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In this work, the triangle singularity mechanism is investigated in the ψð2SÞ → pp̄η=pp̄π0 process. The
triangle loop composed by J=ψ, η, and p has a singularity in the physical kinematic range for the ψð2SÞ →
pp̄η=pp̄π0 process, and it would generate a very narrow peak in the invariant mass spectrum of pηðπÞ
around 1.56387 GeV, which is far away from both the threshold and relative resonances. In these processes,
all the involved vertices are constrained by the experimental data. Thus, we can make a precise model
independent prediction here. It turns out that the peak in the pη invariant mass spectrum is visible, while it
is very small in the pπ0 invariant mass spectrum. We expect this effect shown in pp̄η final state can be
observed by the Beijing Spectrometer and Super Tau-Charm Facility in the future.
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I. INTRODUCTION

The concept of triangle singularity is first proposed by
L. D. Landau in 1959 [1]. In the following decades, it has
been proved that it will play an important role in explaining
many anomalous experimental observations. For instance,
the isospin breaking process ηð1405Þ → π0f0ð980Þ
observed by Beijing Spectrometer (BESIII) collaboration
in 2012 [2] was successfully explained in Refs. [3–7] by
considering the triangle singularity produced in the KK̄K�
loop. And, in 2015, Ref. [8] explained the nature of
a1ð1420Þ with the K�K̄K loop. Especially in recent years,
with the discovery of exotic states, such as Zc [9–15] and
Pc states [16,17], many researches on triangle singularity
have been carried out [3–8,18–55] (for a recent review, see
Ref. [56]). Very recently, a new exotic state Xð2900Þ was
observed by LHCb collaboration [57,58], and, according to
Ref. [41], it can also be related to a triangle singularity.
The kinematics of triangle singularity can be briefly

described by Fig. 1. In the figure, particle A first decays into
two particles 1 and 2. In the center-of-mass frame of
particle A, these two particles move in opposite directions.
IfmA > m1 þm2, then this decay can really happen, which
means that particles 1 and 2 can be classical particles. Then
particle 1 further decays into particle B and particle 3, while

particle 2 continues to move in its direction. When particles
2 and 3 move in the same direction and the velocity of
particle 3 is larger than that of particle 2, particle 3 will
catch up with particle 2. Eventually, particles 2 and 3 will
actually collide and produce the final state C. The whole
process above is named “triangle singularity,” which is the
basic content of Coleman-Norton theorem [54].
From Coleman-Norton theorem, we can easily see that

the triangle singularity is a pure kinematical effect. Thus,
such an effect from the triangle loop is model independent
and can be computed theoretically once all the vertices are
known. Obviously, the experimental detection of a pure

FIG. 1. Kinematical mechanism of the production of a triangle
singularity.
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triangle singularity must be interesting and important. It
will not only help us understand the triangle singularity
itself, but also confirm the hadron loop mechanism.
Furthermore, it is useful to study the properties of hadrons,
such as Xð3872Þ [42].
Unfortunately, although triangle singularities can be

used to explain many experimental phenomena, the triangle
singularity itself has not been fully confirmed by experi-
ments for various reasons. The first reason hindering the
discovery of triangle singularity is the threshold effect.
For example, Zcð3900Þ and Zcð4025Þ are very close to the
threshold of D̄D� and D̄�D�, respectively, and the Pc state
around 4.45 GeV is just near the χc1p threshold. It is
indicated in Ref. [20] that when the threshold enhancement
falls into the kinematic region of the triangle singularity,
the distinctions between them would be very complicated.
Thus, a detectable pure triangle singularity shall be far
away from the threshold enhancement. In addition to the
thresholds, the widths of internal particles should also be
considered, i.e., the widths of internal particles should
not be too wide. Otherwise, the shape of the triangle
singularity will be a Breit-Wigner form, which might
probably cause misunderstandings [6,7]. Besides, if we
want to determine a pure triangle singularity, a quantitative
calculation should be necessary. However, we found that
among Refs. [3–8,18–55], most of them can only give the
line shape since not all the involved vertices can be
determined. For example, although the exotic state
Pcð4450Þ [16], which is observed by LHCb collaboration
in Λb → J=ψpK process in 2015, can be interpreted as a
triangle singularity effect caused by the χc1pΛ� loop [24],
there is no experimental data to constraint the Λbχc1Λ�
vertex in this triangle loop diagram. Therefore, only a line
shape can be presented theoretically.
In this work, we propose to detect a pure triangle

singularity effect in the pη=pπ0 invariant mass spectrum
in the ψð2SÞ → pp̄η=pp̄π0 process with the triangle loop
composed by J=ψ, η, and p. This reaction can avoid the
three aspects mentioned above to confirm the triangle
singularity effect, the detailed explanations of these three
points are as follows:

1. Far away from the threshold of the relative channel. By
applying Coleman-Norton theorem, we get the posi-
tion of triangle singularity inmpηðπÞ ¼ 1.56387 GeV.
It is about 80MeVaway from the pη threshold. It will
certainly not mix with the pη threshold effect as the
width of the peak is quite small.

2. Narrow widths of all the intermediate particles in the
loop. J=ψ , η, and p all have a long life, so the peak
of triangle singularity caused by such loop diagram
must be very sharp, which means distinguishing it
from N� is very easy.

