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Rare charm ¢ — uvi dineutrino null tests for e*e~ machines
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Rare |Ac| = |Au| = 1 transitions into dineutrinos are strongly Glashow-Iliopoulos-Maiani-suppressed
and constitute excellent null tests of the standard model. While branching ratios of D — Pup,
D — P*P~up, P =g, K, baryonic Al — pup, and Ef — X"wp and inclusive D — Xvp decays are
experimentally unconstrained, signals of new physics can be just around the corner. We provide model-

independent upper limits on branching ratios reaching few x 1073 in the most general case of arbitrary

lepton flavor structure, ~107> for scenarios with charged lepton conservation and few x107 assuming
lepton universality. We also give upper limits in Z’ and leptoquark models. The presence of light right-
handed neutrinos can affect these limits, a possibility that can occur for lepton number violation at a TeV,

and that can be excluded with an improved bound on B(D°? — invisibles) at the level of ~107°, about two
orders of magnitude better than the present one. Signatures of ¢ — uvv modes contain missing energy and
are suited for experimental searches at e e~—facilities, such as BES III, Belle II and future e e~—colliders,

such as the FCC-ee running at the Z.

DOI: 10.1103/PhysRevD.103.015033

I. INTRODUCTION

Rare charm decays test physics beyond the standard
model (BSM) and complement flavor studies with K’s and
B’s in a unique way. An important tool in flavor and BSM
searches are null tests—observables that are very small in
the standard model (SM) due to approximate symmetries or
parametric suppression. Null tests allow us to bypass
resonance backgrounds, which in the charm sector can
be challenging otherwise [1]. Flavor changing neutral
current (FCNC) charm dineutrino ¢ — uvp transitions
are such null tests; being strongly Glashow-Iliopoulos-
Maiani (GIM)-suppressed in the SM, their branching ratios
are tiny, such that any observation with current exper-
imental sensitivities would cleanly signal new physics
(NP) [2].

The corresponding missing energy modes are well suited
for a clean e e~ —collider environment, such as Belle II [3],
BES III [4], and future colliders, notably, FCC-ee running
at the Z [5] with sizable charm production rates from
B(Z — c¢) ~0.12 [6]. Fragmentation fractions f(c — h,.)
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of a charm quark to a charmed hadron %, from Ref. [7] are
compiled in Table I, together with the number of charmed
hadrons N(h.) = 2f(c¢ = h.)N(c¢) for FCC-ee and Belle
I benchmark ¢z numbers [5], (a) N(c¢) = 550 x 10° and
(b) N(ct) = 65 x 10°, respectively. With charmed hadron
numbers of ~10'° and higher, Table I reveals the potential
of the e'e~—machines for charm physics.

To further detail the future sensitivities, we compute the
expected event rate N " for a decay h, — Fuvv with a final
hadronic state F, as

N;_XP = neffN(hc)B(hc - FVD)? (1)

where 7. accounts for the reconstruction -efficiency.
The relative statistical uncertainty for the branching ratio

5B scales as 1/4/Ny". In Fig. 1 we show the relative
uncertainty 683 against the branching ratio 3 for decays of

TABLE I. Charm fragmentation fractions f(c¢ — h,) [7] and
the number of charmed hadrons &, N(h,.), expected at bench-
marks with N(c¢) = 550 x 10° (a, FCC-ee) and N(cC) = 65 x
10° (b, Belle II with 50 ab') [5]. In absence of further
information for the Ef we use f(c —» Ef) =~ f(c —» A)).
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Relative statistical uncertainty of the branching ratio 53 versus the branching ratio B for decays of the D° (upper plot to the

left), the D™ (upper plot to the right) and the A" (lower plot to the left). The shaded areas correspond to the reach for 7. = 1, whereas
the solid tilted lines illustrate the impact of reconstruction efficiencies #.;; = 10~> for the FCC-ee (lilac) and Belle II (green). Horizontal
36 (dotted) and 50 (dashed) black lines correspond to 68 = 1/3 and 68 = 1/5, respectively. Vertical lines represent upper limits
assuming LU (solid), cLFC (dotted) and generic lepton flavor (dashed) for different modes, given in Table III. To improve readability the
three lines for each decay mode are grouped together by a shaded band. Upper limits for D} — K*vp, Ef — Z*vp and the inclusive

modes can be seen in Table III.

the D° (upper plot to the left), the D (upper plot to the
right) and the A} (lower plot to the left). Since the
fragmentation fractions of A7 and D{ are very similar
the corresponding plot for D} -mesons is not shown. The
left-most boundaries of the shaded regions correspond to
the ideal, no-loss case 7.4 = 1, whereas the tilted lines
illustrate the impact of reconstruction efficiencies of a
permille for the FCC-ee (lilac) and Belle II (green).
Figure 1 demonstrates once more the high physics reach
with sensitivities to (very) rare charm decays. For efficien-
cies of a permille or better, branching ratios of O(107%)
down to O(107%) can be discovered in D%, D and A}
modes at the (future) experiments, Belle II and FCC-ee. If
sound estimates of 7. and systematic uncertainties would

be available the reach could be determined in a more
quantitative way. Here we stress that the region of branch-
ing ratios of O(107°~1073) covers already interesting
physics. Note, since the displayed relation 6B =

1/+/negN(h.)B does not depend on the final state, the
estimated reach holds not only for dineutrino modes but
also for radiative rare charm decays, with similar rates,
e.g., [2,8,9].

Interestingly, there are no experimental upper limits on
any of the h, — Fuvv modes available today. However,
recently, upper limits have been obtained using SU(2), -
invariance and bounds on charged lepton modes [10]. In
this work we provide further details on the implications of
this model-independent method. Upper limits from the
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latter are shown as vertical lines in Fig. 1. For a given decay
mode, the upper limits depend on the charged lepton flavor
structure: they are largest in the general case (dashed),
followed by those assuming charged lepton flavor con-
servation (cLFC) (dotted) and if lepton universality (LU)
holds (solid). To improve readability the three lines for
each decay mode are grouped together by a shaded
band. The relevant ranges are suitable for Belle II and
FCC-ee: all limits are above ~107°, with only one excep-
tion (D° — K*K~-vp). Upper limits for Dy — K*up,
El - Ztup and the inclusive modes are provided in
Table III. The hierarchy of upper limits per mode allows
for the exciting possibility to probe charged lepton flavor
properties using fully flavor-summed dineutrino branching
ratios with unreconstructed neutrino flavor. This concludes
our introduction and motivation to work out the physics
reach of charmed dineutrino modes.

