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In this work, we construct 36 tetraquark configurations for the 1S-, 1P-, and 2S-wave states, and make a
prediction of the mass spectrum for the tetraquark sss̄s̄ system in the framework of a nonrelativistic
potential quark model without the diquark-antidiquark approximation. The model parameters are well
determined by our previous study of the strangeonium spectrum. We find that the resonances f0ð2200Þ and
f2ð2340Þ may favor the assignments of ground states Tðsss̄s̄Þ0þþð2218Þ and Tðsss̄s̄Þ2þþð2378Þ, respectively,
and the newly observed Xð2500Þ at BESIII may be a candidate of the lowest mass 1P-wave 0−þ state
Tðsss̄s̄Þ0−þð2481Þ. Signals for the other 0þþ ground state Tðsss̄s̄Þ0þþð2440Þ may also have been observed in

the ϕϕ invariant mass spectrum in J=ψ → γϕϕ at BESIII. The masses of the JPC ¼ 1−− Tsss̄s̄ states are
predicted to be in the range of ∼2.44–2.99 GeV, which indicates that the ϕð2170Þ resonance may not be a
good candidate of the Tsss̄s̄ state. This study may provide a useful guidance for searching for the Tsss̄s̄ states
in experiments.

DOI: 10.1103/PhysRevD.103.016016

I. INTRODUCTION

From the Review of Particle Physics (RPP) of Particle
Data Group [1], above the mass range of 2.0 GeV one can
see that there are several unflavored qq̄ isoscaler states,
such as f0ð2200Þ, f2ð2150Þ, f2ð2300Þ, f2ð2340Þ, etc.,
dominantly decaying into ϕϕ, ηη, and/or KK̄ final states.
The decay modes indicate that these states might be good
candidates for conventional ss̄meson resonances. Recently,
we carried out a systematical study of the mass spectrum
and strong decay properties of the ss̄ system in Ref. [2]. It
shows that these states cannot be easily accommodated by
the conventional ss̄ meson spectrum. While they may be
candidates for tetraquark sss̄s̄ (Tsss̄s̄) states, it is easy to
understand that they can fall apart into ϕϕ and ηη final
states through quark rearrangements, or easily decay into
KK̄ final states through a pair of ss̄ annihilations and then a
pair of light quark creations. The mass analysis with the
relativistic quark model in Ref. [3] supports the f0ð2200Þ

and f2ð2340Þ to be assigned as the Tsss̄s̄ ground states
with 0þþ and 2þþ, respectively. However, a relativized
quark model calculation [4] only favors f2ð2300Þ to be a
Tsss̄s̄ state.
Some other candidates of the Tsss̄s̄ states from experi-

ment are also suggested in the literature. For example,
the vector meson resonance ϕð2170Þ listed in RPP [1] is
suggested to be a 1−− Tsss̄s̄ state based on the mass analysis
of QCD sum rules [5–9] and flux-tube model [10]. The
newly observed Xð2239Þ resonance in the eþe− → KþK−

process at BESIII [11] is suggested to be a candidate of
the lowest 1−− Tsss̄s̄ state in a relativized quark model [4].
Moreover, the newly observed resonances Xð2500Þ
observed in J=ψ → γϕϕ [12] and Xð2060Þ observed in
J=ψ → ϕηη0 [13] at BESIII are suggested to be 0−þ and
1þ− Tsss̄s̄ states, respectively, according to the QCD sum
rule studies [14,15]. The assignment of Xð2500Þ is con-
sistent with that in Ref. [4].
With the recent experimental progresses, more quanti-

tative studies on the Tsss̄s̄ states can be carried out and their
evidences can also be searched for in experiments. Very
recently, the LHCb Collaboration reported their results on
the observations of tetraquark ccc̄ c̄ (Tccc̄ c̄) states [16]. A
broad structure above the J=ψJ=ψ threshold ranging from
6.2 to 6.8 GeV and a narrower structure Tccc̄ c̄ð6900Þ are
observed with more than 5σ of significance level. There are
also some vague structure around 7.2 GeV to be confirmed.
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These observations could be evidences for genuine Tccc̄ c̄
states [17–21].
The observations of the Tccc̄ c̄ states above the J=ψJ=ψ

threshold at LHCb may provide an important clue for the
underlying dynamics for the ccc̄ c̄ system. In particular, the
narrowness of Tccc̄ c̄ð6900Þ suggests that there should be
more profound mechanism that “slows down” the fall-apart
decays of such a tetraquark system. Although this may be
related to the properties of the static potential of heavy quark
systems,more direct evidences are still needed to disentangle
the dynamical features between the heavy and light flavor
systems.As an analogy of theTccc̄ c̄ system, theremight exist
stable Tsss̄s̄ states above the ϕϕ threshold and can likely be
observed in the di-ϕmass spectrum.On theother hand, flavor
mixings could be important for the light flavor systems and
pure sss̄s̄ states may not exist. To answer such questions,
systematic calculations of the sss̄s̄ system should be carried
out. The BESIII experiments can provide a large data sample
for the search of the Tsss̄s̄ states in J=ψ and ψð2SÞ decays. In
theory, although there have been some predictions of the
Tsss̄s̄ spectrum within the quark model [3,4,10] and QCD
sum rules [17–20], most of the studies focus on some special
states in a diquark-antidiquark picture. About the status of
the tetraquark states, some recent review works can be
referenced [22,23]. In this study, we intend to provide a
systematical calculation of the mass spectrum of the 1S, 1P,
and 2S-wave Tsss̄s̄ states without the diquark-antidiquark
approximation in a nonrelativistic potential quark model
(NRPQM).
TheNRPQM is based on theHamiltonian proposed by the

Cornell model [24], which contains a linear confinement and
a one-gluon-exchange potential for quark-quark and quark-
antiquark interactions. With the NRPQM, we have success-
fully described the ss̄, cc̄, and bb̄ meson spectra [2,25,26],
and sss, ccc, and bbb baryon spectra [27,28]. Furthermore,
we adopted the NRPQM for the study of both 1S and 1P-
wave all-heavy tetraquark states with a Gaussian expansion
method (GEM) [21,29]. In this work, we continue to extend
this method to study the Tsss̄s̄ spectrum by constructing the
full tetraquark configurations without the diquark-antidi-
quark approximation.With the parameters determined in our
study of the ss̄ spectrum [2], we obtain a relatively reliable
prediction of the mass spectrum for 36 Tsss̄s̄ states, i.e., 4 1S-
wave ground states, 20 1P-wave orbital excitations, and 12
2S-wave radial excitations.
The paper is organized as follows: a brief introduction to

the tetraquark spectrum is given in Sec. II. In Sec. III, the
numerical results and discussions are presented. A short
summary is given in Sec. IV.

II. MASS SPECTRUM

A. Hamiltonian

We adopt a NRPQM to calculate the mass spectrum of
the sss̄s̄ system. In this model, the Hamiltonian is given by

H ¼
�X4

i¼1

mi þ Ti

�
− TG þ

X
i<j

VijðrijÞ; ð1Þ

where mi and Ti stand for the constituent quark mass and
kinetic energy of the ith quark, respectively; TG stands for
the center-of-mass (c.m.) kinetic energy of the tetraquark
system, rij ≡ jri − rjj is the distance between the ith and
jth quark, and VijðrijÞ stands for the effective potential
between them. In this work, the VijðrijÞ adopts a widely
used form [24–26,30–36]

VijðrijÞ ¼ Vconf
ij ðrijÞ þ Vsd

ij ðrijÞ; ð2Þ

where the confinement potential adopts the standard form
of the Cornell potential [24], which includes the spin-
independent linear confinement potential VLin

ij ðrijÞ ∝ rij
and Coulomb-like potential VCoul

ij ðrijÞ ∝ 1=rij,

Vconf
ij ðrijÞ ¼ −

3

16
ðλi · λjÞ

�
bijrij −

4

3

αij
rij

þ C0

�
: ð3Þ

The constant C0 stands for the zero point energy. While the
spin-dependent potential Vsd

ij ðrijÞ is the sum of the spin-
spin contact hyperfine potential VSS

ij , the spin-orbit poten-
tial VSS

ij , and the tensor term VT
ij,

Vsd
ij ðrijÞ ¼ VSS

ij þ VT
ij þ VLS

ij ; ð4Þ

with

VSS
ij ¼ −

αij
4
ðλi · λjÞ

�
π

2
·
σ3ije

−σ2ijr
2
ij

π3=2
·

16

3mimj
ðSi · SjÞ

�
; ð5Þ

VLS
ij ¼ −

αij
16

λi · λj
r3ij

�
1

m2
i
þ 1

m2
j
þ 4

mimj

�
fLij · ðSi þ SjÞg

−
αij
16

λi · λj
r3ij

�
1

m2
i
−

1

m2
j

�
fLij · ðSi − SjÞg; ð6Þ

VT
ij ¼−

αij
4
ðλi · λjÞ ·

1

mimjr3ij

�
3ðSi · rijÞðSj · rijÞ

r2ij
−Si ·Sj

�
:

ð7Þ

In the above equations, Si stands for the spin of the ith
quark, and Lij stands for the relative orbital angular
momentum between the ith and jth quark. If the interaction
occurs between two quarks or antiquarks, the λi · λj
operator is defined as λi · λj ≡P8

a¼1 λ
a
i λ

a
j , while if the

interaction occurs between a quark and an antiquark, the
λi · λj operator is defined as λi · λj ≡P8

a¼1 −λai λa�j , where
λa� is the complex conjugate of the Gell-Mann matrix λa.
The parameters bij and αij denote the strength of the
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confinement and strong coupling of the one-gluon-
exchange potential, respectively.
The five parameters ms, αss, σss, bss, and C0 have been

determined by fitting the mass spectrum of the strangeo-
nium in our previous work [2]. The quark model parameters
adopted in this work are collected in Table I.

