
 

Ambiguities in the definition of local spatial densities in light hadrons
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The relationship between the matrix element of a local operator and the Fourier transform of the
associated form factor fails for systems such as the nucleon where its intrinsic size is of order its Compton
wavelength. Although one can conceive of an intrinsic charge density distribution in the proton, there does
not seem to be an unambiguous way to define, compute, or measure it precisely.
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I. INTRODUCTION

This paper explores and quantifies an impediment to
defining local densities in ordinary 3-space in systems
whose size is of the same order as their Compton wave-
length. A classic example is the electric charge density
distribution in the nucleon ρNðrÞ. It is widely, but erro-
neously, believed that ρNðrÞ is given by the Fourier
transform of the nucleon’s electric form factor. This
identification was proposed long ago [1–3] as an extension
of the well-known relation that holds for nonrelativistic
systems like atoms. The “derivation” for the nucleon case is
usually credited to Sachs [3]. More recently, analogous
relations have been proposed between Fourier transforms of
the form factors of components of the energy-momentum
tensor and other local densities such as the pressure and shear
force within nucleons [4–6].
This identification is certainly valid for nonrelativistic

systems such as atoms and also, with relatively small
ambiguities, for nuclei. It fails badly, however, for a system
like the nucleon whose Compton wavelength (0.21 fm) is
comparable to its size (0.85 fm). Furthermore the problem
is more general than the charge density distribution. Indeed,
it does not seem to be possible to unambiguously define,
compute, or measure the spatial dependence of the nucleon
matrix element of any local operator independent of the
specific form of the wave packet state in which the nucleon
was prepared. The same conclusion applies to other light
hadrons or, in fact, any system for which the Compton
wavelength and intrinsic size are comparable.

This problem has been known, but not widely known, for
many years [7].1 Miller, in particular, has stressed the
problem of identifying the nucleon charge distribution
ρNðrÞ with the Fourier transform of the electric form factor
[8]. Recent lattice calculations of the quark and gluon
pressure and other distributions in hadrons reminded me of
the problem and stimulated this paper. In a recent paper [9]
Miller again called attention to the problem and in
particular to the failure of the widely accepted connection
between the nucleon’s charge radius and the derivative of
its electric form factor at zero momentum transfer,
r2p ¼ −6G0

Eð0Þ.2 Miller demonstrates that this relation is
not valid when sufficient care is taken to localize the
nucleon and keep track of relativistic effects. In a sense, this
paper can be considered a further exploration of the
arguments put forward in Refs. [7,9], emphasizing that
the problem can be appreciated with only an elementary
knowledge of relativistic quantum mechanics and illustrat-
ing it in a simple model.3

The basic problem is that to measure the matrix element
of a local operator like the charge density ρ̂ðrÞ in any
quantum system, the coordinate r that appears in the
operator has to be defined relative to the location of the
system. Thus the system must be localized somewhere. It is
necessary to construct a localized wave packet whose
center defines the coordinate origin with respect to which
r is defined. The more tightly one tries to localize the
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1I first became aware of this problem through discussions with
Burkardt, see Ref. [7].

2For further references see [9].
3Incidentally, the problem does not apply to the matrix

elements of bilocal operators like those that define (ordinary,
generalized, and transverse momentum dependent) parton dis-
tribution functions. As first recognized by Soper [10] and
emphasized by Burkardt [7] (see also Refs. [8,9]) these corre-
lation functions can be manipulated to define local distribution
functions in the plane transverse to the direction defined by the
infinite momentum frame of the parton model.
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system in order to give a precise meaning to r, the higher
the momentum components one introduces into its wave
function and the larger the relativistic effects that make the
matrix element of the operator dependent on the form of the
wave packet. At the other extreme, if one chooses a wave
packet that is large compared to the intrinsic size of the
system, then the calculated or measured charge distribution
is dominated by the width of the wave packet, not by the
intrinsic charge distribution of the system.
A detailed analysis in a simple model (see below) shows

that troubles arise if one attempts to localize a system
within its Compton wavelength. For an atom, the Compton
wavelength is of order 0.2=A fm while the charge is
distributed over several Angstroms, so there is no problem.
For a nucleus, the Compton wavelength (again 0.2=A fm)
is relatively small compared to its size (RA ∼ 1.3A1=3 fm),
and the ambiguities in the definition of the charge density
and other local distributions are not large, except perhaps
for the deuteron. For the nucleon the ambiguities are
significant and for the pion they are overwhelming. The
condition for the validity of the traditional Fourier trans-
form connection between the form factor and charge
density distribution of an object is

