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We generalize dark matter production to a two-metric framework whereby the physical metric, which
couples to the Standard Model (SM), is conformally and/or disformally related to the metric governing
the gravitational dynamics. We show that this setup is naturally present in many Ultra Violet (UV)
constructions, from Kähler moduli fields to tensor-portal models, and from emergent gravity to
supergravity models. In this setting we study dark matter production in the early Universe resulting
from both scatterings off the thermal bath and the radiative decay of the inflaton. We also take into account
noninstantaneous reheating effects at the end of inflation. In this context, dark matter emerges from the
production of the scalar field mediating the conformal/disformal interactions with the SM, i.e., realizing a
Feebly Interacting Matter Particle (FIMP) scenario where the suppression scale of the interaction between
the scalar and the SM can be taken almost as high as the Planck scale in the deep UV.
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I. INTRODUCTION

The presence of two geometries, governing the gravita-
tional dynamics and the behavior of matter fields, respec-
tively, is frequent within the landscape of high-energy
physics models. For instance, orbifolds in string theories
[1] or Kähler metrics in supergravity models [2] are two
popular cases where the geometry governing the dynamics
of matter are not the same as the one governing the
gravitational structure of space-time. This is in fact quite
an old idea and was already proposed in Nordstrom’s
gravitational theories [3], Brans-Dicke’s [4] or Dirac’s [5].
More recently models of emergent gravity [6] modify the
metric assuming that gravity springs from vector inter-
actions generated in massive hidden sectors. As a conse-
quence, the dynamical metric in Minkowski space-time can
be reduced to [7]

gμν ≡ ημν þ
Tμν

Λ4
; ð1Þ

where Tμν is a linear combination of energy-momentum
tensors of hidden sector particles and Λ the scale beyond
which the theory breaks down1 [the Beyond the Standard
Model (BSM) scale]. Phenomenological consequences of
emergent gravity in dark matter phenomenology and for the
early Universe evolution have been studied in [8]. Other
possibilities are common in the supergravity framework
and involve the presence of moduli fields, inducing new
couplings to the Standard Model of the type [9]

LSM
T ⊃ ZHjDμHj2 ð2Þ

in the Higgs sector with ZH ¼ 1þ 1
Λ t, t being the real part

of moduli fields. This setup can also be considered as a
modification of the physical geometry, dependent on the
moduli fields, especially their stabilized values at the
minimum of the Kähler potential. Finally one finds similar
examples in high-scale SUSY models [10]. Indeed, the
minimal coupling of a gravitino2 to the Standard Model,
whose longitudinal mode is the Goldstino denoted by Ψ3=2,
is built by first defining a vierbein [11]
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1Typically the mass scale of the hidden sector.
2The spin-3

2
superpartner of the graviton.
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eαμ ¼ δαμ −
i

2F2
ð∂μΨ̄3=2γ

αΨ3=2 þ Ψ̄3=2γ
α∂μΨ3=2Þ; ð3Þ

ffiffiffiffi
F

p
being related to the SUSY breaking scale.3 This

enters clearly in the category of models where the Standard
Model fields interact with the gravitino (Goldstino) through
its presence in the physical4metric gμν ¼ eμaeνbη

ab.
As we have just seen, several constructions include two

geometries, and the relation between the gravitational
metric and the physical one implies modifications of the
dynamics and the phenomenology of Standard Model (SM)
fields by the introduction of new couplings, new inter-
actions and new fields. Some time ago, it was proposed [12]
to generalize this in a unique description where all types
of dynamical metrics can respect some basic principles.
The generalization consists in considering two metrics
which are not just conformally related. This more natural
relationship involves Finslerian geometry rather than
Riemannian geometry. Finslerian geometry is the most
general geometry where the squared relativistic interval ds2

is homogeneous of second degree in the element dx; in
other words,

ds2ðx; μdxÞ ¼ μ2ds2ðx; dxÞ: ð4Þ

By introducing a scalar field ϕ, one can define a generic
function Fðϕ; X; YÞ according to