B. Configurations classified in the quark model

To calculate the spectroscopy of a qqq̄ q̄ (q ∈ fs; c; bg)
system, first we construct the configurations in the product
space of flavor, color, spin, and spatial parts.
In the color space, there are two color-singlet bases j66̄ic

and j3̄3ic, and their wave functions are given by

j66̄ic ¼
1

2
ffiffiffi
6

p ½ðrbþ brÞðb̄ r̄þr̄ b̄Þ þ ðgrþ rgÞðḡ r̄þr̄ ḡÞ

þ ðgbþ bgÞðb̄ ḡþḡ b̄Þ
þ 2ðrrÞðr̄ r̄Þ þ 2ðggÞðḡ ḡÞ þ 2ðbbÞðb̄ b̄Þ�; ð8Þ

j3̄3ic ¼
1

2
ffiffiffi
3

p ½ðbr − rbÞðb̄ r̄−r̄ b̄Þ − ðrg − grÞðḡ r̄−r̄ ḡÞ

þ ðbg − gbÞðb̄ ḡ−ḡ b̄Þ�: ð9Þ

In the spin space, there are six spin bases, which are
denoted by χS12S34S . Where S12 stands for the spin quantum
numbers for the diquark ðq1q2Þ (or antidiquark ðq̄1q̄2Þ),
while S34 stands for the spin quantum number for the
antidiquark ðq̄3q̄4Þ (or diquark ðq3q4Þ). S is the total spin
quantum number of the tetraquark qqq̄ q̄ system. The spin
wave functions χS12S34SSz

with a determined Sz (Sz stands for
the third component of the total spin S) can be explicitly
expressed as follows:

χ0000 ¼
1

2
ð↑↓↑↓ − ↑↓↓↑ − ↓↑↑↓þ ↓↑↓↑Þ; ð10Þ

χ1100 ¼
ffiffiffiffiffi
1

12

r
ð2↑↑↓↓ − ↑↓↑↓ − ↑↓↓↑

− ↓↑↑↓ − ↓↑↓↑þ 2↓↓↑↑Þ; ð11Þ

χ0111 ¼
ffiffiffi
1

2

r
ð↑↓↑↑ − ↓↑↑↑Þ; ð12Þ

χ1011 ¼
ffiffiffi
1

2

r
ð↑↑↑↓ − ↑↑↓↑Þ; ð13Þ

χ1111 ¼
1

2
ð↑↑↑↓þ ↑↑↓↑ − ↑↓↑↑ − ↓↑↑↑Þ; ð14Þ

χ1122 ¼ ↑↑↑↑: ð15Þ

In the spatial space, we define the relative Jacobi
coordinates with the single-partial coordinates ri (i ¼ 1,
2, 3, 4),

ξ1 ≡ r1 − r2; ð16Þ

ξ2 ≡ r3 − r4; ð17Þ

ξ3 ≡m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

; ð18Þ

R≡m1r1 þm2r2 þm3r3 þm4r4
m1 þm2 þm3 þm4

: ð19Þ

Note that ξ1 and ξ2 stand for the relative Jacobi coordinates
between two quarks q1 and q2 (or antiquarks q̄1 and q̄2),
and two antiquarks q̄3 and q̄4 (or quarks q3 and q4),
respectively. While ξ3 stands for the relative Jacobi coor-
dinate between diquark qq and antidiquark q̄ q̄. Using the
above Jacobi coordinates, it is easy to obtain basis functions
that have well-defined symmetry under permutations of the
pairs (12) and (34) [37].
In the Jacobi coordinate system, the spatial wave func-

tion ΨNLMðξ1; ξ2; ξ3;RÞ for a qqq̄ q̄ system with principal
quantum number N and orbital angular momentum quan-
tum numbers LM may be expressed as the linear combi-
nation of ΦðRÞψα1ðξ1Þψα2ðξ2Þψα3ðξ3Þ,

ΨNLMðξ1; ξ2; ξ3;RÞ
¼
X

α1;α2;α3

Cα1;α2;α3 ½ΦðRÞψα1ðξ1Þψα2ðξ2Þψα3ðξ3Þ�NLM; ð20Þ

where Cα1;α2;α3 stands for the combination coefficients,
ΦðRÞ is the c.m. motion wave function. In the quantum
number set αi ≡ fnξi ; lξi ; mξig, nξi is the principal quantum
number, lξi is the angular momentum, and mξi is its third
component projection. The wave functions ψαiðξiÞ, which
account for the relative motions, can be written as

ψαiðξiÞ ¼ Rnξi lξi
ðξiÞYlξimξi

ðξ̂iÞ; ð21Þ

where Ylξimξi
ðξ̂iÞ is the spherical harmonic function, and

Rnξi lξi
ðξiÞ is the radial part. It is seen that for an excited

state, there are three spatial excitation modes corresponding
to three independent internal wave functions ψαiðξiÞ (i ¼ 1,
2, 3), which are denoted as ξ1, ξ2, and ξ3, respectively, in
the present work. One point should be emphasized that
considering the fact that the sss̄s̄ system is composed of
equal mass constituent quarks and antiquarks, we adopt a

TABLE I. Quark model parameters used in this work.

ms (GeV) 0.60
αss 0.77
σss (GeV) 0.60
b (GeV2) 0.135
C0 (GeV) −0.519
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TABLE II. Configurations for the tetraquark qqq̄ q̄ system up to the 2S-wave states.

