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The precise values of the running quark and lepton masses mfðμÞ, which are defined in the modified
minimal subtraction scheme with μ being the renormalization scale and the subscript f referring to all the
charged fermions in the Standard Model (SM), are very useful for the model building of fermion masses
and flavor mixing and for the precision calculations in the SM or its new-physics extensions. In this paper,
we calculate the running fermion masses by taking account of the up-to-date experimental results collected
by Particle Data Group and the latest theoretical higher-order calculations of relevant renormalization-
group equations and matching conditions in the literature. The emphasis is placed on the quantitative
estimation of current uncertainties on the running fermion masses, and the linear error propagation method
is adopted to quantify the uncertainties, which has been justified by the Monte Carlo simulations. We
identify two main sources of uncertainties, i.e., one from the experimental inputs and the other from the
truncations at finite-order loops. The correlations among the uncertainties of running parameters can be
remarkable in some cases. The final results of running fermion masses at several representative energy
scales are tabulated for further applications.
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I. INTRODUCTION

The exciting discovery of the Higgs boson at the CERN
Large Hadron Collider (LHC) in 2012 has completed the
Standard Model (SM) of particle physics [1,2]. However,
there remain several fundamentally important issues that
cannot be accommodated within the SM framework, i.e.,
tiny neutrino masses, possible candidates for dark matter,
and the naturalness problem. No significant deviations from
the SMhave been found at the energy frontier exploredby the
LHC, indicating that the energy scale of new physics is
probably lying above μ ∼ 1 TeV. Although the SM has to be
extended to solve those fundamental issues, it can still stand
as a successful low-energy effective theory of a complete
theory at some high-energy scale, e.g., the grand unification
theory (GUT) at typically ΛGUT ∼ 2 × 1016 GeV. Any com-
plete theories at high-energy scales should be able to
reproduce the low-energy observables that are in accordance
with the SM predictions.

A convenient and efficient approach was suggested by
Steven Weinberg a long time ago to connect the physical
parameters in the high-energy full theory to those in the
low-energy effective theory [3,4]. The basic idea is to
integrate out heavy degrees of freedom from the full theory
at the decoupling mass scale μ0 and construct an effective
theory at μ ≪ μ0, where heavy particles just disappear but
nonrenormalizable operators should be taken into account.
There are several practical advantages of this approach to
the multiscale field theories. First, the renormalized physical
parameters in both full and effective theories can be defined
without any ambiguities in the modified minimal subtraction
(MS) scheme. Second, the renormalization-group equations
(RGEs) of the running parameters can be calculated in a
much simpler way than in other mass-dependent renormal-
ization schemes. Third, the connection between the full and
effective theories is simply represented as matching con-
ditions at the decoupling scale. Finally, such a procedure is
perfectly applicable to a wide class of field theories,
whenever two well-separated mass scales in question can
be identified. In the present work, we apply this approach to
the SM and focus on the running fermion masses.
Within the SM, the physical parameters are usually

measured at different energy scales. For instance, the
electromagnetic fine-structure constant α is experimentally
extracted from low-energy processes in which the momen-
tum transfer of photons is vanishingly small, and the
corresponding value will be denoted as α0 hereafter. The
Fermi constant GF is precisely determined at very
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low-energy transfer from the muon decay data. The strong
coupling constant αs has been measured at many different
energy scales, but commonly provided at the pole mass of
Z-bosonMZ ¼ 91.1876 GeV via the RGE running as in the
review by Particle Data Group (PDG) [5]. These parameters
are always entangledwith each other in a complicatedmanner
when running from one energy scale to another. A complete
collection of running parameters, especially the running
masses, at the concerned energy scale is demanding [6].
Over the last two decades, there have been several systematic
calculations of the running parameters at various energy scales
in the SM [7–11], which have been proved to be very useful
not only for the model building but also for the SM precision
physics. In this paper,wemake a comprehensive update on the
running parameters. The primary motivation for such an
update is threefold. First, tremendous progress has been made
in the determination of light quark masses from low-energy
data, in particular the sophisticated calculations in the lattice
quantum chromodynamics (QCD) [12].1 Second, asmore and
more data have been accumulated, the electroweak observ-
ables are measured more and more precisely, e.g., the pole
mass of the Higgs bosonMh ¼ 125.10ð14Þ GeV and that of
the top quarkMt ¼ 172.4ð7Þ GeV have been found by PDG
with an unprecedentedly high precision, where the last digits
in parentheses are the standard deviations. Third, thematching
conditions between the full SM with the gauge symmetry
SUð3Þc × SUð2ÞL × Uð1ÞY and the effective field theory
(EFT) with the unbroken gauge symmetry SUð3Þc ×
Uð1ÞEM have been computed up to the two-loop order [13].
The matching between the full SM with the low-energy
SUð3Þc × Uð1ÞEM effective theory with massive fermions
has been ignored in the previous works [7–11].
Furthermore, the overall uncertainties on the running

parameters, which are also useful for the model building
when theoretical predictions are confronted with low-
energy observables, should be treated in a consistent
way. On the one hand, the RGEs obtained with perturbative
computations cannot be exact and will be always termi-
nated at finite orders, leading to additional uncertainties in
the evaluation of running parameters. On the other hand,
the uncertainties of different running parameters obtained at
a given energy scale could partly originate from a common
source of error, e.g., the input value of αsðμÞ at μ ¼ MZ;
therefore, the correlation can help in reducing the total
degree of uncertainties. To evaluate the running parameters
at various interesting energy scales, we adopt the recently
released code SMDR for the numerical computations [14].
Other codes for similar purposes, including RunDec [15,16]
and MR [17], are also publicly available.

