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We study the effect of boundary conditions on vacuum polarization for charged scalar fields in two
space-time dimensions. We find that both Dirichlet and Neumann boundary conditions lead to screening.
In the Dirichlet case, the vacuum polarization charge density vanishes at the boundary, whereas it attains
its maximum there for Neumann boundary conditions. At a critical field strength, the vacuum polarization
diverges for Neumann boundary conditions, an effect due to the instability of the lowest energy mode in the
presence of the external field.
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I. INTRODUCTION

Historically, vacuum polarization was one of the first
effects of quantum electrodynamics that were theoretically
studied [1]. On the practical side, it provides corrections to
atomic energy levels, cf. the review [2]. In recent years,
there has been revived interest in the topic, not only in its
dynamical version, the Schwinger effect [3], but also in the
context of advanced materials such as topological insula-
tors [4]. The latter topic in particular sparks the interest in
the effect of boundaries on vacuum polarization [5].
Despite the relevance of the topic, little seems to be known

about the effect of boundary conditions on vacuum polari-
zation. To the best of our knowledge, the only work in which
the effect of different boundary conditions in external electric
fields is compared is [6]. The authors considered the
(massless) charged scalar field in two space-time dimen-
sions, confined to an interval and subject to a constant
electric field. It was found that, at linear order in the external
field, Dirichlet boundary conditions exhibit screening (with
the maximal charge density near the boundaries) and
Neumann boundary conditions antiscreening. These findings
are rather surprising and counterintuitive. One would expect
vacuum polarization to be always screening. Furthermore,
due to the repulsive (attractive) nature of Dirichlet
(Neumann) boundary conditions, one would expect the
screening to be stronger for Neumann boundary conditions.
The purpose of this note is to show that these surprising

results are due to two major flaws in the calculation: First, a

mode sum formula for the charge density is used, which, as
pointed out in [7], cannot be derived from a manifestly gauge
invariant renormalization scheme and leads to incorrect
results. Second, the perturbative expansion used in [6] breaks
down for the zero mode in the massless case with Neumann
boundary conditions. Hence, this mode was neglected in [6].
However, the zero mode is the mode that is most sensitive to
external fields and thus contributes most to vacuum polari-
zation. Here, we use a corrected version of the mode sum
formula and considermassive fields to avoid theproblemwith
the zero mode in the Neumann case. We obtain the expected
behavior of vacuum polarization: It is screening and more
pronounced for Neumann than for Dirichlet boundary con-
ditions. More precisely, we find that the charge density
vanishes near the boundary in the Dirichlet case and attains
its maximum at the boundary in the Neumann case. This also
complies nicely with the finding that the current density
vanishes near Dirichlet boundaries in an Aharonov-Bohm
type setting with toroidally compactified dimensions [8].
These results are first derived perturbatively, at first order

in λ. A nonperturbative analysis vindicates these results in
the Dirichlet case. However, for Neumann boundary con-
ditions it reveals a divergence of the vacuum polarization at
a critical field strength. The divergence occurs at the field
strength for which the lowest mode has vanishing fre-
quency and becomes non-normalizable. Beyond the critical
field strength, the frequency of this mode becomes imagi-
nary, signalling an instability.
This article summarizes and extends the results of the

bachelor of science thesis of Jonathan Wernersson, written
in 2015 at the Institute of Theoretical Physics, Leipzig
University, under the supervision of Jochen Zahn.

II. SETUP

We follow the conventions of [6], i.e., we use signature
ðþ;−Þ, and define the covariant derivative as
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Dμϕ ¼ ∂μϕþ ieAμϕ: ð1Þ

We denote our coordinates by x ¼ ðt; zÞ. The field ϕ
satisfies the Klein-Gordon equation

ðDμDμ þm2Þϕ ¼ 0 ð2Þ

and the corresponding charge density, i.e., the 0 component
of the current, is given by

ρ ¼ ieðϕ�D0ϕ − ϕðD0ϕÞ�Þ: ð3Þ

We will be interested in the vacuum polarization on a
finite interval, whose length we normalize to 1 so that
z ∈ ½0; 1�, in the presence of a constant electric field E. The
latter is implemented by

