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Rare jΔcj ¼ jΔuj ¼ 1 transitions into dineutrinos are strongly Glashow-Iliopoulos-Maiani-suppressed
and constitute excellent null tests of the standard model. While branching ratios of D → Pνν̄,
D → PþP−νν̄, P ¼ π, K, baryonic Λþ

c → pνν̄, and Ξþ
c → Σþνν̄ and inclusive D → Xνν̄ decays are

experimentally unconstrained, signals of new physics can be just around the corner. We provide model-
independent upper limits on branching ratios reaching few ×10−5 in the most general case of arbitrary
lepton flavor structure, ∼10−5 for scenarios with charged lepton conservation and few ×10−6 assuming
lepton universality. We also give upper limits in Z0 and leptoquark models. The presence of light right-
handed neutrinos can affect these limits, a possibility that can occur for lepton number violation at a TeV,
and that can be excluded with an improved bound on BðD0 → invisiblesÞ at the level of ∼10−6, about two
orders of magnitude better than the present one. Signatures of c → uνν̄ modes contain missing energy and
are suited for experimental searches at eþe−–facilities, such as BES III, Belle II and future eþe−–colliders,
such as the FCC-ee running at the Z.

DOI: 10.1103/PhysRevD.103.015033

I. INTRODUCTION

Rare charm decays test physics beyond the standard
model (BSM) and complement flavor studies with K’s and
B’s in a unique way. An important tool in flavor and BSM
searches are null tests—observables that are very small in
the standard model (SM) due to approximate symmetries or
parametric suppression. Null tests allow us to bypass
resonance backgrounds, which in the charm sector can
be challenging otherwise [1]. Flavor changing neutral
current (FCNC) charm dineutrino c → uνν̄ transitions
are such null tests; being strongly Glashow-Iliopoulos-
Maiani (GIM)-suppressed in the SM, their branching ratios
are tiny, such that any observation with current exper-
imental sensitivities would cleanly signal new physics
(NP) [2].
The corresponding missing energy modes are well suited

for a clean eþe−–collider environment, such as Belle II [3],
BES III [4], and future colliders, notably, FCC-ee running
at the Z [5] with sizable charm production rates from
BðZ → cc̄Þ ≃ 0.12 [6]. Fragmentation fractions fðc → hcÞ

of a charm quark to a charmed hadron hc from Ref. [7] are
compiled in Table I, together with the number of charmed
hadrons NðhcÞ ¼ 2fðc → hcÞNðcc̄Þ for FCC-ee and Belle
II benchmark cc̄ numbers [5], (a) Nðcc̄Þ ¼ 550 × 109 and
(b) Nðcc̄Þ ¼ 65 × 109, respectively. With charmed hadron
numbers of ∼1010 and higher, Table I reveals the potential
of the eþe−–machines for charm physics.
To further detail the future sensitivities, we compute the

expected event rate Nexp
F for a decay hc → Fνν̄ with a final

hadronic state F, as

Nexp
F ¼ ηeffNðhcÞBðhc → Fνν̄Þ; ð1Þ

where ηeff accounts for the reconstruction efficiency.
The relative statistical uncertainty for the branching ratio
δB scales as 1=

ffiffiffiffiffiffiffiffiffi
Nexp

F

p
. In Fig. 1 we show the relative

uncertainty δB against the branching ratio B for decays of

TABLE I. Charm fragmentation fractions fðc → hcÞ [7] and
the number of charmed hadrons hc, NðhcÞ, expected at bench-
marks with Nðcc̄Þ ¼ 550 × 109 (a, FCC-ee) and Nðcc̄Þ ¼ 65 ×
109 (b, Belle II with 50 ab−1) [5]. In absence of further
information for the Ξþ

c we use fðc → Ξþ
c Þ ≃ fðc → Λþ

c Þ.
hc fðc → hcÞ NðhcÞ (a) NðhcÞ (b)
D0 0.59 6 × 1011 8 × 1010

Dþ 0.24 3 × 1011 3 × 1010

Dþ
s 0.10 1 × 1011 1 × 1010

Λþ
c 0.06 7 × 1010 8 × 109
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the D0 (upper plot to the left), the Dþ (upper plot to the
right) and the Λþ

c (lower plot to the left). Since the
fragmentation fractions of Λþ

c and Dþ
s are very similar

the corresponding plot for Dþ
s -mesons is not shown. The

left-most boundaries of the shaded regions correspond to
the ideal, no-loss case ηeff ¼ 1, whereas the tilted lines
illustrate the impact of reconstruction efficiencies of a
permille for the FCC-ee (lilac) and Belle II (green).
Figure 1 demonstrates once more the high physics reach
with sensitivities to (very) rare charm decays. For efficien-
cies of a permille or better, branching ratios of Oð10−6Þ
down to Oð10−8Þ can be discovered in D0, Dþ

ðsÞ and Λþ
c

modes at the (future) experiments, Belle II and FCC-ee. If
sound estimates of ηeff and systematic uncertainties would

be available the reach could be determined in a more
quantitative way. Here we stress that the region of branch-
ing ratios of Oð10−6–10−5Þ covers already interesting
physics. Note, since the displayed relation δB ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηeffNðhcÞB

p
does not depend on the final state, the

estimated reach holds not only for dineutrino modes but
also for radiative rare charm decays, with similar rates,
e.g., [2,8,9].
Interestingly, there are no experimental upper limits on

any of the hc → Fνν̄ modes available today. However,
recently, upper limits have been obtained using SUð2ÞL-
invariance and bounds on charged lepton modes [10]. In
this work we provide further details on the implications of
this model-independent method. Upper limits from the

FIG. 1. Relative statistical uncertainty of the branching ratio δB versus the branching ratio B for decays of the D0 (upper plot to the
left), the Dþ (upper plot to the right) and the Λþ

c (lower plot to the left). The shaded areas correspond to the reach for ηeff ¼ 1, whereas
the solid tilted lines illustrate the impact of reconstruction efficiencies ηeff ¼ 10−3 for the FCC-ee (lilac) and Belle II (green). Horizontal
3σ (dotted) and 5σ (dashed) black lines correspond to δB ¼ 1=3 and δB ¼ 1=5, respectively. Vertical lines represent upper limits
assuming LU (solid), cLFC (dotted) and generic lepton flavor (dashed) for different modes, given in Table III. To improve readability the
three lines for each decay mode are grouped together by a shaded band. Upper limits for Dþ

s → Kþνν̄, Ξþ
c → Σþνν̄ and the inclusive

modes can be seen in Table III.
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latter are shown as vertical lines in Fig. 1. For a given decay
mode, the upper limits depend on the charged lepton flavor
structure: they are largest in the general case (dashed),
followed by those assuming charged lepton flavor con-
servation (cLFC) (dotted) and if lepton universality (LU)
holds (solid). To improve readability the three lines for
each decay mode are grouped together by a shaded
band. The relevant ranges are suitable for Belle II and
FCC-ee: all limits are above ∼10−6, with only one excep-
tion (D0 → KþK−νν̄). Upper limits for Dþ

s → Kþνν̄ ,
Ξþ
c → Σþνν̄ and the inclusive modes are provided in

Table III. The hierarchy of upper limits per mode allows
for the exciting possibility to probe charged lepton flavor
properties using fully flavor-summed dineutrino branching
ratios with unreconstructed neutrino flavor. This concludes
our introduction and motivation to work out the physics
reach of charmed dineutrino modes.
The plan of the paper is as follows: We introduce

the weak effective Hamiltonian for c → uνν̄ transitions
in Sec. II. In Sec. III we analyze the decay distributions of
DðsÞ → Pνν̄,DðsÞ → PþP−νν̄, P ¼ π, K Λþ

c → pνν̄, Ξþ
c →

Σþνν̄ and inclusive modes D → Xνν̄. We obtain model-
independent predictions for branching ratios in Sec. IV. We
also consider the implications and constraints from right-
handed (RH) neutrinos and lepton number violating (LNV)
interactions in the charm sector. Predictions for tree-level
NP mediators, such as Z0 and leptoquark (LQ) models are
discussed in Sec. V. We conclude in Sec. VI. Appendix A
provides details on the SUð2ÞL-link and probing LU and
cLFC. Appendix B contains formulae for form factors.