JPðCÞ Configuration Wave function

JPC ¼ 0þþ 11S0þþð66̄Þc ψ1S
000χ

00
00 j66̄ic

JPC ¼ 0þþ 11S0þþð3̄3Þc ψ1S
000χ

11
00 j3̄3ic

JPC ¼ 1þ− 13S1þ−ð3̄3Þc ψ1S
000χ

11
11 j3̄3ic

JPC ¼ 2þþ 15S2þþð3̄3Þc ψ1S
000χ

11
22 j3̄3ic

JPC ¼ 0−− 13P0−−ð66̄Þcðξ1;ξ2Þ
ffiffi
1
6

q
ðψξ1

011χ
10
1−1 − ψξ1

010χ
10
10 þ ψξ1

01−1χ
10
11 − ψξ2

011χ
01
1−1 þ ψξ2

010χ
01
10 − ψξ2

01−1χ
01
11Þ j66̄ic

JPC ¼ 0−− 13P0−−ð3̄3Þcðξ1;ξ2Þ
ffiffi
1
6

q
ðψξ1

011χ
01
1−1 − ψξ1

010χ
01
10 þ ψξ1

01−1χ
01
11 − ψξ2

011χ
10
1−1 þ ψξ2

010χ
10
10 − ψξ2

01−1χ
10
11Þ j3̄3ic

JPC ¼ 0−þ 13P0−þð66̄Þcðξ1;ξ2Þ
ffiffi
1
6

q
ðψξ1

011χ
10
1−1 − ψξ1

010χ
10
10 þ ψξ1

01−1χ
10
11 þ ψξ2

011χ
01
1−1 − ψξ2

010χ
01
10 þ ψξ2

01−1χ
01
11Þ j66̄ic

JPC ¼ 0−þ 13P0−þð3̄3Þcðξ1;ξ2Þ
ffiffi
1
6

q
ðψξ1

011χ
01
1−1 − ψξ1

010χ
01
10 þ ψξ1

01−1χ
01
11 þ ψξ2

011χ
10
1−1 − ψξ2

010χ
10
10 þ ψξ2

01−1χ
10
11Þ j3̄3ic

JPC ¼ 0−þ 13P0−þð3̄3Þcðξ3Þ
ffiffi
1
3

q
ðψξ3

011χ
11
1−1 − ψξ3

010χ
11
10 þ ψξ3

01−1χ
11
11Þ j3̄3ic

JPC ¼ 1−− 13P1−−ð66̄Þcðξ1;ξ2Þ
1
2
ðψξ1

011χ
10
10 − ψξ1

010χ
10
11 − ψξ2

011χ
01
10 þ ψξ2

010χ
01
11Þ j66̄ic

JPC ¼ 1−− 13P1−−ð3̄3Þcðξ1;ξ2Þ
1
2
ðψξ1

011χ
01
10 − ψξ1

010χ
01
11 − ψξ2

011χ
10
10 þ ψξ2

010χ
10
11Þ j3̄3ic

JPC ¼ 1−− 15P1−−ð3̄3Þcðξ3Þ
ffiffiffiffi
1
10

q
ψξ3
011χ

11
20 −

ffiffiffiffi
3
10

q
ψξ3
010χ

11
21 þ

ffiffi
3
5

q
ψξ3
01−1χ

11
22

j3̄3ic

JPC ¼ 1−− 11P1−−ð3̄3Þcðξ3Þ ψξ3
011χ

11
00

j3̄3ic
JPC ¼ 1−− 11P1−−ð66̄Þcðξ3Þ ψξ3

011χ
00
00

j66̄ic
JPC ¼ 1−þ 13P1−þð66̄Þcðξ1;ξ2Þ

1
2
ðψξ1

011χ
10
10 − ψξ1

010χ
10
11 þ ψξ2

011χ
01
10 − ψξ2

010χ
01
11Þ j66̄ic

JPC ¼ 1−þ 13P1−þð3̄3Þcðξ1;ξ2Þ
1
2
ðψξ1

011χ
01
10 − ψξ1

010χ
01
11 þ ψξ2

011χ
10
10 − ψξ2

010χ
10
11Þ j3̄3ic

JPC ¼ 1−þ 13P1−þð3̄3Þcðξ3Þ
ffiffi
1
2

q
ðψξ3

011χ
11
10 − ψξ3

010χ
11
11Þ j3̄3ic

JPC ¼ 2−− 13P2−−ð66̄Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

011χ
10
11 − ψξ2

011χ
01
11Þ j66̄ic

JPC ¼ 2−− 13P2−−ð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

011χ
01
11 − ψξ2

011χ
10
11Þ j3̄3ic

JPC ¼ 2−− 15P2−−ð3̄3Þcðξ3Þ
ffiffi
1
3

q
ψξ3
011χ

11
21 −

ffiffi
2
3

q
ψξ3
010χ

11
22

j3̄3ic

JPC ¼ 2−þ 13P2−þð66̄Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

011χ
10
11 þ ψξ2

011χ
01
11Þ j66̄ic

JPC ¼ 2−þ 13P2−þð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

011χ
01
11 þ ψξ2

011χ
10
11Þ j3̄3ic

JPC ¼ 2−þ 13P2−þð3̄3Þcðξ3Þ ψξ3
011χ

11
11

j3̄3ic
JPC ¼ 3−− 15P3−−ð3̄3Þcðξ3Þ ψξ3

011χ
11
22

j3̄3ic

JPC ¼ 0þ− 21S0þ−ð66̄Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
00
00 − ψξ2

100χ
00
00Þ j66̄ic

JPC ¼ 0þ− 21S0þ−ð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
11
00 − ψξ2

100χ
11
00Þ j3̄3ic

JPC ¼ 0þþ 21S0þþð66̄Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
00
00 þ ψξ2

100χ
00
00Þ j66̄ic

JPC ¼ 0þþ 21S0þþð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
11
00 þ ψξ2

100χ
11
00Þ j3̄3ic

JPC ¼ 0þþ 21S0þþð66̄Þcðξ3Þ ψξ3
100χ

00
00

j66̄ic
JPC ¼ 0þþ 21S0þþð3̄3Þcðξ3Þ ψξ3

100χ
11
00

j3̄3ic
JPC ¼ 1þ− 23S1þ−ð3̄3Þcðξ1;ξ2Þ

ffiffi
1
2

q
ðψξ1

100χ
11
11 − ψξ2

100χ
11
11Þ j3̄3ic

JPC ¼ 1þ− 23S1þ−ð3̄3Þcðξ3Þ ψξ3
100χ

11
11

j3̄3ic
JPC ¼ 1þþ 23S1þþð3̄3Þcðξ1;ξ2Þ

ffiffi
1
2

q
ðψξ1

100χ
11
11 þ ψξ2

100χ
11
11Þ j3̄3ic

JPC ¼ 2þ− 25S2þ−ð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
11
22 − ψξ2

100χ
11
22Þ j3̄3ic

JPC ¼ 2þþ 25S2þþð3̄3Þcðξ1;ξ2Þ
ffiffi
1
2

q
ðψξ1

100χ
11
22 þ ψξ2

100χ
11
22Þ j3̄3ic

JPC ¼ 2þþ 25S2þþð3̄3Þcðξ3Þ ψξ3
100χ

11
22

j3̄3ic

LIU, LIU, ZHONG, and ZHAO PHYS. REV. D 103, 016016 (2021)

016016-4



single set of Jacobi coordinates in this study as an approxi-
mation. In fact, the four-body wave function describing a
scalar sss̄s̄ state contains a small contribution of internal
angular momentum. This contribution is neglected in our
calculations. To precisely treat an N-body system, one can
involve several different sets of Jacobi coordinates as
those done in Refs. [38–43], or adopt a single set of
Jacobi coordinates X ¼ ðξi; ξ2;…; ξN−1Þ with nondiagonal
Gaussians e−XAX

T
as those done in Refs. [44–47], where A

is a symmetric matrix.
Taking into account the Pauli principle and color con-

finement for the four-quark system qqq̄ q̄, we have four
configurations for 1S-wave ground states, 20 configura-
tions for the 1P-wave orbital excitations, and 12 configu-
rations for the 2S-wave radial excitations. The spin-parity
quantum numbers, notations, and wave functions for
these configurations are presented in Table II. With the
wave functions for all the configurations, the mass matrix
elements of the Hamiltonian can be worked out.
To work out the matrix elements in the coordinate

space, we expand the radial part Rnξi lξi
ðξiÞ with a series

of harmonic oscillator functions [21,27],

Rnξi lξi
ðξiÞ ¼

Xn
l¼1

Cξilϕnξi lξi
ðωξil; ξiÞ; ð22Þ

with

ϕnξi lξi
ðωξil; ξiÞ

¼ ðμξiωξilÞ
3
4

�
2lξþ2−nξð2lξi þ 2nξi þ 1Þ!!ffiffiffi

π
p

nξi!½ð2lξi þ 1Þ!!�2
�1

2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μξiωξil

p
ξiÞlξi

× e−
1
2
μξiωξil

ξi
2

F

�
−nξi ; lξi þ

3

2
; μξiωξilξi

2

�
; ð23Þ

where Fð−nξi ; lξi þ 3
2
; μξiωξilξi

2Þ is the confluent hyper-
geometric function. It should be pointed out that if there are
no radial excitations, the expansion method with harmonic
oscillator wave functions (HOEM) is just the same as the
Gaussian expansion method adopted in the litera-
ture [38,39].
For an sss̄s̄ system, if we ensure that the spatial wave

function with Jacobi coordinates can transform into the
single particle coordinate system, the harmonic oscillator
frequencies ωξil (i ¼ 1, 2, 3) can be related to the harmonic
oscillator stiffness factor Kl with ωξ1l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Kl=μξ1
p

,
ωξ2l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Kl=μξ2
p

, and ωξ3l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kl=μξ3

p
. Considering

the reduced masses μξ1 ¼ μξ2 ¼ ms=2, μξ3 ¼ ms for

Tðsss̄s̄Þ, one has ωξ1l ¼ ωξ2l ¼ ωξ3l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kl=ms

p
. It indi-

cates that the harmonic oscillator frequencies ωξil for
Tðsss̄s̄Þ are not independent. According to the relation
ωξ1l¼ωξ2l¼ωξ3l¼ωl, the expansion of