The rest of this work is structured as follows. In Sec. II,
we describe in detail the general calculational framework,
including the inputs at low energies, the running and
matching routines, and our numerical method to propagate
the uncertainties of various types. Then, the final results of
running parameters are presented in Sec. III. We summarize
our main conclusions in Sec. IV.

II. GENERAL STRATEGY

A. Theoretical framework

In the SM with the full gauge symmetry SUð3Þc×
SUð2ÞL × Uð1ÞY, there are totally 14 independent param-
eters, which are collectively denoted as follows:

Ysm ¼ fgs; g; g0; v; λ; yt; yb; yc; ys; yd; yu; yτ; yμ; yeg ð1Þ
at a given renormalization scale μ for μ > ΛEW with ΛEW
being the energy scale of spontaneous gauge symmetry
breaking. Some explanations for these parameters are in
order. The SM gauge couplings gs, g, and g0 correspond to
the SUð3Þc, SUð2ÞL, and Uð1ÞY gauge symmetries, respec-
tively. In the Higgs sector, the vacuum expectation value v
and the quartic coupling λ are chosen to be independent, so
the quadratic coupling m2 in the scalar potential can be
expressed in terms of v and λ. In addition, the Yukawa
coupling for each fermion f in the SM is denoted as yf.
After the spontaneous breaking of the electroweak gauge
symmetry, i.e., SUð3Þc × SUð2ÞL × Uð1ÞY → SUð3Þc ×
Uð1ÞEM, there are 16 physical parameters at low energies
that can be found in the global-fit analysis from PDG [5],

αsðMZÞ; α−10 ; Mt; mbðmbÞ; mcðmcÞ; msð2 GeVÞ;
mdð2 GeVÞ; muð2 GeVÞ; Mτ; Mμ; Me; GF; MZ;

Mh; MW; sin2θW: ð2Þ
Some comments on the experimental measurements of
these parameters are helpful. The strong coupling constant
αsðMZÞ is determined by combining the experimental data
collected at different energy scales. The fine-structure
constant α0 is precisely derived from the measurement
of e� anomalous magnetic moment [18]. The pole masses
of heavy SM particles, i.e., Mt, MZ, Mh, and MW , are
extracted from the data accumulated at high-energy lepton
and hadron colliders. It should be noticed that the quoted
pole masses MZ and MW from PDG are actually the Breit-
Wigner masses, which are defined as ðM2

pole þ Γ2Þ1=2 with
Mpole being the true pole mass and Γ being the total decay
width. The pole mass of τ-lepton is obtained from various
lepton collider experiments, while those of light-flavor
charged leptons are determined from atomic physics, i.e.,
the mass ratio of electron to the nucleus in the carbon ions
and the mass ratio of muon to electron in the muonic atoms.
In addition, the weak mixing angle sin2 θW is pinned
down from experiments at different energy scales, such
as the collider experiments running at the Z pole, the

1The mass ratios of light quarks are usually extracted from the
precise measurements of the π- and K-meson masses within the
framework of chiral perturbation theory, whereas the absolute
masses of light quarks can be determined either from the lattice
QCD simulations of hadronic mass spectra or from spectral
function sum rules for hadronic correlation functions. See, e.g.,
Ref. [5] for a recent review.
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neutrino-nucleon scattering, and the atomic parity viola-
tion. It is worthwhile to mention that the running of flavor
mixing parameters in the quark sector has been ignored in
our calculations, as its impact on the running fermion
masses is insignificant either in the full SM above or in the
EFTs below the electroweak scale.
The tree-level relations between the fundamental SM

parameters in Eq. (1) and the low-energy observables in
Eq. (2) are straightforward. First, the fermion masses and
their Yukawa couplings are simply related by mf ¼
yfv=

ffiffiffi
2

p
. Then, the strong coupling constant and the gauge

coupling are linked by definition as αs ¼ g2s=4π. The Higgs
massMh ≃ 125 GeV can be used to fix the quartic coupling
λ ≃ 0.129 via Mh ¼

ffiffiffiffiffi
2λ

p
v, given the vacuum expectation

value v ≃ 246 GeV. Finally, the remaining tree-level rela-
tions are as follows:

α0 ¼
g2g02

4πðg2 þ g02Þ ; GF ¼ 1ffiffiffi
2

p
v2

; MZ ¼ v
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
;

MW ¼ gv
2
; sin2θW ¼ g02

g2 þ g02
; ð3Þ

where only three parameters g, g0, and v are involved in the
above five observables. According to Tables 10.2 and 10.4
and Fig. 10.2 of Ref. [5], the values of sin2 θW and MW
derived from α0, GF, and MZ are much more precise than
direct measurements of them. Therefore, we will discard
sin2 θW and MW , and choose α0, GF, and MZ as basic
numerical inputs to fix g, g0, and v. The complete set of
totally 15 input parameters to be used in our numerical
calculations is

I sm ¼ fαsðMZÞ; α0;Mt; mbðmbÞ; mcðmcÞ; msð2 GeVÞ;
mdð2 GeVÞ; muð2 GeVÞ;Mτ;Mμ;Me; GF;MZ;

Mh;Δα
ð5Þ
hadðMZÞg: ð4Þ

Following Ref. [14], we treat Δαð5ÞhadðMZÞ, the nonpertur-
bative hadronic radiative contributions to the fine-structure
constant α, as an input parameter due to its nonperturbative
nature. Let us explicitly write down the input parameters
with their best-fit values and 1σ errors [5],

αsðMZÞ ¼ 0.1179ð10Þ; α−10 ¼ 137.035999084ð21Þ; GF ¼ 1.1663787ð6Þ × 10−5 GeV−2;

