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In this work, we study the strong decays of ϕð2170Þ to final states involving the kaonic resonances
Kð1460Þ, K1ð1270Þ, and K1ð1400Þ, on which experimental data have recently been extracted by the
BESIII Collaboration. The formalism developed here is based on interpreting ϕð2170Þ and Kð1460Þ as
states arising from three-hadron dynamics, which is inspired by our earlier works. For K1ð1270Þ and
K1ð1400Þ, we investigate different descriptions, such as a mixture of states belonging to the nonet of axial
resonances, or the former one as a state originating from the vector-pseudoscalar dynamics. The ratios
among the partial widths of Kþð1460ÞK−, Kþ

1 ð1400ÞK−, and Kþ
1 ð1270ÞK− obtained are compatible with

the experimental results, reinforcing the three-body nature of ϕð2170Þ. Within our formalism, we can also
explain the suppressed decay of ϕð2170Þ to K�ð892ÞK̄�ð892Þ, as found by the BESIII Collaboration.
Furthermore, our results can be useful in clarifying the properties of Kð1460Þ, K1ð1270Þ, and K1ð1400Þ
when higher statistics data are available.

DOI: 10.1103/PhysRevD.103.016018

I. INTRODUCTION

The BESIII Collaboration has recently [1] studied some
properties of ϕð2170Þ [2–9] via the process eþe− →
KþK−π0π0, where a signal with a mass of 2126.5� 16.8�
12.4 MeV and a width of 106.9� 32.1� 28.1 MeV is
observed and identified with ϕð2170Þ. The cross sections
for different configurations of the final state KþK−π0π0

are obtained, and the product BrΓeþe−
R is determined, where

Γeþe−
R corresponds to the partial decay width of ϕð2170Þ

to eþe− and Br is the branching fraction of ϕð2170Þ
to a specific configuration of the final state. In parti-
cular, the decay channels Kþð1460ÞK−, Kþ

1 ð1400ÞK−,
K�þð1410ÞK−, Kþ

1 ð1270ÞK−, and K�þð892ÞK�−ð892Þ
are investigated. To determine BrΓeþe−

R in Ref. [1], the
data are fitted under the assumption that the signal observed
for ϕð2170Þ in the different decay channels should have the
same mass and width. While a peak or a dip which can be
related to ϕð2170Þ is seen in the cross sections of

eþe− → Kþð1460ÞK−; Kþ
1 ð1400ÞK−; Kþ

1 ð1270ÞK−, no
evident peak/dip for ϕð2170Þ is observed in the cross
section for eþe− → K�þð892ÞK�−ð892Þ [1]. Also, the
decay to K�þð1410ÞK− is found to have a statistical
significance less than 3σ. In view of these results, it is
concluded in Ref. [1] that if the signal observed in the
process eþe− → KþK−π0π0 is a manifestation of ϕð2170Þ
the decay of this state via K�þð892ÞK�−ð892Þ and via
K�þð1410ÞK− is suppressed as compared to the other three
modes, i.e.,Kþð1460ÞK−,Kþ

1 ð1400ÞK−, andKþ
1 ð1270ÞK−.

In this work, we are going to determine the partial
decay widths of ϕð2170Þ to the channels Kþð1460ÞK−,
Kþ

1 ð1400ÞK−, and Kþ
1 ð1270ÞK− and compare their ratios

with the experimental results obtained in Ref. [1]. These
decay widths depend on the nature of the states involved,
i.e., ϕð2170Þ, Kþð1460Þ, Kþ

1 ð1400Þ, and Kþ
1 ð1270Þ, and

several theoretical models considering them as standard
quark-antiquark states, tetraquarks, hadrons molecules, or
hybrid states have been proposed in the recent years [see,
for example, Refs. [10–20] for ϕð2170Þ, Refs. [21–26] for
Kð1460Þ, and Refs. [27–31] for K1ð1270Þ and K1ð1400Þ].
It is discussed in Ref. [1] that the experimental findings on
the decays of ϕð2170Þ are incompatible with the predic-
tions of the models considering a ss̄ or hybrid description
for it. Indeed, a 33S1 ss̄ description [32] (where the
spectroscopy notation n2Sþ1LJ is used to denote the nth
state with total angular momentum J, spin S, and orbital
angular momentum L) leads to a large width for ϕð2170Þ,
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∼300 MeV, which is not compatible with the experimental
findings. Within a different quantum number attribution
to the ss̄ system, treating ϕð2170Þ as a 23D1 state, the
partial decay widths of ϕð2170Þ to different channels were
investigated in Ref. [13]. Within such a model, ϕð2170Þ has
a larger decay width to K�ð892ÞK̄�ð892Þ and K�ð1410ÞK̄
than to channels like Kð1460ÞK̄, K1ð1400ÞK̄, and
K1ð1270ÞK̄. Such a decay pattern does not seem to be
compatible with the findings of Ref. [1]. A different nature
for ϕð2170Þ, a hybrid ss̄g state, was proposed in Ref. [11].
According to the calculations performed in Refs. [11,13],
the partial decay width of ϕð2170Þ to K�ð1410ÞK̄ is larger,
or of similar order, as compared to the corresponding value
for K1ð1270ÞK̄, with the mode Kð1460ÞK̄ forbidden for
decay due to a spin selection rule [33]. These properties of
ϕð2170Þ appear to be in disagreement with those found in
Ref. [1], as mentioned by the BESIII Collaboration. Also,
such a hybrid interpretation for the internal structure of
ϕð2170Þ seems not to be supported by Lattice QCD studies
[34] and QCDGaussian sum rules calculations [18]. In case
of a tetraquark nature assigned to ϕð2170Þ [12,15,35], a
difficulty in obtaining a mass compatible with the exper-
imental data has been reported in Ref. [12] while using
standard QCD sum rules. Though no predictions are
available for the decay widths to the channels studied by
BESIII [1] within a tetraquark model for ϕð2170Þ, it has
been argued in Ref. [13] that such an interpretation would
imply a dominant decay to ϕηðη0Þ, which cannot be inferred
from the experimental findings [36].
Therefore, the properties of ϕð2170Þ observed in Ref. [1]

seem to rule out the quark-antiquark or hybrid nature for
ϕð2170Þ, while the tetraquark picture faces a challenge
[13,34]. In this work, we are going to consider the model of
Ref. [14], in which ϕð2170Þ is interpreted as a state
generated from the dynamics involved in the ϕKK̄ system,
with KK̄ resonating in the f0ð980Þ region. To calculate
the partial decay widths of ϕð2170Þ to Kþð1460ÞK−,
Kþ

1 ð1400ÞK− and Kþ
1 ð1270ÞK−, we also need a model

to describe the properties of Kþð1460Þ, Kþ
1 ð1400Þ, and

Kþ
1 ð1270Þ. In case of Kð1460Þ, we follow Ref. [23] and

interpret Kð1460Þ as a KKK̄ state with a large coupling to
the Kf0ð980Þ configuration of the system, while for
Kþ

1 ð1270Þ and Kþ
1 ð1400Þ, we are going to adopt three

different approaches:
(i) First, we treat Kþ

1 ð1270Þ and Kþ
1 ð1400Þ as a mixture

of states belonging to the nonet of axial resonances.
The experimental data on Kþ

1 ð1270Þ and Kþ
1 ð1400Þ

[37–40] are often analyzed by considering them as a
mixture of two states [27,37–39,41], typically
named K1A and K1B, which correspond to the
strange partners of a1ð1260Þ and b1ð1235Þ, respec-
tively. Although the exact value of the mixing angle
is not well known, it could correspond to something
between approximately 20°–45° [27,37–39,41–43].

(ii) We treat K1ð1270Þ as a molecular state. In recent
years, a double pole nature for K1ð1270Þ has been
claimed [29,30]. In these latter works, K1ð1270Þ is
interpreted as a superposition of two states generated
from the unitarized dynamics of vector-pseudoscalar
channels like ϕK, ρK, and πK�ð892Þ. Within the
approach of Refs. [29,30], Kþ

1 ð1400Þ does not
appear, but we can determine the partial decay width
of ϕð2170Þ to each of the poles related to K1ð1270Þ.

(iii) Alternatively to the previous two approaches, we can
consider a phenomenological model based on the
known data related to K1ð1270Þ and K1ð1400Þ [36].
Using such a model, we can determine the decay
widths of ϕð2170Þ → Kþ

1 ð1400ÞK−, Kþ
1 ð1270ÞK−.

As we will show, by considering ϕð2170Þ as a ϕKK̄
state, we obtain branching fractions which are compatible
with those determined from the available BrΓeþe−

R results
of Ref. [1].