Q
3
i¼1Rnξi lξi

ðξiÞ
can be simplified as

Y3
i¼1

Rnξi lξi
ðξiÞ ¼

Xn
l

Xn
l0

Xn
l00

Cξ1lCξ2l0Cξ3l00ϕnξ1 lξ1
ðωξ1l; ξ1Þϕnξ2 lξ2

ðωξ2l0 ; ξ2Þϕnξ3 lξ3
ðωξ3l00 ; ξ3Þδll0δll00

¼
Xn
l

Clϕnξ1 lξ1
ðωl; ξ1Þϕnξ2 lξ2

ðωl; ξ2Þϕnξ3 lξ3
ðωl; ξ3Þ: ð24Þ

Then we introduce oscillator length parameters dl that
can be related to the harmonic oscillator frequencies ωl

with 1=d2l ¼ msωl. Following the method of Refs. [38,39],
we let the dl parameters form a geometric progression

dl ¼ d1al−1 ðl ¼ 1;…; nÞ; ð25Þ

where n is the number of harmonic oscillator functions
and a is the ratio coefficient. There are three parameters
fd1; dn; ng to be determined through the variation method.
It is found that with the parameter set f0.085 fm;
3.399 fm; 15g for the sss̄s̄ system, we can obtain stable
solutions. The numerical results should be independent
of the parameter d1. To confirm this point, as done in the
literature [40–42], we scale the parameter d1 of the basis
functions as d1 → αd1. The mass of a Tsss̄s̄ state should be
stable at a resonance energy insensitive to the scaling para-
meter α. As an example, we plot the masses of 12 2S-wave

FIG. 1. Predicted masses of 12 2S-wave Tsss̄ s̄ configurations as
a function of the scaling factor α.
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Tsss̄s̄ configurations as a function of the scaling factor α in
Fig. 1. It is found that the numerical results are nearly
independent of the scaling factor α. The stabilization of
other states predicted in this work has also been examined
by the same method.
With the mass matrix elements ready for each configu-

ration, the mass of the tetraquark configuration and its
spacial wave function can be determined by solving a
generalized eigenvalue problem. The details can be found
in our previous works [27,29]. Finally, the physical states

can be obtained by diagonalizing the mass matrix of
different configurations with the same JPC numbers.

III. RESULTS AND DISCUSSIONS

Our predictions of the Tsss̄s̄ mass spectrum with the
HOEM are given in Table III, where the components of
different configurations for a physical state can be seen.
For example, the two 0þþ ground states are mixing
states between two different configurations1S0þþð66̄Þc and

TABLE III. Predicted mass spectrum for the sss̄ s̄ system with the HOEM.

JPðCÞ Configuration hHi (MeV) Mass (MeV) Eigenvector

0þþ 11S0þþð66̄Þc
11S0þþð3̄3Þc

�
2365 −105
−105 2293

� �
2218

2440

� � ð−0.58 −0.81 Þ
ð−0.81 −0.58 Þ

�
1þ− 13S1þ−ð3̄3Þc ð 2323 Þ 2323 1
2þþ 15S2þþð3̄3Þc ð 2378 Þ 2378 1
0−− 13P0−−ð66̄Þcðξ1;ξ2Þ

13P0−−ð3̄3Þcðξ1;ξ2Þ

�
2635 154

154 2694

� �
2507

2821

� � ð−0.77 0.64 Þ
ð 0.64 0.77 Þ

�
0−þ 13P0−þð66̄Þcðξ1;ξ2Þ

13P0−þð3̄3Þcðξ1;ξ2Þ
13P0−þð3̄3Þcðξ3Þ

 
2616 −35 −111
−35 2685 56

−111 56 2576

!  
2481

2635

2761

!  ð 0.61 −0.11 0.78 Þ
ð−0.56 −0.76 0.34 Þ
ð 0.56 −0.64 −0.53 Þ

!

1−− 13P1−−ð66̄Þcðξ1;ξ2Þ
13P1−−ð3̄3Þcðξ1;ξ2Þ
15P1−−ð3̄3Þcðξ3Þ
11P1−−ð3̄3Þcðξ3Þ
11P1−−ð66̄Þcðξ3Þ

0
BBB@

2585 −154 −89 −46 90

−154 2694 42 22 −76
−89 42 2584 −8 29

−46 22 −8 2636 −51
90 −76 29 −51 2889

1
CCCA

0
BBB@

2445

2567

2627

2766

2984

1
CCCA

0
BBB@

ð−0.80 −0.38 −0.43 −0.14 0.11 Þ
ð 0.18 0.57 −0.78 −0.05 0.15 Þ
ð 0.03 0.11 0.11 −0.97 −0.18 Þ
ð−0.42 0.57 0.43 0.00 0.56 Þ

ð 0.38 −0.43 −0.07 −0.19 0.79 Þ

1
CCCA

1−þ 13P1−þð66̄Þcðξ1;ξ2Þ
13P1−þð3̄3Þcðξ1;ξ2Þ
13P1−þð3̄3Þcðξ3Þ

 
2628 95 25

95 2712 12

25 12 2633

!  
2564

2632

2778

!  ð 0.83 −0.51 −0.21 Þ
ð−0.09 0.25 −0.96 Þ
ð 0.55 0.82 0.12 Þ

!

2−− 13P2−−ð66̄Þcðξ1;ξ2Þ
13P2−−ð3̄3Þcðξ1;ξ2Þ
15P2−−ð3̄3Þcðξ3Þ

 
2620 −217 −50
−217 2725 24

−50 24 2665

!  
2446

2657

2907

!  ð 0.79 0.60 0.12 Þ
ð−0.03 0.23 −0.9 7Þ
ð−0.61 0.76 0.20 Þ

!

2−þ 13P2−þð66̄Þcðξ1;ξ2Þ
13P2−þð3̄3Þcðξ1;ξ2Þ
13P2−þð3̄3Þcðξ3Þ

 
2638 138 −33
138 2733 −16
−33 −16 2673

!  
2537

2669

2837

!  ð 0.82 −0.56 0.13 Þ
ð 0.00 0.23 0.97 Þ

ð−0.58 −0.79 0.19 Þ

!

3−− 15P3−−ð3̄3Þcðξ3Þ ð 2719 Þ 2719 1

0þ− 21S0þ−ð66̄Þcðξ1;ξ2Þ
21S0þ−ð3̄3Þcðξ1;ξ2Þ

�
2848 −27
−27 2942

� �
2841

2949

� � ð−0.97 −0.26 Þ
ð−0.26 0.97 Þ

�
0þþ 21S0þþð66̄Þcðξ1;ξ2Þ

21S0þþð3̄3Þcðξ1;ξ2Þ
21S0þþð66̄Þcðξ3Þ
21S0þþð3̄3Þcðξ3Þ

0
BB@

2859 −53 −61 −18
−53 2903 −20 −49
−61 −20 3218 −40
−18 −49 −40 2856

1
CCA

0
B@

2781

2876

2948

3232

1
CA

0
BB@

ð−0.61 −0.52 −0.16 −0.57 Þ
ð 0.67 0.02 0.03 −0.74 Þ
ð 0.39 −0.85 0.07 0.34 Þ
ð 0.15 0.02 −0.98 0.09 Þ

1
CCA

1þ− 23S1þ−ð3̄3Þcðξ1;ξ2Þ
23S1þ−ð3̄3Þcðξ3Þ

�
2954 0

0 2867

� �
2867

2954

� � ð 0 1 Þ
ð 1 0 Þ

�
1þþ 23S1þþð3̄3Þcðξ1;ξ2Þ ð 2920 Þ 2920 1
2þ− 25S2þ−ð3̄3Þcðξ1;ξ2Þ ð 2977 Þ 2977 1

2þþ 25S2þþð3̄3Þcðξ1;ξ2Þ
25S2þþð3̄3Þcðξ3Þ

�
2952 −28
−28 2888

� �
2878

2963

� � ð−0.35 −0.94 Þ
ð−0.94 0.35 Þ

�
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1S0þþð3̄3Þc due to a strong contribution of the confine-
ment potential to the nondiagonal elements. To see
the contributions from each part of the Hamiltonian to
the mass of different configurations, we also present our
results in Table IV. It is found that both the kinetic energy
term hTi and the linear confinement potential term hVLini

contribute a large positive value to the mass, while the
Coulomb-type potential hVCouli has a large cance-
lation with these two terms. The spin-spin interaction
term hVSSi, the tensor potential term hVTi, and/or the
spin-orbit interaction term hVLSi have also sizable con-
tributions to some configurations. Thus, as a reliable

TABLE IV. The average contributions of each part of the Hamiltonian to the sss̄ s̄ configurations with the HOEM. hTi stands for the
contribution of the kinetic energy term. hVLini and hVCouli stand for the contributions from the linear confinement potential and
Coulomb-type potential, respectively. hVSSi, hVTi, and hVLSi stand for the contributions from the spin-spin interaction term, the tensor
potential term, and the spin-orbit interaction term, respectively. The second number in every column is calculated with the GEM.