3. The well-known three vertices in the triangle loop.
ψð2SÞ → J=ψη, J=ψ → pp̄ and pη → pη=pπ0 all
can be constrained by the experimental data.

Thus, we can make a very precise prediction on the
significance of this triangle singularity theoretically. We
strongly recommend that experiments, especially BESIII
and Super Tau-Charm Facility (STCF) (in the future), do
precise analysis on the ψð2SÞ → pp̄η=pp̄π0 decay.
This paper is organized as follows. After the introduc-

tion, a detailed calculation of ψð2SÞ → pp̄η=pp̄π0 process
via J=ψηp loop is given in Sec. II. Then the corresponding
numerical results are shown in Sec. III, and finally a
summary is presented.

II. THE TRIANGLE SINGULARITY
CAUSED BY THE J=ψηp LOOP

A. The main mechanisms of the
ψð2SÞ → pp̄η=pp̄π0 process

The triangle loop diagram and tree diagram, which are
shown in Fig. 2, are both important for the ψð2SÞ →
pp̄η=pp̄π0 process. The triangle singularity we interested
exists in the former, hence the latter is named as back-
ground in this work. In the triangle loop diagram, ψð2SÞ
first decays into J=ψ and η, then J=ψ decays into a pp̄ pair
and η just moves along. When p catches up with η, they
interact and rescatter into the pη ðpπÞ final state, and this
case generates the triangle singularity. In Fig. 2(b), first
ψð2SÞ decays into an antiproton p̄ and an excited nucleon
N�, then N� decays into the final state pη ðpπÞ. It should be
mentioned that in this work we ignore three diagrams:
i.e., the loop diagram where the exchanged particle changes
from p to p̄ and also exchanges the positions of the proton
and antiproton in the final states, the tree diagrams
ψð2SÞ → ðη=π0ÞðJ=ψ → p̄pÞ and ψð2SÞ → pðN̄� →
p̄ðη=π0ÞÞ. The relevant reasons will be discussed in detail
at the end of Sec. III A.
The tree diagram is obviously dominant in Fig. 2, thus,

our main target is to check whether the narrow peak caused
by the loop diagram is visible or not. We adopt the effective
Lagrangian approach to do the calculation and the general
forms of the amplitudes that describing the Feynman
diagrams in Fig. 2 are written as

MTree ¼
X
N�

T2T1

m2
34 −m2

N� þ imN�ΓN�
; ð1Þ

(a) (b)

FIG. 2. The Feynman diagrams describing the process
ψð2SÞ → pp̄η=pp̄π. (a) Loop diagram where triangle singularity
happens; (b) tree diagram that called “background."
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MLoop ¼ i
Z

d4q
ð2πÞ4

L3F ðp3 þ p4 − q;mη;ΛηÞ
ðp3 þ p4 − qÞ2 −m2

η þ imηΓη

×
L1F ðp2 þ q;mJ=ψ ;ΛJ=ψÞ

ðp2 þ qÞ2 −m2
J=ψ þ imJ=ψΓJ=ψ

×
L2F ðq;mp;ΛpÞ
q2 −m2

p þ impΓp
; ð2Þ

where Ti and Li are the interactions of each vertices as
given in Fig. 2. We introduce a form factor F ðq;m;ΛÞ ¼

Λ4

ðq2−m2Þ2þΛ4 in Eq. (2) to describe the structure effects of

interaction vertices and off shell effects of internal particles,
and avoid the ultraviolet divergence. When triangle singu-
larity happens, all the exchanged particles are on shell, so
we have F ðq;m;ΛÞ ¼ 1. It tells that the form factor will
not affect the height of the peak caused by the triangle
singularity. In our calculation, for convenience, we set
ΛJ=ψ ;η;p ¼ mJ=ψ ;η;p þ αΛQCD, where α is a free parameter
and ΛQCD ¼ 0.22 GeV.
Then, all the invariant mass spectrums we need can be

obtained by

dΓ ¼
P jMTree þMLoopj2

96ð2πÞ3m3
ψð2SÞ

dm2
23dm

2
34; ð3Þ

where
P

denotes the summations over spins of related
particles, m2

23 ¼ ðp2 þ p3Þ2, and m2
34 ¼ ðp3 þ p4Þ2.

B. Effective Lagrangians depicting the interactions
of the three-particle vertices

Here we introduce the effective Lagrangians describing
the interactions of all the vertices in Fig. 2. For the
interaction between ψð2SÞ, J=ψ , and η, we adopt the
general coupling form of vector (V) and pesudoscalar (P)
mesons

LVVP ¼ gVVPεμναβ∂μVν∂αVβP: ð4Þ

For the interactions between vector meson and nucleon
states, i.e., VN�N, the effective Lagrangians are [59–65]

LVNN̄ ¼ gVNN̄N̄γμVμN; ð5Þ

LVP11N̄ ¼ −gVP11N̄N̄γμVμP11 þ H:c:; ð6Þ

LVS11N̄ ¼ −gVS11N̄N̄γ5γμVμS11 þ H:c:; ð7Þ

LVD13N̄ ¼ −gVD13N̄N̄VμD
μ
13 þ H:c:; ð8Þ

where P11, S11,D13 represent the fields of excited nucleons
with quantum numbers JP ¼ 1=2þ, 1=2−, and 3=2−,
respectively. Finally, the interactions between N�, N, and

pesudoscalar meson P can be described by the effective
Lagrangians as follows [66],