A0 ¼ −E
�
z −

1

2

�
; A1 ¼ 0: ð4Þ

With the separation ansatz

ϕ ¼ ϕnðzÞe−iωnt; ð5Þ

the equation of motion (2) can be explicitly solved in terms
of parabolic cylinder functions as

ϕnðzÞ ¼ anDim
2

2λ−
1
2

�
1þ iffiffiffi

λ
p

�
ωn þ λ

�
z −

1

2

���

þ bnD−im2

2λ−
1
2

�
i − 1ffiffiffi

λ
p

�
ωn þ λ

�
z −

1

2

���
; ð6Þ

where

λ ¼ eE: ð7Þ

With these mode functions, the evaluation of the vacuum
polarization has to proceed numerically. It is thus more
instructive to proceed perturbatively, i.e., to consider the
electric field as a perturbation and compute the vacuum
polarization at first order in λ. For this, the corrections of
first order in λ of the frequencies and the mode functions
have to be determined. For this purpose, it is useful to write,
as in [6], the mode frequencies ωn and solutions ϕn as
solutions to a time-dependent Schrödinger equation, albeit
in a space of indefinite metric. Introducing

Ψ ¼
�

ϕ

π�

�
; ð8Þ

with π� ¼ D0ϕ the momentum conjugate to ϕ�, we can
write the equation of motion in the form

i∂tΨ ¼ HΨ ð9Þ

with

H ¼ i

�
0 1

D2
1 −m2 0

�
þ
�
eA0 0

0 eA0

�
¼ H0 þH1:

ð10Þ

This operator is Hermitian with respect to the inner product

hΨ1jΨ2i ¼ i
Z

dzðϕ�
1π

�
2 − π1ϕ2Þ: ð11Þ

In the case of Dirichlet boundary conditions, Ψð0Þ ¼
Ψð1Þ ¼ 0, a basis of eigenvectors ϕD

n of H0 with eigen-
values ωD

n is given by

ωD
n ¼ sgnðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2n2

p
; ϕD

n ¼ jωD
n j−1

2 sin πnz;

ð12Þ

for n ∈ Znf0g and with π�n ¼ −iωnϕn. For Neumann
boundary conditions Ψ0ð0Þ ¼ Ψ0ð1Þ ¼ 0, one has

ωN
n≠0 ¼ sgnðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2n2

p
; ϕN

n≠0 ¼ jωN
n j−1

2 cos πnz;

ð13Þ

ωN
�0 ¼ �m; ϕN

�0 ¼ ð2mÞ−1
2: ð14Þ

Note that the modes are normalized to sgnðnÞ, with
sgnð�0Þ ¼ �1, and that in the massless limit, the two
zero modes ϕN

�0 of the Neumann case are not normalizable.
Physically, this implies the absence of a vacuum in
that case.1

First order perturbation theory in an indefinite inner
product space proceeds analogously to that on Hilbert

space. Given a basis Ψð0Þ
n of eigenvectors of H0 with

nondegenerate eigenvalues ωð0Þ
n , the first order corrections

are given by

ωð1Þ
n ¼ hΨð0Þ

n jH1Ψ
ð0Þ
n i

hΨð0Þ
n jΨð0Þ

n i
;

Φð1Þ
n ¼

X
k≠n

1

hΨð0Þ
k jΨð0Þ

k i
hΨð0Þ

k jH1Ψ
ð0Þ
n i

ωð0Þ
n − ωð0Þ

k

Ψð0Þ
k : ð15Þ

Note however that this breaks down in the presence of an

eigenvector Ψð0Þ
k of vanishing norm, hΨð0Þ

k jΨð0Þ
k i ¼ 0. In

particular, this implies that perturbation theory cannot be

1In the massless Neumann case, the zero modes correspond to
the two-parameter family of solutions ϕðt; zÞ ¼ x0 þ tv0. It is
thus equivalent to a free particle on the line, which quantum
mechanically does not possess a ground state, not even a
stationary one.
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applied to the massless case with Neumann boundary conditions. For the mode solutions for Dirichlet and Neumann
boundary conditions, one finds that there are no corrections to the frequenciesωn, while for the solutions one obtains, after a
lengthy but straightforward calculation,