II. LOW-ENERGY EFFECTIVE HAMILTONIAN

In the absence of light RH neutrinos, as in the SM,
jΔcj ¼ jΔuj ¼ 1 dineutrino transitions can be described by
two operators amended by flavor indices in the weak
effective hamiltonian

H
νiν̄j
eff ¼−

4GFffiffiffi
2

p αe
4π

ðCUij
L Qij

L þCUij
R Qij

RÞþH:c:; ð2Þ

with the four-fermion operators

Qij
LðRÞ ¼ ðūLðRÞγμcLðRÞÞðν̄jLγμνiLÞ; ð3Þ

and i, j denote the neutrino flavors (mass eigenstates).
Here, GF denotes Fermi’s constant and αe is the fine
structure constant. No further dimension six operators exist
in H

νiν̄j
eff .

Since the neutrino flavor indices are not experimentally
tagged, dineutrino branching ratios are obtained by adding
all dineutrino flavors incoherently

Bðc → uνν̄Þ ¼
X
i;j

Bðc → uνjν̄iÞ: ð4Þ

Therefore, all branching ratios depend on at most two
combinations of Wilson coefficients that can be chosen as

x�U ¼
X
i;j

jCUij
L � CUij

R j2: ð5Þ

As it enters inclusive rates, the following term turns out to
be useful for the discussion of experimental limits

xU ¼ xþU þ x−U
2

¼
X
i;j

ðjCUij
L j2 þ jCUij

R j2Þ: ð6Þ

xU, and therefore x�U ≤ 2xU, are presently not constrained
by direct experimental information on jΔcj ¼ jΔuj ¼ 1
dineutrino transitions. On the other hand, model-indepen-
dent upper limits on xU have been derived using SUð2ÞL-
invariance and data on charged lepton processes [10].
With upper limits depending on the charged lepton flavor
structure, limits are obtained in three scenarios: LU, cLFC,
and general lepton flavor structure.
Specifically, writing the weak effective Hamiltonian for

charged dileptons as

H
lilj

eff ⊃ −
4GFffiffiffi
2

p αe
4π

ðKUij
L Oij

L þKUij
R Oij

RÞ þ H:c:; ð7Þ

with dileptonic operators

Oij
LðRÞ ¼ ðūLðRÞγμcLðRÞÞðl̄jLγ

μliLÞ; ð8Þ

analogous to the weak Hamiltonian for dineutrinos (2), the
LU, cLFC limits corresponding to flavor structures in the
Wilson coefficients can be identified as

KU
L;RjLU ¼

0
B@

k 0 0

0 k 0

0 0 k

1
CA; KU

L;RjcLFC ¼

0
B@

ke 0 0

0 kμ 0

0 0 kτ

1
CA;

ð9Þ
while “general” means that all entries in the coefficient
matrix are arbitrarily filled, allowing for cLFV. Here, k; kl
are the parameters in the coefficient matrix.
Given a relation [10] between the neutrino CijL;R and the

charged lepton Kij
L;R couplings bounds on the latter imply

limits on the former. Note, this relation involves also down-
sector couplings to charged leptons, KD

L;R, with analogous
flavor patterns as in the up-sector (9). Clearly the limits
depend on the flavor structure.
Using input provided in Appendix A, to which we also

refer for details, the upper limits read

xU ≲ 34; ðLUÞ ð10Þ

xU ≲ 196; ðcLFCÞ ð11Þ
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xU ≲ 716; ðgeneralÞ; ð12Þ
which include leading order corrections from the
Wolfenstein parameter λ ≃ 0.2, therefore providing larger
upper limits than in Ref. [10]. We employ these model-
independent, data-driven limits in the following Sec. III as
benchmarks for differential decay distributions. In Sec. IV
we present upper limits on the branching ratios using (10)–
(12). We also discuss the impact of RH neutrinos.
We remark that the charged lepton data yielding (10)–

(12) are from LHC’s Drell-Yan studies [11,12]. In contrast
to constraints from rare decays, here operators do not
interfere and large cancellations are avoided. On the other
hand, especially in the down-sector rare decay data can
imply significantly stronger constraints. Yet, as discussed
in Appendix A, the upper limits on the xU including kaon
constraints remain within the same order of magnitude as in
(10)–(12). Therefore, we choose total model-independence
and conservatively present results for (10)–(12).

III. DIFFERENTIAL BRANCHING RATIOS

The differential branching ratios of the dineutrino modes
can be written as

dBðhc → Fνν̄Þ
dq2

¼ ahcFþ ðq2ÞxþU þ ahcF− ðq2Þx−U; ð13Þ

where q2 denotes the invariant mass-squared of the dineu-
trinos. Equation (13) can also be expressed in terms of
missing energy, that is the energy of neutrinos, in the
charmed hadron’s center-of-mass system, as dB=dEmiss ¼
2mhcdB=dq

2, where mhc denotes the mass of the initial

charm hadron. The q2–dependent functions ahcF� can be
fetched from the literature [1,13–16], and are given in
Secs. III A–III D. Information on the form factors from
Refs. [1,17–19] is compiled in Appendix B.
Integrating the differential branching ratios Eq. (13), one

finds

Bðhc → Fνν̄Þ ¼ AhcFþ xþU þ AhcF− x−U; ð14Þ
where

AhcF
� ¼

Z
q2max

q2min

dq2ahcF� ðq2Þ: ð15Þ

Here, q2max ¼ ðmhc −mFÞ2 for the exclusive modes and
q2max ¼ m2

c for inclusive D0;þ and q2max ¼ ðmD −mKÞ2 for
inclusive Dþ

s decays [20]. mF (mD) denotes the mass of the
hadronic final state (D-meson). For two pseudoscalars
F ¼ P1P2, P1;2 ¼ π, K, mF ¼ mP1

þmP2
, where mPi

denotes the mass of the pseudoscalar meson Pi.
Resonant backgrounds in charged meson decays through
τ–leptons, i.e., Dþ → τþð→ πþν̄Þν and Dþ

s → τþð→
Kþν̄Þν lead to the same final state as the search channels

Dþ → πþν̄ν andDþ
s → Kþν̄ν [21] and need to be removed

by kinematic cuts

q2 > ðm2
τ −m2

PÞðm2
D −m2

τÞ=m2
τ ; ð16Þ

where mτ denotes the mass of the tau. Therefore,
the integration region in (15) is bounded by q2min ¼
0.34 GeV2ð0.66 GeV2Þ for Dþ → πþν̄ν (Dþ

s → Kþν̄ν),
whereas we use q2min ¼ 0 in all other modes. We note that
the inclusive decays require phase space cuts, however, a
dedicated analysis of an experimental strategy is beyond
the scope of this work.
In Table II we provide the central values for the

prefactors AhcF
� , taking into account Eq. (16) for exclu-

sive Dþ and Dþ
s -decays. As expected from Lorentz-

invariance and parity-conservation in the strong interaction
we observe
(a) AhcF− ¼ 0 in D → Pνν̄ decays,
(b) AhcFþ ≪ AhcF− in D → P1P2νν̄ decays,
(c) OðAhcF− Þ ∼OðAhcFþ Þ in baryonic charm decays,
(d) AhcF− ¼ AhcFþ in inclusive D decays,
which highlights the complementarity between the different
decay modes in regard of NP sensitivity. We return to this in
Sec. IV B.
In the following Secs. III A–III D we review the theory

description of the decays D → Pνν̄, D → P1P2νν̄, Λþ
c →

pνν̄ and Ξþ
c → Σþνν̄ and D → Xνν̄ and provide details

relevant for the calculation of the AhcF
� factors compiled in

Table II.