MZ ¼ 91.1876ð21Þ GeV; Mh ¼ 125.10ð14Þ GeV; Mt ¼ 172.4ð7Þ GeV;
mbðmbÞ ¼ 4.18ð2Þ GeV; mcðmcÞ ¼ 1.27ð2Þ GeV; msð2 GeVÞ ¼ 0.093ð8Þ GeV;

mdð2 GeVÞ ¼ 4.67ð32Þ MeV; muð2 GeVÞ ¼ 2.16ð38Þ MeV; Mτ ¼ 1.77686ð12Þ GeV;
Mμ ¼ 0.1056583745ð24Þ GeV; Me ¼ 0.5109989461ð31Þ MeV; Δαð5ÞhadðMZÞ ¼ 0.02764ð7Þ: ð5Þ

Those quoted errors have been symmetrized and assumed
to be Gaussian distributed. We can clearly observe that the
uncertainties of inputs are mainly coming from the had-
ronic sector, i.e., the strong coupling constant αs, the quark
masses mq, and the magnitude of hadronic correction

Δαð5ÞhadðMZÞ.
Beyond the tree-level relations, the radiative corrections

should be taken into account to link the parameters defined
at different renormalization scales. Combining the low-
energy inputs I sm in Eq. (5), the RGEs and the matching
conditions, one can uniquely determine the SM parameters
Ysm in Eq. (1). The theoretical details have been elaborated
in the associated paper of the SMDR code [14]. Below we
briefly summarize the key points.

(i) The fine-structure constant: The relation between
the fine-structure constant at the vanishing momen-
tum transfer α0 and the running gauge couplings
defined in the MS scheme has been given in
Refs. [19–21], where the contributions up to the
three-loop order have been included. To be more
specific, the one-loop correction appears in Eq. (A.2)
of Ref. [21], while the higher-order corrections at

μ ¼ MZ can be expressed as the interpolating result,
i.e., Eq. (3.7) in the published version of Ref. [21].
Note that α−10 is the most precisely measured para-
meter of the SM, with a relative precision as high as
10−10. However, as we will show later, its MS value
αðMZÞ at μ ¼ MZ suffers considerable contamina-
tion of radiative corrections and thus is determined
with a relative precision of ∼2 × 10−4.

(ii) The Fermi constant: The Fermi constant measured at
low energies can be used to fix the vacuum expect-
ation value v of the Higgs field. Including the loop
corrections, it is related to v defined in the Landau
gauge via

GF ¼
1þ Δr̃ffiffiffi

2
p

v2
; ð6Þ

where Δr̃ ¼ Δr̃ð1Þ=ð16π2Þ þ Δr̃ð2Þ=ð16π2Þ2 has
been written as a sum of one-loop [14,22] and two-
loop [14] contributions. We will use the loop-
corrected expectation value v which is defined by
the minimum of the Higgs effective potential in the
tadpole-free Landau gauge [14], while the results
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with the tree-level definition vtree ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
can be

found in Refs. [23,24].
(iii) The RGE running and matching: In the symmetric

phase of the SM, the state-of-the-art RGEs have
been implemented in SMDR, including the one-loop,
two-loop [25–31], and three-loop [32–41] complete
beta functions of gauge couplings, Yukawa cou-
plings, and the Higgs quartic coupling and the
anomalous dimension of m2, as well as the inde-
pendent beta functions for gauge couplings at four-
loop order [42]. Other higher-order beta functions
are only available with some incomplete leading
terms, see, e.g., Refs [43–46], thus will not be
included in our calculation. Below the electroweak
scale, we assume the heavy degrees of freedom in
the SM (i.e., the top quark t, the Higgs boson h, the
weak gauge bosons Z and W�) to simultaneously
decouple from the theory. After the decoupling of
these heavy particles, a low-energy EFT with five
quarks, three generations of leptons, photon and
gluons can be constructed, where the QCD gauge
symmetry SUð3Þc and the gauge symmetry Uð1ÞEM
for quantum electrodynamics (QED) are preserved.
To match the parameters in the full theory with those
in the EFTs, we should utilize the matching con-
ditions to include the threshold effects from the
decoupling of heavy particles. In principle, the
matching scale or the decoupling scale can be
chosen arbitrarily if radiative corrections at all orders
are known. However, to avoid large logarithms
arising from the heavy particle masses, it is in prac-
tice convenient to set the matching scale to be around
the heavy particle masses, μ ∼ fMt;Mh;MZ;MWg ∈
ð80…173Þ GeV. In this work, we fix the matching
scale at the pole mass of Z, i.e.,MZ ¼ 91.1876 GeV.
The uncertainties associated with the choice of the

matching scale can be consistently treated as the
theoretical errors. After the electroweak matching
procedure, the resultant low-energy EFT of QCD ×
QED involves the following set of parameters:

Yeff ¼ fαs; α; mb;mc;ms;md;mu;mτ; mμ; meg: ð7Þ

The electroweakmatching conditions betweenYeff in
Eq. (7) and Ysm in Eq. (1) have been presented in
Ref. [13]. TheRGEsof the physical parameters for the
low-energy EFT of QCD × QED have been exten-
sively studied and updated in the literature. The beta
functions of αs have been calculated up to five loops,
e.g., in Refs. [47–52]. These five-loop results have
been incorporated into the latest version of the RunDec

package [16] to calculate the running strong coupling
and quark masses below the electroweak scale. The
anomalous dimensions of quark masses with pure
QCD contributions have been updated in Refs. [53–
57] up to the five-loop order. InRefs. [58–62], one can
find the complete three-loop QCD × QED contribu-
tions (including pure QCD, pure QED, and their
mixture) to the beta functions of αs and α and the
anomalous dimensions of fermion masses. At low
energies, when a fermion mass threshold (e.g., b, c,
or τ) is crossed, the matching of running parameters
between two successive EFTs needs to be performed
explicitly. The matching conditions for the gauge
couplings and fermion masses are usually given in

the form α
ðnf−1Þ
s ðμÞ ¼ ζ2gsα

ðnfÞ
s ðμÞ, αðnf−1ÞðμÞ ¼

ζ2eα
ðnfÞðμÞ, and m

ðnf−1Þ
f ¼ ζfm

ðnfÞ
f , where ζ2gs , ζ2e,

and ζf are the decoupling constants and nf refers
to the number of active fermions in the corresponding
EFTs. The expressions of ζ2gs and ζq (i.e., ζf for
quarks) are already known up to the order of four