ϕD
n ¼ ðm2 þ π2n2Þ−1

4

�
sin πnzþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2n2

p

2πjnj
�

1

πn

�
1

2
− z

�
sin πnz − zð1 − zÞ cos πnz

��
; ð16Þ

ϕN
n≠0 ¼ ðm2 þ π2n2Þ−1

4

�
cos πnzþ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ π2n2

p

2πjnj
�

1

πn

�
1

2
− z

�
cos πnzþ ðzð1 − zÞ þ ðπnÞ−2Þ sin πnz

��
; ð17Þ

ϕN
�0 ¼ ð2mÞ−1

2 ∓ λ
ffiffiffiffiffiffiffi
2m

p �
1

24
−
1

4
z2 þ 1

6
z3
�
; ð18Þ

up to corrections of Oðλ2Þ. In the massless limit, the result
for Dirichlet boundary conditions coincides with the
expression found in [6], cf. Eq. (3.5) there. Regarding
the result for the Neumann case, it seems that the�0modes
were neglected in [6], and that the massless case was
considered in spite of the presence of non-normalizable
modes. It seems that disregarding the �0 modes is the
origin of the antiscreening effect found in [6]. Properly
including these modes, which are the most affected by the
external field, leads to the expected screening behavior, as
discussed below.

III. QUANTIZATION AND POINT-SPLIT
RENORMALIZATION

Quantization based on the normalized mode solutions
discussed in the previous section proceeds by writing the
quantum field as

ϕðt; zÞ ¼
X
n>0

anϕnðzÞe−iωnt þ
X
n<0

b†nϕnðzÞe−iωnt; ð19Þ

with the operators an, bn, fulfilling the commutation
relations

½an; a†m� ¼ δnm; ½bn; b†m� ¼ δnm; ð20Þ

with all other commutators vanishing. In the case of
Neumann boundary conditions, the þ0 mode is included
in the first sum in (19), while the−0mode is included in the
second. The vacuum state j0i is defined by the property that
it is annihilated by an and bn.
The pointwise products appearing in the charge density

are ill defined and have to be renormalized. A well-
controlled way to do this is by point-split renormalization
with respect to a Hadamard parametrix. Physically reason-
able states, vacuum states in particular [9], have two-point
functions

wϕϕ� ðx; x0Þ ¼ hΩjϕðxÞϕ�ðx0ÞjΩi ð21Þ

of Hadamard form, i.e., their singular behavior as x0 → x is
of a universal form, which is determined entirely by the
background fields in a neighborhood of x, but is indepen-
dent of the state Ω, cf. [7], Sec. II, for a review. For a
charged scalar field in 1þ 1 dimension, it is of the form

wϕϕ�
Ω ðx; x0Þ ¼ −

1

4π
Uðx; x0Þ logð−ðx − x0Þ2 þ iεðx − x0Þ0Þ

þ Rϕϕ�
Ω ðx; x0Þ; ð22Þ

with Uðx; x0Þ and Rϕϕ�
Ω ðx; x0Þ smooth functions. While

Rϕϕ�
Ω ðx; x0Þ is state dependent, Uðx; x0Þ is fixed and given

by the parallel transport with respect to the covariant
derivative (1) along the straight line from x0 to x, up to
corrections that are irrelevant for the determination of the
vacuum polarization,