LPNP11
¼ − gPNP11

2mN
N̄γ5γμ∂μPP11 þ H:c:; ð9Þ

LPNS11 ¼ −gPNS11N̄PS11 þ H:c:; ð10Þ

LPND13
¼ − gPND13

m2
N

N̄γ5γ
μ∂μ∂νPDν

13 þ H:c:; ð11Þ

with P being the pseudoscalar octet, i.e.,

P ¼

0
BBBBB@

ffiffi
1
2

q
π0 þ

ffiffi
1
6

q
η πþ Kþ

π− −
ffiffi
1
2

q
π0 þ

ffiffi
1
6

q
η K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCCA
: ð12Þ

Therefore, the interaction between ψð2SÞ and N�p̄, i.e.,
T1, can be extracted from Eqs. (6)–(8). Taking the N� being
Nð1535Þ as an example, we use Eq. (7) and get

T1 ¼ −gψð2SÞp̄Nð1535Þūðp34Þγ5γμϵμψð2SÞvðp2Þ; ð13Þ

where u, v are the spin wave functions of the particle and
antiparticle, respectively, and the notation is taken asP

spin uū ¼ =pþm, also, ϵ indicates the polarization vector
of the corresponding particle, and p34 ¼ p3 þ p4.
Similarly, the coupling between N� and pη=pπ0, can be

got from Eqs. (9)–(11). We also take Nð1535Þ as an
example, and by using Eq. (10) we have

T2 ¼ −gNð1535ÞpP ūðp3Þuðp34Þ: ð14Þ

At last, L1 and L2 can be extracted from Eqs. (4)
and (5) as

L1 ¼ gψð2SÞψpεμναβp1μϵψð2SÞνðp2 þ qÞαϵ�J=ψβ; ð15Þ

L2 ¼ −gψpp̄ūðqÞγμϵμJ=ψvðp2Þ: ð16Þ

C. Describing pη → pη and pη → pπ0 processes

We havewritten L1, L2, T1, and T2 in Sec. II B, while the
specific expression of L3 in Eq. (2) is still unknown. In this
subsection we will present how to get L3 in detail.
For the pp̄η case, L3 represents the elastic scattering of

pη. The main contributions should come from the s-
channel contributions of excited nucleons N�. Since the
position of the triangle singularity is 1.56387 GeV, we find
that only Nð1535Þ and Nð1650Þ have considerable decay
rates to pη in RPP [67] around this energy. Therefore, we
can use effective Lagrangians given in Sec. II B to write
L3 as
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L3 ¼ g2Nð1535Þpη
ūðp3Þð=p34 þmNð1535ÞÞuðqÞ

m2
34 −m2

Nð1535Þ þ imNð1535ÞΓNð1535Þ

þ g2Nð1650Þpη
ūðp3Þð=p34 þmNð1650ÞÞuðqÞ

m2
34 −m2

Nð1650Þ þ imNð1650ÞΓNð1650Þ
:

ð17Þ

Here, the phase angle between these two N� states is
ignored. Actually, from the results shown in Sec. II D, we
find that the contribution of Nð1650Þ is not important.
For the pp̄π0 case, L3 represents the ηp → π0p scatter-

ing, we can extract it from the experimental data of
π−p → ηn. First, we fit the experimental data of π−pðqÞ →
ηðp4Þnðp3Þ process [68–73] with the following amplitude

Mπ−p→ηn ¼ gBūðqÞuðp3Þe−aBð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3þp4Þ2

p
−ΣBÞ2

þ
X
k

e
iϕN�

k

gN�
k
ūðqÞð=p3 þ =p4 þmN�

k
Þuðp3Þ

ðp3 þ p4Þ2 −m2
N�

k
þ imN�

k
ΓN�

k

;

ð18Þ

where the first term represents the background, and the
second term is the contributions of various N� states

exchange. During the fit, we find that only the two N�
states, i.e., Nð1535Þ and Nð1650Þ, are needed except for
the background. The parameters we get by fitting the cross
section of π−p → ηn are given in Table I and the fitted
results are presented in Fig. 3. By using isospin relation
naively, we can finally get

L3 ¼
1ffiffiffi
2

p Mπ−p→ηn: ð19Þ

D. Amplitudes of ψð2SÞ → pp̄η=pp̄π0 process

After all the preparations made above, we can write the
amplitudes of the ψð2SÞ → pp̄η=pp̄π0 process.
For the ψð2SÞ → pp̄η process, one can see that for

ψð2SÞ the main contribution to pp̄η channel is ψð2SÞ →
p̄Nð1535Þ → p̄pη [67]. Thus, at tree diagram level, we
only need to consider the contribution from Nð1535Þ and
have

MTree ¼ ðgψð2SÞp̄Nð1535Þ × gNð1535ÞpηÞϵμψð2SÞ
ūðp3Þð=p34 þmNð1535ÞÞγ5γμvðp2Þ
m2

34 −m2
Nð1535Þ þ imNð1535ÞΓNð1535Þ

; ð20Þ

and it is assumed to be dominant. We extract the coupling constants ðgψð2SÞp̄Nð1535Þ × gNð1535ÞpηÞ ¼ 0.0013769� 0.0000673
from the branching ratio Bðψð2SÞ → p̄Nð1535Þ → p̄pηÞ ¼ ð2.2� 0.35Þ10−5. And using Eq. (17), we have the amplitude of
the loop diagram

TABLE I. The parameters we get by fitting the cross section of
π−p → ηn given in Ref. [68–73]. We should emphasize here that
in this table gNð1535Þ ¼ gNð1535Þπ−p × gNð1535Þηp and gNð1650Þ ¼
gNð1650Þπ−p × gNð1650Þηp, and gNð1535Þπ−p, gNð1535Þηp, gNð1650Þπ−p,
gNð1650Þηp are extracted from the branching ratios of related
decays given in RPP [67].