The plan of the paper is as follows: We introduce
the weak effective Hamiltonian for ¢ — wuvp transitions
in Sec. 1. In Sec. III we analyze the decay distributions of
Dy = Pub, Dy — PYP7ui, P = n, K AY - pub, Ef —
S*up and inclusive modes D — Xvi. We obtain model-
independent predictions for branching ratios in Sec. IV. We
also consider the implications and constraints from right-
handed (RH) neutrinos and lepton number violating (LNV)
interactions in the charm sector. Predictions for tree-level
NP mediators, such as Z' and leptoquark (LQ) models are
discussed in Sec. V. We conclude in Sec. VI. Appendix A
provides details on the SU(2), -link and probing LU and
cLFC. Appendix B contains formulae for form factors.

II. LOW-ENERGY EFFECTIVE HAMILTONIAN

In the absence of light RH neutrinos, as in the SM,
|Ac| = |Au| = 1 dineutrino transitions can be described by
two operators amended by flavor indices in the weak
effective hamiltonian

4G]:a
V24x

with the four-fermion operators

Moy =——22¢(cYioi +CR70i) +He,  (2)

ij (= —
LR) = (BrryVuCLr) (DiLy"vir), (3)
and 7, j denote the neutrino flavors (mass eigenstates).
Here, G denotes Fermi’s constant and «, is the fine
structure constant. No further dimension six operators exist
in Hzfi«/’

Since the neutrino flavor indices are not experimentally
tagged, dineutrino branching ratios are obtained by adding
all dineutrino flavors incoherently

ZBC—)MI/I/

C—)MI/I/

(4)

Therefore, all branching ratios depend on at most two
combinations of Wilson coefficients that can be chosen as

+ _ Uij Uij2
Ay = Z|CLI +Cr7P (5)
i.j
As it enters inclusive rates, the following term turns out to
be useful for the discussion of experimental limits

xU+xU
2

= > (e +1c7P)-

ij

(6)

Xy =

xy, and therefore x < 2xy, are presently not constrained
by direct experimental information on |Ac|= |Au| =1
dineutrino transitions. On the other hand, model-indepen-
dent upper limits on x;; have been derived using SU(2), -
invariance and data on charged lepton processes [10].
With upper limits depending on the charged lepton flavor
structure, limits are obtained in three scenarios: LU, cLFC,
and general lepton flavor structure.

Specifically, writing the weak effective Hamiltonian for
charged dileptons as

4Gpa
V2 an

with dileptonic operators

¢t

Ho (KY07 + KY 0 +He., (7)

Ol k)

(8)

analogous to the weak Hamiltonian for dineutrinos (2), the
LU, cLFC limits corresponding to flavor structures in the
Wilson coefficients can be identified as

= (ﬁL(R)VﬂCL(R))(Z,/LyﬂfiL),

k 0 0 k, 0 0
Kg.R|LU: 0 k 0], K:g,RchFC: 0 kﬂ 0
0 0 k% 0 0 «k

©)

while “general” means that all entries in the coefficient
matrix are arbitrarily filled, allowing for cLFV. Here, &, k,
are the parameters in the coefficient matrix.

Given a relation [10] between the neutrino Cj , and the

charged lepton IC’L’ & couplings bounds on the latter imply
limits on the former. Note, this relation involves also down-
sector couplings to charged leptons, ICL &> with analogous
flavor patterns as in the up-sector (9). Clearly the limits
depend on the flavor structure.
Using input provided in Appendix A, to which we also
refer for details, the upper limits read
Xy 5 34,

(LU) (10)

v <196, (cLFC) (11)
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xy <716, (general), (12)
which include leading order corrections from the
Wolfenstein parameter A ~ 0.2, therefore providing larger
upper limits than in Ref. [10]. We employ these model-
independent, data-driven limits in the following Sec. III as
benchmarks for differential decay distributions. In Sec. IV
we present upper limits on the branching ratios using (10)—
(12). We also discuss the impact of RH neutrinos.

We remark that the charged lepton data yielding (10)—
(12) are from LHC’s Drell-Yan studies [11,12]. In contrast
to constraints from rare decays, here operators do not
interfere and large cancellations are avoided. On the other
hand, especially in the down-sector rare decay data can
imply significantly stronger constraints. Yet, as discussed
in Appendix A, the upper limits on the x;; including kaon
constraints remain within the same order of magnitude as in
(10)—(12). Therefore, we choose total model-independence
and conservatively present results for (10)—(12).

III. DIFFERENTIAL BRANCHING RATIOS

The differential branching ratios of the dineutrino modes
can be written as

dB(h, - Fuo , _
PR B (@ + (g (13

where ¢? denotes the invariant mass-squared of the dineu-
trinos. Equation (13) can also be expressed in terms of
missing energy, that is the energy of neutrinos, in the
charmed hadron’s center-of-mass system, as dB/dE ;, =
2my, dB/dg?, where my, denotes the mass of the initial

charm hadron. The g’—dependent functions a}i“F can be
fetched from the literature [1,13-16], and are given in
Secs. I A-IIID. Information on the form factors from
Refs. [1,17-19] is compiled in Appendix B.

Integrating the differential branching ratios Eq. (13), one
finds

B(h, — Fui) = A"Fxf + AlFxy, (14)

where

hL.F o q%lax 2 h(F 2

AYT = i dga" (q°). (15)
qmin

Here, ¢ = (my_—mp)?* for the exclusive modes and
Grax = m?2 for inclusive D** and g2, = (mp — my)? for
inclusive D7 decays [20]. mp (mp) denotes the mass of the
hadronic final state (D-meson). For two pseudoscalars
F=PPy,, Piy=n K, mp=mp +mp, where mp
denotes the mass of the pseudoscalar meson P;.
Resonant backgrounds in charged meson decays through
7-leptons, ie., D" -t (> zt0)v and D} - 7t (-
K*D)v lead to the same final state as the search channels

D™ — ztovand D} — K*ov [21] and need to be removed
by kinematic cuts

q* > (mi — mp)(mp, — mz)/m?. (16)
where m, denotes the mass of the tau. Therefore,
the integration region in (15) is bounded by ¢2. =
0.34 GeV?(0.66 GeV?) for DT — ztiv (D} — K*iw),
whereas we use g2, = 0 in all other modes. We note that
the inclusive decays require phase space cuts, however, a
dedicated analysis of an experimental strategy is beyond

the scope of this work.
In Table II we provide the central values for the

prefactors AS’E“F, taking into account Eq. (16) for exclu-
sive D and Dj-decays. As expected from Lorentz-
invariance and parity-conservation in the strong interaction
we observe

(a) A =0in D — Pub decays,

(b) A" < AMF in D — P,P,ui decays,

(©) O(A"F) ~ O(A"F) in baryonic charm decays,

(d) A%F = A"F in inclusive D decays,

which highlights the complementarity between the different
decay modes in regard of NP sensitivity. We return to this in
Sec. IV B.