A. D → Pνν̄

The D → Pνν̄ mode, where D ¼ D0; Dþ; Dþ
s and

P ¼ π0; πþ; Kþ, respectively, is described by only one

TABLE II. Coefficients Ahc F
� as in Eq. (15) for various charmed

hadrons hc and final states F for central values of input. For the
exclusive charged D decays q2-cuts (16) are taken into account,
while for inclusive modes no cuts were applied, as the details of
possible backgrounds are beyond the scope of this work. This
table is adopted from Ref. [10].

hc → F Ahc Fþ ½10−8� Ahc F− ½10−8�
D0 → π0 0.9 0
Dþ → πþ 3.6 0
Dþ

s → Kþ 0.7 0

D0 → π0π0 0.7 × 10−3 0.21
D0 → πþπ− 1.4 × 10−3 0.41
D0 → KþK− 4.7 × 10−6 0.004

Λþ
c → pþ 1.0 1.7

Ξþ
c → Σþ 1.8 3.5

D0 → X 2.2 2.2
Dþ → X 5.6 5.6
Dþ

s → X 2.7 2.7
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form factor. The aDP
� –functions of the differential decay

width can be written as

aDPþ ðq2Þ ¼ G2
Fα

2
eτDλðm2

D;m
2
P; q

2Þ32ðfDPþ ðq2ÞÞ2
3072π5m3

D

; ð17Þ

and aDP
− ðq2Þ ¼ 0. Here, λða; b; cÞ ¼ a2 þ b2 þ c2 −

2ðab − ac − bcÞ is the usual Källén function and τD
denotes the lifetime of the D-meson.
In this work we use the D → P form factors computed

by Lubicz et al. [17] using lattice QCD. Details can be
found in Appendix B 1. Figure 2 illustrates the differential
branching ratio for all three decay modes with exemplary
values of xU from Eqs. (10) (solid) and (11) (dotted).
The hierarchy between the D0, Dþ, Dþ

s branching ratios
stems predominantly from the different lifetimes τD0 <
τDs

< τDþ , while for the Ds also the phase space difference
relative to the D0;þ plays a role.

B. D → P1P2νν̄

The angular distributions of D → P1P2νν̄ decays can be
obtained from Ref. [1]. Integrating the unobservable
kinematic variables, two angles in the full five-fold angular
distribution, we are left with a three-fold differential distri-
bution with the following aDP1P2

� –functions,

aDP1P2

� ðq2Þ ¼
Z ðmD−

ffiffiffiffi
q2

p
Þ2

ðmP1
þmP2

Þ2
dp2

Z
1

−1
dcosθP1

b�ðq2;p2;θP1
Þ;

ð18Þ

with

b−ðq2; p2; θP1
Þ ¼ τD

6
½jF 0j2 þ sin2θP1

jF kj2�;

bþðq2; p2; θP1
Þ ¼ τD

6
sin2θP1

jF⊥j2; ð19Þ

where p2 denotes the invariant mass-squared of the (P1P2)-
subsystem. θP1

is the angle between the P1-momentum and
the negative direction of flight of the D-meson in the
(P1P2)-cms. The transversity form factors F i, i ¼ 0;⊥; k
are given in Ref. [1], with details provided in Appendix B 2.
Helicity relations imply that at low hadronic recoil the

transverse perpendicular form factor is suppressed with
respect to the others, F⊥ ≪ F 0;k [22]. In addition, at large
recoil the longitudinal form factor becomes the leading one,
F⊥;k ≪ F 0. Therefore, D → P1P2νν̄ decays are domi-
nated by the ADP1P2− contribution, as can be seen numeri-
cally in Table II, and have only suppressed sensitivity to xþU.

FIG. 2. Differential branching ratios for D0 → π0νν̄, Dþ →
πþνν̄ and Dþ

s → Kþνν̄ in red, brown, and green, respectively for
the LU (cLFC) limit in solid (dotted) lines from Eq. (10)
[Eq. (11)]. The uncertainty bands are due to the form factors,
the vertical dashed lines illustrate the cuts (16) needed to avoid
the τ background.

FIG. 3. Differential branching ratios for D0 → π0π0νν̄, D0 →
πþπ−νν̄ and D0 → KþK−νν̄ decays in orange, deep pink and
cyan, respectively for the LU (cLFC) limit in solid (dotted) lines
from Eq. (10) [Eq. (11)]. The upper plot shows dB=dq2, whereas
the lower plot dB=dp2, as in (20). The differential branching ratio
ofD0 → KþK−νν̄ is multiplied by a factor 100 to be visible in the
plots. The band widths illustrate 10% uncertainty originating
from form factors.
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In Fig. 3 (upper plot) we illustrate the q2-differential
branching ratio for three decay modes, D0 → π0π0νν̄,
D0 → πþπ−νν̄ and D0 → KþK−νν̄, for xU saturating
Eqs. (10) and (11). Also shown are the (P1 − P2)-mass-
squared distributions dB=dp2, obtained as

dBðD → P1P2νν̄Þ
dp2

¼ aDP1P2þ ðp2ÞxþU þ aDP1P2− ðp2Þx−U;

ð20Þ

aDP1P2

� ðp2Þ ¼
Z ðmD−

ffiffiffiffi
p2

p
Þ2

0

dq2
Z

1

−1
dcosθP1

b�ðq2;p2;θP1
Þ;

ð21Þ
in close analogy to (13) and (18). Due to isospin, the
distributions for F ¼ π0π0 and πþπ− are essentially the
same up to an overall factor of 2, due to two identical
particles in the final state.

C. Charmed baryon modes

The differential decay rates for Λþ
c → pνν̄ and Ξþ

c →
Σþνν̄ decays can be extracted from Ref. [14]. Four different

form factors enter the ah
þ
c F

� –functions as

ah
þ
c Fþ ðq2Þ ¼ N

�
2f2⊥s− þ f2þðmhþc þmFÞ2

s−
q2

�
;

ah
þ
c F− ðq2Þ ¼ N

�
2g2⊥sþ þ g2þðmhþc −mFÞ2

sþ
q2

�
; ð22Þ

with s� ¼ ðmhþc �mFÞ2 − q2 and

N ¼
G2

Fα
2
eτhþc q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

hþc
; m2

F; q
2Þ

q
2103m3

hþc
π5

: ð23Þ

Here, τhþc (mhþc ) denote the lifetime (mass) of the charm
hadrons. For the charmed baryon modes, we use the form
factors provided in Ref. [19]. Details can be found in
Appendix B 3. In view of missing computations for the Ξþ

c
mode, we adopt the same form factors as for the Λþ

c one.
Figure 4 illustrates the differential branching ratio for these
two decay modes for xU saturating Eqs. (10) and (11).
Within our working assumption of similar form factors, the
decays of the Ξþ

c (blue) are about twice as often than theΛþ
c

ones (brown) due to the difference in lifetime, τΞc
=τΛþ

c
≃

2 [6].

D. Inclusive D → Xνν̄ decays

The D → Xνν̄ decays with an inclusive hadronic final
state with flavor quantum number of an up-quark,
X ¼ π; ππ;…, for D0;þ decays or an antistrange quark
fromDþ

s decays, X ¼ K;Kπ;… , are complementary to the
exclusive ones in several aspects: the theory framework for

inclusive modes is an operator product expansion, rather
than one involving form factors, and in the different
experimental analysis. In addition, inclusive modes are
proportional to xU. The corresponding dineutrino mass
distribution can be written in terms of aDX

� as [16]

aDX
� ðq2Þ ¼ G2

Fα
2
eτDm3

c

2103π5
κð0Þfinclðq2Þ; ð24Þ

where

finclðq2Þ ¼
�
1 −

q2

m2
c

�
2
�
1þ 2

q2

m2
c

�
; ð25Þ

FIG. 4. Differential branching ratios for Λþ
c → pνν̄ and Ξþ

c →
Σþνν̄ decays in brown and blue, respectively for the LU (cLFC)
limit in solid (dotted) lines from Eq. (10) [Eq. (11)]. The band
widths correspond to the form factor uncertainties, see main text.