Δ ≫ R ≫ 1=m; ð1Þ

where 1=m is the Compton wavelength of the object, R is a
measure of the localization provided by the wave packet,
and Δ is a measure of the intrinsic size of the system, for
example −6G0

Eð0Þ. Only when Δ ⋙ 1=m can the R
dependence be dismissed.
The textbook analysis of the charge distribution of atoms

and nuclei finesses this problem by transforming the
Schrödinger wave function to center of mass and relative
coordinates, thereby defining r relative to the center of mass.
A Schrödinger wave function description of a relativistic
bound state like the nucleon does not exist and the trans-
formation to relative and center-of-mass coordinates is not
possible.
The matrix elements of local operators in the nucleon

have been calculated for many years. When these calcu-
lations are performed directly in coordinate space, as for
example in the MIT bag model, their physical significance
is unclear for the reasons just explained. On the other hand,
the calculation of the form factors of local operators in
momentum space is unambiguous—they are in principle
measurable in scattering experiments—as, for example in
recent lattice calculations of the pressure and shear force in
the nucleon [11]. The Fourier transform of such a form
factor cannot, however, be interpreted as the coordinate
space matrix element of the operator of interest.
Note that this ambiguity has no consequences for the

currently interesting discrepancy between different mea-
surements of the nucleon “charge radius” since, as Miller
and others have pointed out, what is actually measured and

disagrees among experiments is the derivative of the
nucleon’s charge form factor at zero momentum transfer,
G0

Eð0Þ. It is the association of G0
Eð0Þ with the nucleon’s

charge radius that is unwarranted and is further explored in
this paper.

II. DEFINING THE CHARGE DENSITY
DISTRIBUTION FOR A QUANTUM PARTICLE

A. Basic definitions

Spin plays no special role in this analysis, so nothing is
lost by considering a spin-0 system. I have in mind a
spinless “nucleon,” but the analysis applies to any local-
izable quantum system. It also does not matter what are the
constituents of this system. Consider the electric charge
density operator ρ̂ðr; 0Þ at t ¼ 0 in the Heisenberg picture.
Suppose the system is an eigenstate of Q̂ ¼ R

d3rρ̂ðrÞ, with
eigenvalue Q,

Q̂jpi ¼ Qjpi: ð2Þ

For definiteness, choose Q ¼ 1. Here jpi is a covariantly
normalized momentum eigenstate,

hp0jpi ¼ 2Eð2πÞ3δ3ðp0 − pÞ; ð3Þ

where p ¼ ðE;pÞ and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
.

The r dependence of the matrix element of ρ̂ðr; 0Þ
between momentum eigenstates is determined by the
translation invariance of momentum eigenstates,

hp0jρ̂ðr; 0Þjpi ¼ eiðp0−pÞ·rhp0jρ̂ð0Þjpi: ð4Þ

Having chosen a spin-0 system, the matrix element in the
previous equation is determined by a single charge form
factor, Fðq2Þ,

hp0jρ̂ð0Þjpi ¼ ðEþ E0ÞFðq2Þ where ð5Þ

q2 ¼ ðp0 − pÞ2 ¼ ðE0 − EÞ2 − ðp0 − pÞ2: ð6Þ

Combining these equations we have

hp0jρ̂ðr; 0Þjpi ¼ eiðp0−pÞ·rðEþ E0ÞFðq2Þ: ð7Þ

Nothing further can be done without constructing a wave
packet state localized at some position with respect to
which the coordinate r is defined.

B. The charge density distribution
in a wave packet state

Let us superpose energy-momentum eigenstates to
define a localized, Heisenberg picture state for the particle
of interest,
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jΨ;xi ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð2πÞ3

p ϕðpÞe−ip·xjpi; ð8Þ

which is normalized to one by requiring

Z
d3pjϕðpÞj2 ¼ 1: ð9Þ

To localize the particle at the origin, set x ¼ 0 and
define jΨ; 0i≡ jΨi.
Although any localized wave packet would do, I choose

a spherically symmetric Gaussian packet to simplify
subsequent calculations,

ϕðpÞ≡ ϕðpÞ ¼
�
2R2

3π

�
3=4

e−p
2R2=3; ð10Þ

where I have defined the length scale R equal to the rms
radius of the wave packet.
Then the object of interest is the charge density dis-

tribution in the localized state,

ρðrÞ≡ hΨjρðr; 0ÞjΨi: ð11Þ

It is obtained by substituting from Eq. (10) for ϕðpÞ and
from Eq. (7) for the matrix element between momentum
eigenstates,