II. FORMALISM

We calculate the decay of ϕð2170Þ to the channels
Kþð1460ÞK−, Kþ

1 ð1410ÞK−, and Kþ
1 ð1270ÞK−. To do this,

we rely on the findings of Ref. [14], where ϕð2170Þ is
found to arise as a result of three-body interactions. In
Ref. [14], three-body scattering equations were solved for
the ϕKK̄ system, allowing each of the subsystems to
interact in the s-wave. As a consequence, a resonance
was found to appear with mass around 2150 MeV when the
KK̄ subsystem interacts in isospin zero with an invariant
mass approximately 980 MeV. In other words, the ϕð2170Þ
resonance is found when the ϕKK̄ system acts effectively
as ϕf0ð980Þ. A study of a different three-body system,
replacing ϕ by a kaon, was done in Ref. [23]. In this case, a
resonance with mass approximately 1460 MeV was found
when the KK̄ system assembles itself as f0ð980Þ. The state
obtained in Ref. [23] was associated with Kð1460Þ. Using
the findings of Refs. [14,23] for ϕð2170Þ, Kð1460Þ and
keeping in mind that K1ð1270Þ and K1ð1400Þ decay to
vector-pseudoscalar channels with large branching ratios,
we consider that ϕð2170Þ decays to the aforementioned
channels through the diagrams shown in Fig. 1.
As can be seen, due to the nature and properties

of the states involved, the processes ϕð2170Þ →
Kþð1460ÞK−;Kþ

1 ð1400ÞK−;Kþ
1 ð1270ÞK− proceed through

FIG. 1. Decay mechanism of ϕð2170Þ to Kþð1460ÞK− (left)
and Kþ

1 ð1400ÞK− and Kþ
1 ð1270ÞK− (right). We use the nomen-

clature ϕR ≡ ϕð2170Þ, f0 ≡ f0ð980Þ, KR ≡ Kð1460Þ, and K1

can represent either K1ð1400Þ or K1ð1270Þ.
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a triangular loop of a virtual ϕ, f0ð980Þ and K� [hence-
forth, for the sake of convenience, we shall denote ϕð2170Þ
as ϕR, Kð1460Þ as KR, f0ð980Þ as f0 and use K1 for
K1ð1400Þ and K1ð1270Þ whenever there is no need to
distinguish them].
Considering ϕR as a ϕf0ð980Þ resonance, the situation is

different for the decay process ϕR → K�þð892ÞK�−ð892Þ
(see Fig. 2). In this case, the ϕf0ð980Þ structure of ϕR
suppresses the decay toK�þð892ÞK�−ð892Þ as compared to
the ones shown in Fig. 1. This is because the former process
involves more than one loop (of triangular or higher
topologies), as can be seen in Fig. 2. Thus, within a
ϕf0ð980Þ molecular type description for ϕð2170Þ, one of
the main conclusions of Ref. [1] gets naturally explained.
Let us now determine the amplitudes for the processes

shown in Fig. 1 to calculate the corresponding partial decay
widths. To do this, we use the Lagrangian [44]

L ¼ −ighVμ½P; ∂μP�i ð1Þ
to describe the ϕKþK− vertex, where g ¼ MV=ð2fπÞ (with
MV ≃Mρ and where fπ ≃ 93 MeV is the pion decay
constant) and Vμ and P are matrices having as elements
the vector and pseudoscalar meson fields,

P ¼

0
BBBBB@

ηffiffi
6

p þ π0ffiffi
2

p πþ Kþ

π− ηffiffi
6

p − π0ffiffi
2

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCCA;

Vμ ¼

0
BBB@

ωþρ0ffiffi
2

p ρþ K�þ

ρ− ω−ρ0ffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

: ð2Þ

The contribution of the vertices ϕRϕf0, KRKf0, K1ϕK,
and f0KK̄ can be written in terms of the corresponding
fields as

tϕR→ϕf0 ¼ gϕR→ϕf0ϵϕR
· ϵϕ;

tKþ
R→Kþf0 ¼ gKþ

R→Kþf0 ;

tf0→KþK− ¼ gf0→KþK− ;

tKþ
1
→ϕKþ ¼ gKþ

1
→ϕKþϵKþ

1
· ϵϕ; ð3Þ

where gα→β represents the coupling of the state α ¼
ϕR; K

þ
R ; K

þ
1 ; f0 to the channel β ¼ ϕf0; Kþf0;ϕKþ;

KþK−, respectively. The coupling constants related to each
vertex in Eq. (3) depend on the properties of the hadrons
involved in the vertex. In the following, we discuss the
evaluation of these coupling constants.

A. f 0ð980ÞK +K − vertex

There exists growing evidence on the dominant role
played by the KK̄ dynamics in describing the properties of
f0ð980Þ (see the review on “Interpretation of the scalars
below 1 GeV” of Ref. [36]). Based on the degrees of
freedom of the different models, f0ð980Þ is often described
as a ss̄ state surrounded by a KK̄ meson cloud or as a KK̄
bound state [36].
To determine the coupling gf0→KþK− , we follow the

chiral unitary approach of Ref. [45], where f0 is generated
from the interaction of two pseudoscalars, in particular, KK̄
and ππ, in the isospin I ¼ 0 configuration. In this way,
gf0→ðKK̄Þ0 (where the subscript indicates the isospin con-
figuration of the system) can be calculated from the residue
of the T-matrix in the complex energy plane, where a pole
for f0ð980Þ is found. The value obtained is

gf0→ðKK̄Þ0 ¼ 3895þ i1328 MeV: ð4Þ

Using the isospin phase convention jK−i ¼ −jI ¼ 1
2
;

I3 ¼ − 1
2
i, the couplings gf0→ðKK̄Þ0 and gf0→KþK− are related

through a Clebsch-Gordan coefficient,

gf0→KþK− ¼ −
gf0→ðKK̄Þ0ffiffiffi

2
p : ð5Þ

The coupling in Eq. (4) leads to a branching fraction
Γðf0 → ππÞ=½Γðf0 → ππÞ þ Γðf0 → KK̄Þ� [45] compat-
ible with the values known from experimental data [36].

B. ϕð2170Þϕf 0ð980Þ vertex
Motivated by the findings of our previous work [14],

we describe ϕð2170Þ as an effective ϕf0ð980Þ state. In
Ref. [14], ϕð2170Þ is generated from the ϕKK̄ interaction,
with KK̄ forming f0ð980Þ in the energy region of the
three-body resonance. The coupling of ϕð2170Þ to
ϕf0ð980Þ can be determined in the following way [14]:
we assume that around the peak position the scattering
matrix Tϕf0→ϕf0 , which depends on the invariant mass of
the ϕf0ð980Þ system ( ffiffiffiffiffiffiffiffisϕf0

p ), is proportional to the three-
body amplitude TϕðKK̄Þ0→ϕðKK̄Þ0 when

ffiffiffi
s

p
∼Mϕð2170Þ andffiffiffiffiffiffiffiffi

sKK̄
p ∼Mf0ð980Þ, i.e.,

Tϕf0→ϕf0 ¼ αTϕðKK̄Þ0→ϕðKK̄Þ0 : ð6Þ

FIG. 2. Some of the decay mechanisms of ϕð2170Þ to
K�þð892ÞK�−ð892Þ.
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In Eq. (6), α is a constant determined by imposing the
unitary condition for ImfT−1

ϕf0→ϕf0
g, treating the ϕf0ð980Þ

system as an effective two-body system, i.e.,

ImfT−1
ϕf0→ϕf0

g ¼ jp⃗ϕf0 j
8π

ffiffiffiffiffiffiffiffisϕf0
p ; ð7Þ

with jp⃗ϕf0 j being the modulus of the center of mass
momentum for the ϕf0 system at ffiffiffiffiffiffiffiffisϕf0

p ∼MϕR
. If we

assume now a Breit-Wigner form for TϕðKK̄Þ0→ϕðKK̄Þ0
around

ffiffiffi
s

p
∼MϕR

and
ffiffiffiffiffiffiffiffi
sKK̄

p ∼Mf0 , we can obtain the
coupling gϕR→ϕf0 in terms of the three-body amplitude
given in Ref. [14] as

g2
ϕR→ϕðKK̄Þ0 ¼ iMϕR

ΓϕR
TϕðKK̄Þ0→ϕðKK̄Þ0 : ð8Þ

In this way, by using Eq. (6), we can get the coupling of
ϕð2170Þ to ϕf0ð980Þ as

g2ϕR→ϕf0
¼ αg2

ϕR→ϕðKK̄Þ0 : ð9Þ

In the model of Ref. [14], the partial decay width of
ϕð2170Þ → ϕðKK̄Þ0 was found to be of the order of
30 MeV. However, since the relation in Eq. (6) is mean-
ingful for

ffiffiffi
s

p
∼MϕR

and
ffiffiffiffiffiffiffiffi
sKK̄

p ∼Mf0 , we should admit
certain uncertainty in the partial decay width of ϕð2170Þ →
ϕf0ð980Þ and, thus, in the coupling gϕR→ϕf0 . To do this, we
have considered that the partial decay width of ϕð2170Þ →
ϕf0ð980Þ could change in the range 30–50 MeV, while
keeping the strength of TϕðKK̄Þ0→ϕðKK̄Þ0 around the peak
position. We then determine the average value and the
standard deviation of gϕR→ϕf0 when changing ΓϕR→ϕf0 ∼
30–50 MeV and find

jgϕR→ϕf0 j ¼ 3123� 561 MeV: ð10Þ

Since the partial decay widths of ϕð2170Þ depend, among
other variables, on jgϕR→ϕf0 j, it is important to show the
reliability of the value in Eq. (10). To do this, we evaluate
the cross sections for the ϕf0ð980Þ configuration of the
final state KþK−πþðπ0Þπ−ðπ0Þ, i.e., for the process
eþe− → ϕf0ð980Þ, which is precisely the reaction in which
ϕð2170Þ was observed for the first time. The cross sections
for eþe− → ϕf0ð980Þ have been determined by the BABAR
Collaboration in Refs. [2,6].
In Fig. 3, we show the results found for the eþe− →

ϕf0ð980Þ cross sections. The different datasets correspond
to the BABAR data for the cross sections of eþe− →
ϕf0ð980Þ collected over different years (empty circles
and triangles are taken from Ref. [2]; filled circles and
squares are from Ref. [6]). The dark (light) shaded region
represents the cross sections obtained within our model
(described in Appendix A) by considering a partial decay

width of ϕð2170Þ → ϕf0ð980Þ of ∼30ð50Þ MeV. The
lower (upper) bound of these regions represents the result
obtained with the background found in Ref. [46] (Ref. [6])
for the process eþe− → ϕf0ð980Þ and a peak position for
ϕð2170Þ of 2150 (2175) MeV, as in Ref. [14] (Ref. [6]). As
can be seen in Fig. 3, the data on eþe− → ϕf0 are well
reproduced, which shows the suitability of the interpreta-
tion of ϕð2170Þ as a ϕf0ð980Þ state and the value obtained
for gϕR→ϕf0.