FIG. 5. Differential branching ratios for D0 → Xνν̄,
Dþ → Xνν̄, and Dþ

s → Xνν̄ decays in magenta, lime and green,
respectively for the LU (cLFC) limit in solid (dotted) lines from
Eq. (10) [Eq. (11)]. The band widths illustrate 10% uncertainties
from power corrections. The distributions are cut at q2max ¼ m2

c

and at the physical limit q2max ¼ ðmD −mKÞ2 for theD0;þ andDþ
s

modes, respectively [20].
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and

κð0Þ ¼ 1þ αsðmcÞ
π

�
25

6
−
2

3
π2
�
≈ 0.71; ð26Þ

represents the QCD correction to the c → uνν̄ matrix
element inferred from Ref. [23].
Figure 5 illustrates the differential branching ratio for

three decay modes,D0 → Xνν̄,Dþ →Xνν̄, andDþ
s →Xνν̄,

for xU saturating Eqs. (10) and (11). We observe similar
hierarchies between the decay modes as in Fig. 2, which are
driven by the lifetimes.

IV. MODEL INDEPENDENT TESTS

We discuss model-independent tests of NP, their impli-
cations for flavor physics and potential challenges due to
the presence of light BSM neutrinos. Using the model-
independent upper limits on the jΔcj ¼ jΔuj ¼ 1 dineu-
trino Wilson coefficients in the flavor benchmarks LU,
cLFC, and general flavor (10)–(12), together with the
description of hc → Fνν̄ decays from Sec. III, we are
now in the position to predict upper limits on branching
ratios. These are presented in Sec. IVA, together with
implications for flavor and tests at eþe−–machines. We
discuss the correlation between different decays in Sec. IV
B, that arises in an overconstrained system with more
observables (decay modes) than unknowns (x�U). In Sec. IV
C we go beyond the assumption of SM-like light neutrinos
and allow for right-handed neutrinos. We discuss implica-
tions and constraints. RH-neutrinos can appear in models
with low-scale seesaw origin of neutrino mass. We work
out constraints on LNV in Sec. IV D.

A. Branching ratios probe NP and flavor

Using the bounds on xU from Eqs. (10), (11), and (12),
together with Eq. (14) and the values of Ahc F

� provided in
Table II, we obtain upper limits on branching ratios for the
three flavor scenarios, that is, LU (Bmax

LU ), cLFC (Bmax
cLFC),

and general (Bmax). The maximal branching ratios are given
in Table III and have been shown in Fig. 1 for D0; Dþ and
Λþ
c -decays. As already stressed in the Introduction, upper

limits are in the right ballpark for study at Belle II and FCC-
ee. The upper limits satisfy Bmax

LU < Bmax
cLFC < Bmax and we

recall that they correspond to a specific flavor structure in
the charged lepton sector. Then, for instance, a branching
ratio measurement Bexp in some mode within Bmax

LU <
Bexp < Bmax

cLFC would be a signal of LU violation. In
contrast, a branching ratio above Bmax

cLFC would imply a
breakdown of cLFC.
Also shown in the last three columns of Table III are the

expected effective yields, i.e., yields (1) divided by the
reconstruction efficiency ηeff for the benchmarks at Belle II
and FCC-ee, the latter in parenthesis. With the exception of
Dþ

s -decays and D0 → KþK−νν̄, all decays give maximal
expected rates Oð106Þ≳ Nexp=ηeff ≳Oð104Þ at Belle II,
and an order of magnitude larger for the FCC-ee bench-
mark [5]. This reiterates that projected reaches at eþe−–
machines could make a 5σ NP discovery in different
modes, and provide information on charged lepton flavor
symmetries.

B. Consistency checks using different modes

In the weak effective theory (2) only two combinations
of Wilson coefficients x�U describe all hc → Fνν̄ modes.
The system is therefore overconstrained, and allows for
consistency checks. The sensitivity to the coefficients
differs from mode to mode, as observed in Sec. III from

TABLE III. Upper limits on branching ratios Bmax
LU , Bmax

cLFC, and Bmax corresponding to Eqs. (10), (11), and (12),
respectively, using Eq. (14) and Table II. The expected number of events (1) per reconstruction efficiency ηeff for
Belle II with 50 ab−1 [5] (FCC-ee yields in parentheses) corresponding to LU, cLFC, and general are displayed in
the last three columns.

hc → F Bmax
LU ½10−7� Bmax

cLFC ½10−6� Bmax ½10−6� Nmax
LU =ηeff Nmax

cLFC=ηeff Nmax=ηeff

D0 → π0 6.1 3.5 13 47 k (395 k) 270 k (2.3 M) 980 k (8.3M)
Dþ → πþ 25 14 52 77 k (650 k) 440 k (3.7 M) 1.6 M (14 M)
Dþ

s → Kþ 4.6 2.6 9.6 6 k (50 k) 34 k (290 k) 120 k (1.1 M)

D0 → π0π0 1.5 0.8 3.1 11 k (95 k) 64 k (540 k) 230 k (2.0 M)
D0 → πþπ− 2.8 1.6 5.9 22 k (180 k) 120 k (1.0 M) 450 k (3.8 M)
D0 → KþK− 0.03 0.02 0.06 0.2 k (1.9 k) 1.3 k (11 k) 4.8 k (40 k)

Λþ
c → pþ 18 11 39 14 k (120 k) 82 k (700 k) 300 k (2.6 M)

Ξþ
c → Σþ 36 21 76 28 k (240 k) 160 k (1.4 M) 590 k (5.0 M)

D0 → X 15 8.7 32 120 k (980 k) 660 k (5.6 M) 2.4 M (21 M)
Dþ → X 38 22 80 120 k (1.0 M) 680 k (5.8 M) 2.5 M (21 M)
Dþ

s → X 18 10 38 24 k (200 k) 140 k (1.1 M) 500 k (4.2 M)
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Eq. (14) together with items (a)–(d). In particularD → Pνν̄
and D → P1P2νν̄ are essentially orthogonal to each other,
the former depends on xþU only, while the latter is
predominantly induced by x−U. We can therefore predict
all other branching ratios if any of these two are measured

Bðhc → Fνν̄Þ ¼ rhcFþ BðD → Pνν̄Þ
þ rhcF− BðDð0Þ → P1P2νν̄Þ; ð27Þ

where rhcFþ ¼ AhcFþ =ADPþ and rhcF− ¼ AhcF− =ADP1P2− , up to
corrections of the order ADP1P2þ =ADP1P2− ≲ 10−2. Notice
that Eq. (27) holds for identical and different D-mesons,
D ≠ D0. Equation (27) is independent of x�U and hence
tests the assumptions that enter the effective theory frame-
work. The correlation between different dineutrino modes
could, for instance, be broken in the presence of additional
Wilson coefficients. A possibility are RH light neutrinos,
discussed next.