FIG. 1. The flow chart for numerical calculations. First, the running parameters Ysm in the full SM are specified as the initial
conditions above the electroweak scale. The RGEs of the full SM with nq ¼ 6 active quarks and nl ¼ 3 active leptons are utilized to
evolve those parameters to the electroweak scale μ ¼ MZ. After the decoupling of heavy particles t, h, Z, andW at the electroweak scale,
an EFT of QCD × QED with ðnq; nlÞ ¼ ð5; 3Þ is obtained. Then, we evolve the running parameters based on the resultant RGEs of the
EFT until the next threshold is encountered and similar procedures are carried out again. The intermediate decoupling scales have been
explicitly shown as the colored frames and the RGEs in between as green arrows, along which the theoretical inputs together with the
references are given.
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loops for the pure QCD contributions [63–65].
However, the other contributions, e.g., the mixed
QCD × QED one, are obtained in Ref. [13,66] only
to the two-loop order.

(iv) The pole mass and the MS running mass: To derive
the MS running mass from the pole mass, or vice
versa, the relations between the masses in the on-
shell scheme and those in the MS scheme must be
known. In our analysis, the conversions will be
carried out from the pole masses of t [67–71], τ, μ,
and e [72–74] to their MS running masses, while the
pole masses of h [75] and Z [76–78] have been used
to determine the relevant MS running couplings.

With all the above information, we can compute the MS
running parameters at a given energy scale, i.e., YsmðμÞ
and YeffðμÞ, based on the physical inputs of I sm. A sketch
of our computational procedure has been shown in Fig. 1.
The SMDR code is primarily intended for running the
parameters in the full SM at high energies to those in
the EFTs at low energies. To conversely obtain the MS
parameters in the full SM from the low-energy input
parameters, a fitting routine has been adopted in SMDR,
leading to the determination of MS parameters with quite a
high precision.

B. Loop truncation and error propagation

As mentioned before, we can estimate the uncertainties
on the running quark and lepton masses with all the
precision data available. The error from the experimental
inputs is not the only source of uncertainties. Another
source, which we shall investigate in the present work, is
the theoretical error coming from the perturbation calcu-
lations truncated at finite-order loops. More explicitly, the
RGEs, the matching conditions, and the conversions from
on-shell masses to MS running masses have been given
only at some finite order of perturbations. This type of
theoretical error has not been considered in Refs. [7–11].
To quantify this theoretical error, we take the difference
between the result obtained by using the highest-order
formulas partially from QCD and QED contributions and
that by using the formulas completely given at the order

lower by one.2 The loop orders of our truncation procedure
for various sources have been summarized in Table I. Some
comments and clarifications are helpful.

(i) For the RGEs in the EFT of QCD × QED below the
electroweak scale, the highest complete RGEs are of
three-loop order, including the pure QCD part of
Oðα3sÞ, themixedQCD × QED of the orderOðα2sαÞþ
Oðαsα2Þ, and the pure QED contribution of the order
Oðα3Þ. The pure QCD contribution (i.e., without the
mixed QCD × QED terms) has actually been calcu-
lated up to the five-loop order. Since αs ≫ α holds
below the electroweak scale, we adopt the five-loop
results of the pure QCD contribution and the contri-
butions other than the pure QCD part at the three-loop
order.

For the RGEs above the electroweak scale, the
perturbation calculations should rely on the gauge
couplings g2s , g2, and g02, the Yukawa couplings y2f,
and the quartic Higgs coupling λ. The complete results
are of four-loop order for gauge couplings and three-
loop order for other couplings. Some higher-loop
contributions are available but incomplete, so we
implement the complete results and take the high-order
contributions as the theoretical error.

(ii) The truncation needs to be performed as well for the
decoupling of heavy particles. For t, h,W�, and Z to
be decoupled at the electroweak threshold, the
complete matching conditions are known up to
the two-loop order. The pure QCD contribution to
the matching condition for the decoupling of t is
known up to four-loop order, whereas the complete
matching conditions for the decoupling of b, c, and τ
in the EFT of QCD × QED are given at the two-
loop order. The pure QCD results for the b and c
decoupling are also available at the four-loop
order. Since the available QCD contribution to the

TABLE I. Summary of the higher-order contributions implemented in the numerical calculations and the corresponding theoretical
errors from the RGEs and the matching conditions truncated at finite-order loops. The listed contributions to the errors are assumed to be
independent, except that the uncertainties from b and c decoupling in pure QCD and those from theMμ;Me ↔ mμ; me conversions are
taken to be 100% correlated.