C. K + ð1460ÞK + f 0ð980Þ vertex
To get the coupling gKþ

R→Kþf0 , we rely on the findings of
Ref. [23], where three-kaon scattering equations were
solved within two different formalisms. One of the methods
in Ref. [23] consisted of solving Faddeev equations with
unitarized chiral two-body amplitudes for KKK̄, Kππ, and
Kπη coupled systems. All the two-body interactions were
kept in the s-wave. Within a second method, a non-
relativistic potential model was used to study the three-
kaon system to obtain the corresponding wave function
through the variational approach. In both cases, a three-
body resonance was found with mass in the range of
1420–1460 MeVand width varying between 50–100 MeV,
when one of the KK̄ system forms f0ð980Þ. The state was
related to Kð1460Þ. The KKK̄ s-wave interactions have
been studied within several approaches different to the one
used in Ref. [23] (see Refs. [22,24–26]), and a kaon state
has always been found to arise with mass approximately
1460 MeV but with widths ranging between 50–200 MeV,
depending on the model.
With the findings of Ref. [23] at hand, one would imagine

that, analogously to the case of ϕð2170Þϕf0ð980Þ, the

1.8 2.0 2.2 2.4 2.6

0.2

0.4

0.6

0.8

s (GeV)

e+
e–

f 0
(9

80
)(

nb
)

FIG. 3. Model results for the cross sections eþe− → ϕf0ð980Þ.
The data points are taken from Refs. [2,6], where the ϕf0ð980Þ
final state is reconstructed from KþK−πþπ− (solid triangles [2]
and squares [6]) or from KþK−π0π0 (open [2] and solid circles
[6]). The dashed (dotted) line represents the background used in
Ref. [14] (Ref. [6]). The lower and upper limits of the shaded
regions are obtained by using the above-mentioned backgrounds
when implementing the final state interaction to generate
ϕð2170Þ. The partial decay width of ϕR → ϕf0 is changed
between 30 (dark shaded region) and 50 MeV (light shaded
region).
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coupling gKþ
R→Kþf0 can be obtained by relating the T-

matrices TKðKK̄Þ0→KðKK̄Þ0 and TKf0→Kf0 via Eqs. (6) and (7).
However, Kð1460Þ is below the Kf0ð980Þ threshold, con-
trary to ϕð2170Þ, and, thus, relations based on the unitary
condition cannot be used. A different strategy to calculate
gKþ

R→Kþf0 is to consider that since the T-matrix for the

KðKK̄Þ0 system depends on
ffiffiffi
s

p
and ffiffiffiffiffiffiffiffiffiffiffiffisðKK̄Þ0

p ,
TKðKK̄Þ0→KðKK̄Þ0 and TKf0→Kf0 can be related via [47]

TKðKK̄Þ0→KðKK̄Þ0 ¼
�

gf0→ðKK̄Þ0
sKK̄ −M2

f0
þ iMf0Γf0

�
2

TKf0→Kf0 ;

ð11Þ

for
ffiffiffi
s

p
∼MKR

and ffiffiffiffiffiffiffiffiffiffiffiffisðKK̄Þ0
p ∼Mf0 . By considering a Breit-

Wigner form for TKf0→Kf0 around ffiffiffiffiffiffiffiffiffisKf0
p ∼MKR

,

TKf0→Kf0 ¼
g2KR→Kf0

sKf0 −M2
KR

þ iMKR
ΓKR→Kf0

; ð12Þ

we can determine the value of gKR→Kf0 from Eq. (11).
Interestingly, this way of finding gKR→Kf0 , if applied to the
case of ϕð2170Þ and the ϕf0 system, results in a value of
jgϕR→ϕf0 j similar to the one given in Eq. (10).
Keeping in mind that the peak position and width

of Kð1460Þ, in Ref. [23], varies between 1420–1460 and
50–110 MeV, respectively, depending on the model used,
we compute the corresponding uncertainties in the value of
gKR→Kf0 . This is done by using a Breit-Wigner description
(TBW

KðKK̄Þ0) for the three-body amplitude TKðKK̄Þ0→KðKK̄Þ0
obtained in Ref. [23], considering that jTBW

KðKK̄Þ0 j ≃
jTKðKK̄Þ0→KðKK̄Þ0 j around the peak position, while varying
the width in the range 50–110 MeV. Using the mass and
width for f0ð980Þ within the model [45] discussed in
Sec. II A, we get the following average and standard
deviation for jgKR→Kf0 j:

jgKþ
R→Kþf0 j ¼ 4858� 1337 MeV: ð13Þ

To end this subsection, a brief discussion on the width
of the state obtained in Ref. [23] is in order here. We
determine Eq. (13) considering that the state found in
Ref. [23] corresponds to Kð1460Þ [36], though the width of
the state in Ref. [23] is smaller than the one listed in
Ref. [36] for Kð1460Þ, approximately 250–330 MeV.
A possible reason for such an apparent discrepancy could
be the fact that the width obtained in Ref. [23] comes
from three-body channels, considering s-wave interactions
between the different pairs. According to Ref. [36],
Kð1460Þ decays to Kππ in the s-wave as well as to
πK�ð892Þ in the p-wave. Such p-wave channels can
increase the decay width of Kð1460Þ, even though they
are not essential for the generation of Kð1460Þ in the

approach of Ref. [23]. From the study of Ref. [48], the
partial decay widths of Kð1460Þ to Kππ in the s-wave and
to πK�ð892Þ in the p-wave are similar. Thus, the partial
decay width of Kð1460Þ to Kππ in the s-wave could be of
the order of 100 MeV, in line with the findings of Ref. [23].
And it is the Kf0 coupling to Kð1460Þwhich is relevant for
the study of the ϕð2170Þ decay, with the latter being
interpreted as the ϕf0 state. Alternatively, it may be that the
width of Kð1460Þ is overestimated in the partial wave
analyses when fitting the data. For example, an interesting
feature can be noticed in Figs. 1 and 3 of the supplemental
material of Ref. [1], which shows the data for the eþe− →
KþK−π0π0 reaction, for center of mass energies 2125 and
2396 MeV. It can be seen that the energy dependence of the
K�π0π0 invariant mass distribution passes from having a
broad distribution around 1460 MeV to a much richer
structure, as the total energy increases. Further, though the
K�π0 invariant mass distribution shows the formation
of K�ð892Þ at both the center of mass energies, a clear
signal of f0ð980Þ in the π0π0 invariant mass distribution is
observed only at the center of mass energy of 2396 MeV.
And it is at this center of mass energy, where, within the
uncertainties in the K�π0π0 data, a clearer structure at
1460 MeV seems to appear, which could have a width
narrower than the extracted value of 230� 35 MeV. This
indicates that experimental data with higher statistics can be
useful to clarify the properties of Kð1460Þ.

D. K +
1 ϕK

+ vertex

The nature of K1ð1270Þ and K1ð1400Þ is still under
debate. One of the approaches frequently used to describe
the properties of these states is to consider that they are
both a mixture of the K1A and K1B states, belonging to the
nonet of axial resonances. In the last decades, a different
nature has been proposed for the axial resonances
[28–31,49,50]. In these models, axial resonances are found
to arise from the interaction of pseudoscalar and vector
mesons. Alternatively to the above two approaches, we can
consider a phenomenological model using the known data
related to K1ð1270Þ and K1ð1400Þ [36] to study the decay
of ϕð2170Þ.
Thus, in this work, to evaluate the couplings

gKþ
1
ð1270Þ→ϕKþ and gKþ

1
ð1400Þ→ϕKþ we have considered the

three different aforementioned approaches. We discuss
more details on the determination of gKþ

1
ð1270Þ→ϕKþ and

gKþ
1
ð1400Þ→ϕKþ in the following subsections.

1. Model A: K1ð1270Þ as a state arising
from meson-meson dynamics

In Refs. [28–31,49,50] (mainly in Refs. [28,29], with the
other references being works following the latter one), two
poles have been found around 1270 MeV with the quantum
numbers of K1ð1270Þ. However, the interpretation of the
poles is different in Refs. [28,29]. While the former work
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associates the two poles with K1ð1270Þ and K1ð1400Þ,
both poles have been related to K1ð1270Þ in the latter one,
and it is argued that the superposition of the two poles
should be interpreted as the signal observed in the exper-
imental data for K1ð1270Þ. Further, it has been shown in
Ref. [30] that the double pole nature for K1ð1270Þ
describes well the WA3 data on K−p → K−πþπ−p. To
consider the influence of the molecular nature of K1ð1270Þ
on the decay of ϕð2170Þ to K1ð1270ÞK̄, we use the
information given in Ref. [30] on the K1ð1270ÞϕK cou-
plings, since it is straightforward to implement in our model
describing ϕð2170Þ as a ϕf0 resonance. For the conven-
ience of the reader, we list here the poles, as found in
Ref. [30],

z1 ¼ 1195 − i123 MeV;

z2 ¼ 1284 − i73 MeV; ð14Þ

and their couplings to the ϕK channel

gð1ÞK1ð1270Þ→ϕK ¼ 2096 − i1208 MeV;

gð2ÞK1ð1270Þ→ϕK ¼ 1166 − i774 MeV; ð15Þ

with the superscript being related to the poles in Eq. (14).
When calculating the decay width of ϕð2170Þ →
Kþ

1 ð1270ÞK−, we consider the contribution of each pole
separately as well as the superposition of the two poles.
Since the state K1ð1400Þ is not generated within the

approach of Ref. [30], the decay width of ϕð2170Þ →
Kþ

1 ð1400ÞK− is not determined within such an
interpretation.