Coupling constants Values

gB 12.992� 0.102 GeV−1
aB 10.814� 0.419 GeV−2
ΣB 1.873� 0.003 GeV
ϕNð1535Þ 0.00841� 0.001
gNð1535Þ 2.80� 0.72
ϕNð1650Þ 0.921� 0.018
gNð1650Þ 1.525� 0.583

FIG. 3. The fitted results of the cross section of π−p → ηn. The
blue points are the experimental data given in Refs. [68–73], the
red solid line is our fitted result, and the black, orange, and purple
dashed lines are the contributions of the background, Nð1535Þ
and Nð1650Þ, respectively.
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MLoop ¼ i
Z

d4q
ð2πÞ4 gψð2SÞψηgJ=ψpp̄ε

μναβp1μϵψð2SÞνk1αūðp3Þ
� g2Nð1535Þpηð=p34 þmNð1535ÞÞ
m2

34 −m2
Nð1535Þ þ imNð1535ÞΓNð1535Þ

þ
g2Nð1650Þpηð=p34 þmNð1650ÞÞ

m2
34 −m2

Nð1650Þ þ imNð1650ÞΓNð1650Þ

�
ð=qþmqÞγβvðp2Þ

F ðp3 þ p4 − q;mη;ΛηÞ
ðp3 þ p4 − qÞ2 −m2

η þ imηΓη

×
F ðp2 þ q;mJ=ψ ;ΛJ=ψ Þ

ðp2 þ qÞ2 −m2
J=ψ þ imJ=ψΓJ=ψ

F ðq;mp;ΛpÞ
q2 −m2

p þ impΓp
: ð21Þ

All the involved coupling constants are extracted from relevant branching ratios [67] and the values are listed in Table II.
We apply the similar method to the ψð2SÞ → pp̄π0 process. In this case,Nð1535Þ, Nð1650Þ, Nð1440Þ, and Nð1520Þwill

give contributions to pp̄π0 channel [67]. Thus, the tree-level amplitude can be written as

MTree ¼ ðgψð2SÞp̄Nð1535Þ × gNð1535Þpπ0Þϵμψð2SÞ
ūðp3Þð=p34 þmNð1535ÞÞγ5γμvðp2Þ
m2

34 −m2
Nð1535Þ þ imNð1535ÞΓNð1535Þ

þ ðgψð2SÞp̄Nð1650Þ × gNð1650Þpπ0Þϵμψð2SÞ

×
ūðp3Þð=p34 þmNð1650ÞÞγ5γμvðp2Þ
m2

34 −m2
Nð1650Þ þ imNð1650ÞΓNð1650Þ

þ i
ðgψð2SÞp̄Nð1440Þ × gNð1440Þpπ0Þ

2mNð1440Þ
ϵμψð2SÞ

×
ūðp3Þγ5=p4ð=p34 þmNð1440ÞÞγμvðp2Þ
m2

34 −m2
Nð1440Þ þ imNð1440ÞΓNð1440Þ

−
ðgψð2SÞp̄Nð1520Þ × gNð1520Þpπ0Þ

m2
Nð1520Þ

ϵμψð2SÞ

×
ūðp3Þγ5=p4ð=p34 þmNð1520ÞÞG̃μνpν

4vðp2Þ
m2

34 −m2
Nð1520Þ þ imNð1520ÞΓNð1520Þ

; ð22Þ

where G̃μν ¼ −gμν þ γμγν
3

þ γμðp3νþp4νÞ−γνðp3μþp4μÞ
3mNð1520Þ

þ 2ðp3μþp4μÞðp3νþp4νÞ
3m2

Nð1520Þ
[66], and the relevant coupling constants are listed in

Table III. It should be noticed that here all the phase angles between any N� are also ignored, and we will prove that this
treatment does not conflict with the present experimental results later. Using Eqs. (18)–(19), the amplitude of loop diagram
writes

MLoop ¼ i
Z

d4q
ð2πÞ4 gψð2SÞψηgJ=ψpp̄ε

μναβp1μϵψð2SÞνk1αūðp3Þ
�
gBffiffiffi
2

p e−aBð
ffiffiffiffiffi
p2
34

p
−ΣBÞ2 þ

X
k

e
iϕN�

kffiffiffi
2

p

×
gN�

k

p2
34 −m2

N�
k
þ imN�

k
ΓN�

k

ð=p34 þmN�
k
Þ
�
ð=qþmpÞγβvðp2Þ

F ðp3 þ p4 − q;mη;ΛηÞ
ðp3 þ p4 − qÞ2 −m2

η þ imηΓη

×
F ðp2 þ q;mJ=ψ ;ΛJ=ψ Þ

ðp2 þ qÞ2 −m2
J=ψ þ imJ=ψΓJ=ψ

F ðq;mp;ΛpÞ
q2 −m2

p þ impΓp
: ð23Þ

TABLE II. The values of the coupling constants involved in
Eq. (21).