EW matching, complete [13] Two-loop Mτ ↔ mτ, complete [72–74] Three-loop
b and c decoupling, pure QCD [63–65] Four-loop Mμ;Me ↔ mμ; me, complete [72–74] Two-loop
b and c decoupling, others [13] Two-loop Mh ↔ λ, leading [75] Three-loop
τ decoupling, pure QED [13] Two-loop Mt ↔ yt, pure QCD [67–70] Four-loop
RGEs of QCD × QED, pure QCD [50–55] Five-loop Mt ↔ yt, others [71] Two-loop
RGEs of QCD × QED, others [59–62] Three-loop MZ ↔ g; g0, complete [78] Two-loop
RGEs of SM, gauge couplings [42] Four-loop GF ↔ v, complete [14] Two-loop
RGEs of SM, others [32–41] Three-loop α0 ↔ α [21] Two-loop

2For instance, in the full SM above the electroweak scale, to
truncate the three-loop order, we compute the running parameters
twice, namely, once with the highest three-loop RGEs and once
with the two-loop RGEs. The difference between the outcome of
two calculations will then be estimated as the uncertainties caused
by the finite-loop RGEs [79].
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matching conditions is more precise than the com-
plete QCD × QED ones, we will truncate the pure
QCD contribution at the four-loop order and the
others at the two-loop order, respectively.

(iii) The conversions of the parameters from the on-shell
scheme to those in MS scheme, including Mτ, Mμ,
Me, Mh, Mt, MZ, GF, and α0, are treated with the
highest-loop results available. More explicitly, for
Mh, the leading three-loop contribution is included.
For Mt, the pure QCD contribution has been
calculated up to the four-loop order, while the other
contributions are known at the two-loop order.
Therefore, we will truncate the QCD part at the
four-loop order and the others at the two-loop order.
The conversion between the fine-structure constant
α0 and αðμÞ will be performed at the two-loop order.

The errors from the experimental inputs and the theoretical
errors from the finite-loop truncation will be treated
independently. However, the uncertainties from b and c
decoupling in pure QCD are based on the same theory, and
likewise for the uncertainties from the Mμ;Me ↔ mμ; me

conversions, so they are taken to be 100% correlated.

We adopt the approach of linear error propagation to
translate the input errors in Eq. (5) into those of the outputs
Ysm and Yeff . The 1σ experimental errors of the outputs can
be obtained by varying the inputs within their 1σ ranges. By
switching on one input error δIk at each time, one can
figure out the shift in the output δYik ¼ ð∂Yi=∂IkÞ · δIk,
for the kth input and ith output. In this way, one can find the
error matrix

Sij ≡
X
k

�∂Yi

∂Ik
δIk

��∂Yj

∂Ik
δIk

�
; ð8Þ

where the 1σ error for each output can be identified as
σi ≡ ffiffiffiffiffi

Sii
p

, and the nondiagonal terms with i ≠ j quantify
the correlations among the output errors of different
parameters. The error matrix can be normalized to give
the correlation matrix ρij ≡ Sij=

ffiffiffiffiffiffiffiffiffiffiffi
SiiSjj

p
such that its

elements directly reflect the level of correlation among
different parameters. We have demonstrated that the esti-
mation via the linear error propagation turns out to be in
perfect agreement with the calculation by the Monte Carlo
approach.

TABLE II. Running quark masses at some representative energy scales, includingMW ¼ 80.379 GeV andMZ ¼ 91.1876 GeV in the
EFT with the exact SUð3Þc × Uð1ÞEM gauge symmetry and the number of active fermions ðnq; nlÞ ¼ ð5; 3Þ, as well as
MZ ¼ 91.1876 GeV, Mh ¼ 125.10 GeV, Mt ¼ 173.1 GeV, μ ¼ 105 GeV, μ ¼ 108 GeV, and μ ¼ 1012 GeV in the full SM. Above
the electroweak scale, the effective running masses have been defined as mf ≡ yfvF=

ffiffiffi
2

p
with vF ≡ 246 GeV. For each parameter, we

present its best-fit value Y and its uncertainty in the form of Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2exp þ δ2trunc

q
, where the experimental error δexp is induced by the

input uncertainty while the theoretical error δtrunc by yet-unknown higher-loop corrections.

μ=GeV Theory mt=GeV mb=GeV mc=GeV ms=MeV md=MeV mu=MeV

MW EFT � � � 2.897� 0.026 0.635� 0.018 54.40� 4.71 2.73� 0.19 1.26� 0.22
MZ EFT � � � 2.866� 0.026 0.628� 0.018 53.80� 4.66 2.70� 0.19 1.24� 0.22
MZ Full SM 168.26� 0.75 2.839� 0.026 0.620� 0.017 53.16� 4.61 2.67� 0.19 1.23� 0.21
Mh Full SM 165.05� 0.75 2.768� 0.026 0.607� 0.017 52.00� 4.51 2.61� 0.18 1.20� 0.21
Mt Full SM 161.98� 0.75 2.702� 0.025 0.594� 0.017 50.90� 4.41 2.56� 0.18 1.18� 0.20
105 Full SM 123.77� 0.85 1.908� 0.021 0.435� 0.013 37.47� 3.26 1.88� 0.13 0.86� 0.15
108 Full SM 102.49� 0.89 1.502� 0.018 0.350� 0.011 30.34� 2.65 1.52� 0.11 0.69� 0.12
1012 Full SM 85.07� 0.89 1.194� 0.015 0.283� 0.009 24.76� 2.17 1.24� 0.09 0.56� 0.10

TABLE III. Running charged-lepton masses at some representative energy scales, including MW ¼ 80.379 GeV
and MZ ¼ 91.1876 GeV in the EFT with the exact SUð3Þc × Uð1ÞEM gauge symmetry and the number of active
fermions ðnq; nlÞ ¼ ð5; 3Þ, as well as MZ ¼ 91.1876 GeV, Mh ¼ 125.10 GeV, Mt ¼ 173.1 GeV, μ ¼ 105 GeV,
μ ¼ 108 GeV, and μ ¼ 1012 GeV in the full SM with the number of active fermions ðnq; nlÞ ¼ ð6; 3Þ.
μ=GeV Theory mτ=GeV mμ=GeV me=MeV