2. Model B: K1ð1270Þ and K1ð1400Þ within
a mixing scheme

To consider K1ð1270Þ and K1ð1400Þ as a mixture of K1A
and K1B, states belonging to the nonet of axials, we use
the information given in Ref. [27] on the couplings of
K1ð1270Þ and K1ð1400Þ to different pseudoscalar-vector
channels. Such couplings (in Table 3 of Ref. [27]) lead to
partial decay widths of axial resonances to hadronic
channels which are compatible with the values known
from experimental data. It must be mentioned that the
mixing angle between K1A and K1B is not known with
precision and different values have been determined phe-
nomenologically. We will use values of 29°, 47°, and 62°,
which have been claimed to be compatible with the data
[27,37–39,41].
The couplings provided in Ref. [27] cannot be directly

used here, since they are related to vector mesons described
by tensor fields of rank 2 [51,52]. The vector meson field in
our work [see the tKþ

1
→ϕKþ amplitude in Eq. (3)], on the

other hand, is written in terms of an associated polarization
vector [44,53]. Thus, to determine the coupling gKþ

1
→ϕKþ

which should be used in Eq. (3), we first evaluate the
decay width of K1 → ϕK within the approach of Ref. [27],
ΓT
Kþ

1
→ϕKþ , and obtain the value of gKþ

1
→ϕKþ such as to

reproduce the same width with Eq. (3) (see Appendix B for
the details on the calculation of the decay width).
We find the following values of jgKþ

1
→ϕKþj as a function

of the mixing angle α:

jgKþ
1
ð1270Þ→ϕKþj ¼

8<
:

1081 MeV; α ¼ 29°;

946 MeV; α ¼ 47°;

1286 MeV; α ¼ 62°;

jgKþ
1
ð1400Þ→ϕKþj ¼

8>><
>>:

3543 MeV; α ¼ 29°;

3546 MeV; α ¼ 47°;

3509 MeV; α ¼ 62°:

ð16Þ

To take into account the uncertainty in the value of the
mixing angle, we calculate the average and standard
deviation for the values of the couplings using the above
results, and we get

jgKþ
1
ð1270Þ→ϕKþj ¼ 1104� 171 MeV;

jgKþ
1
ð1400Þ→ϕKþj ¼ 3533� 21 MeV: ð17Þ

3. Model C: Phenomenological approach
to describe the K1ϕK vertex

Instead of considering a molecular nature for K1ð1270Þ
or using an approach based on treating K1ð1270Þ and
K1ð1400Þ as mixture of states belonging to axial nonets, we
can determine the couplings of K1ð1270Þ and K1ð1400Þ to
ϕK phenomenologically, by using the available data on the
hadronic and radiative decay of these states [36]. We refer
the reader to Appendix C for the details on the evaluation of
the coupling K1 → ϕK within this model.
Given the uncertainties in the experimental data, three

different solutions are found for jgKþ
1
ð1270Þ→ϕKþj, which are

jgKþ
1
ð1270Þ→ϕKþj ¼

8>><
>>:

3967� 419 MeV; solutionS1;

12577� 763 MeV; solutionS2;

19841� 1177 MeV; solutionS3:

ð18Þ

In case of the process Kþ
1 ð1400Þ → ϕKþ, we obtain the

following value:

jgKþ
1
ð1400Þ→ϕKþj ¼ 8480� 1333 MeV: ð19Þ

Aword of caution is in order here: it is important to recall
that information from direct measurements of processes
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like K1ð1270Þ → γK is not available and the radiative decay
widths of K1ð1270Þ and K1ð1400Þ are extracted through
Primakoff effect, by assuming that they are a mixture of the
K1A and K1B states mentioned in the previous section. Thus,
if the K1 resonances have a different origin, and are not
related through a mixing angle, then the experimental
information available [36] on the radiative decay widths
of K1, and, hence, the results obtained on ϕð2170Þ →
Kþ

1 ð1270ÞK− and Kþ
1 ð1400ÞK− within this phenomeno-

logical approach, will require revising.

E. Decay widths of ϕð2170Þ
into a kaonic resonance plus a K̄

The decay widths for the processes shown in Fig. 1 can
be obtained as

Γ ¼
Z

dΩ
jp⃗j

32π2M2
ϕð2170Þ

X
pol

jtj2; ð20Þ

where
R
dΩ is the solid angle integration, t represents

the amplitude for each of the processes depicted in Fig. 1,
and the symbol

P
pol

indicates the sum over the polar-

izations of the particles in the initial and final states and
average over the polarizations of the particles in the
initial state.
Using the Feynman rules, we can write the amplitudes

necessary to calculate Eq. (20) in terms of the vertices
described in the previous section. In case of the process
ϕð2170Þ → Kþð1460ÞK−, we have

−itϕR→Kþ
RK

− ¼
Z

d4q
ð2πÞ4 tϕR→ϕf0tϕ→KþK−tf0Kþ→Kþð1460Þ

×
1

½ðkþ qÞ2 −M2
ϕ þ iϵ�½ðP − k − qÞ2 −M2

f0
þ iϵ�½q2 −M2

K þ iϵ� : ð21Þ

Considering now Eqs. (1) and (3), we get after summing over the polarizations of the internal vector mesons

−itϕR→Kþ
RK

− ¼ gϕR→ϕf0ggKþ
R→Kþf0ϵ

μ
ϕR
ðPÞ
"
kμ

�
1 −

k2

M2
ϕ

�
Ið0Þ − Ið1Þμ

 
1þ k2

M2
ϕ

!
þ kμ
M2

ϕ

Ið2Þ þ Ið3Þμ

M2
ϕ

#
; ð22Þ

where

Ið0Þ; Ið1Þμ ; Ið2Þμν ; Ið2Þ ≡
Z

d4q
ð2πÞ4

1; qμ;qμqν; q2

D
; ð23Þ

and

D ¼ ½ðkþ qÞ2 −M2
ϕ þ iϵ�½ðP − k − qÞ2 −M2

f0
þ iϵ�

× ½q2 −M2
K þ iϵ�: ð24Þ

Similarly, for ϕð2170Þ → Kþ
1 K

−,

−itϕR→Kþ
1
K− ¼ gϕR→ϕf0gKþ

1
→ϕKþgf0→KþK−ϵμϕR

ðPÞϵνKþ
1

ðkÞ

×
�
−gμνIð0Þ þ

kμ
M2

ϕ

Ið1Þν þ Ið2Þμν

M2
ϕ

�
; ð25Þ

where Kþ
1 can be Kþ

1 ð1270Þ or Kþ
1 ð1400Þ. The details

related to the calculation of the integrals in Eq. (23) can be
found in Appendix D.
Since we consider an approach in which the states

ϕð2170Þ, Kð1460Þ, f0ð980Þ, and K1ð1270Þ are composite
hadrons, a form factor is associated with each of the
three vertices involved in the loop in Fig. 1. In this way,
when regularizing the d3q integration in Eq. (23),

Z
d3q → ð2πÞ

Z
∞

0

djq⃗jjq⃗j2
Z

1

−1
d cos θ

Y3
i¼1

Fiðjq⃗�i j;ΛiÞ;

ð26Þ

where θ is the angle between the vectors q⃗ and k⃗.
For a given decay process (depicted in Fig. 1), the index
i ¼ 1, 2, 3 in Eq. (26) indicates the three vertices involved
in the decay mechanism of ϕð2170Þ, jq⃗�i j represents the
modulus of the momentum in the center of mass of the
vertex i [q⃗ and q⃗� in Eq. (26) are related through a Lorentz
boost], and Λi are as defined in Refs. [14,23,30,45]
(ΛϕR→ϕf0 ∼ 2000 MeV, ΛKR→Kf0 ∼ 1400 MeV, Λf0→KK̄ ∼
1000 MeV, and ΛKþ

1
ð1270Þ→ϕKþ ∼ 750 MeV). The function

Fi in Eq. (26) represents the form factor considered for the
vertex i. In case of regularizing the d3q integral with a sharp
cutoff, a Heaviside Θ-function, i.e.,

Fi ¼ Θðjq⃗�i j − ΛiÞ; ð27Þ

is used. A monopole form, i.e.,

Fi ¼
Λ̄2
i

Λ̄2
i þ jq⃗�i j2

; ð28Þ
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or an exponential dependence of the type

Fi ¼ e
−
jq⃗�
i
j2

2Λ̄2
i ð29Þ

is also commonly used as a form factor for the vertices. The
value of Λ̄i, which is similar to the value of Λi, is chosen in
such a way that the area under the curve of F2

i as a function
of the modulus of the momentum is the same, independ-
ently of the form factor used [54].
We are now in a position to calculate

P
pol
jtj2 for the decay

processes in Fig. 1, which depends on the coupling
constants determined in the previous sections, and evaluate
the corresponding decay widths using Eq. (20).

III. RESULTS

In this section, we present the results obtained for the
decay widths of ϕð2170Þ to a final state involving the
kaonic resonances Kþð1460Þ, Kþ

1 ð1400Þ, and Kþ
1 ð1270Þ.

