÞ2 þ 2μϵsikϵ
s
ik; ð2:19Þ

where Y is the Young modulus, μ is the shear modulus, and
ϵsik is the incompressible part of the shear,

ϵsik ¼ ϵik −
1

3
ϵllδik: ð2:20Þ

A simple way of rewriting the form factor in Eq. (2.16), that
may be handy in the context of using materials engineering
packages like COMSOL or ANSYS, is as follows:

fiðrÞ ¼
ωi

2EiρðrÞ
�∂UðiÞðrÞ

∂T
�
ξðiÞ
; ð2:21Þ

where the notation implies that the partial derivative with
respect to temperature is evaluated with the mode displace-
ment ξðiÞðrÞ being held constant. This completes our
computation of the form factors.

III. NUMERICAL TEST AND A PROPOSAL FOR
PRACTICAL MODE IDENTIFICATION

To validate the form factor solution of Eq. (2.21) it is
compared to a finite element eigenfrequency analysis
performed with COMSOL [15]. The model used is that
of the Advanced LIGO test mass. Model parameters are
given in Table I and the model geometry is displayed
in Fig. 1,
The form factors are calculated based on the strain

distribution UðiÞ and total energy Ei of a COMSOL
eigenfrequency analysis of the test mass in the ambient
(291 K) temperature thermal state. Form factors and
the total mode displacement are shown in Fig. 15 in
Appendix A for a selection of modes.
An analytically described change in temperature

distribution is defined for the purpose of this test. The
change in temperature distribution is defined by Zernike
polynominal Z3

1 across the circular surface of the test
mass and a uniform distribution through the depth (z) of the
test mass. Two eigenfrequency analyses are run in
COMSOL, one at an ambient temperature of 291 K and
the second with the additional change in temperature
distribution to produce a two sets of eigenfrequencies.
In conjunction, Eqs. (2.4) and (2.21) are used to calculate
the expected change in eigenfrequency for that same

TABLE I. Parameters for the COMSOL model.

Parameter Value Description

Diameter 340.13 mm Diameter
Depth 199.59 mm Depth
ρ 2203 kg=m3 Density (mass 39564g)
Wedge 0.07 deg Optic wedge
E 72.7 GPa Young’s modulus
σ 0.164 Poisson ratio
∂E
∂T 11.5 MPa=K Thermal dependence

of Young’s modulus
∂σ
∂T 1.55 × 10−5=K Thermal dependence

of Poisson ratio
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temperature distribution. The results in Fig. 2 show very
good agreement between the analytical expression and the
COMSOL simulation.
The identification of the mode shape of observed

resonances presents a challenge. Parametric instabilities
[8] of vibrational modes with frequencies as high as
47.5 kHz have been observed at LIGO [13]. At this
frequency the mode density is high, resulting in several
candidate modes that could potentially be causing the
instability. Furthermore, theoretical calculations show

that with increased circulating power there might be
instabilities caused by modes with frequencies as high as
90 kHz [16]. (The recent installation of acoustic mode
dampers [17] makes high frequency instabilities a lot less
likely.) Knowledge of the mode shape is required to design
active control schemes that apply forces to the test masses
[10] or optical feedback [18,19]. Currently modes are
identified by comparing observed resonant frequencies
with those computed using finite element modeling.
Confident mode identification is currently limited to
17 kHz. At higher frequencies, imprecise knowledge of
the elasticity parameters of fused silica produce large
enough errors such that confusion between modes is a
serious issue. The analytical expression for change of mode
frequencies as a function of temperature presented here
presents a new tool for mode identification. This could
work as follows: 1. a well-controlled thermal transient
perturbation is applied to the test mass, and the internal
temperature distribution is computed as a function of time
using finite element modeling. 2. The transient change in
mode frequencies can be calculated as a function of time
using the formalism presented above or finite element
modeling. 3. These are compared and matched to the
measured transient frequency changes in the monitored
modes. By following this procedure, mode identifications
can be confirmed. A simulated example of such a con-
firmation is shown in Fig. 3 where three modes (colored
green) have been deliberately misidentified by switching
their indices. Simulated mode frequencies on the vertical
axis are compared with mode frequencies calculated with
the analytical expression of Eq. (2.1). In this case the

FIG. 2. Comparison between the frequency shift predicted by a
COMSOL eigenfrequency simulation and the frequency shift
predicted by the analytic expression for 225 eigenmodes influ-
enced by an arbitrary thermal disturbance. Excellent agreement is
observed.