JPðCÞ Configuration Mass hTi hVLini hVCouli hVSSi hVTi hVLSi
0þþ 11S0þþð66̄Þc 2365 807 930 −774 40.07

11S0þþð3̄3Þc 2293 884 890 −812 −29.72
1þ− 13S1þ−ð3̄3Þc 2323 851 906 −797 0.00
2þþ 15S2þþð3̄3Þc 2378 793 937 −767 52.33

0−− 13P0−−ð66̄Þcðξ1;ξ2Þ 2635 827 1077 −659 4.42 34.92 −11.64
13P0−−ð3̄3Þcðξ1;ξ2Þ 2694 902 1094 −644 −0.95 9.02 −27.06

0−þ 13P0−þð66̄Þcðξ1;ξ2Þ 2616 862 1056 −675 26.93 −4.20 −12.60
13P0−þð3̄3Þcðξ1;ξ2Þ 2685 921 1083 −651 8.30 −9.39 −28.16
13P0−þð3̄3Þcðξ3Þ 2576 976 1015 −703 9.95 −20.88 −62.65

1−− 13P1−−ð66̄Þcðξ1;ξ2Þ 2585 895 1037 −688 5.06 −20.11 −6.70
13P1−−ð3̄3Þcðξ1;ξ2Þ 2694 902 1094 −644 −0.95 −4.51 −13.53
15P1−−ð3̄3Þcðξ3Þ 2584 972 1018 −702 43.08 −14.60 −93.87
11P1−−ð3̄3Þcðξ3Þ 2636 876 1068 −665 −5.24 0 0

11P1−−ð66̄Þcðξ3Þ 2889 847 1210 −564 33.27 0 0

1−þ 13P1−þð66̄Þcðξ1;ξ2Þ 2628 845 1066 −667 26.33 2.03 −6.08
13P1−þð3̄3Þcðξ1;ξ2Þ 2712 881 1106 −636 8.27 4.33 −13.00
13P1−þð3̄3Þcðξ3Þ 2633 883 1064 −668 9.07 8.73 −26.18

2−− 13P2−−ð66̄Þcðξ1;ξ2Þ 2620 845 1066 −667 4.59 3.63 6.05

13P2−−ð3̄3Þcðξ1;ξ2Þ 2725 859 1120 −628 −0.58 0.83 12.40

15P2−−ð3̄3Þcðξ3Þ 2665 845 1087 −652 35.76 11.32 −24.26
2−þ 13P2−þð66̄Þcðξ1;ξ2Þ 2638 832 1074 −662 25.87 −0.39 5.91

13P2−þð3̄3Þcðξ1;ξ2Þ 2733 854 1123 −626 8.22 −0.82 12.2

13P2−þð3̄3Þcðξ3Þ 2673 830 1097 −646 8.52 −1.56 23.43
3−− 15P3−−ð3̄3Þcðξ3Þ 2719 779 1131 −625 31.92 −2.80 41.96

0þ− 21S0þ−ð66̄Þcðξ1;ξ2Þ 2848/2927 703/844 1131/1225 −363=− 529 14.19/24.74

21S0þ−ð3̄3Þcðξ1;ξ2Þ 2942/2931 936/941 1246/1246 −599=− 618 −4.09=0.80
0þþ 21S0þþð66̄Þcðξ1;ξ2Þ 2859/2874 848/863 1177/1206 −552=− 585 24.92/27.90

21S0þþð3̄3Þcðξ1;ξ2Þ 2903/2918 957/954 1236/1235 −639=− 620 −12.68=− 12.40

21S0þþð66̄Þcðξ3Þ 3218/3148 898/922 1399/1364 −469=− 517 27.06/17.52

21S0þþð3̄3Þcðξ3Þ 2856/2841 897/899 1186/1197 −586=− 622 −3.69=4.74
1þ− 23S1þ−ð3̄3Þcðξ1;ξ2Þ 2954/2943 921/926 1254/1256 −591=− 614 7.97/12.47

23S1þ−ð3̄3Þcðξ3Þ 2867/2851 884/895 1192/1201 −578=− 621 7.36/14.61
1þþ c3S1þþð3̄3Þcðξ1;ξ2Þ 2920/2934 939/926 1247/1252 −632=− 610 4.36/3.51
2þ− 25S2þ−ð3̄3Þcðξ1;ξ2Þ 2977/2965 893/905 1270/1271 −578=− 607 30.15/34.34

2þþ 25S2þþð3̄3Þcðξ1;ξ2Þ 2952/2964 903/898 1267/1272 −616=− 601 35.64/33.36

25S2þþð3̄3Þcðξ3Þ 2888/2871 859/868 1203/1220 −564=− 612 27.60/33.30
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calculation, both the spin-independent and spin-dependent
potentials should be reasonably included for the sss̄s̄
system. For clarity, our predicted Tsss̄s̄ spectrum is plotted
in Fig. 2.

A. Discussions of the numerical method

Herein we discuss the differences of numerical results
between the HOEM used in present work and the GEM
often adopted in the literature. For the 1S-, 1P-wave Tðsss̄s̄Þ
states, etc., there are no radial excitations. Thus, the GEM is
the same as the HOEM. For the first radial excited 2S-wave
Tðsss̄s̄Þ states, the HOEM is different from the GEM because
the trail harmonic oscillator wave functions are different
from the Gaussian functions.
To see the differences between the two expansion

methods, we also give our predictions of the 2S-wave
Tðsss̄s̄Þ states based on the GEM. It should be mentioned
that by fully expanding

Q
3
i¼1 Rnξi lξi

ðξiÞ with the GEM,
one cannot distinguish the ξ1 and ξ2 excited modes
which are defined for the 2S configurations presented
in Table II. Then we cannot numerically work out the
masses for the following states of 0þ− (21S0þ−ð66̄Þcðξ1;ξ2Þ
and 21S0þ−ð3̄3Þcðξ1;ξ2Þ), 1þ− (23S1þ−ð3̄3Þcðξ1;ξ2Þ), and 1þ−

(25S2þ−ð3̄3Þcðξ1;ξ2Þ) listed in Table II. To overcome this

problem, the spatial wave functions containing the radial
excitations are expanded with the Gaussian functions,
while the spatial wave functions containing no excitations
are adopted the single Gaussian function as an approxi-
mation. We have tested the single Gaussian approxima-
tion in the calculations of the ground 1S Tðsss̄s̄Þ states, the
numerical values are reasonably consistent with those cal-
culated with a series of Gaussian functions. The differences
of the numerical results between these two methods are
about 10 MeV.
Our numerical results for the 2S-wave Tðsss̄s̄Þ states with

the GEM are listed in Tables IV and V. From Table IV, it is
found that the numerical values for the 0þ− configuration
21S0þ−ð66̄Þcðξ1;ξ2Þ and 0þþ configuration 21S0þþð66̄Þcðξ3Þ cal-
culated with the HOEM are significantly different from
those obtained with the GEM. For these two configura-
tions, the predicted mass differences by the HOEM and
GEM can reach up to ∼70 MeV. However, for the other
2S-wave Tðsss̄s̄Þ configurations, the numerical values of
these two methods are comparable with each other. The
differences of the predicted masses between these two
methods are about 10–20 MeV. It should be mentioned that
the Coulomb-type potential hVCouli for the 2S-wave states
seems to be sensitive to the numerical methods as shown
in Table IV.

FIG. 2. Mass spectrum for the sss̄ s̄ system. The solid and dotted lines stand for the results predicted by the GEM and HOEM,
respectively.

LIU, LIU, ZHONG, and ZHAO PHYS. REV. D 103, 016016 (2021)

016016-8



In brief, most of the predictions are consistent with each
other between the HOEM and GEM. The uncertainties
from the numerical methods do not change our main
predictions of the Tðsss̄s̄Þ spectrum. Although some numeri-
cal results for the JPC ¼ 0þ− and 0þþ 2S states show a
significant numerical method dependence (see Fig. 2), the
GEM may give a slightly more accurate numerical result
based on our tests of the charmonium spectrum. In the
following, our discussions of the 2S states are based on the
GEM calculations.