Uðx; x0Þ ¼ exp

�
−ie

Z
1

0

Aμðx0 þ sðx − x0ÞÞðx − x0Þμds
�

þOððx − x0Þ2Þ: ð23Þ

The two-point function

wϕ�ϕ
Ω ðx; x0Þ ¼ hΩjϕ�ðxÞϕðx0ÞjΩi ð24Þ

has the same form, with Uðx; x0Þ replaced by Uðx; x0Þ� ¼
Uðx0; xÞ. The idea of Hadamard point-split renormalization,
which goes back to Dirac [10] and was rediscovered in the
context of quantum field theory on curved space-times,
cf. [11] for a recent review, is to define the expectation
value of a local expression quadratic in fields by

hΩjDαϕðxÞðDβϕÞ�ðxÞjΩi
¼ lim

x0→x
½DαD0�

β0 ðwϕϕ�
Ω ðx; x0Þ −Hϕϕ� ðx; x0ÞÞ�: ð25Þ

Here α and β are symmetrized multi-indices, D0�
μ stands for

the application of D�
μ ¼ ∂μ − ieAμ on the primed variable,

and Hϕϕ� ðx; x0Þ is the first term on the rhs of (22).
For the evaluation of the vacuum polarization, we have

two such expressions to evaluate. We perform the point
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splitting in the time direction, so that x0 ¼ ðtþ τ; zÞ, and
we obtain

h0jϕ�ðxÞD0ϕðx0Þj0i ¼ −i
X
n<0

jϕnðzÞj2ðωn − eA0Þe−iωnðτþiεÞ;

ð26Þ

h0jϕðxÞD�
0ϕ

�ðx0Þj0i ¼ i
X
n>0

jϕnðzÞj2ðωn − eA0ÞeiωnðτþiεÞ;

ð27Þ

where we added an iε prescription to ensure convergence.
Note that these expressions are valid generically, i.e., not
only for the external field given by (4) (of course the modes
ϕn differ for different external fields). On the other hand,
we compute

D0
0H

ϕ�ϕðx; x0Þ ¼ −
1

2π

1

τ þ iε
Uðx0; xÞ þOðτÞ

¼ −
1

2π

�
1

τ þ iε
− ieA0

�
þOðτÞ; ð28Þ

D0�
0 H

ϕϕ� ðx; x0Þ ¼ −
1

2π

1

τ þ iε
Uðx; x0Þ þOðτÞ

¼ −
1

2π

�
1

τ þ iε
þ ieA0

�
þOðτÞ: ð29Þ

For the vacuum polarization, we thus obtain

ρðzÞ ¼ ieh0jðϕ�D0ϕ − ϕD�
0ϕ

�Þj0i

¼ elim
τ→0

�X
n<0

jϕnðzÞj2ðωn − eA0Þe−iωnðτþiεÞ

þ
X
n>0

jϕnðzÞj2ðωn − eA0ÞeiωnðτþiεÞ
�
þ e2

π
A0ðzÞ:

ð30Þ

We see that the singular parts of (28) and (29) cancel, and
similarly, the singularities in the coinciding point limit from
the two sums must cancel. But to obtain the correct finite
result, some care has to be taken. If the summation and the
limit τ → 0 in (30) were interchangeable, one would
obtain2

ρðzÞ ¼ e
X
n>0

ðjϕnðzÞj2ðωn − eA0Þ − jϕ−nðzÞj2ðωn þ eA0ÞÞ

þ 1

π
e2A0ðzÞ ðWRONGÞ: ð31Þ

This expression, however, is not gauge invariant (the sum
over n is, but the second term is not), while (30), when
evaluated in the correct order, is explicitly gauge invariant.
This implies that the summation and the limit τ → 0 are in
general not interchangeable. They may be in special cases,
but then this is gauge dependent. In the case of a discrete
spectrum that we are interested in here, the interchange
might be possible if ω−n ¼ −ωn (which is a gauge
dependent statement) so that the two sums in (30) can
be combined to a single sum over n > 0, involving a single
oscillatory factor eiωnðτþiεÞ. If its coefficient decays quickly
enough in n, then the interchange is possible. One then
does obtain (31), which coincides with the expression used
in [6], up to the last term, which came from the Hadamard
point-split procedure.
It may be instructive to provide an alternative

derivation of (30). We have seen that the divergences of
the coinciding point limit cancel out in the charge density, if
we consider