FIG. 3. The frequency shift predicted by the analytic expression
for 225 eigenmodes influenced by 1 W of ring heater power
plotted against a simulated measurement including 0.1 mHz noise
and three modes misidentified (green) compared to the expect-
ation (red).

FIG. 1. The geometry used for the COMSOL simulation.

CARL BLAIR, YURI LEVIN, and ERIC THRANE PHYS. REV. D 103, 022003 (2021)

022003-4



temperature field is simulated in COMSOL as the steady
state for 1W applied ring heater power. The COMSOL
simulation includes thermal expansion and a uniform
0.1 mHz measurement noise has been added to the
COMSOL simulated eigenfrequencies. The three misiden-
tified modes can be clearly identified as outliers. The
correct mode identification is critical for active control of
parametric instability and is also required to make infer-
ences about the temperature distribution from measure-
ments of the eigenfrequencies of the test mass.

IV. CONSTRAINING THE TEMPERATURE FIELD
INSIDE THE TEST MASS

One might suppose that if one is able to measure the
temperature-induced frequency shifts of all of the vibra-
tional modes to arbitrary precision, one should be able to
reconstruct the three-dimensional temperature perturbation
inside the test mass. This would be an unprecedented fit for
experiments with solids as far as we know. However, as we
explain below, this strategy runs into problems because the
form-factors fiðrÞ do not necessarily form a complete basis
for all of the possible temperature perturbations; we show
this explicitly for the case when the test mass has a
reflection symmetry, as they in fact, do. We begin however
in the next subsection by considering the conceptually
simple case where the form factors do form a complete
basis and the temperature perturbation can, in principle, be
measured.

A. Case of f iðrÞ forming a complete basis

.
Completeness allows us expand δTðrÞ in a series,

δTðrÞ ¼ pifiðrÞ: ð4:1Þ

Here we use the Einstein convention, where the summation
of repeated indices is assumed. In general, one expects the
functions fiðrÞ to be linearly independent; however in
some cases where a high degree of symmetry is present, it
may turn out that this is not so. In such a situation, one
needs to restrict the series above to a linearly independent
subset of functions spanning the whole function space, so
that the expansion is unique.
Substituting the expansion above into Eq. (2.4) results in

a matrix equation,

δωi ¼ Cijpj; ð4:2Þ

where

Cij ≡ hfi; fji: ð4:3Þ

One therefore has

δTðrÞ ¼ C−1
ij δωifjðrÞ; ð4:4Þ

where C−1
ij are the elements of C−1. Since one monitors

only finite amount N of the normal modes, in practice one
should restrict Cij to be the N-dimensional square matrix.

B. Incompleteness of f iðrÞ due to symmetry
of the test mass

We do not in fact have a mathematical proof that the set
of functions fiðrÞ is ever complete for a generic shape of
the test mass, although intuitively it seems likely. However,
a practically important counterexample is the case when the
test mass has a reflection symmetry, say z → −z. In this
case the vibrational modes have either odd or even parity
with respect to z, but because it is the elastic energy density
that determines the calculations of the form factors in
Eq. (2.21),

fiðx; y; zÞ ¼ fiðx; y;−zÞ; ð4:5Þ

i.e., the form factors all have even parity; see Fig. 15.
Therefore the frequency shifts will carry no information
about the odd part of the temperature perturbation,