B. S-wave states

There are four 1S-wave Tsss̄s̄ states with JPC ¼ 0þþ,
1þ−, 2þþ in the quark model. Their masses are predicted to
be in the range of 2.21–2.44 GeV. In contrast, the 2S wave
includes 12 states. Except for the highest mass state
Tðsss̄s̄Þ0þþð3208Þ, their masses lie in a relative narrow range
of 2.78–2.98 GeV. Apart from the conventional quantum
numbers, i.e., JPC ¼ 0þþ, 1þþ, 1þ−, 2þþ, the 2S-wave can
access exotic quantum numbers, i.e., JPC ¼ 0þ−, 2þ−.

1. 0+ + states

In the 1S-wave mutiplets, the two 0þþ ground states
include Tðsss̄s̄Þ0þþð2218Þ and Tðsss̄s̄Þ0þþð2440Þ. Their mass
splitting reaches up to about 200 MeV. These two states
have a strong mixing between the two color structures j66̄ic
and j3̄3ic. Their masses are much larger than the mass
threshold of ϕϕ. Thus, they may easily decay into ϕϕ pair
through quark rearrangements. The mass of the lowest 0þþ
Tsss̄s̄ in our model is close to the prediction of 2203 MeV in
the relativistic diquark-antidiquark model [3]. However,
it turns out to be much higher than the predicted value
1716 MeV by the relativized quark model with a diquark-
antidiquark approximation [4]. There might be some
crucial dynamics missing in the diquark-antidiquark appro-
ximation. As a test of the diquark-antidiquark approxima-
tion, we adopt the approximation as done in Ref. [4] and

calculate the mass of the 0þþ Tsss̄s̄ state with the
same potential model parameters. We obtain a mass of
1758 MeV, which is comparable with the prediction of
Ref. [4], but is obviously smaller than the results without
the diquark-antidiquark approximation.
In the 2S-wave sector, there are four 0þþ states,

Tðsss̄s̄Þ0þþð2796Þ, Tðsss̄s̄Þ0þþð2835Þ, Tðsss̄s̄Þ0þþð2943Þ, and
Tðsss̄s̄Þ0þþð3208Þ, predicted in the NRPQM. A strong
mixing between the two color structures j66̄ic and j3̄3ic
is also found among these states. In particular, the radial
excitation modes ðξ1; ξ2Þ and (ξ3) strongly mix with each
other. The highest state Tðsss̄s̄Þ0þþð3208Þ is nearly a pure
configuration of 1S0þþð66̄Þcðξ3Þ, with the color structure j66̄ic
and the radial excitation between diquark ðssÞ and anti-
diquark ðs̄s̄Þ. The special color structure of Tðsss̄s̄Þ0þþð3208Þ
leads to a rather large mass gap Δ ≃ 265 MeV from the
nearby Tðsss̄s̄Þ0þþð2943Þ. These 2S-wave 0þþ sss̄s̄ states
may easily decay into ϕϕ, ϕϕð1680Þ final states through
quark rearrangements. Theymay also easily decay intoK0

sK0
s

and KþK− final states through the ss̄ annihilation and a pair
of nonstrange qq̄ creation. One also notices that these states
may directly decay into ΞΞ̄ baryon pair with a light qq̄ pair
creation.
Some evidences for Tðsss̄s̄Þ0þþð2218Þ and Tðsss̄s̄Þ0þþð2440Þ

may have been seen in the previous experiments. Recently,
Kozhevnikov carried out a dynamical analysis of the reso-
nance contributions to J=ψ → γX → γϕϕ [48] with the data
from BESIII [12]. Two 0þþ resonances with masses at ∼2.2
and ∼2.4 GeV were extracted from the data. Evidence for a
scalar around 2.2 GeV in the ϕϕ mass spectra in B0

s →
J=ψϕϕ [49] was also reported by Ref. [50]. Considering the
mass and decay mode, these two scalar structures may be
good candidates for Tðsss̄s̄Þ0þþð2218Þ and Tðsss̄s̄Þ0þþð2440Þ.
It should be mentioned that f0ð2200Þ is listed in RPP [1]

as a well-established state. It has been seen in the K0
sK0

s ,
KþK−, and ηη, and may be assigned to Tðsss̄s̄Þ0þþð2218Þ.
Some qualitative features can be expected: (i) the 0þþ Tsss̄s̄

TABLE V. Predicted mass spectrum for the 2S-wave sss̄ s̄ system with the GEM.

0þ− 21S0þ−ð66̄Þcðξ1;ξ2Þ
21S0þ−ð3̄3Þcðξ1;ξ2Þ

�
2927 −20
−20 2931

� �
2909

2949

� � ð−0.75 −0.67 Þ
ð−0.67 0.75 Þ

�
0þþ 21S0þþð66̄Þcðξ1;ξ2Þ

21S0þþð3̄3Þcðξ1;ξ2Þ
21S0þþð66̄Þcðξ3Þ
21S0þþð3̄3Þcðξ3Þ

0
B@

2874 −48 134 −17
−48 2918 −9 −37
134 −9 3148 −31
−17 −37 −31 2841

1
CA

0
B@

2796

2835

2943

3208

1
CA

0
BB@

ð−0.75 −0.41 0.23 −0.45 Þ
ð−0.47 0.12 0.29 0.82 Þ
ð 0.25 −0.90 −0.15 0.33 Þ
ð−0.38 0.08 −0.92 0.09 Þ

1
CCA

1þ− 23S1þ−ð3̄3Þcðξ1;ξ2Þ
23S1þ−ð3̄3Þcðξ3Þ

�
2943 0

0 2851

� �
2851

2943

� � ð 0 1 Þ
ð 1 0 Þ

�
1þþ 23S1þþð3̄3Þcðξ1;ξ2Þ ð 2934 Þ 2934 1
2þ− 25S2þ−ð3̄3Þcðξ1;ξ2Þ ð 2965 Þ 2965 1

2þþ 25S2þþð3̄3Þcðξ1;ξ2Þ
25S2þþð3̄3Þcðξ3Þ

�
2964 −33
−33 2871

� �
2860

2975

� � ð−0.30 −0.95 Þ
ð−0.95 0.30 Þ

�
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state can decay into ηη, η0η0, and ηη0 through quark
rearrangements via the ss̄ component in the η and η0
mesons. An approximate branching ratio fraction can be
examined: BRðηηÞ∶BRðη0η0Þ∶BRðηη0Þ≃ sin4 αP∶cos4 αP∶
2sin2 αP cos2 αP≃ 0.24∶0.25∶0.50, with αP ≡ arctan

ffiffiffi
2

p þ
θP ≃ 44.7° and without including the phase space factors.
(ii) The 0þþ states may also easily decay into K0

sK0
s and

KþK− final states through annihilating a pair of ss̄ and
creating a pair of light qq̄. (iii) It is interesting to note
that no conventional 0þþ ss̄ states are predicted around
2.2 GeV in most literatures [2].
To establish the 0þþ ground states Tðsss̄s̄Þ0þþð2218Þ and

Tðsss̄s̄Þ0þþð2440Þ, a combined study of decay channels, such
as ϕϕ, K0

sK0
s , KþK−, ηη, η0η0, and ηη0, should be necessary.

The 2S-wave 0þþ states can be probed in these meson
pair decay channels including higher channels such as
ϕϕð1680Þ, and some baryon pair decay channels such
as ΞΞ̄.

2. 2+ + states

There is only one 2þþ state Tðsss̄s̄Þ2þþð2378Þ in the 1S-
wave states. This state lies between the two 0þþ ground
states and has a pure j3̄3ic color structure. Tðsss̄s̄Þ2þþð2378Þ
may have large decay rates into the ϕϕ, ηη, and η0η0 final
states through quark rearrangements and/or into Kð�ÞK̄ð�Þ
final states through the annihilation of ss̄ and creation of a
pair of nonstrange qq̄. It should be mentioned that with the
diquark-antidiquark approximation, the mass of the 2þþ
state is predicted to be 2192 MeV, which is about 200 MeV
lower than the four-body calculation results.
The f2ð2340Þ resonance listed in RPP [1] may be

assigned to Tðsss̄s̄Þ2þþð2378Þ. Besides the measured mass
2345þ50

−40 MeV, the observed decay modes ϕϕ and ηη are
consistent with the expectation of the tetraquark scenario.
On the other hand, as a conventional ss̄ state, the f2ð2340Þ
cannot be easily accommodated by the quark model
expectation [2]. The relativistic quark model calculation
of Ref. [3] also supports the f2ð2340Þ to be assigned as the
Tsss̄s̄ ground state with 2þþ. To confirm this assignment,
the other main decay modes of Tðsss̄s̄Þ2þþð2378Þ such as ηη0,
η0η0, Kð�ÞK̄ð�Þ should be investigated in experiment.
For the 2S-wave sector, there are two 2þþ sss̄s̄ states

Tðsss̄s̄Þ2þþð2860Þ and Tðsss̄s̄Þ2þþð2975Þ predicted in our
model, which are dominated by the 5S2þþð3̄3Þcðξ3Þ and
5S2þþð3̄3Þcðξ1;ξ2Þ configurations, respectively. Their masses
are predicted to be above the thresholds of ϕϕ, ϕϕð1680Þ
and Ξð1530ÞΞ̄. Therefore, experimental search for their
signals in these decay channels should be helpful for
understanding these tensor tetraquarks.