In the following Secs. IIl A-III D we review the theory
description of the decays D — Pup, D — P, Pub, A} —
pvp and EF —» XTwp and D — Xvp and provide details
relevant for the calculation of the AS’E‘F factors compiled in
Table II.

A.D - Pw

The D — Puv mode, where D = D° D* D} and
P =% a", K™, respectively, is described by only one

TABLEII. Coefficients Ai" Fasin Eq. (15) for various charmed
hadrons %, and final states F' for central values of input. For the
exclusive charged D decays g*-cuts (16) are taken into account,
while for inclusive modes no cuts were applied, as the details of
possible backgrounds are beyond the scope of this work. This
table is adopted from Ref. [10].

h.— F AP 1078 Al F 11078
D0 — 70 0.9 0
DT - gt 3.6 0
D} - Kt 0.7 0
DY — 7979 0.7 x 1073 0.21
DY > ztn~ 1.4 x 1073 0.41
D’ —» KtK- 4.7 x 107° 0.004
Af - pt 1.0 1.7
BF & 3t 1.8 3.5
DY > X 2.2 2.2
Dt - X 5.6 5.6
Di X 27 27

015033-4
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FIG. 2. Differential branching ratios for D° — 7%z, D* —
#tuvp and Df — K'vp in red, brown, and green, respectively for
the LU (cLFC) limit in solid (dotted) lines from Eq. (10)
[Eq. (11)]. The uncertainty bands are due to the form factors,
the vertical dashed lines illustrate the cuts (16) needed to avoid
the 7 background.

form factor. The a?P—functions of the differential decay
width can be written as

aDP(q2) _ G%“ZTDA(’”%)’ m%, ‘12)%( QP(‘IZ))Z (17)
+ - )
307271'5}11?)

and aPP(q?) =0. Here, A(a,b,c)=a>+b*+ -
2(ab — ac — bc) is the usual Killén function and 7p
denotes the lifetime of the D-meson.

In this work we use the D — P form factors computed
by Lubicz et al. [17] using lattice QCD. Details can be
found in Appendix B 1. Figure 2 illustrates the differential
branching ratio for all three decay modes with exemplary
values of x;; from Egs. (10) (solid) and (11) (dotted).

The hierarchy between the D°, D*, D branching ratios
stems predominantly from the different lifetimes 7,0 <
7p, < Tp+, while for the D; also the phase space difference

relative to the D** plays a role.

B. D - P,Pyi

The angular distributions of D — P P,vv decays can be
obtained from Ref. [1]. Integrating the unobservable
kinematic variables, two angles in the full five-fold angular
distribution, we are left with a three-fold differential distri-

bution with the following aiP‘Pz—functionS,

(mp— 2)2 1

a}"" (q?) = / V7 4 / dcosp by (q%, p*.0p,),
(mp,+mp,)? -1

(18)

with

T .
b_(q2’ p2’ 91’1) = FD “]:0|2 + SlnzePl |f|| |2]’

Tp .
bi(g* p?.0p,) = sin*0p | F 1. (19)

where p? denotes the invariant mass-squared of the (P, P,)-
subsystem. 6p is the angle between the P|-momentum and
the negative direction of flight of the D-meson in the
(P P;)-cms. The transversity form factors F;, i =0, L, ||
are given in Ref. [1], with details provided in Appendix B 2.

Helicity relations imply that at low hadronic recoil the
transverse perpendicular form factor is suppressed with
respect to the others, 7| < F [22]. In addition, at large
recoil the longitudinal form factor becomes the leading one,
F 1 < Fy. Therefore, D — P P,vv decays are domi-
nated by the APP1”2 contribution, as can be seen numeri-
cally in Table II, and have only suppressed sensitivity to x7;.

%1075
1.01 D N L7
— D0ty
D' = Kt*K v

00 05 10 15 20 25

¢ [GeV?]
o x107°
C\\] DY 070y
% 31 “, — D0 st up
O, " D' K*K v
S
=2
A
& \
) 11 X
T
s
| -
0 1 2 3
p* [GeV?]
FIG. 3. Differential branching ratios for D — 7z%7z%w, D° —

ata vp and D° - K*K~vi decays in orange, deep pink and
cyan, respectively for the LU (cLFC) limit in solid (dotted) lines
from Eq. (10) [Eq. (11)]. The upper plot shows d3/dg?, whereas
the lower plot d3/dp?, as in (20). The differential branching ratio
of D’ - K*K~vpis multiplied by a factor 100 to be visible in the
plots. The band widths illustrate 10% uncertainty originating
from form factors.

015033-5



BAUSE, GISBERT, GOLZ, and HILLER

PHYS. REV. D 103, 015033 (2021)

In Fig. 3 (upper plot) we illustrate the g>-differential
branching ratio for three decay modes, D° — 7°7%up,
D° - ztz vp and DY — KTK~wp, for x;, saturating
Egs. (10) and (11). Also shown are the (P; — P,)-mass-

squared distributions d3/dp?, obtained as

dB(D g Plpzl/D)
dp?

a?P P (p?)xf + aPP P (p?)xg,

(20)

(mu—\/I?)Z 1
2" )= [ dg” [ dcostpb(a’. .00,

(21)

in close analogy to (13) and (18). Due to isospin, the
distributions for F = 7z°2° and z*z~ are essentially the
same up to an overall factor of 2, due to two identical
particles in the final state.

C. Charmed baryon modes

The differential decay rates for Al — pvv and Ef —
>*tup decays can be extracted from Ref. [14]. Four different

form factors enter the a}fF—functions as
A7) =N (215t Pl + e ).
e R N T
with s, = (m),: = mp)? — ¢* and

Grdey: ¢\ A2 . )
N = 055 . (23)
hE

Here, 7+ (m+) denote the lifetime (mass) of the charm
hadrons. For the charmed baryon modes, we use the form
factors provided in Ref. [19]. Details can be found in
Appendix B 3. In view of missing computations for the Z}
mode, we adopt the same form factors as for the A one.
Figure 4 illustrates the differential branching ratio for these
two decay modes for x; saturating Eqgs. (10) and (11).
Within our working assumption of similar form factors, the
decays of the E} (blue) are about twice as often than the A
ones (brown) due to the difference in lifetime, 7z /7)+ ~
2 [6].

D. Inclusive D — Xvv decays

The D — Xvv decays with an inclusive hadronic final
state with flavor quantum number of an up-quark,
X =7, nrx, ..., for DOF decays or an antistrange quark
from D decays, X = K, Kx, ..., are complementary to the
exclusive ones in several aspects: the theory framework for

x107°
IS 1.51 e AY = pUD
‘> ‘_ = Ytur
S
= 1.0
~
~
S| e,
[ B
0.5
T
+ o
= —
Q
=~ 0.01 ' ' ' '
0.0 0.5 1.0 1.5

¢* [GeV?]