δToddðx; y; zÞ ¼
1

2
½δTðx; y; zÞ − δTðx; y;−zÞ�; ð4:6Þ

but will instead only carry information about the even part
of the temperature perturbation,

δTevenðx; y; zÞ ¼
1

2
½δTðx; y; zÞ þ δTðx; y;−zÞ�: ð4:7Þ

There are three approximate reflection symmetries in the
LIGO test masses that result in degeneracy. Symmetry front
to back z → −z, the symmetry right to left x → −x and
symmetry up and down y → −y. The degeneracy associ-
ated with these symmetries result in two thermal profiles
that are related by one of these symmetries, being indis-
tinguishable. As a practical illustration, in Fig. 4 we show
two different thermal profiles as well as the change in mode
frequencies computed in COMSOL for each of the profiles.
The thermal profiles have intentionally been selected to

have symmetry right to left. They are both 2D Gaussian
profiles across the mirror surface, uniform in depth. As
expected the changes are almost equal, with a precision of
approximately 1%.
With the approximate symmetries of the Advanced

LIGO test mass the maximum information that can be
inferred from the frequency shifts is the symmetrized
temperature distribution defined on one octant of the test
mass,

δTsymðx; y; zÞ ¼ ð1=8ÞΣδT½�x;�y;�z�; ð4:8Þ
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for x, y, z > 0; here Σ denotes the summation over all
possible combination of signs of x, y, z and the origin is
assumed to be located at the center of mass of the test mass.
There may be a way of breaking some of the degeneracy

by measuring other temperature-sensitive observables such
as the distortion of the mirror’s surface, or the thermal
lensing of light passing through the test mass, for example
with the Hartmann sensor. However, we do not consider
these possibilities any further and leave their consideration
for future work.

C. Three-dimensional temperature reconstruction
using singular value decomposition

Suppose now that we are considering properly sym-
metrized temperature fields so that fiðrÞ do form a
complete basis. We should still exercise caution using
Eq. (4.4) for the temperature field reconstruction. Similarity
between some form factors fiðrÞ means the C matrix is ill-
conditioned (one or more eigenvalues are close to zero),
the inversion becomes numerically unstable, leading to
unreliable results. A common way of dealing with ill-
conditioned matrices is to regularize the matrix by singular-
value decomposition (SVD). The conversion matrix is
decomposed into orthogonal matrix U, diagonal matrix
C0 and another orthogonal matrix V,

C ¼ UC0V�: ð4:9Þ

We adopt the convention that C0 is defined with values
sorted from largest to smallest along the diagonal. Since C
is real, the Hermitian transpose can be replaced by a regular

transpose V� ¼ VT . By removing eigenmodes associated
with small eigenvalues, we reduce the dimensionality of C0
to N − α by removing the α smallest elements of the
complete diagonal matrix C0 and the α associate eigen-
vectors in U and V. If α is suitably chosen, the resulting
“regularized” matrix is numerically invertible. In what
follows an example of singular value decomposition
applied to simulated eigenfrequency data is demonstrated.
The form factors for the first 225 eigenmodes of the test

mass are calculated in COMSOL; each form factor is
defined by the 60000 vertex elements existing in the three-
dimensional domain of the test mass. The inner product
defined in Eq. (2.2) is performed to determine the con-
version matrix C. Then the singular value decomposition is
performed with Eq. (4.9). The relative numerical value of
the eigenvalues (diagonal elements of C0) provides a
measure of the additional information that can be recovered
by adding each new element in the SVD. These values are
plotted in Fig. 5. From the figure it can be seen that using
more than 100 SVD elements does not provide a significant
increase in information. It is also interesting to consider
the shape of the largest elements in C0 as these represent
the temperature distribution components that will be most
easily recovered. A selection of C0 eigenfunctions are
shown in Appendix B.
To demonstrate the usefulness of SVD, we consider a

temperature distribution with rotational symmetry,

T ¼ T0 þ dT ¼ T0 þ ð1=12Þr2; ð4:10Þ

where r is the radial cylindrical coordinate and T0 is a
constant, and compute using Eqs. (2.1) and (2.21) the
changes in the 225 test-mass eigenfreqencies. The temper-
ature distribution possesses all the required symmetries and
can thus be recovered by inverting the conversion matrix,
with or without using the SVD. The corresponding temper-
ature profiles are shown in Figs. 6(a) and 6(b), without any
significant difference in quality. However if we now