h0jϕ�ðxÞD0ϕðx0Þj0i − h0jϕðxÞD�
0ϕ

�ðx0Þj0i; ð32Þ

where still x0 ¼ ðtþ τ; zÞ. One may thus be tempted to
assume that the limit τ → 0 commutes with the summation
over modes and take this as the definition of the vacuum
charge density. One then obtains (31), without the last term,
i.e., the expression for the vacuum charge density that was
used in [6]. However, this approach has the following
deficiency: One can interpret the point splitting as a
regularization. However, to ensure that final renormalized
result is gauge invariant, the regularization should be gauge
invariant, too. But the expression (32) is not gauge invariant
for x ≠ x0.3 Instead, one should consider

h0jϕ�ðxÞD0ϕðx0Þj0iUðx; x0Þ− h0jϕðxÞD�
0ϕ

�ðx0Þj0iUðx0; xÞ;
ð33Þ

which is gauge invariant. However, recalling that
Uðx; x0Þ ¼ 1þ ieA0ðzÞτ þOðτ2Þ and that the ground state
is Hadamard, so that

h0jϕ�ðxÞD0ϕðx0Þj0i ¼ −
1

2π

1

τ þ iε
þOðτ0Þ;

h0jϕðxÞD�
0ϕ

�ðx0Þj0i ¼ −
1

2π

1

τ þ iε
þOðτ0Þ; ð34Þ

2Here the addition “(WRONG)” is meant to indicate that the
equation is not correct in general, but only under the mentioned
assumption, namely interchangeability of the limit and the
summation.

3The same could be said about the expression (25), which
underlies the Hadamard point-split renormalization. However,
unlike the terms in (32), the expression in square brackets in (25)
is smooth, so one may safely take the limit of coinciding points
to obtain a manifestly gauge invariant result. One could of
course also equip (25) with a parallel transport to ensure gauge
invariance for x ≠ x0, but this would not affect the coinciding
point limit, as Uðx; xÞ ¼ 1.
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cf. (28) and (29), we may rewrite the coinciding point limit of (33) as

lim
τ→0

ðh0jϕ�ðxÞD0ϕðx0Þj0iUðx; x0Þ − h0jϕðxÞD�
0ϕ

�ðx0Þj0iUðx0; xÞÞ

¼ lim
τ→0

�
h0jϕ�ðxÞD0ϕðx0Þj0i −

ie
2π

A0ðzÞ − h0jϕðxÞD�
0ϕ

�ðx0Þj0i − ie
2π

A0ðzÞ
�
: ð35Þ

Multiplication by ie yields precisely our expression (30) for
the vacuum polarization. Hence, our expression for the
vacuum polarization can also be derived without using a
Hadamard point split, but by insisting on a gauge invariant
regularization via point splitting.
As a historical aside, the necessity of introducing a

parallel transport in a point-split regularization of the
current was first pointed out by Schwinger [12] in the
context of Dirac fields. This note was published several
years after Schwinger’s seminal paper [13] on the vacuum
polarization, in which the point splitting was performed
without the parallel transport. In the meantime, Wichmann
and Kroll [14] used Schwinger’s original point-splitting
prescription (without inclusion of the parallel transport)
to derive the mode sum formula for the vacuum polariza-
tion in the context of Dirac fields in 3þ 1 dimensions.

Their expression suffers from the same deficiency as the
mode sum formula used in [6]: To restore gauge invariance,
one has to add a correction term, e

3π2
A3
0, to the mode sum,

cf. [15] for example. This is precisely the 3þ 1 dimen-
sional analog of the second term on the rhs of (30) and (31).
We refer to Sec. 2.2 of [7] for further (historical) comments
on the intricacies of point-split renormalization of the
vacuum polarization.