FIG. 4. Differential branching ratios for A] — pvo and Ef —
¥*vp decays in brown and blue, respectively for the LU (cLFC)
limit in solid (dotted) lines from Eq. (10) [Eq. (11)]. The band
widths correspond to the form factor uncertainties, see main text.

inclusive modes is an operator product expansion, rather
than one involving form factors, and in the different
experimental analysis. In addition, inclusive modes are
proportional to x;. The corresponding dineutrino mass
distribution can be written in terms of a?X as [16]

2 2 3
_ Ggagrpm;

agX(qZ)_ 2103”5 K(O)fincl(q2)7 (24)

where
2\ 2 2
q q
fina(q?) = (1 ——2> [1 + 2—2}, (25)
mC mC
x107°
(_\‘]’—‘ — D0 5 X v
..... — DT 5 X v
g: 1.5 : — Df > Xui
ND*
=l
—~1.01
[y
A
b

¢*[GeV?]

FIG. 5. Differential branching ratios for DY - Xup,
D' — Xuvp, and D] — Xvp decays in magenta, lime and green,
respectively for the LU (cLFC) limit in solid (dotted) lines from
Eq. (10) [Eq. (11)]. The band widths illustrate 10% uncertainties
from power corrections. The distributions are cut at g2, = m>
and at the physical limit g2, = (m, — mg)? for the D+ and D}
modes, respectively [20].
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and

K(O)=1+“S(mc)[25—2 2

— | 371]%0.71, (26)

represents the QCD correction to the ¢ — wvv matrix
element inferred from Ref. [23].

Figure 5 illustrates the differential branching ratio for
three decay modes, D° — Xvi, D™ — Xvi, and D} — Xuo,
for x;; saturating Egs. (10) and (11). We observe similar
hierarchies between the decay modes as in Fig. 2, which are
driven by the lifetimes.

IV. MODEL INDEPENDENT TESTS

We discuss model-independent tests of NP, their impli-
cations for flavor physics and potential challenges due to
the presence of light BSM neutrinos. Using the model-
independent upper limits on the |Ac| = |Au| =1 dineu-
trino Wilson coefficients in the flavor benchmarks LU,
cLFC, and general flavor (10)-(12), together with the
description of h. — Fvv decays from Sec. III, we are
now in the position to predict upper limits on branching
ratios. These are presented in Sec. IVA, together with
implications for flavor and tests at e™e”—machines. We
discuss the correlation between different decays in Sec. IV
B, that arises in an overconstrained system with more
observables (decay modes) than unknowns (x?t,). In Sec. IV
C we go beyond the assumption of SM-like light neutrinos
and allow for right-handed neutrinos. We discuss implica-
tions and constraints. RH-neutrinos can appear in models
with low-scale seesaw origin of neutrino mass. We work
out constraints on LNV in Sec. IV D.

TABLE III.

A. Branching ratios probe NP and flavor

Using the bounds on x;; from Egs. (10), (11), and (12),

together with Eq. (14) and the values of A}i” F provided in
Table II, we obtain upper limits on branching ratios for the
three flavor scenarios, that is, LU (B[{*), cLFC (BJ%0),
and general (B™*). The maximal branching ratios are given
in Table III and have been shown in Fig. 1 for D, D* and
Al -decays. As already stressed in the Introduction, upper
limits are in the right ballpark for study at Belle II and FCC-
ee. The upper limits satisfy B < Bife < B™ and we
recall that they correspond to a specific flavor structure in
the charged lepton sector. Then, for instance, a branching
ratio measurement B, in some mode within B <
Bep < BiFc would be a signal of LU violation. In
contrast, a branching ratio above Bj%. would imply a
breakdown of cLFC.

Also shown in the last three columns of Table III are the
expected effective yields, i.e., yields (1) divided by the
reconstruction efficiency 7. for the benchmarks at Belle 11
and FCC-ee, the latter in parenthesis. With the exception of
D -decays and D° - K*K~up, all decays give maximal
expected rates O(10°) > NP /. > O(10%) at Belle 1I,
and an order of magnitude larger for the FCC-ee bench-
mark [5]. This reiterates that projected reaches at eTe™—
machines could make a 5¢ NP discovery in different
modes, and provide information on charged lepton flavor
symmetries.

B. Consistency checks using different modes

In the weak effective theory (2) only two combinations
of Wilson coefficients x{; describe all h, — Fuvp modes.
The system is therefore overconstrained, and allows for
consistency checks. The sensitivity to the coefficients
differs from mode to mode, as observed in Sec. III from

Upper limits on branching ratios By, Bijic, and B™ corresponding to Eqs. (10), (11), and (12),

respectively, using Eq. (14) and Table II. The expected number of events (1) per reconstruction efficiency #.¢ for
Belle II with 50 ab™! [5] (FCC-ee yields in parentheses) corresponding to LU, cLFC, and general are displayed in
the last three columns.

h. - F By [1077] By [107°]  B™ [107] NYE Mese NEFe/Meir N™ /1o
DO = 70 6.1 3.5 13 47k (395k) 270k 2.3 M) 980 k (8.3M)
Dt =zt 25 14 52 77k (650k) 440k 3.7 M) 1.6 M (14 M)
Df — K+ 4.6 2.6 9.6 6 k (50 k) 34k (290k) 120 k (1.1 M)
DY = 7970 1.5 0.8 3.1 11k©O5k 64k (540k) 230 k (2.0 M)
DO = ztam 2.8 1.6 5.9 22k (180k) 120k (1.0 M) 450 k (3.8 M)
DO = KK~ 0.03 0.02 0.06 02k(19k) 13k(l1k 48k 40k
A = pt 18 11 39 14k (120 k) 82k (700 k) 300 k (2.6 M)
EF - 3t 36 21 76 28Kk (240k) 160k (1.4 M) 590 k (5.0 M)
DY X 15 8.7 32 120k (980 k) 660 k (5.6 M) 2.4 M (21 M)
Dt 5 X 38 22 80 120k (10M) 680k (5.8M) 2.5M (21 M)
Df - X 18 10 38 24k (200k) 140 k (1.1 M) 500 k (4.2 M)
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Eq. (14) together with items (a)—(d). In particular D — Pvp
and D — P, P,vv are essentially orthogonal to each other,
the former depends on xj; only, while the latter is
predominantly induced by x7. We can therefore predict

all other branching ratios if any of these two are measured

B(h, — Fub) = """ B(D — Pup)
+ rFB(DY) — P, Pwp),  (27)

where /¥ = A" /ADP and rheF = ARF JAPPIP2 yp 1o
corrections of the order A”"172/APPiP> <1072, Notice
that Eq. (27) holds for identical and different D-mesons,
D # D'. Equation (27) is independent of x;; and hence
tests the assumptions that enter the effective theory frame-
work. The correlation between different dineutrino modes
could, for instance, be broken in the presence of additional
Wilson coefficients. A possibility are RH light neutrinos,
discussed next.