FIG. 4. Comparison of the mode frequency shift between
two thermal profiles (inset) that are symmetric left to right.
The mode frequencies of the case where the heating is to the left
of the optic axis (vertical axis) are indistinguishable from the
mode frequencies where the heating is to the right of the optic
axis (horizontal axis).

FIG. 5. Eigenvalues of the SVD matrix C’.
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assume that the eigenfrequency measurements are not
perfect and contain errors, we note a marked difference
in the quality of reconstructed temperature fields. As an
example, we add a random frequency error drawn from a
normal distribution with width 0.1 mHz to each analytically
computed eigenfrequency change and then compute the
temperature fields from this erroneous data set.
We observe that the truncated SVD inversion in

Fig. 6(d) produces a significantly better result compared
to the inversion that uses matrix C directly in Fig. 6(c). The
latter is distorted due to errors in poorly resolved
eignmodes.

The optimal choice for α, the number of excluded
eigenvectors, can be estimated for any particular temper-
ature distribution, with a particular noise distribution by
comparing the rms error of the temperature estimate,

brms ¼
I
V
jdT − δTjdr: ð4:11Þ

In Fig. 7, the example plot of rms error as a function of the
number of SVD elements used is shown. This example uses
the same data as Fig. 6. The optimal number of SVD
elements is 86. The reconstructed temperature field with 86
elements is shown in Fig. 6(d).

V. REALISTIC TEMPERATURE
DISTRIBUTIONS

It is useful to reconstruct a temperature field that does not
possesses all the symmetries of the test mass in order to see
how our analysis works in real-world conditions. In this
section we demonstrate that the recovery of symmetrized
temperature distribution is indeed possible, circumventing
the completeness problem due to test-mass symmetries. If
the temperature distribution is not symmetric in the same
manner as the test-mass symmetry the resulting rms error of
the temperature distribution is large. In Fig. 9 this is
demonstrated. In this case a 100 kW beam on an optic
with a uniform 1 ppm coating absorption is simulated
resulting in a temperature distribution that is relatively
higher on the high reflectivity surface and relatively cooler

(c)

(a) (b)

(d)

FIG. 6. Profile of estimated temperature distribution inferred
from changes in eigenfrequecy (a) Inverting Cij directly, (b) SVD
inversion using all 225 eigenfrequencies, (c) SVD inversion using
all 225 with 0.1 mHz noise, (d) SVD inversion using 86
components with 0.1 mHz noise.

FIG. 7. rms error of estimated temperature as a function of the
number of singular value decomposition elements used in the
temperature reconstruction. The minimum error occurs with 86
elements for this particular temperature distribution.

(a) In Back (b) In Front

(c) Out Back (d) Out Front

FIG. 8. Temperature distribution of (a) back surface and
(b) front surface and reconstructed temperature distributions
from (c) back surface and (d) front surface of the optic.
Reconstruction is done using singular value decomposition using
81 elements and negligible (1 nHz) measurement noise.
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on the opposing surface (Fig. 8 top left and right panels
respectively).
The estimated temperature distribution from the change

in eigenfrequencies has roughly the same temperature
distribution on the high reflectivity surface and the
opposing surface (Fig. 8 bottom left and right panels
respectively). However, the average of the front and back
surfaces of the estimated temperature distribution is
approximately equal to the average of the front and back
surfaces of the input temperature distribution.
This can be appreciated by comparing the rms error of

the total test-mass temperature distribution (blue) and the
rms error of a model that uses half the test mass averaged
with a reflection symmetry in the z-axis in (red) Fig. 9, i.e.,

δTsymðx; y; zÞ ¼ ð1=2ÞΣδT½x; y;�z�; ð5:1Þ

where z > 0. More generally the average temperature
distribution over one octant of the test mass may be
computed when considering an arbitrary temperature dis-
tribution. While some information is lost, the symmetrized
temperature distribution still provides useful information.
One potentially useful example is the measurement of the
radial position of a beam on a test mass.