MW EFT 1.74826� 0.00012 0.102925� 0.000018 0.48858� 0.00045
MZ EFT 1.74743� 0.00012 0.102877� 0.000018 0.48835� 0.00045
MZ Full SM 1.72856� 0.00028 0.101766� 0.000023 0.48307� 0.00045
Mh Full SM 1.73369� 0.00020 0.102065� 0.000020 0.48449� 0.00045
Mt Full SM 1.73850� 0.00014 0.102347� 0.000019 0.48583� 0.00045
105 Full SM 1.78412� 0.00158 0.105015� 0.000095 0.49850� 0.00064
108 Full SM 1.77852� 0.00308 0.104681� 0.000183 0.49691� 0.00098
1012 Full SM 1.73194� 0.00466 0.101936� 0.000277 0.48388� 0.00139

GUO-YUAN HUANG and SHUN ZHOU PHYS. REV. D 103, 016010 (2021)

016010-6



III. NUMERICAL RESULTS

Following the strategy outlined above, we update the MS
running parameters [7–11] in the SM at several represen-
tative energy scales, including their best-fit values and the
inferred 1σ uncertainties. Below the electroweak scale, in

the EFT with five quarks and three leptons, all the heavy
particles including t, h, Z, and W� are integrated out, and
we calculate the running parameters at two relevant energy
scales: (i) μ ¼ MW , ðnq; nlÞ ¼ ð5; 3Þ without t, h, Z, and
W�; (ii) μ ¼ MZ, ðnq; nlÞ ¼ ð5; 3Þwithout t, h, Z, andW�.
Above the electroweak scale, the full gauge symmetry of
the SM with the number of active fermions ðnq; nlÞ ¼
ð6; 3Þ is preserved and the typical energy scales are chosen
to be (i) μ ¼ MZ, (ii) μ ¼ Mh, (iii) μ ¼ Mt, (iv) μ ¼
100 TeV, (v) μ ¼ 108 GeV, (vi) μ ¼ 1012 GeV. To match
the fermion masses below the electroweak scale, we
introduce the effective running masses above the electro-
weak scale as mf ≡ yfvF=

ffiffiffi
2

p
with vF ≡ 246 GeV≃

2−1=4G−1=2
F , with which one can simply obtain the running

TABLE IV. Running gauge couplings at μ ¼ MW ¼
80.379 GeV and μ ¼ MZ ¼ 91.1876 GeV in the EFT with the
SUð3Þc × Uð1ÞEM gauge symmetry and the number of active
fermions ðnq; nlÞ ¼ ð5; 3Þ.
μ Theory αs α−1

MW EFT 0.1199� 0.0010 127.937� 0.026
MZ EFT 0.1176� 0.0010 127.754� 0.026

TABLE V. Running gauge couplings at some representative energy scales, including MZ ¼ 91.1876 GeV,
Mh ¼ 125.10 GeV, Mt ¼ 173.1 GeV, μ ¼ 105 GeV, μ ¼ 108 GeV, and μ ¼ 1012 GeV in the full SM with the
number of active fermions ðnq; nlÞ ¼ ð6; 3Þ.
μ Theory gs g g0

MZ Full SM 1.2104� 0.0051 0.65100� 0.00028 0.357254� 0.000069
Mh Full SM 1.1855� 0.0048 0.64934� 0.00028 0.357893� 0.000070
Mt Full SM 1.1618� 0.0045 0.64765� 0.00028 0.358545� 0.000070
105 GeV Full SM 0.8711� 0.0019 0.61644� 0.00025 0.372179� 0.000079
108 GeV Full SM 0.7182� 0.0010 0.58690� 0.00022 0.388806� 0.000091
1012 GeV Full SM 0.6017� 0.0006 0.55325� 0.00019 0.414821� 0.000111

TABLE VI. Running Higgs parameters at some representative energy scales, including MZ ¼ 91.1876 GeV,
Mh ¼ 125.10 GeV, Mt ¼ 173.1 GeV, μ ¼ 105 GeV, μ ¼ 108 GeV, and μ ¼ 1012 GeV in the full SM with the
number of active fermions ðnq; nlÞ ¼ ð6; 3Þ.
μ Theory v=GeV λ −m2=GeV2

MZ Full SM 248.404� 0.036 0.13947� 0.00045 8434� 21
Mh Full SM 247.482� 0.023 0.13259� 0.00035 8525� 22
Mt Full SM 246.605� 0.011 0.12607� 0.00030 8612� 23

105 GeV Full SM 236.500� 0.209 0.04993� 0.00239 9740� 35

108 GeV Full SM 232.831� 0.402 0.01525� 0.00408 10213� 38

1012 GeV Full SM 232.510� 0.624 −0.00402� 0.00522 10274� 32

TABLE VII. The error correlation matrix at μ ¼ MZ in the EFT of SUð3Þc × Uð1ÞEM with the number of active fermions
ðnq; nlÞ ¼ ð5; 3Þ.
ρij at MZ αs α−1 mb mc ms md mu mτ mμ me