We will also present the related branching fractions and
compare them with the information available from Ref. [1].

A. Decay widths

In Tables I–III, we show the results obtained for the
decay widths of ϕð2170Þ → Kþð1460ÞK−, Kþ

1 ð1400ÞK−,
and Kþ

1 ð1270ÞK−, respectively. As can be seen, the results
determined with different form factors are compatible with
each other. In case of the decay width of ϕð2170Þ →
Kþð1460ÞK− (see Table I), we find a value around
0.8–2.0 MeV.
For the decay width of the process ϕð2170Þ →

Kþ
1 ð1400ÞK− (see Table II), the result found depends on

the model considered to determine the coupling of
Kþ

1 ð1400Þ → ϕKþ: within model B, which relates
K1ð1400Þ and K1ð1270Þ through a mixing angle, the decay
width obtained for ϕð2170Þ → Kþ

1 ð1400ÞK− is around
1.5–3.1 MeV. However, if we determine the Kþ

1 ð1400Þ →
ϕKþ coupling considering model C, which uses the data
from Ref. [36], the result obtained for this decay width is
approximately 8–19 MeV, representing in this way a
sizeable contribution to the full width of ϕð2170Þ.
Although it should be reiterated that the experimental data
on the radiative decay of Kþ

1 ð1270Þ and Kþ
1 ð1400Þ are

obtained, through the Primakoff effect, by assuming them
as mixture of states belonging to the axial nonets. Thus, the
results on the radiative decays in Ref. [36], and, conse-
quently, the decay width of ϕð2170Þ → Kþ

1 ð1400ÞK−

found within model C, may need to be taken with caution.
We do not discuss the decay of ϕð2170Þ → K1ð1400ÞK̄
within model A, which treats K1ð1270Þ as a meson-meson
resonance [29,30], since K1ð1400Þ was not found to arise
from hadron dynamics in these latter works.
For the decay width of ϕð2170Þ → Kþ

1 ð1270ÞK− (see
Table III), we find that the result depends on the model
used to calculate the coupling ofKþ

1 ð1270Þ → ϕKþ: within
model A, where Kþ

1 ð1270Þ is generated from vector-
pseudoscalar channels and has a double pole structure,
the decay width obtained is around 1–2 MeV when
considering the superposition of the two poles. Such a
superposition has been implemented in two ways: 1) We
use an average mass for K1ð1270Þ in Eq. (25), and the
coupling gKþ

1
→ϕKþ is substituted by the sum of the

couplings related to the two poles, i.e., gð1ÞKþ
1
ð1270Þ→ϕKþþ

gð2ÞKþ
1
ð1270Þ→ϕKþ . 2) The amplitude tϕR→Kþ

1
K− is written as

tð1Þ
ϕR→Kþ

1
K− þ tð2Þ

ϕR→Kþ
1
K− , where the superscript indicates the

contribution related to each of the two poles. Then, the term

2Reftð1Þ
ϕR→Kþ

1
K−t

ð2Þ�
ϕR→Kþ

1
K−g needed to calculate the modulus

squared is obtained by using an average mass forK1ð1270Þ.
In both cases, an average mass of K1ð1270Þ is used in the
phase space. The results obtained in the two ways are
compatible within the uncertainties shown in Table III.
Continuing with the discussions on the results obtained

within the model A, considering the description of
Refs. [29,30] for K1ð1270Þ, the contribution to the decay
ϕð2170Þ → Kþ

1 ð1270ÞK− from the pole z1 is larger than the
one from the pole z2. This finding is in line with the fact that
the former pole couples more to πK�ð892Þ [29,30]. It
should be mentioned here that of the two poles found in
Refs. [29,30] [see Eq. (14)] the mass related to the pole z2 is
closer to the value determined from the fit to the exper-
imental data in Ref. [1]. However, the processKþ

1 ð1270Þ →
πK�ð892Þ is considered in Ref. [1], where the final state
couples rather more strongly to the pole z1. Thus, when

TABLE I. Partial decay width (in MeV) of ϕð2170Þ →
Kþð1460ÞK− by considering different form factors, as explained
in Sec. II.

Form factor Decay width

Heaviside Θ 1.5� 0.5
Monopole 1.3� 0.4
Exponential 1.3� 0.5

TABLE II. Partial decay width (in MeV) of ϕð2170Þ →
Kþ

1 ð1400ÞK− taking into account the different form factors
and the models B and C discussed in Sec. II to describe the
properties of K1ð1400Þ.

Decay width

Form factor Model B Model C

Heaviside Θ 2.6� 0.5 15� 4
Monopole 1.9� 0.4 11� 3
Exponential 2.1� 0.4 12� 3
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comparing our results with the experimental information,
as we present in the subsequent paragraphs, it might
be more meaningful to consider the decay widths
obtained from the superposition of the two poles. In
any case, if the two pole nature of K1ð1270Þ is confirmed,
the results in Ref. [1] on the related process may require a
revision.
Within the mixing scheme of model B, we find that

the results obtained for the decay width of ϕð2170Þ →
Kþ

1 ð1270ÞK− are similar to the ones calculated with model
A for the pole z2. Such a result could be in line with the fact
that the mass of K1ð1270Þ in model B is very similar to the
mass value associated with the pole z2 in model A.
Interestingly, if we consider model C, where we used

the experimental data available in Ref. [36] to estimate the
couplings of Kþ

1 ð1270Þ and Kþ
1 ð1400Þ to the ϕKþ channel,

we find two different scenarios for the decay width of
ϕð2170Þ → Kþ

1 ð1270ÞK−. In one of them, which corre-
sponds to using solution S1 of Eq. (18), the results are
compatible with those found in the model A. In the second
scenario, which uses solution S2 or S3 of Eq. (18), a much
bigger decay width for ϕð2170Þ → Kþ

1 ð1270ÞK− is
obtained, which would constitute a sizeable part of the
total width of ϕð2170Þ.

B. Branching ratios

In Ref. [1], the partial decay widths of ϕð2170Þ →
Kþð1460ÞK−, Kþ

1 ð1400ÞK−, Kþ
1 ð1270ÞK− were not mea-

sured. Instead, the products BrΓeþe−
R , with Γeþe−

R being
the partial decay width of ϕð2170Þ → eþe− and Br the
branching fraction for each of the ϕð2170Þ → RK− proc-
esses, with R ¼ Kþð1460Þ, Kþ

1 ð1400Þ, Kþ
1 ð1270Þ, were

extracted. Since the decay width Γeþe−
R is not known, we

can use the information provided in Ref. [1] to calculate
the ratios

B1 ≡ ΓϕR→Kþð1460ÞK−

ΓϕR→Kþ
1
ð1400ÞK−

¼ Br½ϕR → Kþð1460ÞK−�
Br½ϕR → Kþ

1 ð1400ÞK−� ; ð30Þ

B2 ≡ ΓϕR→Kþð1460ÞK−

ΓϕR→Kþ
1
ð1270ÞK−

¼ Br½ϕR → Kþð1460ÞK−�
Br½ϕR → Kþ

1 ð1270ÞK−� ; ð31Þ

B3 ≡
ΓϕR→Kþ

1
ð1270ÞK−

ΓϕR→Kþ
1
ð1400ÞK−

¼ Br½ϕR → Kþ
1 ð1270ÞK−�

Br½ϕR → Kþ
1 ð1400ÞK−� ; ð32Þ

and compare with our results. Note that, although the above
ratios do not depend on the coupling gϕR→ϕf0 , the triangular
loops and the other vertices involved in the calculation of
the decay widths appearing in Eqs. (30)–(32) depend on the
consideration of ϕð2170Þ as a ϕf0ð980Þ state. Thus, the
particular values found for the B1, B2, and B3 ratios are
related to the nature, not only of ϕð2170Þ but also to the one
of Kð1460Þ, Kþ

1 ð1270Þ, and Kþ
1 ð1400Þ.

In Ref. [1], the values (in eV) for the products
BrΓeþe−

R are

Br½ϕR →Kþð1460ÞK−�Γeþe−
R ¼ 3.0�3.8;

Br½ϕR →Kþ
1 ð1400ÞK−�Γeþe−

R ¼
�
4.7�3.3; solution1;

98.8�7.8; solution2;

Br½ϕR →Kþ
1 ð1270ÞK−�Γeþe−

R ¼
�
7.6�3.7; solution1;

152.6�14.2; solution2;

ð33Þ

having two possible solutions in case of the processes
ϕð2170Þ → Kþ

1 ð1400ÞK−, Kþ
1 ð1270ÞK− from the fits to

the data. Using Eq. (33), we can determine the experimental
values for the B1, B2, and B3 ratios, finding

Bexp
1 ¼

�
0.64� 0.92; solution 1;

0.03� 0.04; solution 2 ;

Bexp
2 ¼

�
0.40� 0.54; solution 1;

0.02� 0.03; solution 2;

Bexp
3 ¼

�
1.62� 1.38; solution 1;

1.55� 0.19; solution 2:
ð34Þ

Considering now the decay widths listed in Tables I–III, we
can calculate the ratios in Eqs. (30)–(32). We present the
results in Tables IV–VI. Since the decay widths obtained in
this work do not depend much on the form factors
considered, the values presented for the ratios correspond

TABLE III. Partial decay width (in MeV) of ϕð2170Þ → Kþ
1 ð1270ÞK− by considering different form factors and the models A, B, and

C to describe the properties of K1ð1270Þ, as explained in Sec. II.

