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We clarify the connection between the results of Petrov in the preceding Comment and those in our
previous paper on Coulomb-nuclear interference in proton-proton scattering in the region of very small
momentum transfers. We calculate the correction to the approximation we used in that region, but not
elsewhere, and show that it agrees with corresponding terms in Petrov’s expression. The corrections are
negligible in either form, and do not affect our previous results.
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In the preceding Comment [1], Petrov points out that an
approximation used at small momentum transfers in our
earlier paper on Coulomb-nuclear interference in proton-
proton scattering [2] would, if taken as exact, imply that the
ratio of the real to the imaginary part of the nuclear
scattering amplitude fNðs; q2Þ must be independent of
the momentum transfer q2. This is in apparent conflict
with the results presented in [2] where the ratio
RefNðs; q2Þ=ImfNðs; q2Þ was found to decrease rapidly
as q2 increases from 0.
We show here that this is actually not a problem. The

approximation was used only in the region of very small q2

where the corrections are negligible and do not affect the q2

dependence of the ratio. In particular, they do not affect the
determination of the ratio ρðsÞ ¼ RefNðs; 0Þ=ImfNðs; 0Þ
using Coulomb-nuclear interference effects in the scatter-
ing. We derive the corrections at small q2, connect the
results to those of Petrov, and show why they are negligible
in either form.
The strong-interaction or nuclear part of the pp scatter-

ing amplitude including the effects of the Coulomb
interaction and electromagnetic form-factor corrections is
given in the additive eikonal model in Eq. (27) of [2] as an
integral over impact parameters b as

fN;cðs;q2Þ

¼ i
Z

∞

0

dbbe2iδcðb;sÞþ2iδFFc ðb;sÞð1−e2iδNðb;sÞÞJ0ðqbÞ: ð1Þ

Here δN ¼ δN;R þ iδN;I is the complex nuclear phase shift,
δcðb; sÞ is the Coulomb phase shift, and δFFc ðb; sÞ is the
phase shift associated with the form-factor corrections. In
particular, δcðb; sÞ ¼ αðlogpðWÞbþ γÞ where pðWÞ is the
center-of-mass momentum of either particle at total center-
of-mass energy W, and γ is Euler’s constant. The form-
factor phase shift δFFc ðb; sÞ is given by a sum of hyperbolic
Bessel functions with an overall factor of α for the standard
dipole form factor FQðq2Þ ¼ μ4=ðq2 þ μ2Þ2 ([2], Sec. II C).
It was shown in [2] by direct numerical calculation using

the successful eikonal model in [3] that the ratio
jfN;cðs; q2Þ=fNðs; q2Þj of the magnitudes of the corrected
amplitude to the pure nuclear amplitude

fNðs; q2Þ ¼ i
Z

∞

0

db bð1 − e2iδNðb;sÞÞJ0ðqbÞ ð2Þ

was equal 1 to better than a part per thousand in the region
q2 ≲ 0.15 GeV2 at 13 000 GeV, and to higher q2 at lower
energies, covering the regions important for the determi-
nation of ρðsÞ from Coulomb-nuclear interference effects.
See Fig. 1 in [2]. This correction is significantly smaller
than the experimental uncertainties in the most accurate
data available at present, and does not affect the determi-
nation of ρ from 10 to 13 000 GeVor somewhat above. The
ratio differs significantly from unity and must be taken into
account in calculations at larger q2, again as seen in the
numerical results in Fig. 1 in [2].
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Since our focus was on the interference effects at small
q2, this very small correction to the ratio of magnitudes was
dropped in [2] as noted preceding Eq. (29), and fN;cðs; q2Þ
was taken as

fN;cðs; q2Þ ≈ eΔΦðs;q2ÞfNðs; q2Þ ð3Þ

in the remainder of the analysis, where ΔΦ is the difference
between the phases of fN;c and fN ,

ΔΦNðs; q2Þ ¼ arg fN;cðs; q2Þ − arg fNðs; q2Þ
¼ arg ðfN;cðs; q2Þ=fNðs; q2ÞÞ: ð4Þ

The fact that the magnitude correction was dropped on the
right-hand side of Eq. (3) in our small-q2 analysis is the
origin of the apparent discrepancy between the results in [2]
and those of Cahn [4] and of Kundrát and Lokajiček [5]
noted by Petrov [1]. It must, of course, be included at
large q2.