Coupling constant Branching ratio Value

gψð2SÞψη ð3.37� 0.05Þ × 10−2 0.218� 0.003
gJ=ψpp̄ ð2.121� 0.029Þ × 10−3 0.0016� 0.0002
gNð1535Þpη 30%–51% 2.59� 0.62
gNð1650Þpη 11%–31% 1.24� 0.31

TABLE III. The values of the coupling constants involved in
Eq. (22).

Intermediate
N�

Branching
ratio [67]

Coupling constants
gψð2SÞp̄N� × gN�pπ0

Nð1440Þ ð7.3þ1.7
−1.5Þ × 10−5 ð2.39þ0.10

−0.09 Þ × 10−3

Nð1520Þ ð6.4þ2.3
−1.8Þ × 10−6 ð1.62þ0.23

−0.21 Þ × 10−3

Nð1535Þ ð2.5� 1.0Þ × 10−5 ð7.48� 0.401Þ × 10−4

Nð1650Þ ð3.8þ1.4
−1.7Þ × 10−5 ð9.44þ0.81

−0.83 Þ × 10−4

DETECTING THE PURE TRIANGLE SINGULARITY EFFECT … PHYS. REV. D 103, 016014 (2021)

016014-5



III. NUMERICAL RESULTS

A. Triangle singularity in ψð2SÞ → pp̄η process

After all the preparations in Sec. II, we can calculate
these two processes and their numerical results are given.
First of all, we need to prove our previous arguments that
the form factor F ðq;m;ΛÞ and Nð1650Þ in p̄pη channel
will not affect the height of triangle singularity too much.
The mpη invariant mass spectrum of MLoop is given in
Fig. 4. In Fig. 4, we consider different values of the
parameter α in the form factor, and the cases whether
Nð1650Þ is included. It is clear that the peak caused by
triangle singularity is very sharp and its width is only about
1 MeV. In addition, we can see that the peak around where
triangle singularity happens does change little when α
changes from 1 to 2, and the contribution of Nð1650Þ is
negligible.
Then we consider the interference between MLoop and

MTree to see whether this peak is visible in the experiments
or not. The pη invariant mass distribution of the ψð2SÞ →
pp̄η process is given by the black solid line in Fig. 5. The
Breit-Wigner shape of Nð1535Þ from the tree diagram is
quite clear and we can see that there exists a visible
enhancement, which is caused purely by triangle singu-
larity, on the right shoulder of this peak. We also amplify
the enhancement part and draw it in detail in Fig. 5. The
width of this structure is about 5 MeV. According to our
calculation, the enhancement of the peak comparing to
the background is about 10%. It implies that if we have
4 billion ψð2SÞ events, the number of events from this peak
is about 120. During the discussions [74], the experimen-
talists tell us that if the resolution of experiments can reach

2–3 MeV, this structure will be visible experimentally.
However, the highest resolution of BESIII detector is
around 4.3 MeV at present, then such enhancement will
be absorbed and is hard to distinguish. Therefore, we
expect that the future experiments such as STCF could have
higher resolution.
We have to emphasize that the prediction of 10%

enhancement above is based on the assumption that the
phase angle in the interference between the tree and loop
diagrams is 0. Although it is the only assumption in our
calculation, once this phase angle has a specific value, this
enhancement might become invisible.
Since the vertex L3 in the pp̄η-loop case represents

the elastic scattering pη → pη, according to the Schmid
theorem [76,77], the triangle singularity from Fig. 2(a) will
become negligible after considering the ψð2SÞ → ηðJ=ψ →
p̄pÞ process of tree diagram. However, the realistic
ψð2SÞ → p̄pη reaction is too complicated to apply the
Schmid theorem directly. At least, the contribution of
triangle singularity is still visible for the following three
reasons.
First, Schmid theorem tells that if the pη → pη process,

i.e., the L3 in Fig. 2(a), is purely elastic, then the triangle
singularity caused by the loop diagram will be negligible.
This is because the contribution of the loop diagram only
affects the tree diagram ψð2SÞ → ηðJ=ψ → pp̄Þ though a
phase factor expð2iδpη0 Þ. Nevertheless, we should empha-
size here that the pη → pη process can not be recognized as
a purely elastic process, because another channel pπ
definitely couples with it. In other words, the pure scatter-
ing amplitude of the S matrix Spη→pη cannot satisfy the
unitary by itself, that is, jSpη→pηj2 < 1. At least we need to

FIG. 4. The pη invariant mass spectrum of MLoop. The green
solid line represents that α in the form factor is 1 and that both
Nð1535Þ and Nð1650Þ are included. The blue dashed line
represents that α is 2 and that both Nð1535Þ and Nð1650Þ are
included. The red dash-dot line represents that α is 1 and that only
Nð1535Þ is considered.