3. 1+ − states

In the 1S-wave multiplets, Tðsss̄s̄Þ1þ−ð2323Þ is the only
state with C ¼ −1 and has a pure j3̄3ic color structure. Its

mass is about 100 MeV larger than the lowest 1S-wave
state Tðsss̄s̄Þ0þþð2218Þ. Its mass is about 200–300 MeV
larger than that predicted by the QCD sum rules [15] and
the relativized quark model [4] in the diquark picture. The
mass of the 1þ− state may be notably underestimated in the
diquark picture. As a comparison, we calculate the mass of
the 1þ− state in the diquark picture using the same potential
model parameter set adopted in present work, and obtain a
mass of 1936 MeV, which is 300 MeV smaller than the
NRQPM prediction 2236 MeV.
Tðsss̄s̄Þ1þ−ð2323Þ may easily decay into ηϕ and η0ϕ

through the quark rearrangements. The decay of ψ 0=J=ψ →
ϕηη0 can access this state in ηϕ and η0ϕ channels. It should
be mentioned that some hints of Tðsss̄s̄Þ1þ−ð2323Þ may have
been found in the η0ϕ invariant mass spectrum around 2.3–
2.4 GeV by observing the J=ψ → ϕηη0 reaction at BESIII
recently [13].
For the 2S-wave sector, there are two states, i.e.,

1þ− sss̄s̄ Tðsss̄s̄Þ1þ−ð2851Þ and Tðsss̄s̄Þ1þ−ð2943Þ predicted
in the quark model. There are no configuration mixings in
these two states. Tðsss̄s̄Þ1þ−ð2851Þ has a pure j3̄3ic color
structure, and the radial excitation occurs between diquark
ðssÞ and antidiquark ðs̄s̄Þ (i.e., the ξ3 mode). In contrast,
although Tðsss̄s̄Þ1þ−ð2943Þ has also a pure j3̄3ic color
structure, its radial excitation occurs in the diquark ðssÞ
and antidiquark ðs̄s̄Þ. Apart from the ηϕ and η0ϕ decay
channels, it may favor decays into a pseudoscalar plus a
radially excited vector [i.e., ηϕð1680Þ and η0ϕð1680Þ], or a
radially excited pseudoscalar plus a vector [i.e., ηð1295Þϕ
and ηð1405Þϕ], through the quark rearrangements.
It should be mentioned that in Refs. [9,15] the authors

suggest that the new structure Xð2063Þ observed in the
J=ψ → ϕηη0 at BESIII [13] could be a 1þ− Tsss̄s̄ candidate
according to the QCD sum rule calculation. However, the
observed mass of Xð2063Þ is too small to be comparable
with our quark model predictions.

4. 0+ − and 2+ − states

In the 2S-wave multiplets, there are two 0þ− states,
Tðsss̄s̄Þ0þ−ð2909Þ and Tðsss̄s̄Þ0þ−ð2949Þ, predicted in the
NRPQM. There is a strong configuration mixing between
1S0þ−ð66̄Þcðξ1;ξ2Þ and 1S0þ−ð3̄3Þcðξ1;ξ2Þ. There is only one 2þ−

state Tðsss̄s̄Þ2þ−ð2965Þ corresponding to the configuration
5S2þ−ð3̄3Þcðξ1;ξ2Þ. The 0þ− and 2þ− are exotic quantum
numbers which cannot be accommodated by the conven-
tional qq̄ scenario. The P-wave decays into the ηh1ð1PÞ
and η0h1ð1PÞ channels could be useful for the search for
these states in experiments.

C. 1P-wave states

There are twenty 1P-wave Tsss̄s̄ states predicted in the
NRPQM. Apart from the conventional quantum numbers,
i.e., JPC ¼ 0−þ, 1−−, 2−þ, 2−−, 3−−, the P wave can access
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exotic quantum numbers, i.e., JPC ¼ 0−−; 1−þ. The masses
of the 1P-wave Tsss̄s̄ states scatter in a wide range of
about 2.4–3.0 GeV. The masses of the low-lying 1P-wave
states may highly overlap with the heaviest 1S-wave
state Tðsss̄s̄Þ0þþð2440Þ.

1. 0− + states

There are three 0−þ states, Tðsss̄s̄Þ0−þð2481Þ,
Tðsss̄s̄Þ0−þð2635Þ, and Tðsss̄s̄Þ0−þð2761Þ, predicted in the
NRPQM. They are mixed states with two color structures
j66̄ic and j3̄3ic and also mixed states between two orbital
excitations ðξ1; ξ2Þ and ξ3 modes. They can decay into
ϕh1ð1PÞ via an S wave, or ϕϕ via a P wave, through the
quark rearrangements.
In 2016, the BESIII Collaboration observed a new

resonance Xð2500Þ with a mass of 2470þ15
−19

þ101
−23 MeV

and a width of 230þ64
−35

þ56
−33 MeV in J=ψ → γϕϕ [12]. The

preferred spin-parity numbers for Xð2500Þ are JPC ¼ 0−þ
[12]. The Xð2500Þ resonance may be a candidate for
Tðsss̄s̄Þ0−þð2481Þ in terms of mass, decay modes, and
quantum numbers although Xð2500Þ may favor the 41S0
ss̄ state as suggested in our previous work [2]. In the recent
work of Ref. [14], the authors also suggested Xð2500Þ
to be a 0−þ Tsss̄s̄ state according to the QCD sum rule
studies. A measurement of the branching fraction of
B½Xð2500Þ → ϕϕ� might provide a test of the nature of
Xð2500Þ. The decay rate of Tðsss̄s̄Þ0−þð2481Þ into ϕϕ
through the quark rearrangements should be significantly
larger than that via an ss̄ pair production for the 41S0
ss̄ state.

2. 1− − states

There are five 1−− states, Tðsss̄s̄Þ1−−ð2445Þ,
Tðsss̄s̄Þ1−−ð2567Þ, Tðsss̄s̄Þ1−−ð2627Þ, Tðsss̄s̄Þ1−−ð2766Þ, and
Tðsss̄s̄Þ1−−ð2984Þ, predicted in the NRPQM. Their masses
scatter in a rather wide range of about 2.4–3.0 GeV.
From Table III, it is found that there are obvious con-
figuration mixings in these tetraquark states except that
Tðsss̄s̄Þ1−−ð2627Þ may nearly be a pure 1P1−−ð3̄3Þcðξ3Þ state.
The lowest state Tðsss̄s̄Þ1−−ð2445Þ is dominated by the
3P1−−ð66̄Þcðξ1;ξ2Þ configuration. Its orbital excitation mainly
occurs within the diquark ðssÞ or antidiquark ðs̄s̄Þ.
Meanwhile, the highest state Tðsss̄s̄Þ1−−ð2984Þ is dominated
by the 1P1−−ð66̄Þcðξ3Þ configuration, and the orbital excitation
occurs between the diquark ðssÞ and antidiquark ðs̄s̄Þ.
The vector meson ϕð2170Þ in RPP [1] is suggested to be

a 1−− Tsss̄s̄ state in the literature [5–10] since it is hard to be
explained as a conventional meson state according to its
measured decay modes [51,52]. Furthermore, the Xð2239Þ
resonance, which was observed in eþe− → KþK− by the
BESIII Collaboration [11], was suggested to be a candidate
of the lowest 1−− Tsss̄s̄ state by comparing with the mass
spectrum from the relativized quark model [4] and the QCD

two-point sum rule method [53]. However, our calculations
indicate that neither ϕð2170Þ nor Xð2239Þ can be assigned
to a 1−− Tsss̄s̄ state since their measured masses are
much lower than our predictions. It should be mentioned
that in recent studies ϕð2170Þ was considered as a vector
tetraquark state with content sus̄ ū rather than as a state
sss̄s̄ [23,54].
The 1−− Tsss̄s̄ states may have large decay rates into the

f0ð980Þϕ via an S wave, or into ηϕ and η0ϕ via a P wave.
There are some experimental evidences for structures
around 2.4 GeV observed in the f0ð980Þϕ invariant mass
spectrum from BABAR [55,56], Belle [57], BESII [58], and
BESIII [59], which could be signals of the 1−− sss̄s̄ tetra-
quark states [60]. For the heavier states Tðsss̄s̄Þ1−−ð2766Þ and
Tðsss̄s̄Þ1−−ð2984Þ, they can also decay into ΞΞ̄ baryon pair
through a qq̄ pair production in vacuum. Thus, exper-
imental search for these states in eþe− → ΞΞ̄ should be
very interesting.