VI. PARAMETER ESTIMATION USING THE 3D
TEMPERATURE FIELD

In the previous sections it was demonstrated measure-
ments of a set of eigenfrequencies can be used to measure
temperature distribution. The temperature distribution in
the optic at LIGO may be defined by a relatively small
number of parameters [12] of a thermal model. This limited
model is described in Table II.

In this section we show that the measurements of
eigenfrequecnies can be used to measure specific thermal
model parameters. We demonstrate how this can be done
with Advanced LIGO data using a Bayesian approach.
Eigenfrequency information can be collected during nor-
mal Advanced LIGO operation. We note that thermal
conductivity affects the time evolution of the temperature
inside the test mass. Therefore rather than using eigenfre-
quency measurements at one point in time we should use
measurements over a time span δωiðtjÞ.
Some parameters such as laser power absorbed in the

mirror coating (from the previous section) affect the
temperature distribution in a linear fashion,

TðPabsÞ ∝ Pabs × TðPabs ¼ 1Þ: ð6:1Þ

In this case, the power absorbed in the coating Pabs may be
inferred by linear regression,

P̂abs ¼
X
i

δωiðtjÞδωiðtjjPabsÞ
2σ2i

�X
i

ðδωiðtjjPabsÞÞ2
2σ2i

ð6:2Þ

Previously, a single eigenmode has been used in such an
analysis [12] at LIGO and multiple eigenmodes have been
used as independent witnesses to temperature perturbations
[20,21] at VIRGO. Linear regression using many eigenm-
odes benefits from more data and therefore less suscep-
tibility to noise. Using more than one eigenmode also
provides additional robustness against errors in different
thermal model parameters. As errors produce temperature
distributions with components orthogonal to the temper-
ature distribution of interest, only the temperature distri-
bution component common to both model parameters will
affect the result. For a concrete example, consider a
numerical experiment with Pabs ¼ 0.2 ppm. Consider that
there is a 10% error in thermal conductivity such that
k ¼ 1.38 for the calculation of δωiðtjÞ and k ¼ 1.52 for the
calculation of δωiðtjjPabsÞ. We then compare ˆPabs calcu-
lated with Eq. (6.2) with one eigenfrequency (the sixth

FIG. 9. Comparison of rms error of asymmetric temperature
distributions assuming a symmetric (tan) and standard (blue)
model. This is compared to the rms of the temperature distribu-
tion decomposed into singular value decomposition elements
(red), and the rms of the temperature distribution (green dot).

TABLE II. LIGO test-mass thermal model parameters.

Parameter Value Description

w 51.0� 0.1 mm Beam radius
Y 11� 1 mm Beam height ref center
X 8� 1 mm Beam pos ref center
Pabs 0.2� 0.1 W Power absorbed in coating
k 1.38� 0.01 W=m:K Thermal conductivity
α ð0.52� 0.01Þ E−6=K Thermal expansion
CV 703� 10 J=Kg:K Specific heat
ρ 2203� 1 Kg=m3 Density
ϵfs 0.9� 0.05 J=Kg:K Emissivity SiO2