FIG. 5. The pη invariant mass distributions of the ψð2SÞ →
pp̄η process. For black solid line, we consider the interface
between MLoop and MTree with the relative phase angle being 0,
and here bothNð1535Þ andNð1650Þ exchange are included and α
is set to 1. For the red dash-dot line, there includes one more tree
diagram ψð2SÞ → ηðJ=ψ → p̄pÞ with the relative phase angle
being 0 and having a mpp̄ < 3.067 GeV cut following Ref. [75].
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include the pπ channel to extend it to a 2 × 2matrix to have
jSj2 ¼ I. And in our calculation, pη → pη process is
mainly described by the s-channel N� states exchange,
where the pπ contribution has already been included
effectively in the imaginary parts of the N� propagators.
There are similar discussions in Ref. [77]. As a result, we
cannot directly apply the Schmid theorem here.
Second, in the ψð2SÞ → p̄pη reaction, the tree diagram

process ψð2SÞ → p̄ðN� → pηÞ definitely plays an impor-
tant role. Compared to the conclusion of the Schmid
theorem, which is jttreeJ=ψ þ tloopelasticj2 ¼ jttreeJ=ψe

iδj2 ¼ jttreeJ=ψ j2,
the additional term of tree diagram exchanging N�, ttreeN� ,
will modify the total amplitude as jttreeJ=ψ þ tloop þ ttreeN� j2,
where tloop includes more than tloopelastic as discussed above.
Thus, some terms must exist to reflect the interferences
between tloop and ttreeN� , and it would lead to a weak signal of
triangle singularity in the pη invariant mass spectrum as
shown in Fig. 5.
The third and the most important reason is that when

analyzing the experimental data of the ψð2SÞ → pp̄η
process, a cut mpp̄ < mJ=ψ is always applied to eliminate
the influence of the background, which corresponds to the
ψð2SÞ → X þ J=ψðJ=ψ → pp̄Þ decay. mpp̄ < 3.077 GeV
is taken by CLEO [78], and for BESIII, they choosempp̄ <
3.067 GeV [75]. Then, in the theoretical side, we can
introduce the same cut to exclude the contribution of
ψð2SÞ → ηðJ=ψ → p̄pÞ. In Fig. 5, we also give the result
with the dash-dot red line, which includes not only the two
diagrams in Fig. 2, but also the tree diagram ψð2SÞ →
ηðJ=ψ → p̄pÞ with the mpp̄ < 3.067 GeV cut. It can be
seen that only the strength of the distribution becomes
smaller than that in the solid black line, in which only the
two diagrams in Fig. 2 are considered without any cuts, and
the behaviors of these two lines are almost the same. Thus,
we can claim that the tree diagram ψð2SÞ → ηðJ=ψ → p̄pÞ
could not affect our conclusion after applying the cut to
mpp̄ and it is equivalent to the statement that the Schmid
theorem does not play a role on the dash-dot red line. And
our conclusion that there exists a visible enhancement
purely caused by triangle singularity on the right shoulder
of the peak structure of Nð1535Þ is still valid.
At last, we present a Dalitz plot in Fig. 6 to explain why

the three diagrams mentioned in the beginning of Sec. II
can be neglected. In Fig. 6, the vertical band comes entirely
from the loop diagram, the horizontal band is generated by
the tree diagram ψð2SÞ → pðN̄� → p̄ηÞ, and the contribu-
tion of the tree diagram ψð2SÞ → ηðJ=ψ → p̄pÞ is the very
thin band just below the dashed red line, which denotes the
mpp̄ < 3.067 GeV cut. In general, the contribution of the
loop diagram exchanging p̄ will appear in the same region
as the N̄� tree diagram. From the Daliz plot, it is clear that
the contributions of the N̄� tree diagram and the loop
diagram exchanging p̄ would not influence the triangle
singularity point on the pη invariant mass spectrum.

Besides, the contribution of the tree diagram ψð2SÞ →
ηðJ=ψ → p̄pÞ will be eliminated after applying the cut of
mpp̄ as discussed above. In a word, these three diagrams are
not necessary in our calculations.

B. Triangle singularity in ψð2SÞ → pp̄π0 process

Similar to our treatment on the ψð2SÞ → pp̄η process,
we first prove our statement in Sec. II D that at tree level the
ignorance of the phase angles between the contributions of
each N� will not conflict with the present experimental

FIG. 6. The Dalitz plot of the ψð2SÞ → pp̄η process after
considering the contribution of Fig. 2(a) (the vertical band), the
tree diagrams ψð2SÞ → ηðJ=ψ → p̄pÞ (the very thin band lies on
the lower left corner) and ψð2SÞ → pðN̄� → p̄ηÞ (the horizontal
band). For the triangle diagram, only Nð1535Þ exchange is
included and α is set to 1. Here, the red dashed line denotes
the mpp̄ < 3.067 GeV cut as given in Ref. [75]. To make all the
bands visible, we increase the strength of triangle diagram by a
factor 104 and the N̄ð1535Þ tree diagram by a factor 102.