ρðrÞ¼
Z

d3pd3p0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ðEþE0ÞFðq2Þϕðp0ÞϕðpÞeiq·r: ð12Þ

Here q ¼ p0 − p and q2 ¼ ðE0 − EÞ2 − q2, and q2 ≤ 0.
To further simplify computations I assume that the form

factor Fðq2Þ is also a Gaussian parametrized by a length
scale Δ,

Fðq2Þ ¼ e
1
6
q2Δ2

: ð13Þ

The normalization, Fð0Þ ¼ 1, is chosen so that
hΨjQ̂jΨi ¼ 1. The size of the system is parametrized
by the naive mean-square charge radius, r2naive ¼
6ðdF=dq2jq2¼0Þ ¼ Δ2, which for the nucleon is approxi-
mately ð0.85 fmÞ2.
To proceed, change to relative and total center-of-

momentum variables,

p ¼ Pþ q=2;

p0 ¼ P − q=2; ð14Þ

giving

ρðrÞ ¼
�
2R2

3π

�
3=2 Z d3Pd3q

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ðEþ E0Þ

× exp

�
1

6
q2Δ2 −

2

3
P2R2 −

1

6
q2R2 þ iq · r

�
; ð15Þ

where I have substituted from Eq. (10) for ϕðpÞ.

C. Evaluating ρðrÞ when Δ ⋙ 1=m

The integral of Eq. (15) must be evaluated numerically
for systems like the nucleon for which Eq. (1) is not
satisfied. On the other hand, for systems like atoms and
nuclei, where Eq. (1) holds, it is useful to expand the terms
in ρðrÞ in inverse powers of m. In particular, we expand the
kinematic factor ðE0 þ EÞ=

ffiffiffiffiffiffiffiffiffiffi
4EE0p

and the form factor
Fðq2Þ keeping the first significant term in each.
Expansion of the kinematic factor ðE0 þ EÞ=

ffiffiffiffiffiffiffiffiffiffi
4EE0p

yields,

E0 þ Effiffiffiffiffiffiffiffiffiffi
4EE0p ¼ 1þ 1

2m4
ðP · qÞ2 þOð1=m6Þ: ð16Þ

The nucleon mass enters the form factor through the energy
difference,

q2 ¼ ðE0 − EÞ2 − q2

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðP − q=2Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðPþ q=2Þ2

q �2

− q2

¼ −q2 þ
�
P · q
m

�
2

þOð1=m4Þ; ð17Þ

so

Fðq2Þ ¼ e−
1
6
q2Δ2

�
1þ Δ2ðP · qÞ2

6m2
þOð1=m4Þ

�
: ð18Þ

Substituting Eq. (18) and (17) into ρðrÞ, we obtain

ρðrÞ≅
�
2R2

3π

�
3=2Z d3Pd3q

ð2πÞ3 ð1þ
�

1

2m4
þ Δ2

6m2

�
ðP ·qÞ2Þ

×exp

�
−
1

6
q2Δ2−

2

3
P2R2−

1

6
q2R2þ iq ·r

�
: ð19Þ

All of these integrals can be performed analytically
yielding

ρðrÞ¼
�
1þ27

8

�
1

m4
þ Δ2

3m2

��
R2þΔ2−r2

R2ðR2þΔ2Þ2
��

ρ0ðrÞ

where

ρ0ðrÞ¼
�

3

2πðR2þΔ2Þ
�

3=2
e−3r

2=2ðR2þΔ2Þ: ð20Þ

The expansion in inverse powers of m that made it possible
to perform the integrals of Eq. (19) limits the validity of this
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formula to parameter ranges where m2R2 and m2Δ2 are
large compared to one.
The traditional identification of the charge density

distribution with the Fourier transform of the form factor
is obtained by first taking the mass m to infinity and then
taking the target wave packet radius to zero. The result for
the Gaussian model is the “naive” charge distribution,