αs 1 0.0054 −0.62 −0.6 −0.12 −0.15 −0.059 0.0029 0.0031 0.0014
α−1 0.0054 1 −0.0033 −0.0032 −0.00064 −0.00078 −0.00031 0.048 0.03 0.0095
mb −0.62 −0.0033 1 0.37 0.073 0.09 0.036 −0.002 −0.0022 −0.00094
mc −0.6 −0.0032 0.37 1 0.073 0.09 0.036 −0.0017 −0.0043 −0.0019
ms −0.12 −0.00064 0.073 0.073 1 0.018 0.0071 −0.00034 −0.00038 −0.00016
md −0.15 −0.00078 0.09 0.09 0.018 1 0.0088 −0.00042 −0.00046 −0.0002
mu −0.059 −0.00031 0.036 0.036 0.0071 0.0088 1 −0.00016 −0.00019 −8.3e-05
mτ 0.0029 0.048 −0.002 −0.0017 −0.00034 −0.00042 −0.00016 1 0.0015 0.00036
mμ 0.0031 0.03 −0.0022 −0.0043 −0.00038 −0.00046 −0.00019 0.0015 1 1
me 0.0014 0.0095 −0.00094 −0.0019 −0.00016 −0.0002 −8.3e-05 0.00036 1 1
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Yukawa couplings via yf ¼
ffiffiffi
2

p
mf=vF from the running

masses mf.
The running masses in the MS scheme at different

renormalization scales have been summarized in Table II
for six quarks and Table III for three leptons. The other SM
parameters, including the gauge coupling constants and the
Higgs-related parameters, have been given in Tables IV–
VI. The values of the parameters that are not well defined in
the specified theory will be denoted as dots. For each

parameter, we present its best-fit value Y and its uncertainty

in the form of Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2exp þ δ2trunc

q
, where the experimental

error δexp is induced by the input uncertainty while the

theoretical error δtrunc by the loop truncation.
As briefly mentioned before, the MS running parameters

may share the common sources of input uncertainties,
so their overall uncertainties are actually correlated.
For further reference and completeness, we summarize in

TABLE VIII. The error correlation matrix at μ ¼ MZ in the full SM with the SUð3Þc × SUð2ÞL × Uð1ÞY gauge symmetry and the
number of active fermions ðnq; nlÞ ¼ ð6; 3Þ. Notice that mfðyfÞ in the first row and column actually refers to the running fermion mass
mf and the corresponding Yukawa coupling yf .

ρij at MZ gs g g0 mtðytÞ mbðybÞ mcðycÞ msðysÞ mdðydÞ muðyuÞ mτðyτÞ mμðyμÞ meðyeÞ v λ −m2

gs 1 −0.017 0.013 −0.056 −0.6 −0.59 −0.12 −0.14 −0.058 0.067 0.049 0.013 −0.07 −0.082 −0.041
g −0.017 1 −0.74 0.098 0.0093 0.0095 0.0018 0.0022 0.00091 −0.058 −0.041 −0.0095 0.057 0.076 0.054
g0 0.013 −0.74 1 −0.095 −0.0064 −0.0067 −0.0013 −0.0016 −0.00063 0.05 0.029 0.0043 −0.065 −0.074 −0.053
mtðytÞ −0.056 0.098 −0.095 1 0.019 0.024 0.004 0.005 0.002 −0.85 −0.61 −0.15 0.94 0.78 0.58
mbðybÞ −0.6 0.0093 −0.0064 0.019 1 0.37 0.074 0.091 0.037 −0.023 −0.018 −0.005 0.027 0.039 0.017
mcðycÞ −0.59 0.0095 −0.0067 0.024 0.37 1 0.073 0.09 0.036 −0.029 −0.024 −0.0069 0.032 0.042 0.019
msðysÞ −0.12 0.0018 −0.0013 0.004 0.074 0.073 1 0.018 0.0072 −0.0051 −0.0038 −0.001 0.0056 0.0077 0.0034
mdðydÞ −0.14 0.0022 −0.0016 0.005 0.091 0.09 0.018 1 0.0088 −0.0063 −0.0047 −0.0013 0.0069 0.0095 0.0042
muðyuÞ −0.058 0.00091 −0.00063 0.002 0.037 0.036 0.0072 0.0088 1 −0.0025 −0.0019 −0.00051 0.0028 0.0038 0.0017
mτðyτÞ 0.067 −0.058 0.05 −0.85 −0.023 −0.029 −0.0051 −0.0063 −0.0025 1 0.59 0.14 −0.91 −0.64 −0.47
mμðyμÞ 0.049 −0.041 0.029 −0.61 −0.018 −0.024 −0.0038 −0.0047 −0.0019 0.59 1 0.85 −0.65 −0.45 −0.33
meðyeÞ 0.013 −0.0095 0.0043 −0.15 −0.005 −0.0069 −0.001 −0.0013 −0.00051 0.14 0.85 1 −0.16 −0.11 −0.081
v −0.07 0.057 −0.065 0.94 0.027 0.032 0.0056 0.0069 0.0028 −0.91 −0.65 −0.16 1 0.7 0.52
λ −0.082 0.076 −0.074 0.78 0.039 0.042 0.0077 0.0095 0.0038 −0.64 −0.45 −0.11 0.7 1 0.96
−m2 −0.041 0.054 −0.053 0.58 0.017 0.019 0.0034 0.0042 0.0017 −0.47 −0.33 −0.081 0.52 0.96 1

FIG. 2. The comparison between the uncertainties of running parameters evaluated by the linear error propagation method (gray
curves) and those by the Monte Carlo simulations (red dots) with 2 × 105 sampling points, where the running parameters are given at
μ ¼ MZ in the EFT with the exact SUð3Þc × Uð1ÞEM gauge symmetry and the number of active fermions ðnq; nlÞ ¼ ð5; 3Þ. For clarity,
the labels for the horizontal and vertical axes are not explicitly shown. The gray curves are generated by using the Gaussian distribution
with the central values and 1σ experimental uncertainties, while the red dots stand for the posteriors yielded by the Monte Carlo
simulations.
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Tables VII and VIII the correlation matrix of those MS
parameters at μ ¼ MZ in the EFT of QCD × QED and
the full SM, respectively. To make use of these numeri-
cal results in confronting the model predictions with obser-
vations, one may first reconstruct the error matrix Sij based
on the normalized correlation matrix ρij via Sij ¼ ρijσiσj,
and then quantify the statistical significance of deviations by
χ2 ¼ ðYi − Ybf

i ÞðS−1ÞijðYj − Ybf
j Þ with Yj being the model

prediction and Ybf
j being the given central value.