C. Including light right-handed neutrinos

We consider going beyond the weak effective theory
framework (2) by allowing for light RH neutrinos. A
concrete model with LNV is discussed in Sec. IV D.
With light RH neutrinos further dimension six dineutrino
operators are allowed, such as vector and axial-vector ones,

ij = (U 7 .avHy.
H y
Qir (MLV CL)(V/R}’ U;R),

Qlr = (@RYucr)(DjrY"ViR) (28)

and those with quark chirality mixing

i cr)(2i(ys)vi),

(
7 - %(ugﬂvc)(l_/jaﬂy(y5)yi)’ (29)

T(T5) —

in addition to the chirality-flipped Q' operators which are
obtained from the Q’s by interchanging left-handed (L) and
right-handed (R) chiral fields, L <> R. While for the SM-
like neutrino case the definition of x;; was useful, with light
RH neutrinos it is convenient to define the following
combination of Wilson coefficients, as

yo=> (¢ -

ij

CSP+Ics =Cy'P). (30)

This particular combination enters the branching ratio of
D° — vp decays, which is constrained by Belle [24]
B(D® - inv) < 9.4 x 1073, (31)

at 90% CL. From here we obtain the constraint

A3 m2B(D° - i
)’U56 mz( —>1nv)~67’ (32)
Giazmy, f3tp

with the decay constant fp = 0.212 GeV [25]. Contri-
butions from vector and axial-vector operators to D° — v
are helicity suppressed by two powers of the neutrino
mass, and negligible. Tensor operators do not contribute
to D° — v decays at all. Only scalar and pseudoscalar
operators as in y;; are therefore constrained by (31).

Considering either C ps=0or C;’,’S = 0, the branching
ratio of D — Pvv decays Wthh unlike D — v, depends
on the sum of C} 25 and Cp/ p.s» can be written as

B(D - PVD)S,P = AODPyU7 (33)
with
A= [ agapta) (34)
and
pps o T0GR2A(mE, m3. %)
ap (q°) = 5 3
102475 m3,
2
q
X3 (mp —mp)*(f0F(¢*)*  (35)

where g2, and g2, are the kinematic limits of D — Puy,
see Sec. III A. We provide the impact exemplarily on
D — Puvp decays since there is no specific enhancement
or suppression in semileptonic decays for S, P-operators.
Using Eq. (33) together with Eq. (32), we obtain the
following limits

B(D® — nwp)g p $2.4x107°,
B(D* - ztwb)gp $12.2 x 1079,
B(D; — K*vb)gp $2.3 % 107, (36)

These represent corrections of ~20% to the general
flavor branching ratio limits for D — Pur decays given
in Table III. The upper limits based on lepton flavor
conservation receive order one corrections, but the overall
size of B remains. The upper limits based on LU are
overwhelmed by (36).

On the other hand, effects from scalar and pseudoscalar
operators could become irrelevant, if an improved bound
for B(D° - inv) would become available. Requiring the
effect of S, P-operators on the D — Pvv branching ratios
assuming LU to be less than ~10%, and thus within the
uncertainties, we find y; < 1.7 and

B(D° - inv) <2 x 107°, (37)
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An improvement of the current bound Eq. (31) by two
orders of magnitude as in (37) would exclude large scalar
and pseudoscalar contributions to rare dineutrino charm
decays and thus reinforce our framework and the LU limits
from Table III

D. Bounding lepton number violation

Since the final states are invisible, Eq. (31) provides
opportunities to probe exotic BSM physics. In particular,
the final state could be two neutrinos, allowing to probe
LNV in AL =2 transitions. While such processes are
forbidden in the SM, they occur in neutrino mass models of
Majorana type.

To discuss the implication of LNV on our study we work
within the standard model effective theory (SMEFT),
which has already been instrumental in Ref. [10] to achieve
model-independent links between left-handed dineutrino
and charged dilepton couplings, as detailed in Appendix A.
In SMEFT higher dimensional operators consistent with
Lorentz- and SU(3), x SU(2), x U(1)y-invariance are
composed out of SM degrees of freedom. It is assumed
that the scale of NP, here the scale of LNV, Ajyy, is
sufficiently separated from the weak scale.

The lowest order contribution to ¢ — uvv modes at tree
level is induced by a single dimension seven operator [26],

O\ = LeL! 0L UsHP ey, (38)

with leptons L = (v, ¢ ), quarks Q = (u;,d;) and the
Higgs H = (H*, H"), all of which are SU(2), -doublets,
and the singlet up-type quarks U. Here, the superscript ¢
denotes charge conjugation and a, f§ are SU(2), indices,
while i, j, a, b are flavor indices.

Following [27], we account for the different contractions
between SU(2), indices and rewrite Eq. (38) using four-

spinor notation. We find that Of&) induces contributions
to the chirality flipping operators in the weak effective
Hamiltonian (29). The contribution to the scalar and
pseudoscalar operators reads

P ‘/§<2—ﬂ>< ; >3- (39)

=
% ) \Afky

Here we shuffled the flavor dependence in the Wilson

coefficients of 051754) to the one in the scale, and v =
246 GeV is the SM Higgs vacuum expectation value
(VEV). There are also contributions to tensors in addition
to Q' p contributions but following Sec. IV C these are not
relevant to investigate the impact on the dineutrino branch-
ing ratios. In terms of (30),

27\ 2 v \©
B
Qe ;ALJNV

Using the upper limit on B(D® — inv) from Eq. (31), we
obtain a lower limit on the LNV scale from charm,

Ay = 1.5 TeV. (41)

This limit is obtained assuming one term of fixed lepton
flavor indices at a time. In the presence of more than one
term the limit gets stronger.

The relation (40) can also be used to estimate the

minimal scale Aff;in required to not spoil the results in
Table III. Along the lines of the analysis in the previous
Sec. IV C, we require the branching ratio By y(D° — z%up)
not to be altered by LNV contributions by more than 10%.