C. Including light right-handed neutrinos

We consider going beyond the weak effective theory
framework (2) by allowing for light RH neutrinos. A
concrete model with LNV is discussed in Sec. IV D.
With light RH neutrinos further dimension six dineutrino
operators are allowed, such as vector and axial-vector ones,

Qij
LR ¼ ðūLγμcLÞðν̄jRγμνiRÞ;

Qij
RR ¼ ðūRγμcRÞðν̄jRγμνiRÞ; ð28Þ

and those with quark chirality mixing

Qij
SðPÞ ¼ ðūLcRÞðν̄jðγ5ÞνiÞ;

Qij
TðT5Þ ¼

1

2
ðūσμνcÞðν̄jσμνðγ5ÞνiÞ; ð29Þ

in addition to the chirality-flipped Q0 operators which are
obtained from theQ’s by interchanging left-handed (L) and
right-handed (R) chiral fields, L ↔ R. While for the SM-
like neutrino case the definition of xU was useful, with light
RH neutrinos it is convenient to define the following
combination of Wilson coefficients, as

yU ¼
X
i;j

ðjCijS − C0ijS j2 þ jCijP − C0ijP j2Þ: ð30Þ

This particular combination enters the branching ratio of
D0 → νν̄ decays, which is constrained by Belle [24]

BðD0 → invÞ < 9.4 × 10−5; ð31Þ

at 90% CL. From here we obtain the constraint

yU ≲ 64π3m2
cBðD0 → invÞ

G2
Fα

2
em5

Df
2
DτD

∼ 67; ð32Þ

with the decay constant fD ¼ 0.212 GeV [25]. Contri-
butions from vector and axial-vector operators to D0 → νν̄
are helicity suppressed by two powers of the neutrino
mass, and negligible. Tensor operators do not contribute
to D0 → νν̄ decays at all. Only scalar and pseudoscalar
operators as in yU are therefore constrained by (31).
Considering either CijP;S ¼ 0 or C0ijP;S ¼ 0, the branching

ratio of D → Pνν̄ decays, which unlike D0 → νν̄, depends
on the sum of CijP;S and C0ijP;S, can be written as

BðD → Pνν̄ÞS;P ¼ ADP
0 yU; ð33Þ

with

ADP
0 ¼

Z
q2max

q2min

dq2aDP
0 ðq2Þ; ð34Þ

and

aDP
0 ðq2Þ ¼ τDG2

Fα
2
eλðm2

D;m
2
P; q

2Þ12
1024π5m3

D

×
q2

m2
c
ðm2

D −m2
PÞ2ðfDP

0 ðq2ÞÞ2; ð35Þ

where q2min and q2max are the kinematic limits of D → Pνν̄,
see Sec. III A. We provide the impact exemplarily on
D → Pνν̄ decays since there is no specific enhancement
or suppression in semileptonic decays for S, P-operators.
Using Eq. (33) together with Eq. (32), we obtain the
following limits

BðD0 → π0νν̄ÞS;P ≲ 2.4 × 10−6;

BðDþ → πþνν̄ÞS;P ≲ 12.2 × 10−6;

BðDþ
s → Kþνν̄ÞS;P ≲ 2.3 × 10−6: ð36Þ

These represent corrections of ∼20% to the general
flavor branching ratio limits for D → Pνν̄ decays given
in Table III. The upper limits based on lepton flavor
conservation receive order one corrections, but the overall
size of Bmax

cLFC remains. The upper limits based on LU are
overwhelmed by (36).
On the other hand, effects from scalar and pseudoscalar

operators could become irrelevant, if an improved bound
for BðD0 → invÞ would become available. Requiring the
effect of S, P-operators on the D → Pνν̄ branching ratios
assuming LU to be less than ∼10%, and thus within the
uncertainties, we find yU ≲ 1.7 and

BðD0 → invÞ ≲ 2 × 10−6: ð37Þ
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An improvement of the current bound Eq. (31) by two
orders of magnitude as in (37) would exclude large scalar
and pseudoscalar contributions to rare dineutrino charm
decays and thus reinforce our framework and the LU limits
from Table III.

D. Bounding lepton number violation

Since the final states are invisible, Eq. (31) provides
opportunities to probe exotic BSM physics. In particular,
the final state could be two neutrinos, allowing to probe
LNV in ΔL ¼ 2 transitions. While such processes are
forbidden in the SM, they occur in neutrino mass models of
Majorana type.
To discuss the implication of LNVon our study we work

within the standard model effective theory (SMEFT),
which has already been instrumental in Ref. [10] to achieve
model-independent links between left-handed dineutrino
and charged dilepton couplings, as detailed in Appendix A.
In SMEFT higher dimensional operators consistent with
Lorentz- and SUð3ÞC × SUð2ÞL × Uð1ÞY-invariance are
composed out of SM degrees of freedom. It is assumed
that the scale of NP, here the scale of LNV, ΛLNV, is
sufficiently separated from the weak scale.
The lowest order contribution to c → uνν modes at tree

level is induced by a single dimension seven operator [26],

Oð7Þ
4a ¼ Lα

i L
β
j Q̄

b
αŪc

aHρϵβρ; ð38Þ

with leptons L ¼ ðνL;lLÞ, quarks Q ¼ ðuL; dLÞ and the
Higgs H ¼ ðHþ; H0Þ, all of which are SUð2ÞL-doublets,
and the singlet up-type quarks U. Here, the superscript c
denotes charge conjugation and α, β are SUð2ÞL indices,
while i, j, a, b are flavor indices.
Following [27], we account for the different contractions

between SUð2ÞL indices and rewrite Eq. (38) using four-

spinor notation. We find that Oð7Þ
4a induces contributions

to the chirality flipping operators in the weak effective
Hamiltonian (29). The contribution to the scalar and
pseudoscalar operators reads

CijSðPÞ ¼
ffiffiffi
2

p �
2π

αe

��
v

Λij
LNV

�
3

: ð39Þ

Here we shuffled the flavor dependence in the Wilson

coefficients of Oð7Þ
4a to the one in the scale, and v ¼

246 GeV is the SM Higgs vacuum expectation value
(VEV). There are also contributions to tensors in addition
to Q0

S;P contributions but following Sec. IV C these are not
relevant to investigate the impact on the dineutrino branch-
ing ratios. In terms of (30),

yU ¼ 4

�
2π

αe

�
2X

i;j

�
v

Λij
LNV

�
6

: ð40Þ

Using the upper limit on BðD0 → invÞ from Eq. (31), we
obtain a lower limit on the LNV scale from charm,

Λij
LNV ≳ 1.5 TeV: ð41Þ

This limit is obtained assuming one term of fixed lepton
flavor indices at a time. In the presence of more than one
term the limit gets stronger.
The relation (40) can also be used to estimate the

minimal scale Λij
min required to not spoil the results in

Table III. Along the lines of the analysis in the previous
Sec. IV C, we require the branching ratio BLUðD0 → π0νν̄Þ
not to be altered by LNV contributions by more than 10%.
We obtain

Λij
min ≳ 2.7 TeV; ð42Þ

which is much lower than the typical neutrino seesaw
scale in grand unification theory (GUT) models, and also
sufficiently below the one obtained recently from rare kaon
decays, Λij

LNV ≳ 15 TeV [27]. Additionally, one can extract
information from the neutrino mass. Neutrino oscilla-
tions [6], Tritium decay [28] and cosmological data [29]
require the neutrinos to be lighter than mν < 0.1 eV. With
the quark legs closed to a loop and the Higgs fixed to its
VEV the operator (38) induces corrections to the neutrino
masses [27]

δmν ∼
1ffiffiffi
2

p mup

ð4πÞ2
v

ΛLNV
: ð43Þ

Requiring this to not exceed the upper limit of mν, we
obtain, employing for mup the mass of the first generation
up quark

ΛLNV ≳Oð104Þ TeV: ð44Þ

This would correspond to BðD0 → ννÞLNV ≲Oð10−29Þ and
would rule out any imprint of LNV in rare charm decays.
In conclusion, observation of D0 → inv around (31)

could in principle be due to LNV, with breaking scale as
low as a TeV. In addition, LNV could also affect bounds in
Table III. However, such effects require a high level of
flavor tuning, given other constraints, such as (44) and the
limits from K → πνν. They could be excluded altogether
with an improved search for D0 → invisible.