3. 1− + states

There are three 1−þ states, Tðsss̄s̄Þ1−þð2564Þ,
Tðsss̄s̄Þ1−þð2632Þ, and Tðsss̄s̄Þ1−þð2778Þ, predicted in the
NRPQM. Note that 1−þ are exotic quantum numbers
which cannot be accommodated by the conventional
qq̄ scenario. Both the lowest mass state Tðsss̄s̄Þ1−þð2564Þ
and highest mass state Tðsss̄s̄Þ1−þð2778Þ are mixed states
between the two color structures j66̄ic and j3̄3ic, and their
orbital excitations are dominated by the ðξ1; ξ2Þ mode.
The middle state Tðsss̄s̄Þ1−þð2632Þ is dominated by the
3P1−þð3̄3Þcðξ3Þ configuration of which the orbital excitation
mainly occurs between the diquark ðssÞ and antidiquark
ðs̄s̄Þ. It should be noted that a corresponding state in the
relativized quark model [4] has a mass of 2581 MeV, which
is about 50 MeV smaller than our prediction.
These 1−þ Tsss̄s̄ states may easily decay into ϕh1ð1PÞ,

ηð0Þf1ð1420Þ, ϕϕ channels through the quark rearrange-
ments. They can be searched for in χcJð1PÞ → ηϕϕ;ϕK�K
with sufficient χcJð1PÞ data samples at BESIII, although no
obvious structures were found in previous observa-
tions [61,62].

4. 2− + states

There are three 2−þ states, Tðsss̄s̄Þ2−þð2537Þ,
Tðsss̄s̄Þ2−þð2669Þ, and Tðsss̄s̄Þ2−þð2837Þ, predicted in the
NRPQM. Both the lowest mass state Tðsss̄s̄Þ2−þð2537Þ
and highest mass state Tðsss̄s̄Þ2−þð2837Þ are mixed states
between the two color structures j66̄ic and j3̄3ic. Their
orbital excitations are dominated by the ðξ1; ξ2Þ mode. The
middle state Tðsss̄s̄Þ2−þð2669Þ is dominated by the
3P2−þð3̄3Þcðξ3Þ configuration of which the orbital excitation
occurs between the diquark ðssÞ and antidiquark ðs̄s̄Þ. A
corresponding state in the relativized quark model [4] has a
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mass of 2619 MeV, which is about 50 MeV smaller than
our prediction.
These 2−þ Tsss̄s̄ states may easily fall apart into ϕh1ð1PÞ

and ηf02ð1525Þ in an S wave, or into ϕϕ in a P wave
through the quark rearrangements. For the high mass state
Tðsss̄s̄Þ2−þð2837Þ, the strong decay mode ΞΞ̄ also opens.
These states can be searched for in χc2ð1PÞ → ηTðsss̄s̄Þ2−þ →
ηηf02ð1525Þ → ηηKK̄ at BESIII with the sufficient χc2ð1PÞ
data samples.

5. 0− − states

There are two states with exotic quantum numbers of
0−−, Tðsss̄s̄Þ0−−ð2507Þ and Tðsss̄s̄Þ0−−ð2821Þ, predicted in
the NRPQM. These two states have a strong mixing
between the two color structures j66̄ic and j3̄3ic. The
orbital excitation is the ðξ1; ξ2Þ mode, i.e., the excitation
occurs within the diquark ðssÞ or antidiquark ðs̄s̄Þ. These
two states may have large decay rates into ϕf1ð1285Þ and
ϕf1ð1420Þ in an S wave, or into ηϕ and η0ϕ in a P wave
through the quark rearrangements. These 0−− exotic states
may be produced by the reactions eþe− → ηð0ÞX →
ηð0Þηð0Þϕ or J=ψ → ηð0Þηð0Þϕ.

6. 2− − states

There are three 2−− states, Tðsss̄s̄Þ2−−ð2446Þ,
Tðsss̄s̄Þ2−−ð2657Þ, and Tðsss̄s̄Þ2−−ð2907Þ, predicted in the
NRPQM. Both the lowest mass state Tðsss̄s̄Þ2−−ð2446Þ
and highest mass state Tðsss̄s̄Þ2−−ð2907Þ are mixed states
between the two color structures, j66̄ic and j3̄3ic, and their
orbital excitations are dominated by the ðξ1; ξ2Þ mode.
The middle state Tðsss̄s̄Þ2−−ð2657Þ is dominated by the
3P2−−ð3̄3Þcðξ3Þ configuration, of which the orbital excitation
occurs between the diquark ðssÞ and antidiquark ðs̄s̄Þ. A
corresponding state in the relativized quark model [4] has a
mass of 2622 MeV, which is consistent with our prediction.
These 2−− states may easily decay into ϕf1ð1285Þ,
ϕf1ð1420Þ, and ϕf02ð1525Þ in an S wave, or into ηϕ,
η0ϕ in a P wave through the quark rearrangements. They
can also be searched for in eþe− → ηð0ÞX → ηð0Þηð0Þϕ or
vector charmonium decays such as J=ψ → ηηϕ.

7. 3− − state

There is only one 3−− state Tðsss̄s̄Þ3−−ð2719Þ predicted in
the NRPQM. This state has a pure color structure j3̄3ic and
also a pure orbital excitation between the diquark ðssÞ and
antidiquark ðs̄s̄Þ. Our predicted mass is about 60 MeV
larger than that predicted by the relativized quark model [4]
with a diquark approximation. The 3−− states may easily
decay into ϕf02ð1525Þ in an S wave by the quark rearrange-
ments. Since it has a high spin, it may be produced
relatively easier in pp̄ or pp collisions.

IV. SUMMARY

In this work, we calculate the mass spectra for the 1S,
1P, and 2S-wave Tsss̄s̄ states in a nonrelativistic potential
quark model without the often-adopted diquark-antidiquark
approximation. The 1S-wave ground states lie in the
mass range of ∼2.21–2.44 GeV, while the 1P- and
2S-wave states scatter in a rather wide mass range of
∼2.44–2.99 GeV. For the 2S-wave states, except for the
highest state Tðsss̄s̄Þ0þþð3208Þ, all the other states lie in a
relatively narrow range of ∼2.78–2.98 GeV. We find that
most of the physical states are mixed states with different
configurations.
For the sss̄s̄ system, it shows that both the kinetic energy

hTi and the linear confinement potential hVLini contribute a
large positive value to the mass, while the Coulomb-type
potential hVCouli has a large cancellation with these two
terms. The spin-spin interaction hVSSi, tensor potential
hVTi, and/or the spin-orbit interaction term hVLSi also have
sizable contributions to some configurations.
Some Tsss̄s̄ states may have shown hints in experiment.

For instance, the observed decay modes and masses
of f0ð2200Þ and f2ð2340Þ listed in RPP [1] could be
good candidates for the ground states Tðsss̄s̄Þ0þþð2218Þ
and Tðsss̄s̄Þ2þþð2378Þ, respectively. The newly observed
Xð2500Þ at BESIII may be a candidate for the lowest mass
1P-wave 0−þ state Tðsss̄s̄Þ0−þð2481Þ. Another 0þþ ground
state Tðsss̄s̄Þ0þþð2440Þ may have shown signals in the ϕϕ
channel at BESIII [12,48]. Our calculation shows that
ϕð2170Þ may not favor a vector state of Tsss̄s̄, because of
the much higher mass obtained in our model.
It should be stressed that as a flavor partner of Tccc̄ c̄, the

Tsss̄s̄ system may have very different dynamic features
that need further studies. One crucial point is that the
strange quark is rather light and the light flavor mixing
effects could become non-negligible. It suggests that strong
couplings between Tsss̄s̄ and open strangeness channels
could be sizable. As a consequence, mixings between Tsss̄s̄
and Tsqs̄ q̄ would be inevitable. For an S-wave strong
coupling, it may also lead to configuration mixings which
can be interpreted as hadronic molecules for a near-thresh-
old structure. In such a sense, this study can set up a
reference on the basis of orthogonal states. More elaborated
dynamics can be investigated by including the hadron
interactions in the Hamiltonian. For states with exotic
quantum numbers, experimental searches for their signals
can be carried out at BESIII and Belle-II.
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