We obtain

Al 227 TeV, (42)
which is much lower than the typical neutrino seesaw
scale in grand unification theory (GUT) models, and also
sufficiently below the one obtained recently from rare kaon
decays, Afyy = 15 TeV [27]. Additionally, one can extract
information from the neutrino mass. Neutrino oscilla-
tions [6], Tritium decay [28] and cosmological data [29]
require the neutrinos to be lighter than m, < 0.1 eV. With
the quark legs closed to a loop and the Higgs fixed to its
VEV the operator (38) induces corrections to the neutrino
masses [27]

I my, v

om, ~ — .
V2 (4z )2 Arny

Requiring this to not exceed the upper limit of m,, we
obtain, employing for m,, the mass of the first generation
up quark

(43)

ALNV z 0(104) TeV. (44)

This would correspond to B(D° = vv); ny < O(107%) and
would rule out any imprint of LNV in rare charm decays.

In conclusion, observation of D° — inv around (31)
could in principle be due to LNV, with breaking scale as
low as a TeV. In addition, LNV could also affect bounds in
Table III. However, such effects require a high level of
flavor tuning, given other constraints, such as (44) and the
limits from K — zvv. They could be excluded altogether
with an improved search for D — invisible.

V. BSM TREE-LEVEL MEDIATORS

In this section we analyze ¢ — wvp transitions in
simplified BSM frameworks, based on Z' and LQ models,
both of which are interesting as they induce charm FCNC’s
at tree level. The advantage of working with specific tree-
level mediators is that this circumvents the use of data on
the down-sector, see Appendix A, allowing for a direct link
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between up-sector charged dilepton data and the dineu-
trino modes.

To be specific, the SU(2), -links [10] in SMEFT involve
the leading dimension six four-fermion operators

(1) 3)
qu N T qu ) ang a
Lsmrrr 2 2 QLY L + 5 Oy QLy" "L

Cop - o - Cop - -
+ 24Uy, ULy"L + 5" Dy, DLy"L, (45)
v v

where 7¢ are Pauli-matrices, while Q and L denote left-
handed quark and lepton SU(2),—doublets, whereas U, D
stand for right-handed up-singlet, down-singlet quarks,
respectively, with quark and lepton flavor indices sup-
pressed for brevity. We can write the operators above in
terms of its SU(2); -components and read off dineutrino
Wilson coefficients (C%) and charged dilepton ones (K%)
for P = U (P = D), which refers to the up-quark sector
(down-quark sector) and A = L(R) denotes left- (right-)
handed quark currents. Model-independently holds

1 3
CY=kP=Cll+cl).  CY=KY=Ca,

3
CP=kKy=Cl)-Cl). CR=KR=Cun  (46)

While CE = KZ%, due to the different relative signs between
C(;; and Cifq), the left-handed dineutrino couplings relevant

for charm, Cg, are linked to the down-sector dilepton
ones, K?, and require hence input from strange quarks.
BSM models with tree level mediators, in which the

relation between C;lq) and C?q) is known, are simpler.

Specifically, we study models with

Z' models,

o (47)
‘q aCL(,lq), LQ models.

Values of « for different LQ representations are given in
Table V. In the following, we work out the upper limits on
the dineutrino branching ratios assuming (47). We also
consider LQs induced by right-handed operators with

C;lf) = 0. The results are displayed in Tables IV and

VI. We stress that our results correspond to quite generic
BSM frameworks: the sole “model-dependent” input we
use is the matching condition (47).

A. Z' models

In Z' models, the following link between dineutrino (C)
and charged lepton (K) Wilson coefficients in the gauge
basis holds

1
cy =KY =ch. (48)

TABLE 1V. B, Bifc and B™* corresponding to the LU,
cLFC and general bounds, respectively, for Z' models (48), using
Eq. (14) together with the values of Ali' F displayed in Table I and
the bounds on x;; from Egs. (50)—(52).

Z/
he = F By 107 By 1079 B [107]
DO — 70 2.7 1.5 5.1
Dt -zt 11 6.1 21
Df - K+ 2.0 1.1 3.9
D% — 79720 0.6 0.4 1.2
D = ngta~ 1.2 0.7 2.4
D’ - KTK- 0.01 0.007 0.03
Af - p* 8.0 4.6 16
Ef - Xt 16 9.0 31
DY — X 6.6 3.8 13
Dt - X 17 9.5 32
Df - X 7.9 4.5 15
From Eq. (A2) follows
, Ui Ui
xf < Y (KR + K P), (49)

ij

where bounds on the couplings on the right-hand side can
be seen in Table VII. We obtain

x5 <15, (LU) (50)
x% <85, (cLFC) (51)
x% <288, (general), (52)

which are stronger than the model-independent ones (10)-
(12), however, within the same order of magnitude. Upper
limits on dineutrino branching ratios from (48) are given in
Table IV.

B. Leptoquark models
In contrast to Z' models, in LQ models both Wilson

coefficients C(flq) and C?q) can contribute. The general
charged lepton-neutrino link reads

l—a

1
K =rch=(-ach.  r=17%

(53)

The values of a for different LQ models are given in
Table V. Here, V, S denote vector, scalar LQs and the
subscript indicates the dimension of the representation
under SU(2), . Representations with tree level contribution
to ¢ — uvb are the triplets S5, V5, the doublets S,, V,, and
the singlet V. We discuss them separately in the following.
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TABLE V. Values for @ and y (47), (53) for different LQ
representations [30]. The last column displays which dineutrino
Wilson coefficient is not generated by the LQ representation.

LQ-rep a 4 Cij_R

S5 % % cY=0
V3 —% 2 ci=0
S5, V, cY=0

1. Triplets S; and V5

The dineutrino contributions from the LQ repre-
sentations S; and V3 are related to the charged dilepton
bounds as

1 N

53V U

X <_|y\2 E K22, (54)
ij

and right-handed contributions are absent. For the scalar
triplet we obtain using Table VII

X <30, (LU) (55)
X3} 170, (cLFC) (56)
X3 <577 (general), (57)

whereas the ones for the V5 are a factor 1/16 smaller
(modulo rounding effects) and read

x?<2 (LU (58)
x <11, (cLFC) (59)

X <36, (general). (60)

2. Doublets S, and V,

The doublet LQs induce right-handed contributions
only, as

ap < NI, (61)
i.j

Using Table VII, we obtain for both scalar and vector
representations

<7 (L) (62)
xszvvz <42, (cLFC) (63)
xf]z.f/z < 144, (general), (64)

which is, modulo rounding errors, half of the ones in the Z’
model given in (50)—(52). The reason for this is that the
constraints obtained from Drell-Yan processes do not
depend on the quark current chirality.