V. BSM TREE-LEVEL MEDIATORS

In this section we analyze c → uνν̄ transitions in
simplified BSM frameworks, based on Z0 and LQ models,
both of which are interesting as they induce charm FCNC’s
at tree level. The advantage of working with specific tree-
level mediators is that this circumvents the use of data on
the down-sector, see Appendix A, allowing for a direct link
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between up-sector charged dilepton data and the dineu-
trino modes.
To be specific, the SUð2ÞL-links [10] in SMEFT involve

the leading dimension six four-fermion operators

LSMEFT ⊃
Cð1Þ
lq

v2
Q̄γμQL̄γμLþ Cð3Þ

lq

v2
Q̄γμτ

aQL̄γμτaL

þ Clu

v2
ŪγμUL̄γμLþ Cld

v2
D̄γμDL̄γμL; ð45Þ

where τa are Pauli-matrices, while Q and L denote left-
handed quark and lepton SUð2ÞL–doublets, whereas U, D
stand for right-handed up-singlet, down-singlet quarks,
respectively, with quark and lepton flavor indices sup-
pressed for brevity. We can write the operators above in
terms of its SUð2ÞL-components and read off dineutrino
Wilson coefficients ðCP

AÞ and charged dilepton ones ðKP
AÞ

for P ¼ U (P ¼ D), which refers to the up-quark sector
(down-quark sector) and A ¼ LðRÞ denotes left- (right-)
handed quark currents. Model-independently holds

CU
L ¼ KD

L ¼ Cð1Þ
lq þ Cð3Þ

lq ; CU
R ¼ KU

R ¼ Clu;

CD
L ¼ KU

L ¼ Cð1Þ
lq − Cð3Þ

lq ; CD
R ¼ KD

R ¼ Cld: ð46Þ

While CP
R ¼ KP

R, due to the different relative signs between

Cð1Þ
lq and Cð3Þ

lq , the left-handed dineutrino couplings relevant
for charm, CU

L , are linked to the down-sector dilepton
ones, KD

L , and require hence input from strange quarks.
BSM models with tree level mediators, in which the

relation between Cð1Þ
lq and Cð3Þ

lq is known, are simpler.
Specifically, we study models with

Cð3Þ
lq ¼

�
0; Z0 models;

αCð1Þ
lq ; LQ models:

ð47Þ

Values of α for different LQ representations are given in
Table V. In the following, we work out the upper limits on
the dineutrino branching ratios assuming (47). We also
consider LQs induced by right-handed operators with

Cð1;3Þ
lq ¼ 0. The results are displayed in Tables IV and

VI. We stress that our results correspond to quite generic
BSM frameworks: the sole “model-dependent” input we
use is the matching condition (47).

A. Z0 models

In Z0 models, the following link between dineutrino (C)
and charged lepton (K) Wilson coefficients in the gauge
basis holds

CU
L ¼ KU

L ¼ Cð1Þ
lq : ð48Þ

From Eq. (A2) follows

xZ
0

U <
X
i;j

ðjKU12ij
R j2 þ jKU12ij

L j2Þ; ð49Þ

where bounds on the couplings on the right-hand side can
be seen in Table VII. We obtain

xZ
0

U ≲ 15; ðLUÞ ð50Þ

xZ
0

U ≲ 85; ðcLFCÞ ð51Þ

xZ
0

U ≲ 288; ðgeneralÞ; ð52Þ

which are stronger than the model-independent ones (10)–
(12), however, within the same order of magnitude. Upper
limits on dineutrino branching ratios from (48) are given in
Table IV.

B. Leptoquark models

In contrast to Z0 models, in LQ models both Wilson

coefficients Cð1Þ
lq and Cð3Þ

lq can contribute. The general
charged lepton-neutrino link reads

KU
L ¼ γCU

L ¼ ð1 − αÞCð1Þ
lq ; γ ¼ 1 − α

1þ α
: ð53Þ

The values of α for different LQ models are given in
Table V. Here, V, S denote vector, scalar LQs and the
subscript indicates the dimension of the representation
under SUð2ÞL. Representations with tree level contribution
to c → uνν̄ are the triplets S3, V3, the doublets S2, Ṽ2, and
the singlet V1. We discuss them separately in the following.

TABLE IV. Bmax
LU , Bmax

cLFC and Bmax corresponding to the LU,
cLFC and general bounds, respectively, for Z0 models (48), using
Eq. (14) together with the values of Ahc F

� displayed in Table II and
the bounds on xU from Eqs. (50)–(52).

Z0

hc → F Bmax
LU ½10−7� Bmax

cLFC ½10−6� Bmax ½10−6�
D0 → π0 2.7 1.5 5.1
Dþ → πþ 11 6.1 21
Dþ

s → Kþ 2.0 1.1 3.9

D0 → π0π0 0.6 0.4 1.2
D0 → πþπ− 1.2 0.7 2.4
D0 → KþK− 0.01 0.007 0.03

Λþ
c → pþ 8.0 4.6 16

Ξþ
c → Σþ 16 9.0 31

D0 → X 6.6 3.8 13
Dþ → X 17 9.5 32
Dþ

s → X 7.9 4.5 15
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1. Triplets S3 and V3

The dineutrino contributions from the LQ repre-
sentations S3 and V3 are related to the charged dilepton
bounds as

xS3;V3

U <
1

jγj2
X
i;j

jKU12ij
L j2; ð54Þ

and right-handed contributions are absent. For the scalar
triplet we obtain using Table VII

xS3U ≲ 30; ðLUÞ ð55Þ

xS3U ≲ 170; ðcLFCÞ ð56Þ

xS3U ≲ 577 ðgeneralÞ; ð57Þ

whereas the ones for the V3 are a factor 1=16 smaller
(modulo rounding effects) and read

xV3

U ≲ 2; ðLUÞ ð58Þ

xV3

U ≲ 11; ðcLFCÞ ð59Þ

xV3

U ≲ 36; ðgeneralÞ: ð60Þ

2. Doublets S2 and Ṽ2

The doublet LQs induce right-handed contributions
only, as

xS2;Ṽ2

U <
X
i;j

jKU12ij
R j2: ð61Þ

Using Table VII, we obtain for both scalar and vector
representations

xS2;Ṽ2

U ≲ 7; ðLUÞ ð62Þ

xS2;Ṽ2

U ≲ 42; ðcLFCÞ ð63Þ

xS2;Ṽ2

U ≲ 144; ðgeneralÞ; ð64Þ

which is, modulo rounding errors, half of the ones in the Z0
model given in (50)–(52). The reason for this is that the
constraints obtained from Drell-Yan processes do not
depend on the quark current chirality.

3. Singlet V1

In the LQ representation V1 right-handed currents are
absent, and KU

L ¼ 0. Hence, no connection between KU
L

and CUL exists. However, model-independently CUL ¼ KD
L

(46), and one can employ data from the down-sector. Using
Eq. (A2), we obtain the following bound

xV1

U <
X
i;j

jKD12ij
L j2 þ δxV1

U ; ð65Þ

TABLE V. Values for α and γ (47), (53) for different LQ
representations [30]. The last column displays which dineutrino
Wilson coefficient is not generated by the LQ representation.

LQ-rep α γ CU
L;R

V1 1 0 CU
R ¼ 0

S3 1
3

1
2

CU
R ¼ 0

V3 − 1
3

2 CU
R ¼ 0

S2, Ṽ2 � � � � � � CU
L ¼ 0

TABLE VI. Bmax
LU , Bmax

cLFC, and Bmax corresponding to the LU, cLFC, and general bounds, respectively, for LQ models using Eq. (14)
together with the values of Ahc F

� displayed in Table II and the bounds on xU determined in Sec. V B.