Now we demonstrate that it is reasonable to implement
the linear error propagation by the Monte Carlo simula-
tions. With 2 × 105 sampling points, the posterior distri-
butions of the running parameters have been generated in
the EFTof QCD × QED at μ ¼ MZ, and they are compared
in Fig. 2 with the distributions obtained from the linear
error propagation. As one can observe from Fig. 2, a perfect
agreement between these two methods is found. Since the
uncertainties on the input parameters are at the perturbative
level, if their values are updated in the future with new
best-fit values and even smaller errors, it is straightforward
to recalculate the best-fit values and errors of running
parameters by utilizing the error dependence matrix pro-
vided in Table IX. For instance, if the best-fit values of
input parameters are changed by the amount of ΔIk, the
best-fit values of the running parameters will be accord-
ingly shifted as Ynew−bf

i ¼ Yold−bf
i þP

kð∂Yi=∂IkÞ · ΔIk.
Similarly, if the uncertainties on the input parameters are
improved, one can determine the 1σ experimental errors of
the running parameters via δYik ¼ ð∂Yi=∂IkÞ · δIk. Such
a treatment is valid as long as the uncertainties are small
and the linear error propagation is justified, which should
be the case for the future measurements with more data.
Apart from the above comments, some important obser-

vations from the numerical calculations can be made.
(i) In Table X, we present the fractions of the output

uncertainty contributed from each input parameter,
which are characterized by ðδYik=σiÞ2, at μ ¼ MZ in
the full SM. For each output parameter, the total
fraction by definition amounts to 100%. For the
running masses of five quarks b, c, s, d, and u at
high-energy scales, we identify two major sources of
input errors: (i) the strong coupling constant αsðMZÞ
and (ii) their input MS masses at low energies. For
the masses of three light quarks, i.e., ms, md, and
mu, the uncertainties from their input MS masses are
dominant. A better knowledge of mq and αsðMZÞ at
low energies in the future will thus greatly improve
the accuracy of their running values at high-energy
scales. For the top quark t, its running mass above
the electroweak scale is mainly affected by the input
of its pole mass.

(ii) Thevacuumexpectationvaluev of the SMHiggs field
does not change much at different renormalization
scales. As is well known, however, the quartic TA
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coupling λ has the risk to be negative at the energy
scales above μ ¼ 108 GeV, e.g., λ < 0 is within the
4σ range at μ ¼ 108 GeV and λ < 0 is the best fit for
μ ¼ 1012 GeV. New physics beyond the SM has to
come into play to save the vacuum from being
unstable. For the latest discussions in this aspect,
one should be referred to Refs. [9,22,79–85].

(iii) It is worthwhile to notice that the theoretical
uncertainties arising from the truncation of finite
loops could be dominant for the electroweak param-
eters mμ, me, g, and g0. For the other parameters, the
theoretical errors are relatively small compared to
the experimental ones. The electroweak matching
procedure dominates the theoretical errors of the
running parameters gs, mb, ms, md, and mu above
the electroweak scale.

IV. CONCLUDING REMARKS

Although the SM has been experimentally proved to be
extremely successful, it must be extended to explain tiny
neutrino masses and to provide the dark matter candidate
and the solution to the hierarchy problem. The energy scale
for new physics has been pushed by the experiments at the
LHC to be beyond TeV. In the present paper, we update the
running fermion masses and other MS parameters at several
representative energy scales, e.g., μ ¼ 105 GeV, 108 GeV,
and 1012 GeV, where new physics may come into play. In
addition, the running parameters are also evaluated at
μ ¼ MZ,Mh, andMt, which will be useful for the precision
calculations in the SM.
Compared with the previous similar works in Refs. [7–

11], a number of significant improvements should be
emphasized. First, tremendous progress has been made
in the theoretical high-order calculations of the RGEs and
the matching conditions in the SM and its related EFTs in
the past few years. In particular, stimulated by the exciting

discovery of the Higgs boson in 2012, the theoretical
treatment of radiative corrections from the electroweak
sector has been significantly advanced. Using the publicly
available code SMDR with the state-of-the-art theoretical
knowledge, we have incorporated all the latest results of
relevant RGEs and matching conditions. Second, the
experimental information has also been greatly changed,
as indicated in the latest version of review of particle
physics from PDG, which is the source of all the input
parameters used in our numerical calculations. Third, we
deal with the uncertainties of running parameters in a
consistent manner. Both the experimental input errors and
the theoretical uncertainties due to the finite-loop calcu-
lations are relevant error sources.
Our main results of the running quark and lepton masses,

gauge couplings, and scalar parameters are summarized in
a number of tables, namely, from Tables II to VI, which
can be directly used for further applications. The linear
error propagation has been verified to be an efficient and
convenient method in deriving the uncertainties on the
running parameters. We find that the theoretical uncertain-
ties due to loop truncations can be dominant for the running
parameters me, mμ, g, and g0, whereas for other running
parameters the experimental input uncertainties are the
major error sources. The results presented here could be
easily improved with future update on the experimental and
theoretical knowledge.
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