ρnaiveðrÞ ¼
�

3

2πΔ2

�
3=2

e−3r
2=2Δ2 ð21Þ

with rrms ¼ Δ, which is indeed the Fourier transform of the
form factor, Eq. (13). This is the sequence of limits
implicitly assumed by Sachs [3]. To get a feel for the
dependence of Eq. (20) on the various parameters, it is
useful to compute the mean-squared charge radius given by
Eq. (20),

hr2i ¼ 4π

Z
∞

0

drr4ρðrÞ

¼ Δ2

�
1 −

3

4m2R2

�
þ R2

�
1 −

9

4m4R4

�
: ð22Þ

When the wave packet is large, the mean-squared charge
radius is approximately R2, the radius of the wave packet.
To obtain the traditional result, hr2naivei ¼ Δ2, it is necessary
to choose m2R2 ≫ 1 in order to minimize the relativistic
corrections in Eq. (22) and to choose R2 ≪ Δ2 so that the
wave packet dependent second term in Eq. (22) is negli-
gible compared to the first. Altogether the condition for a
localization independent charge density is

Δ2 ≫ R2 ≫ 1=m2; ð23Þ

as quoted in Eq. (1). If Δ2 is not much larger than 1=m2,
then the charge density distribution in the system depends
unavoidably on the wave packet used to localize it and
Eq. (15) must be evaluated numerically.
Equation (23) is easily satisfied for atoms and large

nuclei, so before going on to the most interesting case of the
nucleon, we examine the uncontroversial cases of atoms
and heavy nuclei.

III. CHARGE DENSITY DISTRIBUTIONS FOR
ATOMS AND NUCLEI

A. Atoms

The intrinsic size of atoms is roughly a0, the Bohr radius,
while their masses grow with A. So atomic hydrogen is the
worst case example among atoms. For atomic hydrogen,
we take Δ ¼ a0 ≅ 5 × 10−11 m, and m ¼ mp ¼ 1=
ð2.1 × 10−16 mÞ. Since Δ ≅ 2.5 × 105=m the inequalities
of Eq. (1) can be satisfied for a large range of R. Explicit
calculation shows that ρðrÞ is virtually indistinguishable

from ρnaiveðrÞ forR between 10 fm and a0=10. If we choose,
for example, R ¼ 10 fm (corresponding tomR ≅ 50, so the
expansion of the previous section should be valid), Fig. 1(a)
shows the deviation of the radial charge density [4πr2ρðrÞ] of
the localized atom from the naive result of Eq. (21) is less
than ∼0.0002 over the whole range of r. Thus we can
conclude that to an accuracy of roughly 0.02%, the Fourier
transform of the form factor Fð−q2Þ can be interpreted as a
localization independent charge density distribution for the
atom with a “resolution” of order 10−14 m, a distance that is
of order 0.02% of the intrinsic size of the system. If, on the
other hand, we takeR to be an appreciable fraction of the size
of the atom, then the charge density distribution gets broader,
reflecting the spread in the quantumwave packet. Figure 1(b)
illustrates this effect by comparing the naive charge density
distribution with the localized distribution for R ¼ a0=4.
We conclude that the naive charge density distribution

obtained by Fourier transform of the form factor provides
an excellent representation of the charge density distribu-
tion of a localized atom.

B. Nuclei

For a typical nucleus we take Δ ¼ 1.3A1=3 fm and
m ≅ Amp ≅ A=ð:21 fmÞ. The constraint on R becomes

(a)

(b)

FIG. 1. Radial charge density distributions, 4πr2ρðrÞ, in a
Gaussian model for a hydrogen atom. (a) The difference between
the charge density distribution for a hydrogen atom localized
within 10 fm and the naive charge density distribution obtained
by Fourier transform of its charge form factor. (b) The radial
charge distribution of a Gaussian hydrogen atom localized within
0.25a0 compared to the naive charge distribution.
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progressively easier to satisfy with increasing A. Take
carbon (A ¼ 12) for example (see below for the case of a
very light nucleus such as deuterium) with Δ ≅ 3 fm.
Figure 2 shows the difference between the charge density
distribution for carbon localized within R ¼ 0.2 fm and the
Fourier transform of the charge form factor. The difference
is less than 0.0005 over the entire range of r indicating that
the association of the charge distribution with the Fourier
transform of the form factor is valid to this accuracy with a
resolution of order the nucleon’s Compton wavelength,
0.2 fm. Clearly the large mass of even a light nucleus such
as carbon makes it possible to localize its center of mass to
a region small compared to its intrinsic size.
To apply this analysis to hadrons and to the deuteron we

must evaluate the integral of Eq. (15) numerically.