S3 V3 S2, Ṽ2 V1

hc → F Bmax
LU Bmax

cLFC Bmax Bmax
LU Bmax

cLFC Bmax Bmax
LU Bmax

cLFC Bmax Bmax
LU Bmax

cLFC Bmax

½10−7� ½10−6� ½10−6� ½10−7� ½10−6� ½10−6� ½10−7� ½10−6� ½10−6� ½10−7� ½10−6� ½10−6�
D0 → π0 5.3 3.0 10 0.3 0.2 0.6 1.3 0.8 2.6 4.8 2.7 10
Dþ → πþ 21 12 42 1.3 0.8 2.6 5.3 3.1 10 19 11 41
Dþ

s → Kþ 4.0 2.3 7.7 0.2 0.1 0.5 1.0 0.6 1.9 3.6 2.1 7.7

D0 → π0π0 1.3 0.7 2.5 0.08 0.05 0.2 0.3 0.2 0.6 1.1 0.7 2.4
D0 → πþπ− 2.4 1.4 4.8 0.2 0.09 0.3 0.6 0.4 1.2 2.2 1.3 4.7
D0 → KþK− 0.03 0.01 0.05 0.002 0.001 0.003 0.006 0.004 0.01 0.02 0.01 0.05

Λþ
c → pþ 16 9.2 31 1.0 0.6 1.9 4.0 2.3 7.8 14 8.3 31

Ξþ
c → Σþ 31 18 61 2.0 1.1 3.8 7.9 4.5 15 28 16 61

D0 → X 13 7.5 25 0.8 0.5 1.6 3.3 1.9 6.4 12 6.8 25
Dþ → X 33 19 65 2.1 1.2 4.0 8.3 4.8 16 30 17 64
Dþ

s → X 16 9.0 31 1.0 0.6 1.9 3.9 2.3 7.7 14 8.2 30
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with the linear correction from CKM-rotation at the order λ,

δxV1

U ¼ 2λ
X
i;j

jKD12ij
L jðjKD22ij

L j þ jKD11ij
L jÞ: ð66Þ

Using Table VII, we obtain

xV1

U ≲ 27; ðLUÞ ð67Þ

xV1

U ≲ 153; ðcLFCÞ ð68Þ

xV1

U ≲ 572; ðgeneralÞ: ð69Þ

The LU bound in Eq. (67) can be significantly improved to
xV1

U ≲Oð10−3Þ if low energy kaon data is applied. See also
the discussion in Appendix A.

C. Synopsis tree-level mediators

In Tables IVand VI we show the limits on the branching
ratios Bmax

LU , Bmax
cLFC and Bmax imposing LU, cLFC, and

general flavor structure, respectively, for the Z0 and the
LQ models. We stress that our results hold for any BSM

model with the same relations between Cð1Þ
lq and Cð3Þ

lq and
corresponding right-handed contributions, and are there-
fore still quite generic. As expected, bounds for all
simplified models are stronger than the model-independent
ones shown in Table III. The Z0, S2, Ṽ2 and especially the
V3 are significantly better constrained, whereas S3 and V1

almost saturate the model-independent bounds.

VI. CONCLUSIONS

We performed a comprehensive analysis of c → uνν̄
induced decays. We systematically analyzed exclusive
decays of D0, Dþ, Dþ

s -mesons and Λþ
c , Ξþ

c -baryons using
most recent determinations of form factors, in addition to
inclusive modes. The dineutrino decays are important as
they complement searches for NP with radiative and
dileptonic modes, while being significantly cleaner than
the latter from the theory point of view due to the absence
of irreducible resonance backgrounds.
There is presently no experimental limit on any of the

hc → Fνν̄ branching ratios available, despite the fact that all
of themare clean null tests of the SM.Hence, any observation
within foreseeable sensitivity means NP, and NP can be just
around the corner. Specifically, model-independent upper
limits on branching ratios, obtained using SUð2ÞL and
existing bounds on charged lepton modes, allow for upper
limits as large as few ×10−5, see Table III.
Moreover, the measurements of dineutrino branching

ratios constitute tests of charged lepton flavor, specifically,
lepton-universality and charged lepton flavor conservation
—a stunning opportunity given the fact that the neutrino
flavors are not reconstructed. Branching ratios assuming

charged lepton flavor conservation can be as large as 10−5,
those in the limit of lepton universality reach few ×10−6.
These limits are data-driven and will go down if improved
bounds from charged leptons become available [10].
Furthermore, we analyzed the branching ratios in BSM

models that induce rare charm dineutrino decays at tree
level, leptoquarks and flavorful Z0 models. We find that
upper limits on the branching ratios are smaller than the
model-independent ones, see Tables IV and VI, yet in the
same ballpark as the model-independent ones except for
the vector triplet representation V3, which gives an order of
magnitude lower limits.
We add that there is the possibility that the modes are

observed above their upper limits given in Table III: this
would signal not only NP, but NP with additional light
degrees of freedom. An example are light right-handed
neutrinos from a TeV-ish scale of LNV. While studies in
other sectors give higher scales, it is conceivable that LNV
breaking is strongly flavor-dependent. This could be further
investigated with an improved bound on D0 → invisibles.
Further study is beyond the scope of this work.
Figure 1 summarizes the sensitivity to rare charm decays

at a clean, high luminosity eþe− flavor facility such as
Belle II and FCC-ee running at the Z. In view of the large
charm luminosities, and the complementarity to charged
lepton probes of lepton flavor universality and conserva-
tion, we strongly encourage experimental searches for
dineutrino modes.
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APPENDIX A: CHARGED LEPTON AND
NEUTRINO LINKS VIA SUð2ÞL–SYMMETRY

It was recently shown [10] that SUð2ÞL–symmetry
links processes into charged dileptons with those into
dineutrinos. Here we provide details to make this paper
self-contained.
To connect the low-energy effective Hamiltonian for

dineutrino transitions (2) with a charged lepton one (7) in a
model-independent way, it is necessary to introduce
the SUð3ÞC × SUð2ÞL ×Uð1ÞY-invariant effective theory
with semileptonic (axial-) vector four-fermion operators. At
leading order [31], only four operators contribute, which
are given by (45). Tree level contributions to dineutrino
modes are also induced by Z-penguins from dimension six
operators with two Higgs fields and a covariant derivative.
These are constrained by electroweak and top observables,
or mixing [32,33], and subleading.
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Writing (45) in terms of mass eigenstates, that is,
Qα ¼ ðuLα; VαβdLβÞ and Li ¼ ðνLi;W�

kilLkÞ with the
Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrices, V and W,
respectively, and matching onto Eqs. (2) and (7), the
dineutrino Wilson coefficients in the up-sector, CUL;R, read

CUL ¼ W†½VKD
LV

†�W;

CUR ¼ W†½KU
R �W: ðA1Þ

The CUL;R depend on the PMNS matrix, which drops out
in the flavor-summed branching ratios (4) due to unitarity.
CUL depends on the CKM-matrix that allows for an expan-
sion in the Wolfenstein parameter λ, relevant for c → u
transitions as

CU12

L ¼ W†KD12

L W þ λW†ðKD22

L −KD11

L ÞW þOðλ2Þ:
The superscripts 12, 11, and 22 given explicitly indicate the
generations in the quark currents of the operators, i.e., ūc,
d̄s, d̄d, and s̄s. In the remainder of this work, which focuses
on c → u transitions, we use CU12

L;R ¼ CUL;R to avoid clutter.
For xU, one obtains

xU ¼
X
ν¼i;j

ðjCUij
L j2 þ jCUij

R j2Þ ¼ Tr½CULCU†
L þ CURC

U†
R �

¼ Tr½KD12

L KD12

L
† þKU12

R KU12

R
†� þ δxU þOðλ2Þ

¼
X
l¼i;j

ðjKD12ij
L j2 þ jKU12ij

R j2Þ þ δxU þOðλ2Þ; ðA2Þ

with the OðλÞ-correction
δxU ¼ 2λTr½RefKD12

L ðKD22

L
† −KD11

L
†Þg�

¼ 2λ
X
l¼i;j

RefðKD12ij
L KD22ij

L
� −KD12ij

L KD11ij
L

�Þg: ðA3Þ

The traces are over the lepton flavor indices of the Wilson
coefficients, and therefore depend on the flavor structure of
the couplings Kij

L;R [10], see also (9):
(i) Kij

L;R ∝ δij that is, lepton-universality (LU).
(ii) Kij

L;R are diagonal, that is, charged lepton flavor
conservation (cLFC)

(iii) Kij
L;R is arbitrary.