3. Singlet V,

In the LQ representation V; right-handed currents are
absent, and LY = 0. Hence, no connection between Y
and CY exists. However, model-independently CY = kP
(46), and one can employ data from the down-sector. Using
Eq. (A2), we obtain the following bound

xy < Y KPP+ axy (65)

i

TABLE VI. B, Bi{c, and B™* corresponding to the LU, cLFC, and general bounds, respectively, for LQ models using Eq. (14)
together with the values of Ai’gF displayed in Table II and the bounds on x;; determined in Sec. V B.
S3 V3 Sy, Vs Vi

he — F By B B™ B Bw. B B B B B B B™

[107]  [10°°] [107%  [1077] [107°] [107%] [1077] [107%] [107°] [1077] [107%]  [1079]
D% — 7° 53 3.0 10 0.3 0.2 0.6 1.3 0.8 2.6 4.8 2.7 10
DT - gt 21 12 42 1.3 0.8 2.6 53 3.1 10 19 11 41
D - K" 4.0 23 1.7 0.2 0.1 0.5 1.0 0.6 1.9 3.6 2.1 7.7
D — 7920 1.3 0.7 2.5 0.08 0.05 0.2 0.3 0.2 0.6 1.1 0.7 24
D — gta~ 24 1.4 4.8 0.2 0.09 0.3 0.6 0.4 1.2 2.2 1.3 4.7
D’ - KtK~ 0.03 0.01 0.05 0.002  0.001 0.003  0.006  0.004 0.01 0.02 0.01 0.05
A — pt 16 9.2 31 1.0 0.6 1.9 4.0 23 7.8 14 8.3 31
Ef -t 31 18 61 2.0 1.1 3.8 7.9 4.5 15 28 16 61
DY — X 13 7.5 25 0.8 0.5 1.6 33 1.9 6.4 12 6.8 25
Dt - X 33 19 65 2.1 1.2 4.0 8.3 4.8 16 30 17 64
Df - X 16 9.0 31 1.0 0.6 1.9 39 23 7.7 14 8.2 30
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with the linear correction from CKM-rotation at the order 4,

sxy' =24 KL= + K] (66)
i

Using Table VII, we obtain

X' <27, (LU) (67)
x}' <153,  (cLFC) (68)
X' <572, (general). (69)

The LU bound in Eq. (67) can be significantly improved to

X < O(1073) if low energy kaon data is applied. See also
U gy pPp
the discussion in Appendix A.

C. Synopsis tree-level mediators

In Tables IV and VI we show the limits on the branching
ratios B, By and B™* imposing LU, cLFC, and
general flavor structure, respectively, for the Z' and the
LQ models. We stress that our results hold for any BSM

model with the same relations between C ;2 and C(;;) and

corresponding right-handed contributions, and are there-
fore still quite generic. As expected, bounds for all
simplified models are stronger than the model-independent
ones shown in Table III. The Z’, S,, V, and especially the
V5 are significantly better constrained, whereas S3 and V4
almost saturate the model-independent bounds.

VI. CONCLUSIONS

We performed a comprehensive analysis of ¢ — uvw
induced decays. We systematically analyzed exclusive
decays of D°, D*, D} -mesons and A}, E}-baryons using
most recent determinations of form factors, in addition to
inclusive modes. The dineutrino decays are important as
they complement searches for NP with radiative and
dileptonic modes, while being significantly cleaner than
the latter from the theory point of view due to the absence
of irreducible resonance backgrounds.

There is presently no experimental limit on any of the
h. — Fvp branching ratios available, despite the fact that all
of them are clean null tests of the SM. Hence, any observation
within foreseeable sensitivity means NP, and NP can be just
around the corner. Specifically, model-independent upper
limits on branching ratios, obtained using SU(2), and
existing bounds on charged lepton modes, allow for upper
limits as large as few x107, see Table III.

Moreover, the measurements of dineutrino branching
ratios constitute tests of charged lepton flavor, specifically,
lepton-universality and charged lepton flavor conservation
—a stunning opportunity given the fact that the neutrino
flavors are not reconstructed. Branching ratios assuming

charged lepton flavor conservation can be as large as 107,
those in the limit of lepton universality reach few x107°.
These limits are data-driven and will go down if improved
bounds from charged leptons become available [10].

Furthermore, we analyzed the branching ratios in BSM
models that induce rare charm dineutrino decays at tree
level, leptoquarks and flavorful Z’' models. We find that
upper limits on the branching ratios are smaller than the
model-independent ones, see Tables IV and VI, yet in the
same ballpark as the model-independent ones except for
the vector triplet representation V3, which gives an order of
magnitude lower limits.

We add that there is the possibility that the modes are
observed above their upper limits given in Table III: this
would signal not only NP, but NP with additional light
degrees of freedom. An example are light right-handed
neutrinos from a TeV-ish scale of LNV. While studies in
other sectors give higher scales, it is conceivable that LNV
breaking is strongly flavor-dependent. This could be further
investigated with an improved bound on D — invisibles.
Further study is beyond the scope of this work.

Figure 1 summarizes the sensitivity to rare charm decays
at a clean, high luminosity eTe™ flavor facility such as
Belle II and FCC-ee running at the Z. In view of the large
charm luminosities, and the complementarity to charged
lepton probes of lepton flavor universality and conserva-
tion, we strongly encourage experimental searches for
dineutrino modes.
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APPENDIX A: CHARGED LEPTON AND
NEUTRINO LINKS VIA SU(2),-SYMMETRY

It was recently shown [10] that SU(2),-symmetry
links processes into charged dileptons with those into
dineutrinos. Here we provide details to make this paper
self-contained.

To connect the low-energy effective Hamiltonian for
dineutrino transitions (2) with a charged lepton one (7) in a
model-independent way, it is necessary to introduce
the SU(3)- x SU(2), x U(1)y-invariant effective theory
with semileptonic (axial-) vector four-fermion operators. At
leading order [31], only four operators contribute, which
are given by (45). Tree level contributions to dineutrino
modes are also induced by Z-penguins from dimension six
operators with two Higgs fields and a covariant derivative.
These are constrained by electroweak and top observables,
or mixing [32,33], and subleading.
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Writing (45) in terms of mass eigenstates, that is,
Q(Z = (MLa, VaﬂdL/}) and Li = (I/Li, WZika) with the
Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrices, V and W,
respectively, and matching onto Eqgs. (2) and (7), the
dineutrino Wilson coefficients in the up-sector, C{ ., read

cV = WiVKPVTW

ey = WiKYIw (A1)

The CY ; depend on the PMNS matrix, which drops out
in the flavor-summed branching ratios (4) due to unitarity.
CY depends on the CKM-matrix that allows for an expan-
sion in the Wolfenstein parameter 4, relevant for ¢ — u
transitions as

CL™ = WKW+ AW (K72 = KW + O(2).