Decay width

Form factor

Model A Model B Model C

Poles z1, z2 Pole z1 Pole z2 Solution S1 Solution S2 Solution S3

Heaviside Θ 1.5� 0.3 0.6� 0.1 0.22� 0.04 0.12� 0.04 1.6� 0.4 17� 3 41� 9
Monopole 0.8� 0.2 0.3� 0.1 0.12� 0.02 0.07� 0.02 0.9� 0.2 9� 2 23� 5
Exponential 1.0� 0.2 0.4� 0.1 0.15� 0.03 0.09� 0.02 1.1� 0.3 11� 2 28� 6
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to the average of the results obtained with different
form factors.
The ratio B1 [see Eq. (30)] involves the decay width of

ϕð2170Þ → Kþ
1 ð1400ÞK−; thus, it can be calculated within

models B and C. The results obtained in the former case
are compatible with the experimental value related to
solution 1, while the results in the latter case are closer
to the experimental value obtained from solution 2,
although the results obtained in model C can also be
compatible with the value found from solution 1 due to the
uncertainty present in the experimental data.
As can be seen from Table V, the value of B2 depends on

the description considered for Kþ
1 ð1270Þ. Within model A

[in this case,K1ð1270Þ has a double pole structure], we find
that the interference between the two poles leads to a value
which is closer to the upper limit for this ratio obtained with
solution 1 of the BESIII Collaboration. We also find that
the contribution from the individual poles of Kþ

1 ð1270Þ
produces a larger value for B2, which is not compatible with
the experimental value. In the model B, the values obtained
for B2 are not compatible with those determined from the
experimental data. In case of using model C, solutions S2

and S3 give rise to a value for B2 which is compatible with
solution 2 of Ref. [1]. Solution S1, instead, produces a
value for B2 which is compatible with solution 1 of Ref. [1].
The results for the ratio B3 can be found in Table VI.

Since this ratio involves the decay width of ϕð2170Þ →
Kþ

1 ð1400ÞK−, we evaluate it within models B and C.
Although, due to the similarity between the decay width for
ϕð2170Þ → Kþ

1 ð1270ÞK− within model A [considering the

superposition of two poles for K1ð1270Þ] and solution S1

of model C, it can be inferred that the ratio B3 (under
solution S1 in Table VI) represents the result for both cases.
It can be said, then, that for solution S1, as well as for
model A, the results can be considered to be closer to the
lower limit of solution 1 presented in Table VI. Solutions
S2 and S3 of model C are compatible with the data.
To summarize the findings of the present work, we

can state:
(i) The ϕf0 description of ϕð2170Þ can straightfor-

wardly explain its suppressed decay to K̄�ð892Þ
K�ð892Þ, which is one of the findings of the BESIII
Collaboration.

(ii) A branching ratio B1 [defined in Eq. (30)] for the
ϕð2170Þ decay to final states involving Kð1460Þ
and K1ð1400Þ is calculated treating the former as a
Kf0 state and the latter within two different models.
One of the models (model B) relates K1ð1270Þ and
K1ð1400Þ through a mixing angle [27], while the
other one (model C) is based on a phenomenological
determination of the K1ð1400ÞϕK coupling using
the information available on its hadronic and radi-
ative decays. The results obtained within both
models are compatible with the ratio evaluated using
experimental data.

(iii) A ratio B2 [defined in Eq. (31)] for the ϕð2170Þ
decay to final states involving Kð1460Þ and
K1ð1270Þ is obtained using yet another model
(model A) for the latter one, besides the two
mentioned in the previous point. Within model A,
K1ð1270Þ is interpreted as a state, related to two
poles in the complex energy plane, arising from
pseudoscalar-vector meson dynamics. The ratio B2

obtained within model A is in agreement with the
data, when the superposition of the two poles is
considered. The former result is found to be similar
to that obtained within a phenomenological descrip-
tion for K1ð1270Þ and K1ð1400Þ (solution S1 of
model C), which may indicate that the information
on the superposition of the two poles is present in the
experimental data used to obtain the phenomeno-
logical solution. The ratio B2 does not get repro-
duced within model B.

TABLE IV. Results for the branching ratio B1. The label
“Experiment” refers to the values given in Eq. (34).

B1

Our results Model B 0.62� 0.20
Model C 0.11� 0.04

Experiment Solution 1 0.64� 0.92
Solution 2 0.03� 0.04

TABLE V. Results for the ratio B2. The label “Experiment”
refers to the values given in Eq. (34).

B2

Our results Model A 1.3� 0.4 (Poles z1, z2)
3.6� 1.2 (Pole z1)
8.8� 2.8 (Pole z2)

Model B 16� 6
1.2� 0.4 (Solution S1)

Model C 0.12� 0.04 (Solution S2)
0.05� 0.02 (Solution S3)

Experiment Solution 1 0.40� 0.54
Solution 2 0.02� 0.03

TABLE VI. Results for the ratio B3. The label “Experiment”
refers to the values given in Eq. (34).

B3

Our results Model B 0.04� 0.01
0.09� 0.02 (Solution S1)

Model C 0.96� 0.16 (Solution S2)
2.40� 0.40 (Solution S3)

Experiment Solution 1 1.62� 1.38
Solution 2 1.55� 0.19
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(iv) A third ratio, B3 [defined in Eq. (32)], for the
ϕð2170Þ decay to final states involving K1ð1400Þ
and K1ð1270Þ is calculated using models B and C.
This ratio is in agreement with the values obtained
from the experimental data when using model C
(solutions S2 and S3). The ratio obtained using the
solution S1 of model C, too [and, hence, within
model A, in which case the decay width to
Kþ

1 ð1270ÞK− is similar], is also close to the lower
limit of the value determined from the data (based on
solution 1 in Ref. [1]).

(v) It can be said that the ϕf0 description of ϕð2170Þ
can well describe the experimental findings of
Ref. [1]. The moleculelike nature, related to two
poles arising from meson-meson dynamics, and a
phenomenological description (solution S1 of model
C) of K1ð1270Þ seem to be in agreement. A model
relating K1ð1270Þ and K1ð1400Þ through a mixing
angle as in Ref. [27] does not describe two of the
three ratios, indicating that a different mixing
scheme may be required for such a relation.

IV. CONCLUSIONS

In this work, we have obtained the decay widths of
ϕð2170Þ to Kþð1460ÞK−, Kþ

1 ð1400ÞK−, and Kþ
1 ð1270ÞK−

within an approach in which ϕð2170Þ is interpreted as a
ϕf0ð980Þ molecular state and Kþð1460Þ is interpreted as a
state originated from the Kf0ð980Þ interaction. In case of
Kþ

1 ð1270Þ and Kþ
1 ð1400Þ, we have used different models

to describe their properties. Considering the decay widths

determined, we calculate the ratios B1 ¼ Γϕð2170Þ→Kþð1460ÞK−
Γϕð2170Þ→Kþ

1
ð1400ÞK−

,

B2 ¼ Γϕð2170Þ→Kþð1460ÞK−
Γϕð2170Þ→Kþ

1
ð1270ÞK−

, and B3 ¼
Γϕð2170Þ→Kþ

1
ð1270ÞK−

Γϕð2170Þ→Kþ
1
ð1400ÞK−

and compare

with the corresponding values found from the experimental
data on BrΓeþe−

R of Ref. [1]. We obtain results for these
ratios which are compatible with the latter ones. Further
experimental data with higher statistics can be very helpful
in drawing more robust conclusions on the properties of
K1ð1270Þ and K1ð1400Þ. The partial decay widths pro-
vided in the present work can be useful for future
experimental investigations.
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APPENDIX A: MODEL FOR THE PROCESS
e + e− → ϕf 0ð980Þ

Within our description of ϕð2170Þ as a ϕf0 molecular
state, the formation of ϕð2170Þ in the process eþe− →
ϕf0ð980Þ proceeds as shown in Fig. 4 [depicting the
tree-level contribution and the one with the final state
interactions forming ϕð2170Þ]. At the tree level, eþ and e−

interact and produce a ϕ and a f0ð980Þ as plane waves.
In Ref. [14], such a background contribution was described
by using the results obtained in Ref. [46]. Then, the ϕ
and f0ð980Þ propagate and interact in the final state,
forming ϕð2170Þ, which, subsequently, decays into ϕ
and f0ð980Þ. In this way, the amplitude for the process
eþe− → ϕf0ð980Þ can be obtained by multiplying the
nonresonant contribution or the background by the factor
j1þ Gϕf0Tϕf0→ϕf0 j2, where Gϕf0 is the loop function for
the virtual ϕf0ð980Þ state (a cutoff of the order Mϕ þMf0
is used to regularize it).