ϵcoat 0.9� 0.1 J=Kg:K Emissivity coatings
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mode at 9330 Hz) and 100 eigenfreuencies (ranging from
5740 to 24888 Hz). With one eigenfrequency, the estimate
is biased and inaccurate ˆPabs ¼ −0.162� 1.5 ppm. Using
100 eigenfrequencies, the estimate is precise and accurate
ˆPabs ¼ 0.199� 0.005 ppm. This demonstrates the signifi-

cant improvement in accuracy and robustness achieved by
using a large number of eigenfrequencies.
More generally a set of thermal model parameters Γ may

be estimated by locating the peak in the likelihood function,

logLðδωjΓÞ ¼
XN
i

XM
j

−
1

2σ2i
ðδωi

mðtjÞ − δωiðtjjΓÞÞ2:

ð6:3Þ

In this paper we explore the likelihood function over
various parameter spaces to determine what information
is most easily recovered using this technique.
Transients in temperature are caused by laser light being

absorbed in the test-mass mirror coating, changes in ring
heater power and changes in ambient temperature. In this
section, we focus on transients caused by laser light
absorbed in the mirror coating as this is the most common
thermal transient in LIGO optics. The thermal model for
such a transient in its simplest form is defined by the optic
geometry, the material properties of fused silica, and the
properties of heat sources defined in Tables I and II. Laser
light is absorbed in the mirror surface. Thermal equilibrium
is attained when the radiative cooling to the thermal bath
balances the heat load on the mirror surface.
Information recovered from multiple eigenfrequencies

represent temperature gradients in the optic. Thermal
gradients dissipate on a time scale proportional to the
thermal gradient length scale. Therefore, the timescale of
interest depends on characteristic length scale of the
expected temperature field. For illustrative examples, and
to keep computational costs low, we assume the eigen-
frequencies are measured 10 times, with ti logarithmically
spaced between 3 sec and 10 h.
A simulated example transient of a selection of

eigenfrequencies is shown in Fig. 10 for two different
values of thermal conductivity k; the difference between
the eigenfrequencies evaluated with different thermal
conductivity is shown as a dot-dash line. Note that most
of the action, where mode frequencies change relative
to each other, happens between a few hundred and a
few thousand seconds. This is therefore the region we
would expect to get most information regarding dif-
ferences in temperature distribution for different thermal
conductivity.
The log likelihood function is calculated for a simulated

measurement point of k ¼ 1.381 and is plotted in Fig. 11.
The log likelihood function peaks at the simulated meas-
urement point, showing that this method can be used to

infer properties like the thermal conductivity. This example
assumes no uncertainty on any other parameters.
As apparent from Table II there are many model

parameters that are subject to significant uncertainties.
To get a sense of what parameters may be constrained
using the method defined in this paper we investigated
parameters in pairs. In Fig. 12, the likelihood function is
plotted over the parameter space of absorbed power PAbs
and thermal conductivity k. The injected point is marked
red. It can be seen that with small additional noise
(1 nHz) other than quantization noise of the finite
element simulation, both parameters are well constrained
(colored contour lines). However with 0.1 mHz meas-
urement noise, the absorbed power is well constrained

FIG. 10. Time evolution of a selection of eigenfrequencies for
thermal conductivity of k ¼ 1.37 (dashed) and k ¼ 1.39 (solid)
and the difference (dash dot).

FIG. 11. Log likelihood function example to thermal conduc-
tivity. Using the data like that in Fig. 10, including 100 modes
and minimal (1 nHz) measurement noise on the simulated
measurement of a test mass with k ¼ 1.381 W=ðm:KÞ thermal
conductivity.
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while the thermal conductivity can not be well con-
strained (grey lines with values indicated).
These simulations were done for many pairs of param-

eters in Table II. Generally the absorbed power and the
beam radial position are reasonably well constrained
while the X and Y position estimates are less well con-
strained. Emissivity can be constrained in a similar manner
to thermal conductivity. Other parameters are less well
constrained.
Finally, in this section we show how this technique

can be used to estimate thermal model parameters that
are not accessible with Hartmann wave front sensors.