The superscripts 12, 11, and 22 given explicitly indicate the
generations in the quark currents of the operators, i.e., ic,
ds, dd, and 5s. In the remainder of this work, which focuses
on ¢ — u transitions, we use CZ‘,ZQ = C{  to avoid clutter.
For x;, one obtains

xp =Y (IC"P + k1)

v=i,j

_ TI‘[’C?IZ/CIL)IZT + ’Cglzlcglzf] + 6xy + 0(12)

= Tr[cVcY + cyclT

=Y (K™P + K™ P) + bxy +O().  (A2)
(=i
with the O(4)-correction
Sxy = 2ATr[Re{ kP2 (P27 — KDY}
_ ZZZRE{(’C?ZUKQZZU* _ K?lzij/Cf”ij*)}. (A3)

f=ij

The traces are over the lepton flavor indices of the Wilson
coefficients, and therefore depend on the flavor structure of
the couplings K{ g [10], see also (9):

1) IC’L’ g  0;; that is, lepton-universality (LU).

(i1) ICL g are diagonal, that is, charged lepton flavor

conservation (cLFC)

(iii) KC} x is arbitrary.

Interestingly, (A2) allows both the study of the lepton
flavor nature and to put constraints on rare charm dineu-
trino branching ratios model-independently. We define

RC — |]CDlsz |2 + |’CU12”|

Rff’ |]C012ff ]CUlsz 2
SRC — ZARe{ICD‘W ICDwff * ICDpff K?,,fﬂ*}. (A4)
where R’ + RZ =2R’”, RY” <2R’’. Furthermore,
SR < 22K (D= | 4 |KPnC]). We  employ

high-py data [11,12] for up- and down-type charged

TABLE VII.  Upper limits on |Ad| = 0, 1 and |Ac| = 1 leptonic
couplings Ky, g from high—p7 [11,12]. LFV-bounds are quoted as

charge-averaged, \/ |Kct e 2+ o 2.

q; —~ q; |ICP”M| ee y T e et ut
d—d |;CDuff | 28 15 55 L1 33 36
- KcP2ef) 90 49 17 52 17 18
s—od | ;CDlzf | 35 19 67 20 61 66
c—u | ,CU.sz | 29 16 56 16 47 51
TABLE VIII. Bounds on R“” and 6R?? from Eqs. (A4), as well

as their sum, 7 = R’ + SR’’".

ee up T e et ut
R?? 21 6.0 77 6.6 59 70
SR?? 19 54 69 5.7 55 63
P 39 11 145 12 115 133

lepton FCNC’s and give bounds on lepton specific
Wilson coefficients for #,7' =e, u, v in Table VIL!
Corresponding bounds on R’ and 6R?”" are summarized
in Table VIIIL.

We obtain the upper limits for the flavor patterns (9) and
general flavor structure as

y = 3r <34, (LU) (AS5)
Xy =71+ 4T <196,  (cLFC)  (A6)
Xy = r 4+ 4T 4 2(r 4 et ) <716, (A7)

identical to (10)—(12) and with flavor budget displayed.
Since the dimuon bounds are the most stringent ones, see
Table VIII, they provide the LU-limit.

Bounds on K./ LR ”" from rare kaon decays can be stronger
by about two orders magnitude than the high-p; limits for
¢¢") = ee, up, and eu. Corresponding limits on x;; would
be reduced to 22% (LU), and only to 80% (cLFC) and 92%
(general) of the ones presented in Eqs. (A5)—(A7). The
latter two are dominated by contributions including z’s.
Additional constraints from z-decays [12] could be taken
into account but require further study of correlations which
is beyond the scope of this work. Since the right-handed
bounds from ¢ — u in Table VII remain model-independ-
ently, the x;; bounds can at most be reduced to the ones
provided in Egs. (62)—(64). To also avoid the possibility of
cancellations altogether and to use a unified framework, we
therefore present results using high—p; bounds.

"The d — d, s — s, s — d entries can be obtained from the
¢ — u bounds via luminosity ratios, see Eqs. (6.9) and (6.10) in
[11] and Fig. 1 in [12].
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APPENDIX B: PARAMETRIZATION OF
FORM FACTORS

In this Appendix we provide detailed information on the
form factors used in this work.

1. Form factors D — P

The form factors f,, for D — P are available from
lattice QCD [17], given in the z—expansion as, i = +,0,

) = 1z |10
Falete) =(0) 1+ X qp)
where

Vig—q =1 1
Vit —q*+ i =1

with tg = (mp+mp)(\/mp—/mp)* and t, = (mp +mp)>.
The numerical values of f;(0), ¢; and P; parameters
together with their uncertainties and covariance matrices
are given in [17]. We use the same numerical inputs for
D — 7 and DY — K™ transitions besides obvious kin-
ematic replacements, supported by Ref. [34]. There is an
additional factor of 1/ ﬂ for the D° — z° form factors
fi(g*) due to isospin.

2(q?) =

(B2)

2. Form factors D — PP,

can be
expressed in terms of three heavy hadron chiral perturba-
tion theory (HHyPT) form factors @, and 4 as [1,18]

=5 Vi + 25 [, =, )V

—(mp = q* = p*)\ /2 Cosﬁpj},

2 2
q N q
Fi=Ny —w F| = A, —=h,
I ppz 1 D) ppz
Gra AA
Ny = 2t L B3
2 my mpp (B3)

where A = A(m3,q% p*) and Ap :/1(1727’”%1”’”%2)- In

addition,

o 9fp mp
WL = —

Ef%q vepp, +A
= 7 fo 1 (B4)
2 /3 (v pp,+A)(v-p+4)
with  the decay constants f, and fp  [6],

A = (mpo—mp), §=0.570=£0.006 [35] and the dot
products

1
U'PﬂZ@((m%)—qz%-Pz)
4m>
—\/i(m%,qz,p2)<1 - pf]>0089p,>,
2 2 2
mp—q +p
p=—2_* = B5
vep o (BS)

An isospin factors of 1/1/2 needs to be included into the
form factors for each z° in the final state. Together with the
statistical factor for identical particles, the D — 7°7z%vp
mode receives an overall suppression by 1/2 with respect to

D° — 7tz v in the isospin limit.

3. Form factors A} —p

Taking into account the difference in notation between
Ref. [19] and Sec. 11 C, f(‘)/,J_ =f,, and fg‘yl =g, ,the
form factors f,, g,, f., and g, can be extracted from
Ref. [19]:

2
an
Tl 2l

2
f(q ) 1_ /( pole n=0

(B6)

with z(¢?) given in Eq. (B2), t, = (mp + m,)*> and
to = (my+ —m,,)?. The values for the a, parameters and
the pole masses my. are given along with their correlation
in the supplemented files of Ref. [19].
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