APPENDIX B: EVALUATION OF THE DECAY
WIDTH FOR THE PROCESS K +

1 → ϕK +

In the tensor formalism of Ref. [27], the decay width of
Kþ

1 → ϕKþ, ΓT
Kþ

1
→ϕKþ , can be determined as

ΓT
Kþ

1
→ϕKþ ¼

jgTKþ
1
→ϕKþj2
2π

1

N

Z
MK1

þaΓK1

MK1
−aΓK1

dM̃K1
ð2M̃K1

Þ

×
jp⃗j
M̃2

K1

�
1þ 2

3

jp⃗j
M2

ϕ

�

× Im

�
1

M̃2
K1

−M2
K1

þ iMK1
ΓK1

�

× θðM̃K1
−Mϕ −MKÞ

× θðM̃K1
−Mπ −MK�ð892ÞÞ; ðB1Þ

FIG. 4. Diagrammatic description of the process eþe− → ϕf0
with the formation of ϕð2170Þ from the interaction of ϕf0 as in
Ref. [14]. Left: tree level contribution to the process, where a ϕ
and a f0 is produced in the final state as plane waves. Right: the
production of ϕf0, followed by the final state interactions leading
to the formation (and decay) of ϕð2170Þ.
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where we incorporate the effect of the finite width of K1 by
convoluting on its mass. Typically, in the integral limits, a
value a ≃ 2–3 is used to cover the energy region associated
with the resonance. The Heaviside θ-functions in Eq. (B1)
guarantee energy conservation as well as thatK1 has a mass
big enough for decaying to its lowest decay channel when
convoluting. In Eq. (B1), jp⃗j is the modulus of the center of
mass momentum; N is a normalization factor given by

N ¼
Z

MK1
þaΓK1

MK1
−aΓK1

dM̃K1
ð2M̃K1

ÞIm
�

1

M̃2
K1
−M2

K1
þ iMK1

ΓK1

�
;

ðB2Þ

and, from Ref. [27],

gTKþ
1
→ϕKþ ¼

�
cos αD̃þ senαF̃; for K1ð1270Þ;
senαD̃ − cos αF̃; for K1ð1400Þ:

ðB3Þ

Using the values of D̃ and F̃, as a function of the mixing
angle, α, as given in (Table 7 of) Ref. [27], we get

ΓT
Kþ

1
ð1270Þ→ϕKþ ¼

8<
:

0.030 MeV; α ¼ 29°;

0.023 MeV; α ¼ 47°;

0.043 MeV; α ¼ 62°;

ΓT
Kþ

1
ð1400Þ→ϕKþ ¼

8<
:

6.7 MeV; α ¼ 29°;

6.7 MeV; α ¼ 47°;

6.6 MeV; α ¼ 62°:

ðB4Þ

Using now Eq. (3), the decay width of Kþ
1 → ϕKþ can

be determined within the approach in which vector and
axial mesons are described as vector fields instead of
second rank tensor fields. In this case, the decay width
of Kþ

1 → ϕKþ is obtained as

ΓKþ
1
→ϕKþ ¼ jgKþ

1
→ϕKþj2
24π

1

N

Z
MK1

þaΓK1

MK1
−aΓK1

dM̃K1
ð2M̃K1

Þ

×
jp⃗j
M̃2

K1

�
3þ jp⃗j2

M2
ϕ

�

× Im

�
1

M̃2
K1

−M2
K1

þ iMK1
ΓK1

�

× ΘðM̃K1
−Mϕ −MKÞ

× ΘðM̃K1
−Mπ −MK�ð892ÞÞ: ðB5Þ

The value jgKþ
1
→ϕKþj is determined by equating Eqs. (B5)

and (B4).

APPENDIX C: DETERMINATION OF THE
K1 → ϕK COUPLING WITHIN A

PHENOMENOLOGICAL APPROACH

Let us examine how to get the K1ϕK coupling using the
data on radiative and hadronic decays. We start by con-
sidering that the radiative decay of K1 proceeds through the
vector meson dominance mechanism [44,53,55]. In this
way, the decay of K0

1 → γK0 at the tree level can be
described as depicted in Fig. 5. Since the decay widths for
K0

1 → ρ0K0, ωK0 are known [36], we can determine
jgK0

1
→ρ0K0 j and jgK0

1
→ωK0 j and use the information to

calculate jgK0
1
→ϕK0 j such as to reproduce the known

radiative decay width of K0
1. If we use the expression in

Eq. (3) to describe the vertexK0
1 → VK0, where V ¼ ρ0, ω,

ϕ, the amplitude obtained for the process represented in
Fig. 5 is given by

tK0
1
→K0γ ¼

eM2
V

3g

�
1ffiffiffi
2

p
� ffiffiffi

3
p

gK0
1
→ρ0K0

M2
ρ

þ
gK0

1
→ωK0

M2
ω

�

−
gK0

1
→ϕK0

M2
ϕ

�
ϵK0

1
ðPÞ · ϵγðpÞ; ðC1Þ

where the Lagrangian [44]

LV→γ ¼ −M2
V
e
g
Aμ

�
1

3
ffiffiffi
2

p ωμ þ
1ffiffiffi
2

p ρ0μ −
1

3
ϕμ

�
; ðC2Þ

with Aμ denoting the photon field, e2 ¼ 4πα (α is the
structure constant), and g ¼ MV

2fπ
(MV ≃Mρ, fπ ≃ 93 MeV),

has been used for the V → γ transition. As can be seen by
replacing ϵγ → p, the amplitude in Eq. (C1) is not gauge
invariant. An alternative way of determining gK0

1
→ϕK0

would be to attribute a tensor field to the vector/axial
mesons [51,52]. The amplitude for K0

1 → γK0 in such a
formalism is explicitly gauge invariant. In fact, in the tensor
formalism of Refs. [27,51,52],

FIG. 5. Diagrammatic representation of the process K0
1 → γK0,

where K0
1 represents K0

1ð1270Þ or K0
1ð1400Þ.
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tTK0
1
→γK0 ¼ −

2eFV

MK0
1

"
gTK0

1
→ρ0K0

M2
ρ0

þ
gTK0

1
→ωK0

3M2
ω

−

ffiffiffi
2

p
gTK0

1
→ϕK0

3M2
ϕ

#

× ½ðP · pÞðϵK0
1
ðPÞ · ϵγðpÞÞ

− ðP · ϵγðpÞÞðp · ϵK0
1
ðPÞÞ�; ðC3Þ

with FV ≃ 154 MeV, and the decay width of K0
1 → γK0 is

given by

ΓT
K0

1
→γK0 ¼ jp⃗j3

3πM2
K0

1

e2jFV j2
������
gTK0

1
→ρ0K0

M2
ρ0

þ
gTK0

1
→ωK0

3M2
ω

−

ffiffiffi
2

p
gTK0

1
→ϕK0

3M2
ϕ

������
2

: ðC4Þ

We now determine the values of jgTK0
1
→ρ0K0 j and jgTK0

1
→ωK0 j

within the tensor formalism such as to reproduce the
experimental data on the decay widths of K1 → ρK and
K1 → ωK. Let us discuss first the case of K1ð1270Þ.
According to Ref. [36],

Γexp
K1ð1270Þ ¼ 90� 20 MeV;

Γexp
K1ð1270Þ→Kρ ¼ ð0.42� 0.06ÞΓKexp

1
ð1270Þ;

Γexp
K1ð1270Þ→Kω ¼ ð0.11� 0.02ÞΓKexp

1
ð1270Þ;

Γexp
K0

1
ð1270Þ→K0γ

¼ ð73.2� 6.1� 28.3Þ KeV: ðC5Þ

By using Eq. (B1), substituting ϕ → ρ, ω, and by gen-
erating random numbers for the known widths for
K1ð1270Þ → Kρ, Kω (in the interval allowed by the related
error), we can estimate jgTK0

1
→ρ0K0 j and jgTK0

1
→ωK0 j and find

jgTK0
1
ð1270Þ→ρ0K0 j ¼ 1104� 77 MeV;

jgTK0
1
ð1270Þ→ωK0 j ¼ 1514� 102 MeV: ðC6Þ

In this case, when obtaining jgTK0
1
→ρ0K0 j, we use isospin

relations and the width of the ρ-meson is taken into account
by considering another integral around the nominal mass of
ρ in Eq. (B1). Now, by using Eqs. (C4), (C5), and (C6), we
can extract the value of jgTK0

1
ð1270Þ→ϕK0 j using Γexp

K0
1
ð1270Þ→γK0 .

Here, we must emphasize that only the modulus of
gTK0

1
→ρ0K0 and gTK0

1
→ωK0 can be determined from the exper-

imental data, when, in general, the couplings in Eq. (C4)
can be complex numbers. We assume them to be real
numbers, which can be either positive or negative. We then
generate random numbers inside the interval allowed by
the error related to gTK0

1
→ρ0K0 , gTK0

1
→ωK0 [as in Eq. (C6)]

and consider the different sign combinations for the
couplings. We then determine the average value and the
standard deviation for gTK0

1
→ϕK0. Independently of the sign

chosen for the couplings, we find three different solutions
for jgTK0

1
ð1270Þ→ϕK0 j:

jgTK0
1
ð1270Þ→ϕK0 j ¼

8<
:
1887�590MeV; solutionS1;

6300�529MeV; solutionS2;

9996�583MeV; solutionS3:

ðC7Þ

By using now Eq. (B1), we get

ΓT
K0

1
ð1270Þ→ϕK0 ¼

8<
:
0.22� 0.08MeV; solutionS1;

2.21� 0.46MeV; solutionS2;

5.52� 1.07MeV; solutionS3:

ðC8Þ

Since the decay width of K0
1ð1270Þ → ϕK0 is not known,

we consider the three solutions for jgT
K0

1
ð1270Þ→ϕK0 j as valid

and investigate the implications in the calculation of the
decay width of ϕð2170Þ. Using the values in Eq. (C8) as
input, we can calculate jgK0

1
→ϕK0 j, which coincides with

jgKþ
1
→ϕKþj, related to the amplitudes written by attributing a

vector field to the axial/vector mesons. We find

jgKþ
1
ð1270Þ→ϕKþj ¼

8<
:

3967� 419 MeV; solutionS1;

12577� 763 MeV; solutionS2;

19841� 1177 MeV; solutionS3:

ðC9Þ

We can now repeat the same procedure forK1ð1400Þ and
estimate jgK0

1
ð1400Þ→ϕK0 j. In this case, according to Ref. [36],

Γexp
K1ð1400Þ→ρK ¼ 1 − 3 MeV; ðC10Þ

while for the decay width of K1ð1400Þ → ωK different
experiments have found very different values,

Γexp
K1ð1400Þ→ωK ¼

�
11 − 35 MeV;

ð0.01� 0.01ÞΓKexp
1

ð1400Þ:
ðC11Þ

Further, using Γexp
K0

1
ð1400Þ→γK0 ¼280.8�23.2�40.4KeV

[36] and following the same procedure as explained for the
determination of the K1ð1270ÞϕK coupling, we obtain

jgKþ
1
ð1400Þ→ϕKþj ¼ 8480� 1333 MeV: ðC12Þ
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APPENDIX D: CALCULATION OF THE
INTEGRALS DEFINED IN EQ. (23)

To evaluate the integrals in Eq. (23), we consider the
Passarino-Veltman reduction for tensor integrals [56]
and write

Ið1Þμ ¼ að1Þ1 kμ þ að1Þ2 Pμ;

Ið3Þμ ¼ að3Þ1 kμ þ að3Þ2 Pμ;

Ið2Þμν ¼ að2Þ1 gμν þ að2Þ2 ðkμPν þ kνPμÞ þ að2Þ3 kμkν þ að2Þ4 PμPν;

ðD1Þ

where aðiÞj are coefficients to be calculated. In this way, we
can write Eqs. (22) and (25) as

−itϕR→Kþ
RK

− ¼ gϕR→ϕf0ggKþ
R→Kþf0ϵϕR

ðPÞ · k

×

�
−að1Þ1 þ Ið0Þ þ 1

M2
ϕ

	
að3Þ1 þ Ið2Þ

− k2
n
að1Þ1 þ Ið0Þ

o
�
;

−itϕR→Kþ
1
K− ¼ gϕR→ϕf0gKþ

1
→ϕKþgf0→KþK−ϵμϕR

ðPÞϵνKþ
1

ðkÞ

×

�
gμν

�
−Ið0Þ það2Þ1

M2
ϕ

�
þ kμPν

M2
ϕ

	
að1Þ2 það2Þ2


�
;

ðD2Þ

where we have used the Lorenz gauge condition.

Thus, to get the amplitudes written above and the
corresponding decay widths, we need to determine the

coefficients að1Þ1 , að1Þ2 , að2Þ1 , að2Þ2 , and að3Þ1 and the integrals
Ið0Þ and Ið2Þ. To do this, we proceed as follows: to calculate
the coefficients að1Þ1 and að1Þ2 , we contract the tensor Ið1Þμ in
Eq. (D1) with the different Lorentz structures present there,
forming a system of coupled equations, i.e.,

k · Ið1Þ ¼ að1Þ1 k2 þ að1Þ2 k · P;

P · Ið1Þ ¼ að1Þ1 k · Pþ að1Þ2 P2: ðD3Þ

In this way, the coefficients að1Þ1 and að1Þ2 can be written in
terms of the scalar integrals k · Ið1Þ and P · Ið1Þ as

að1Þ1 ¼ −
P2ðk · Ið1ÞÞ − k · PðP · Ið1ÞÞ

ðk · PÞ2 − k2P2
;

að1Þ2 ¼ −
k2ðP · Ið1ÞÞ − k · Pðk · Ið1ÞÞ

ðk · PÞ2 − k2P2
: ðD4Þ

Similarly, considering now the tensors Ið3Þμ and Ið2Þμν in
Eq. (D1) and following the same procedure, we arrive at

að3Þ1 ¼ −
P2ðk · Ið3ÞÞ − k · PðP · Ið3ÞÞ

ðk · PÞ2 − k2P2
;

að3Þ2 ¼ −
k2ðP · Ið3ÞÞ − k · Pðk · Ið3ÞÞ

ðk · PÞ2 − k2P2
ðD5Þ

and

að2Þ1 ¼ 1

2½ðk · PÞ2 − k2P2� ½k
2ðP · P · Ið2Þ − Ið2ÞP2Þ þ Ið2Þðk · PÞ2 − 2ðk · P · Ið2ÞÞðk · PÞ þ ðk · k · Ið2ÞÞP2�;

að2Þ2 ¼ 1

2½ðk · PÞ2 − k2P2�2 ½k
2fðIð2ÞP2 − 3P · P · Ið2ÞÞðk · PÞ þ 2ðk · P · Ið2ÞÞP2g

− ðk · PÞfIð2Þðk · PÞ2 − 4ðk · P · Ið2ÞÞðk · PÞ þ 3ðk · k · Ið2ÞÞP2g�: ðD6Þ

Going back to Eq. (23) and integrating on the q0 variable using Cauchy’s theorem, we can obtain the scalar integrals
appearing in Eqs. (22), (25), (D4), (D5), and (D6). Considering the rest frame of the decaying particle, i.e., P⃗ ¼ 0⃗, we get

Ið0Þ ¼
Z

d3q
ð2πÞ3 I0; k · Ið1Þ ¼

Z
d3q
ð2πÞ3 ½k

0I1 − k⃗ · q⃗I0�; P · Ið1Þ ¼ ffiffiffi
s

p Z
d3q
ð2πÞ3 I1;

Ið2Þ ¼
Z

d3q
ð2πÞ3 ðI2 − q⃗2I0Þ; k · P · Ið2Þ ¼ ffiffiffi

s
p Z

d3q
ð2πÞ3 ½k

0I2 − ðk⃗ · q⃗ÞI1�;

k · k · Ið2Þ ¼
Z

d3q
ð2πÞ3 ½k

02I2 − 2k0ðk⃗ · q⃗ÞI1 þ ðk⃗ · q⃗Þ2I0�; P · P · Ið2Þ ¼ s
Z

d3q
ð2πÞ3 I2;

k · Ið3Þ ¼
Z

d3q
ð2πÞ3 ½k

0I3 − ðk⃗ · q⃗ÞI2 − q⃗2k0I1 þ q⃗2ðk⃗ · q⃗ÞI0�; P · Ið3Þ ¼ ffiffiffi
s

p Z
d3q
ð2πÞ3 ½I3 − q⃗2I1�; ðD7Þ

with
ffiffiffi
s

p ¼ MϕR
and
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k0 ¼ sþ k2 − p2

2
ffiffiffi
s

p : ðD8Þ

In Eq. (D7), we have introduced

In ≡
Z

dq0

ð2πÞ
q0n

D
¼ −i

Nn

D
; ðD9Þ

where

D ¼ 2E1E2E3ð
ffiffiffi
s

p þ E1 þ E2Þðk0 þ E2 þ E3Þð
ffiffiffi
s

p
− E1 − E2 þ iϵÞ

× ð ffiffiffi
s

p
− k0 − E1 − E3 þ iϵÞð− ffiffiffi

s
p þ k0 − E1 − E3 þ iϵÞðk0 − E2 − E3 þ iϵÞ; ðD10Þ

with

E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗Þ2 þm2

1

q
; E2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗Þ2 þm2

2

q
; E3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þm2

3

q
: ðD11Þ

For the processes depicted in Fig. 1, m1 ¼ Mf0 , m2 ¼ Mϕ, and m3 ¼ MK . The expressions for Nn in Eq. (D9) are

N0 ¼ ðE1 þ E2Þ½ðE1 þ E3ÞðE2 þ E3ÞðE1 þ E2 þ E3Þ − E3k02� − sE1ðE2 þ E3Þ þ 2E1E3k0
ffiffiffi
s

p
;

N1 ¼ −E3½k0ðE1 þ E2ÞfE1ðE1 þ E2 þ 2E3Þ þ ðE2 þ E3Þ2 − k02g
þ ffiffiffi

s
p fk02ð2E1 þ E2Þ − E2ðE2 þ E3Þð2E1 þ E2 þ E3Þg − sk0E1�;

N2 ¼ E3½E3
1fk02 − E2ðE2 þ E3Þg þ E2

1fk02ðE2 þ 2E3Þ − E2ðE2 þ E3Þ2g
þ E1f−E3

2E3 þ ðE2
2 − k02Þððk0 − ffiffiffi

s
p Þ2 − E2

3Þ þ E2E3ð
ffiffiffi
s

p
− 2k0Þ2g

þ E2ðk0 −
ffiffiffi
s

p Þ2ðE2 þ E3 − k0ÞðE2 þ E3 þ k0Þ�;
N3 ¼ −E3½E3

1k
0fk02 − E2ðE2 þ 2E3Þg þ E2

1fk03ðE2 þ 2E3Þ
þ ffiffiffi

s
p

E2ðE2 þ E3 − k0ÞðE2 þ E3 þ k0Þ − E2k0ðE2 þ E3ÞðE2 þ 3E3Þg
þ E1fk03ðE2

2 þ 4E2E3 þ E2
3Þ þ sk0ðE2

2 þ 2E2E3 − k02Þ
þ 2

ffiffiffi
s

p ðE2
2E3ðE2 þ E3Þ − E2k02ðE2 þ 3E3Þ þ k04Þ

− E2
2E3k0ð2E2 þ 3E3Þ − k05g þ E2ðk0 −

ffiffiffi
s

p Þ3ðE2 þ E3 − k0ÞðE2 þ E3 þ k0Þ�: ðD12Þ

To implement in the formalism the unstable character of the f0ð980Þ resonance, in Eq. (D10), the term −E1 þ iϵ [for the

processes studied, E1 is the energy of f0ð980Þ] is replaced by −E1 þ i
Γf0
2
.
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