IV. PERTURBATIVE EVALUATION OF THE
VACUUM POLARIZATION

We now want to evaluate the expression (30). In the
perturbative approach, at first order in λ, this is possible
analytically in the massless case with Dirichlet boundary
conditions. We rewrite (30) as

ρðzÞ ¼ elim
τ→0

X∞
n¼1

ðjϕnðzÞj2ðπn − eA0Þ − jϕ−nðzÞj2ðπnþ eA0ÞÞeiπnðτþiεÞ þ 1

π
e2A0ðzÞ: ð36Þ

Up to first order in λ, we have

jϕnðzÞj2 ¼
1

πjnj
�
sin2πnz − λ sin πnz

�
1

πn

�
z −

1

2

�
sin πnzþ zð1 − zÞ cos πnz

��
ð37Þ

and thus obtain, to first order in λ,

ρðzÞ ¼ −2eλlim
τ→0

X∞
n¼1

zð1 − zÞ sin πnz cos πnzeiπnðτþiεÞ −
1

π
eλ

�
z −

1

2

�

¼ −eλzð1 − zÞlim
τ→0

1

2i

�
eiπð2zþτþiεÞ

1 − eiπð2zþτþiεÞ −
eiπð−2zþτþiεÞ

1 − eiπð−2zþτþiεÞ

�
−
1

π
eλ

�
z −

1

2

�

¼ −eλ
zð1 − zÞ

2
cot πz −

1

π
eλ

�
z −

1

2

�
: ð38Þ

Up to the last term, which is precisely the last term
in (30), this coincides with the result of [6].4 However,
this term makes a qualitative difference for the resulting

vacuum polarization, as seen in Fig. 1. The vacuum
polarization charge density is not only much smaller in
magnitude, but it vanishes exactly at the boundaries, as one
might naively expect for Dirichlet, i.e., repulsive, boundary
conditions.
In the massive case, a completely analytic treatment is

not possible. However, in the perturbative treatment, the
numerical evaluation of the expression (30), using the
perturbative expansion (16) of the mode functions, is
straightforward. In order to get rid of the limit τ → 0

4Note that without the point split with iε prescription the sum
in the first line of (38) is not convergent. Hence, to obtain the
result without this prescription, as in [6], a damping factor e−nε
has to be introduced by hand. In this sense, the interchange of the
limit τ → 0 and the summation in (30) is not permissible, even in
our gauge where ω−n ¼ −ωn.
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in (30), one can use the following trick: One subtracts and
adds the expression

−2eλlim
τ→0

X∞
n¼1

zð1 − zÞ sin πnz cos πnzeiπnðτþiεÞ; ð39Þ

which was obtained in the perturbative treatment of the
massless case, cf. (38). The subtracted term is included into
the mode sum (30) and improves its convergence, so that
the limit τ → 0 can be safely performed and the summation
cutoff at some large N (in the range of masses considered
here, N ¼ 50 is sufficient). The added term (39) can be

handled as in (38), i.e., replaced by −eλ zð1−zÞ
2

cot πz. The
results thus obtained for the Dirichlet case are shown in
Fig. 2. We see that vacuum polarization is suppressed for
higher masses.
Perturbative results for the case of Neumann boundary

conditions are shown in Fig. 3. These are obtained

analogously to the numerical results for Dirichlet boundary
conditions, i.e., by subtracting and adding (39) and using
the procedure described above. Again, we see that vacuum
polarization is suppressed for increasing mass (note thatmρ
is plotted). The results also indicate that the vacuum
polarization diverges as m → 0, which is a consequence
of the divergence of the �0 mode (18) in that limit. This
divergence is further discussed in the next section in the
context of a nonperturbative analysis. Another notable
result is that, in contrast to the Dirichlet case, the vacuum
polarization is not vanishing at the boundary, it is in fact
maximal there, as one would expect for attractive boundary
conditions. In any case, it is screening, as opposed to the
antiscreening behavior that was found in [6]. As discussed
above, it is the proper inclusion of the �0 modes, which
also necessitated to work with a finite mass, which explains
the difference to the results of [6] [apart from the inclusion
of the last term on the rhs of (30)]. Finally, we remark that
for Neumann boundary conditions and high enough
masses, the vacuum polarization changes sign within the
interval ð0; 1

2
Þ, and analogously in ð1

2
; 1Þ. This means that, in

the present approximation, as one approaches the boundary
at z ¼ 0 from z ¼ 1

2
, the perceived charge at z ¼ 0 first

decreases, and then increases. Such a somewhat counter-
intuitive behavior is also present in the vacuum polarization
in the Coulomb potential [15], although there it occurs
upon including effects of higher order in the external field.