IV. THE CHARGE DENSITY DISTRIBUTION IN
THE NUCLEON AND DEUTERON

For the nucleon with 1=m ≅ 0.2 fm and Δ ≅ 0.85 fm the
expansion 1=mR used in the previous section is not valid and
Eq. (15) must be evaluated numerically. Figure 3 shows the
results of tryingof localize themodel proton (with aGaussian
form factor) at various distance scales. In Fig. 3(a) we show
the charge density for the proton localizedwithR ¼ 0.5, 0.2,
and 0.05 fm from Eq. (15) compared with the naive charge
density distribution of Eq. (21). The fact that for all values of
R the charge density distribution has the same qualitative
shape as the naive charge density distribution should not be
surprising: 4πr2ρðrÞ is positive definite, normalized to one,
grows like r2 at small r, and falls like a Gaussian at large r.
Thus the overall shape of 4πr2ρðrÞ is highly constrained.
Within those constraints the R dependence is significant. To
display the dependence more clearly we plot the fractional
deviation,

ρnaiveðrÞ − ρðrÞ
ρðrÞ ;

for R ¼ 0.2 and 0.5 fm. The fractional differences are of
order one, and change dramatically between the two values

ofR, indicating that the concept of a localization independent
charge density distribution for the proton is not well defined.
The deuteron presents an intermediate case. Its intrinsic

size is of order Δ ≅ 2.15 fm as determined by the slope of
its charged form factor at q2 ¼ 0. The deuteron Compton
wavelength is 1=m ≅ 0.1 fm, so we expect that the naive
charge density distribution should approximate the charge
density distribution of a deuteron with values of between
these two. Explicit calculation shows that this is the case for
values ofR near 0.5 fm, roughly the geometricmean ofm and
Δ. This is illustrated in Fig. 4. In particular, Fig. 4(b) shows
that the naive charge density agrees with the localized
distribution to ∼20% between r ¼ 0 and ∼1.5Δ for a range
of values of R around 0.5 fm. The fractional difference
increases at large r where the charge density itself is small.
We conclude that the Fourier transform of the deuteron
charge form factor gives a charge density distribution that
provides a fair approximation to that of a deuteron localized
at distances small compared to its intrinsic size.
The pion, an extreme example with an intrinsic size of

order Δ ∼ :5 fm and a Compton wavelength of 1=m ≅
1.4 fm, cannot be localized to distances of order its intrinsic
size without generating relativistic effects that destroy the
relationship between the Fourier transform of its form factor
and its charge distribution.

FIG. 2. The difference between the radial charge density
distribution for a carbon nucleus localized within 0.2 fm and
the naive radial charge density distribution obtained by Fourier
transform of its charge form factor.

(a)

(b)

FIG. 3. (a) Radial charge density distributions, 4πr2ρðrÞ, in a
Gaussian model for the proton. The solid curve is the naive radial
charge density distribution of Eq. (21). The dotted curves are the
radial charge density distributions for a proton localized with
R ¼ 0.05, 0.2 and 0.5 fm. (b) The fractional difference between
the naive and localized charge density distributions for R ¼
0.2 fm and R ¼ 0.5 fm.
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V. DISCUSSION AND CONCLUSIONS

A simple, Fourier transform relationship between form
factors and spatial distributions of the expectation values of
local operators was developed during the study of non-
relativistic systems like atoms in the early days of quantum
mechanics. Although Burkardt [7] and Miller [8] pointed
out that this relationship fails in the case of the nucleon, the

relationship seems to have entered the folklore of particle
physics without careful consideration of whether it is
accurate for systems whose size is of the same order as
their Compton wavelength. Miller, in particular, has
emphasized that the connection fails for the nucleon [8]
and has recently reemphasized that it fails for the famous
assertion that the mean squared charge radius of the proton
is given by −6G0

Eð0Þ [9]. Defining a quantity such as
hρ̂ðrÞiN requires one to localize the nucleon and doing so
generates localization dependent contributions that invali-
date the Fourier transform relation between form factors
and local density distributions. I have explored this effect in
the simple case for the charge density distribution of a
spinless system with a Gaussian form factor. The problem
is not special to the charge density operator nor to a spinless
hadron nor to the assumption of a Gaussian form factor.
Instead this is a general problem that afflicts attempts to
extract spatial distributions of local properties of any
system that is not much larger than its Compton wave-
length. The problem is quite fundamental, since it origi-
nates in the interplay between the uncertainty principle and
relativity.
One can, of course, construct a function of r by Fourier

transforming the form factor of a local operator, but in the
case of the nucleon or other light hadrons, this is of
uncertain value and should not be considered an accurate
representation of the “actual” spatial distribution of the
operator matrix element, which cannot be defined inde-
pendent of the way in which the hadronic system was
localized.
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