The thermal model of Table II assumes uniform
absorption in the mirror high reflectivity coating. This
model has recently been shown to be inadequate [3].
Point absorbers on the high reflectively surface of the
test mass produce significant heating. The position of
such a point absorber can be recovered well with the
methods presented here. However this information is
also accessible with the Hartmann wave front sensor. In
the following simulation we imagine a situation where
instead of coating point absorbers there is a point
absorber in the bulk of the test mass. The point absorber
is a 30 um, 10% absorption feature. Figure 13 shows the
likelihood function for the data given the point absorber
location along with the true value of the point absorber
location in red. While the distribution is bimodal, in this
particular case, the absorber position is recovered as the
maximum in the likelihood function; however with
realistic measurement noise a bias is introduced.
The thermal transient due to change in laser power

is a common occurrence happening about once per day.
Therefore a multiparameter estimation may be arbitrarily
refined using a Bayesian approach where the posterior
distribution of the thermal model parameters inferred from
one transient in laser power is used as the prior distribution
for the subsequent measurement.

VII. CONCLUSION

Establishing robust thermal control of the test masses
is one of the important tasks that will allow LIGO and
Virgo to attain design goals. In this paper we provided an
efficient method of computation of the vibrational mode
frequency response to a temperature perturbation in the test
mass. We demonstrated that the method may be inverted,
enabling the conversion of vibrational mode frequency
measurements into temperature distribution information.
Finally, it was demonstrated that parameters of the test-
mass thermal model may be estimated with improved
precision using this temperature distribution information.
Symmetries of the test mass prevent the recovery of
complete 3D temperature distribution information; only
symmetric components of the temperature distribution may
be recovered. In principle, information from the Hartmann
sensor could be used to break degeneracy between these
symmetries and provide more information on the 3D
temperature distribution. The framework described in this
paper is demonstrated to provide useful coating absorption
estimates and may allow estimates of several other thermal
model parameters. However, this is dependent the nature of
the measurement noise. Further experimental work and on
site measurements are needed to determine how the
techniques proposed in this paper will be helpful for
thermal control of the test masses.

FIG. 13. Likelihood function of point absorber location in
radial position and depth with 5 nHz measurement noise (in
color). With 0.1 mHz measurement noise (gray contour lines) a
position bias is introduced.

FIG. 12. Likelihood function of point absorber power and
thermal conductivity with minimal measurement noise (1 nHz)
(colored contour lines) and with 0.1 mHz measurement noise
(gray contour lines). It can be seen that with measurement noise
the absorbed power may be constrained while the thermal
conductivity may only be minimally constrained.
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APPENDIX A: FORM FACTOR
DISTRIBUTIONS

Figure 14 shows a pair of eigenfrequencies that have
very similar form factors. These similarities make the
conversion matrix rank deficient, and thus singular value
decomposition is required. Figure 15 shows a selection of
vibrational wave functions and their associated form
factors. Blue regions of the form factors indicate areas
of the test mass where the particular mode frequency is
insensitive to temperature variation. Red regions are areas
where the mode frequency is sensitive to temperature
variation.

FIG. 15. Exaggerated mode displacements on the left and form
factors for these modes on the right. These modes show a range of
spatial scales attainable with existing LIGO measurements. They
represent mode frequencies 15016, 15083, 15220, 15534, 23656,
33381 and 33610 Hz (top to bottom).

FIG. 14. Exaggerated mode displacements on the left and the
form factors on the right. Example of two eigenfrequencies with
very similar form factors. They represent mode frequencies 8164
(top) and 8331 Hz (bottom).
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FIG. 16. The seven largest eigenvalued eigenfunctions of the singular value decomposition described in Sec. IV.
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APPENDIX B: SINGULAR VALUE
DECOMPOSITION EIGENFUNCTIONS

Figure 16 shows the first seven singular value decom-
position element eigenfunctions for the example give in

Sec. IV. These are the elements with the largest eigen-
values and indicate the shapes of temperature distribu-
tions most easily recovered from eigenfrequency
measurements.
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