Interestingly, (A2) allows both the study of the lepton
flavor nature and to put constraints on rare charm dineu-
trino branching ratios model-independently. We define

Rll0 ¼ jKD12ll0
L j2 þ jKU12ll0

R j2;
Rll0
� ¼ jKD12ll0

L �KU12ll0
R j2;

δRll0 ¼ 2λRefKD12ll0
L KD22ll0

L
� −KD12ll0

L KD11ll0
L

�g: ðA4Þ
where Rll0

þ þ Rll0
− ¼ 2Rll0 , Rll0

� ≤ 2Rll0 . Furthermore,

δRll0 < 2λjKD12ll0
L jðjKD22ll0

L j þ jKD11ll0
L jÞ. We employ

high-pT data [11,12] for up- and down-type charged

lepton FCNC’s and give bounds on lepton specific
Wilson coefficients for l;l0 ¼ e, μ, τ in Table VII.1

Corresponding bounds on Rll0
and δRll0 are summarized

in Table VIII.
We obtain the upper limits for the flavor patterns (9) and

general flavor structure as

xU ¼ 3rμμ ≲ 34; ðLUÞ ðA5Þ
xU ¼ ree þ rμμ þ rττ ≲ 196; ðcLFCÞ ðA6Þ

xU ¼ ree þ rμμ þ rττ þ 2ðreμ þ reτ þ rμτÞ ≲ 716; ðA7Þ

identical to (10)–(12) and with flavor budget displayed.
Since the dimuon bounds are the most stringent ones, see
Table VIII, they provide the LU-limit.

Bounds onK
Djill0

L;R from rare kaon decays can be stronger
by about two orders magnitude than the high-pT limits for
llð0Þ ¼ ee, μμ, and eμ. Corresponding limits on xU would
be reduced to 22% (LU), and only to 80% (cLFC) and 92%
(general) of the ones presented in Eqs. (A5)–(A7). The
latter two are dominated by contributions including τ’s.
Additional constraints from τ-decays [12] could be taken
into account but require further study of correlations which
is beyond the scope of this work. Since the right-handed
bounds from c → u in Table VII remain model-independ-
ently, the xU bounds can at most be reduced to the ones
provided in Eqs. (62)–(64). To also avoid the possibility of
cancellations altogether and to use a unified framework, we
therefore present results using high–pT bounds.

TABLE VII. Upper limits on jΔdj ¼ 0, 1 and jΔcj ¼ 1 leptonic
couplings KL;R from high–pT [11,12]. LFV-bounds are quoted as

charge-averaged,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jKlþl0− j2 þ jKl−l0þ j2

q
.

qi → qj jKPjill0

A j ee μμ ττ eμ eτ μτ

d → d jKD11ll0
L;R j 2.8 1.5 5.5 1.1 3.3 3.6

s → s jKD22ll0
L;R j 9.0 4.9 17 5.2 17 18

s → d jKD12ll0
L;R j 3.5 1.9 6.7 2.0 6.1 6.6

c → u jKU12ll0
L;R j 2.9 1.6 5.6 1.6 4.7 5.1

TABLE VIII. Bounds on Rll0 and δRll0
from Eqs. (A4), as well

as their sum, rll
0 ¼ Rll0 þ δRll0

.

ee μμ ττ eμ eτ μτ

Rll0 21 6.0 77 6.6 59 70
δRll0 19 5.4 69 5.7 55 63

rll
0 39 11 145 12 115 133

1The d → d, s → s, s → d entries can be obtained from the
c → u bounds via luminosity ratios, see Eqs. (6.9) and (6.10) in
[11] and Fig. 1 in [12].
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APPENDIX B: PARAMETRIZATION OF
FORM FACTORS

In this Appendix we provide detailed information on the
form factors used in this work.

1. Form factors D → P

The form factors fþ;0 for D → P are available from
lattice QCD [17], given in the z–expansion as, i ¼ þ; 0,

fiðq2Þ ¼
1

1 − Piq2

�
fið0Þ

þ ciðzðq2Þ − zð0ÞÞ
�
1þ zðq2Þ þ zð0Þ

2

��
; ðB1Þ

where

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ðB2Þ

with t0¼ðmDþmPÞð ffiffiffiffiffiffiffi
mD

p − ffiffiffiffiffiffiffi
mP

p Þ2 and tþ¼ðmDþmPÞ2.
The numerical values of fið0Þ, ci and Pi parameters
together with their uncertainties and covariance matrices
are given in [17]. We use the same numerical inputs for
D → π and Dþ

s → Kþ transitions besides obvious kin-
ematic replacements, supported by Ref. [34]. There is an
additional factor of 1=

ffiffiffi
2

p
for the D0 → π0 form factors

fiðq2Þ due to isospin.

2. Form factors D → P1P2

The transversity form factors F i with i ¼ 0;⊥; k can be
expressed in terms of three heavy hadron chiral perturba-
tion theory (HHχPT) form factors ω� and h as [1,18]

F 0 ¼
N nr

2

� ffiffiffi
λ

p
ωþ þ ω−

p2
½ðm2

P1
−m2

P2
Þ
ffiffiffi
λ

p

− ðm2
D − q2 − p2Þ

ffiffiffiffiffi
λp

q
cos θP1

�
�
;

F k ¼ N nr

ffiffiffiffiffiffiffiffiffiffiffi
λp

q2

p2

s
ω−; F⊥ ¼ N nr

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λλp

q2

p2

s
h;

N nr ¼
GFαe

27π4mD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

ffiffiffiffiffiffiffi
λλp

p
mDp2

s
; ðB3Þ

where λ ¼ λðm2
D; q

2; p2Þ and λp ¼ λðp2; m2
P1
; m2

P2
Þ. In

addition,

ω� ¼ � ĝ
2

fD
f2P1

mD

v · pP1
þ Δ

;

h ¼ ĝ2

2

fD
f2P1

1

ðv · pP1
þ ΔÞðv · pþ ΔÞ ; ðB4Þ

with the decay constants fD and fP1
[6],

Δ ¼ ðmD�0 −mD0Þ, ĝ ¼ 0.570� 0.006 [35] and the dot
products

v · pP1
¼ 1

4mD

 
ðm2

D − q2 þ p2Þ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

D; q
2; p2Þ

�
1 −

4m2
P1

p2

�s
cos θP1

!
;

v · p ¼ m2
D − q2 þ p2

2mD
: ðB5Þ

An isospin factors of 1=
ffiffiffi
2

p
needs to be included into the

form factors for each π0 in the final state. Together with the
statistical factor for identical particles, the D0 → π0π0νν̄
mode receives an overall suppression by 1=2with respect to
D0 → πþπ−νν̄ in the isospin limit.

3. Form factors Λ+
c → p

Taking into account the difference in notation between
Ref. [19] and Sec. III C, fV0;⊥ ¼ fþ;⊥ and fA0;⊥ ¼ gþ;⊥, the
form factors f⊥, g⊥, fþ, and gþ can be extracted from
Ref. [19]:

fðq2Þ ¼ 1

1 − q2=ðmf
poleÞ2

X2
n¼0

afn½zðq2Þ�n; ðB6Þ

with zðq2Þ given in Eq. (B2), tþ ¼ ðmD þmπÞ2 and
t0 ¼ ðmΛþ

c
−mpÞ2. The values for the an parameters and

the pole masses mpole are given along with their correlation
in the supplemented files of Ref. [19].
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