It is straightforward to obtain the correction to the
magnitude of fN;cðs; q2Þ relative to fNðs; q2Þ at small q2.
We note first that we can write the Coulomb phase factor in
Eq. (1) as exp ð2iαðlnpb0 þ γÞÞ · exp ð2iα ln ðb=b0Þ where
b0, introduced for dimensional reasons, is constant. The first
factor in this expression is independent of the impact
parameter b so factors out of the integral, and has magnitude
1 in jfN;cðs; q2Þj2. We will therefore use the modified,
momentum-independent phase δ0cðb; sÞ ¼ α log ðb=bpeakÞ,
choosing b0 ¼ bpeak as the value of b at the peak in the
impact-parameter distribution of jð1 − e2iδNðb;sÞÞj2, essen-
tially the peak in the distribution for the imaginary part of fN .
A good estimate is bpeak ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σtot=4π

p
for the reasonably

symmetric peaked distributions found in the eikonal model,
with σtot the total cross section [3]. The exact result for jfN;cj2
is, of course, independent of bpeak. Its use here gives a
convenient way of estimating the corrections since
δ0cðbpeak; sÞ ¼ 0 and δFFc ðbpeak; sÞ is also small.
With this specification, and δ0 ¼ δ0c þ δFFc , an expansion

of the ratio jfN;c=fN j in inverse powers of jfN j gives

jfN;cðs; q2Þj ¼ jfNðs; q2Þj
�
1þ RefNðs; q2ÞReΔfN;cðs; q2Þ þ ImfNðs; q2ÞImΔfN;cðs; q2Þ

jfNðs; q2Þj2
þ � � �

�
; ð5Þ

where

ΔfN;cðs; q2Þ ¼ −i
Z

∞

0

db bð1 − e2iδ
0ðb;sÞÞð1 − e2iδNðb;sÞÞJ0ðqbÞ ð6Þ

≈ −
Z

∞

0

db b2δ0ðb; sÞð1 − e2iδNðb;sÞÞJ0ðqbÞ þ � � � : ð7Þ

The expansion in Eq. (7) is justified because 2δ0 is small, of order α, and the remaining factor in the integrand is compact in
b, a major advantage of the impact-parameter description of the scattering amplitude as used in [2]. This gives the
corrections to leading order in α as

ReΔfN;cðs; q2Þ ¼ −
Z

∞

0

db b2δ0ðb; sÞð1 − cos 2δN;Re−2δN;IÞJ0ðqbÞ; ð8Þ

ImΔfN;cðs; q2Þ ¼
Z

∞

0

db b2δ0ðb; sÞ sin 2δN;Re−2δN;I J0ðqbÞ: ð9Þ

The factors in the integrals for ReΔfN;c and ImΔfN;c
other than 2δ0ðb; sÞ are just the integrands for ImfN and
RefN , respectively. Those integrands vanish at b ¼ 0 and
large b, with smooth peaks near b ¼ bpeak for ImfN at
q2 ¼ 0, and slightly beyond for RefN.[6] If the phase shift
δ0ðb; sÞ were constant over the peak region, it would factor
approximately out of the integrals and we would have
ReΔfN;c ≈ −2δ0ImfN and ImΔfN;c ≈ 2δ0RefN and the
correction to jfN j would vanish. Because of the variation
in δ0ðb; sÞ over the peak regions and the small difference in

the locations of the peaks in the integrands, the cancellation
is only approximate.
Given the structure of the correction in Eq. (5), it is clear

that it is at most of order αρðsÞ ∼ 10−3. It is smaller in the
exact calculations.This estimate extends over the region inq2