FIG. 7. The tree diagram of ψð2SÞ → pp̄π0, where the con-
tributions of Nð1440Þ, Nð1520Þ, Nð1535Þ, and Nð1650Þ are
included, and all the involved phase angles are 0.
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results. In Fig. 7 we give the mpπ0 distribution of the tree
diagram.
After integrating mpπ0 , we get BTreeðψð2SÞ → pp̄π0Þ ¼

1.68 × 10−4, and the experimental measurement at present
is Bðψð2SÞ → pp̄π0Þ ¼ ð1.65� 0.03Þ × 10−4 [79]. It tells
that our treatment on the phase angles is acceptable.
Then we give the α dependence of loop diagram in

Fig. 8, from which we can easily see that a peak caused by
the triangle singularity does appear, whose width is only
about 300 keV, and it does not rely on α too much. And
after considering the interference between the tree and loop
diagrams, the pπ0 invariant mass distribution is shown
in Fig. 9.
In Fig. 9, we find a very small twist at the position of the

triangle singularity. After amplifying it in detail, we find a

small valley structure whose width is less than 1 MeV. The
detraction caused by this valley is only about 1% from the
calculation. If there exist 4 billion ψð2SÞ events, the event
corresponding to this effect is only 10, which implies that it
would be impossible to observe experimentally.
It is understandable that the triangle singularity effect in

the pp̄π0 case is much smaller than that in the pp̄η case. As
shown in Figs. 4 and 8, the strength of the sharp peak from
the pure triangle singularity in the pη case is much higher
than that in the pπ case and the difference between them is
about 20 times. The reason is that the branching ratio of
Nð1535Þ to the pη final state is larger than that to the pπ0

final state with a factor of 6 including the isospin factor.
Furthermore, the interference between the background
including Nð1650Þ and Nð1535Þ for pπ channel would
weaken the contribution of Nð1535Þ as shown in Fig. 3. As
a result, the pure triangle singularity effect is suppressed in
the pp̄π0 process.

C. Further discussions on how to strengthen
the triangle singularity effect

We have mentioned that the smaller the widths of the
intermediate exchange particles are, then the sharper the
peak of triangular singularity is. However, through a
detailed calculation, we find that if the widths of the
intermediate particles in the loop are too small, some other
problems may arise. In the cases of this work, where the
internal particles are J=ψ , η and p, whose widths are 92.9,
1.31 keV, and 0, respectively [67]. The result given above
tells that the width of the pure triangle singularity is only
about 1 MeVand it is enlarged to 5 MeVafter including the
interference with the tree diagram,. From the parameters of
BESIII [80], we can know that the resolution of BESIII
experiment is about 4.3 MeV. Hence it is almost impossible
to observe this structure from the BESIII detection cur-
rently, unless BESIII or other experiments, such as STCF,
can improve their resolutions to 2–3MeV in the future [74].
In addition to the experimental observation problems,

another problem caused by the small widths is that the
intensity of the peak will be weakened. We still consider the
J=ψηp loop case as an example. As claimed previously,
when the triangle singularity happens, all the involved
particles are on mass shell, so the coupling constants of
interaction vertices can be extracted from the corresponding
decay processes, for example, gJ=ψpp̄ is computed from the
partial decay width of J=ψ to pp̄. Then we assume the
branching ratio of J=ψ to pp̄ is fixed and increase the total
width of J=ψ from 92.9 to 929 keV. The peaks caused by
the pure triangle singularity with these two different
assumptions of the width of J=ψ is presented in Fig. 10.
From Fig. 10 we can see that, when we enlarge the width

of J=ψ , the peak of the triangle singularity not only
becomes wider, but it also becomes higher. The reason
for broadening this peak is discussed in Ref. [7]. Here we
try to figure out why the strength of triangle singularity is

FIG. 8. The α dependence of the triangle singularity caused by
the J=ψηp loop.

FIG. 9. The pπ0 invariant mass distribution of the ψð2SÞ →
pp̄π0 process after considering the interface between MLoop and
MTree (the phase angle is 0), where α is set to 1.
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also related with the widths of internal particles. Let us
consider the simplest loop integral which only involves
the participated coupling constant, form factors, and the
propagators of internal particles as an example,

I ≡ g
Z

d4q
ð2πÞ4

F ðp3 þ p4 − q;mη;ΛηÞ
ðp3 þ p4 − qÞ2 −m2

η þ imηΓη

×
F ðp2 þ q;mJ=ψ ;ΛJ=ψ Þ

ðp2 þ qÞ2 −m2
J=ψ þ imJ=ψΓJ=ψ

×
F ðq;mp;ΛpÞ

q2 −m2
p þ impΓp

; ð24Þ

with g being the constant that scales the coupling constant
gJ=ψpp, since BðJ=ψ → pp̄Þ is fixed in our assumption.
Actually, the triangle singularity is divergent if all the
widths of the exchanged particles are zero. There is a very
sharp structure when cos θ ¼ −1, where θ is the relative
angle between the momentums of internal J=ψ and out-
going p̄. Then, we can define a function I, which changes
along with cos θ, as