V. NONPERTURBATIVE EVALUATION OF THE
VACUUM POLARIZATION

In order to verify the validity of the perturbative
approximation, and to gain some insight into the nature
of the divergence as m → 0 seen in the perturbative results,
we now perform a nonperturbative treatment, based on the
exact mode solutions (6). One first numerically determines

FIG. 3. Vacuum polarization for Neumann boundary conditions
to first order in λ for m ¼ 0.1 (blue), m ¼ 1 (orange), and m ¼ 5
(green). Note that the charge density is multiplied by m in this
plot to achieve better visibility.

FIG. 2. Vacuum polarization for Dirichlet boundary condi-
tions to first order in λ for m ¼ 0 (blue), m ¼ 1 (orange), and
m ¼ 5 (green).

FIG. 1. In blue the vacuum polarization for Dirichlet boundary
conditions in the massless case, at first order in λ, according to
(38). In orange the result of [6].
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the frequencies ωn solving the desired boundary conditions
and then normalizes according to (11). One can then use the
same trick as above, i.e., subtracting and adding (39).
However, it turns out that the result obtained for a cutoff of
the mode sum at N still oscillates, as a function of z, with a
period Δz ¼ 1

Nþ1
. The cutoff dependence shows that this is

clearly an artifact of the cutoff. The oscillations are thus
removed by a suitable averaging.
The results thus obtained for Dirichlet boundary con-

ditions are shown in Fig. 4. Not shown in the plot is the
result for the perturbative calculation for the same param-
eters, as it is indistinguishable from the result for λ ¼ 1.
This shows that for λ≲ 1, the perturbative result is a very
good approximation. For λ ¼ 10, deviations from the
perturbative result are clearly visible, but not huge.
Investigating the nonperturbative results for different
masses, one finds, perhaps not surprisingly, that, for
fixed λ, the deviations from the perturbative results are
more pronounced the smaller the mass is.
Finally, we study the case of Neumann boundary

conditions. We make the following crucial observation:
Given a finite massm > 0 and turning on the external field,
i.e., increasing λ from 0, the eigenvalue ωþ0 of the lowest
positive frequency mode decreases, until it reaches 0 at a
finite value of λ. At this critical value, the mode ceases to
be normalizable with respect to the inner product (11),
analogously to the zero mode (13) in the massless case at
λ ¼ 0 (and indeed the critical value of λ for m ¼ 0 is
λ ¼ 0). Further increasing λ, the eigenvalues ω�0 move to
the imaginary axis. Physically, this implies an instability
(exponential growth instead of oscillations). In Fig. 5, we
plot the critical value of λ against the mass m.
For the nonperturbative evaluation of the vacuum polari-

zation, we should thus restrict to subcritical field strength.

Figure 6 shows results for different values of λ for fixed
massm. While the result for λ ¼ 1 is barely distinguishable
from the perturbative result (not shown in Fig. 6), we see
that the vacuum polarization becomes strongly nonlinear
in λ and in fact diverges as one approaches criticality.
This divergence is analogous to the divergence in the limit
m → 0 observed in the perturbative calculation, and it has
the same origin: As one approaches criticality, the modes
ϕ�0 diverge (recall the behavior of (18) as m → 0).
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FIG. 6. Vacuum polarization for Neumann boundary conditions
for m ¼ 1 and λ ¼ 1 (blue), λ ¼ 3 (orange), and λ ¼ 3.4 (green).
The critical value of λ for the given m is λ ¼ 3.432.

FIG. 4. Vacuum polarization for Dirichlet boundary conditions,
nonperturbative in λ, for m ¼ 1, with λ ¼ 1 (blue), and λ ¼ 10
(orange). Note that for better comparison, the charge density is
divided by λ.

FIG. 5. The critical value of λ as a function of the massm. In the
parameter region above this line, the system exhibits an instability
(existence of imaginary frequency modes) for Neumann boun-
dary conditions.
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