in which the variation of the Bessel function J0ðqbÞ ¼
1 − 1

4
ðqbÞ2 þ � � � can be ignored, q2 ≲ 4=b2peak, e.g., q

2 ≲
0.12 GeV2 at 13 000 GeV. This is in agreement with the
exact results in Fig. 1 of [2], where the magnitude of the
correction begins to increase significantly beyond that point.
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The expression in Eq. (6) is the starting point for the
treatment of the Coulomb effects by Cahn [4] in his
Eq. (15), with the form-factor effects included later in
Eq. (28). This treatment was later sharpened by Kundrát
and Lokajiček [5]. Cahn uses the Fourier convolution
theorem to write the integral as the convolution of the
Fourier transforms of the two factors multiplying the Bessel

function in Eq. (6). To obtain convergence of the transform
of the factor ð1 − e2iδ

0 Þ, he first replaces the Coulomb phase
shift by that for a massive photon, α=q2 → α=ðq2 þ λ2Þ,
and then rearranges the terms in the full expression into a
form in which he can take the limit λ → 0, with the final
result given in his Eq. (30). This gives

ΔfN;cðs; q2Þ ¼ −
i
π

Z
d2k

2α

ðk − qÞ2 F
2
Qððk − qÞ2Þ½fNðs; k2Þ − fNðs; q2Þ� ð10Þ

with our notation and normalization.
In this approach, the expression for the fractional change in jfN;cj2 is given by

δjfN;cj ¼
1

π

1

jfNðs; q2Þj2
Z

d2k
2α

ðk − qÞ2 F
2
Qððk − qÞ2Þ½RefNðs; q2ÞImfNðs; k2Þ − ImfNðs; q2ÞRefNðs; k2Þ�: ð11Þ

This expression has the same structure as Eq. (6), is
nonsingular, and of order αρðsÞ. It would only vanish
identically for the ratio RefNðs; k2Þ=ImfNðs; k2Þ constant
and equal to RefNðs; q2Þ=ImfNðs; q2Þ. This would require
a constant nuclear phase as observed by Petrov [1]. While
correct, this remark is not relevant to the treatment of
Coulomb-nuclear interference in [2], where the correction
was only omitted in a region in which it was shown to be
negligibly small, and not elsewhere.
In the eikonal model in [3] and other models which

respect the constraints on the phase of fN imposed by
unitarity and analyticity [7], RefN actually decreases at
small k2 (or q2) substantially more rapidly than ImfN as k2

(q2) increases, so the cancellation in Eq. (11) is not
complete. The result is consistent with that obtained above,
where the shift of the impact-parameter distribution for
RefN toward larger b than that for ImfN leads to the more
rapid decrease of RefN through the earlier onset of the
effects of the Bessel function in Eq. (2).
The results in Eqs. (5) and (11) are equivalent, and the

corrections to fN;c in Eq. (3) are very small, e.g., about

6 × 10−4 at q2 ¼ 0 for either at energies from 100 to
13 000 GeV, and of similar sizes throughout the region
q2 ≲ 4=b2peak as shown in [2]. The ratio of magnitudes
jfN;cðs; q2Þ=fNðs; q2Þj is therefore 1 to high accuracy
throughout the region where the Coulomb-nuclear inter-
ference effects are significant. We would emphasize,
however, that the phase of the nuclear amplitude is not
constant in this region as might be suggested by Petrov’s
argument, but actually decreases rapidly as shown in the
exact calculations. This decrease, by ∼60%–70% from
q2 ¼ 0 to 0.15 GeV2 for energies above about 500 GeV,
results from a diffraction zero in RefN at a significantly
smaller q2 than that in ImfN (see Fig. 8 in [2]).
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issues treated here, and for lively correspondence about
them. L. D. would like to thank the Aspen Center for
Physics for its hospitality and for its partial support of this
work under NSF Grant No. 1066293. P. H. would like to
thank Towson University Fisher College of Science and
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