I∶I ¼
Z

d cos θI. ð25Þ

The dependence behaviors of I on cos θ for different
values of ΓJ=ψ are given in Fig. 11. Herewe set ðp3þp4Þ2¼
1.563872GeV2 to make it being just the triangle singularity
point. We draw the result around cos θ ¼ −1, since we
only interested in the region around the triangle singularity.
When the width of J=ψ changes from 92.9 to 929 keV,
the coupling constant gJ=ψpp will certainly become larger,

and in this case the scale factor g goes from 1 to
ffiffiffiffiffi
10

p
. First

of all, we can see that there is a 2 times difference in the
value of I for these two cases at cos θ ¼ −1. Since jq⃗j is

integrated, the off shell effect of J=ψ will influence the
value of I even at the point of cos θ ¼ −1. It leads to the
fact that although the decrease factor 2 is close, it is still
less than the factor

ffiffiffiffiffi
10

p
, which is the precise value for

the on shell case, i.e., the ratios of ðg=ΓJ=ψ Þ in two cases
of J=ψ ’s widths. Once cos θ is greater than −1, particle
J=ψ is totally off shell, which makes ðp2 þ qÞ2 −m2

J=ψ

become dominant in the denominate of J=ψ ’s propaga-
tor. And here the ratio between red and blue line will be
close to

ffiffiffiffiffi
10

p
, which is from purely the change of g.

Obviously, the value of I gets larger after increasing the
width of J=ψ . Finally, after we integrate cos θ, we can
get I ¼ 0.154 and 0.360 for ΓJ=ψ ¼ 92.9 and 929 keV,
respectively. In other words, when the width of J=ψ
increases, the loop function is enhanced, which leads to
the enhancement of the contribution of pure singularity.
On the other hand, although the absolute value at the
peak of the triangle singularity increases, the width of
this peak is also increasing, and it is even worse that the
difference between the peak value and the background
value becomes smaller as shown in Fig. 10. That is, the
significance of the triangle singularity decreases just as
the statement in the introduction.
In short, the widths of the intermediate particles

should not be too small to observe this pure triangle
singularity effect easily in experiment. Actually, there
exists a balance for the widths of the internal particles.
When the widths are too large, the peak becomes very
wide and insignificant, and it might be mixed with the
threshold and resonance states, so it is difficult to
distinguish the pure contributions. On the contrary, when
the widths are very small, the structure is very narrow
and the intensity is very weak, which makes it difficult to
observe experimentally. Therefore, it is necessary to find
processes whose intermediate particles have appropriate
widths to help experiments to search for the pure triangle
singularity effect. And we will focus on this idea in our
further research.

FIG. 10. The peaks caused by the triangle singularity with
different assumptions of the width of J=ψ .

FIG. 11. The dependence behavior of I on cos θ for different
values of g.
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IV. SUMMARY

The triangle singularity proposed by L. D. Landau [1]
might be very important in explaining many experimental
results [2,9–17]. However, up to now, an effect purely
caused by the triangle singularity is still absent, which
means that the triangle singularity itself has not been
confirmed by experimental observations. There are three
main reasons for this. First, the triangle singularity is
always mixed with the threshold [20], second, the widths
of the intermediate particles are large [6,7], and, finally, it is
due to the lack of information of each vertex. Thus, aiming
to observe a pure triangle singularity effect, the position of
the triangle singularity should be away from the threshold
and the widths of the particles that composed the loop
should be as small as possible, which leads the peak to be
sharp enough so that it can be distinguished, furthermore, it
would be much better if all the vertices can be constrained
precisely.
Guided by these ideas, in this work we propose to

observe a pure triangle singularity effect in the ψð2SÞ →
pp̄η=pp̄π0 processes, where the triangle loop is composed
by J=ψ, η, and p. After applying Coleman-Norton theorem,
we get the position of triangle singularity in pηðπ0Þ
invariant mass spectrum is 1.56387 GeV, which is about
80 MeV away from the pη threshold. In addition, since all
the widths of these particles are very small, the peak caused
by the triangle singularity must be very sharp. Moreover, all
the involved vertices can be extracted from experimental
data precisely. Therefore, the triangle singularity in the
ψð2SÞ → pp̄η=pp̄π0 processes will not mix up with the pη
threshold and it can be distinguished easily from N�
resonances since their widths are around 100 MeV [67],
meanwhile, it can be predicted precisely in theory.
From our numerical results, there exists a 10% enhance-

ment around 1.56387 GeV compared with the background
in the invariant mass spectrum of pη for the ψð2SÞ → pp̄η

process, and the width of this peak is about 5 MeV. There
will be about 120 events for this enhancement when there
are 4 billion ψð2SÞ events. The only assumption we made is
that the interference phase angle between the tree and loop
diagrams is zero, and the significance of the peak would
change along with this phase angle. While for the pp̄π0

case, the significance of the triangle singularity is very
small and could be negligible experimentally. At last, after
the discussion with experimentalists [74] we find that to
distinguish such a narrow triangle singularity peak needs a
high resolution around 2–3 MeV. While unfortunately, the
BESIII detection cannot satisfy this requirement currently.
We expect the future facilities such as STCF can make
significant improvements on the resolution.
Since triangle singularity is a pure kinematical effect, it is

not dependent on the dynamics of particles; i.e., triangle
singularity is a model independent effect. It tells that our
prediction is very precise and can be compared with the
experimental data directly. Therefore, we suggest experi-
ments such as BESIII and STCF to make a precise analysis
on the pη invariant mass spectrum of the ψð2SÞ → pp̄η
process. If this small narrow peak is observed, it will be the
first time that a pure triangle singularity effect is observed,
which will not only help us understand the triangle
singularity itself, but also be a real discovery of hadron
loop mechanism.
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