ds2 ¼ g̃μνdxμdxν ¼ gμνdxμdxνFðϕ; X; YÞ; ð5Þ

where

X ¼ gαβ∂αϕ∂βϕ and Y ¼ ∂αϕdxα∂βϕdxβ

gαβdxαdxβ
: ð6Þ

It can be shown that the Finslerian condition Eq. (4) can be
satisfied by

F ¼ Cðϕ; XÞ þDðϕ; XÞY; ð7Þ

with C > 0 and D > 0 to preserve the signature
ðþ;−;−;−Þ and respect causality [13]. Combining
Eq. (5) with (7) we obtain for the physical metric g̃μν

g̃μν ¼ Cðϕ; XÞgμν þDðϕ; XÞ∂μϕ∂νϕ: ð8Þ

The expression (8) contains not only the classical
conformal transformation induced by C between the
two metrics, but also the possibility for a disformal

transformation through the coefficient D, disformal in
the sense that the space-time structure is stretched differ-
ently in each direction proportionally to ∂iϕ in the
ith-direction. As expected, if ϕ is a constant, i.e., a
homogeneous and isotropic field, both metrics are related
by a simple conformal transformation. If not (D ≠ 0), ϕ is
interacting with the matter fields through their kinetic
terms. Notice that the metric g̃μν can also be inferred by
requiring general covariance and the absence of derivatives
of order larger than two. The latter requirement follows
from the generic appearance of ghosts in theories with
higher order derivatives. Disformally related metrics have
been widely used in the cosmological, gravitational and
recently particle physics contexts [14–20]. For instance, the
authors of [21] have recently given to ϕ the role of the
quintessence field of dark energy and analyzed the param-
eter space defined by (C, D) which is cosmologically
allowed. Similarly in the gravitational context, the authors
of [22] have constructed disformal versions of the Kerr
space-time. We will use disformally related metrics to
induce dark matter production. In this setting, we will
unravel how the phenomenology of the early Universe and
the appearance of dark matter could be modified by the
introduction of disformal coefficients. We will also restrict
the corresponding parameter space from late-time observ-
ables. In particular, we will show that a Feebly Interacting
Matter Particle (FIMP) scenario for dark matter production
can be naturally realized with a disformally coupled scalar
field ϕ to the Standard Model.
Recently, [23] proposed that ϕ could play the role of a

portal between a weakly interacting massive particles
(WIMP) dark sector and the visible sector. However, the
WIMP paradigm is nowadays under high scrutiny due to
the lack of observed signal, especially in direct detection
experiments. In [23] the direct detection constraints were
not taken into account, but could drastically reduce the
allowed parameter space, especially for dark matter masses
below 100 GeV. Indeed, the more recent measurements
exclude proton-WIMP cross section σ ≳ 10−46 cm2 for a
100 GeV dark matter mass [24–26], which is more than six
orders of magnitude below the cross section for the vanilla
models of weakly interacting particles [27,28]. The sim-
plest cosmologically viable extensions of the Standard
Model reproducing the relic abundance observed by
Planck experiment [29] require to invoke a new physics
scale ≃5 TeV [30] which will be probed in the next
generation of experiments [31]. If no signal is seen, this
BSM scale will be pushed even further well above 50 TeV.
However, relaxing the requirement of thermal equilib-

rium between the dark sector and the primordial plasma
opens a completely new field of research [32,33]. A Feebly
Interacting Massive Particle (or Freeze-In Massive Particle,
FIMP) couples too weakly with the Standard Model bath
to reach thermal equilibrium in the early Universe. Such
seclusion appears naturally in models where the mediator is

3In this case, we can identify Λ to
ffiffiffiffi
F

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=2MP

p
, m3=2

being the gravitino mass.
4The physical metric is also called the Jordan metric and is the

one coupled to the SM fields. The Einstein metric is the one
governing the dynamics of space-time and enters in the normal-
ized Einstein-Hilbert term of General Relativity.
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very heavy, e.g., Z0 of unified theories [34,35], massive
spin-2 particles [36], moduli [9], inflatonlike portals [37]
or in the Kaluza-Klein theory framework [38]. Another
possibility is to consider theories where the couplings are
reduced by a mass parameter of the order of the Planck
mass scale MP, as in supergravity5 [2] or a combination of
the supersymmetry breaking scale and the Planck mass in
High Scale SUSY scenarios [10]. In all these cases, the
temperature dependence of the production rate renders the
physics in the earliest stages of the Universe more complex
than the vanilla reheating scenarios described in [39].
Noninstantaneous thermalization [40] or noninstantaneous
reheating [41,42] modify drastically the distribution func-
tion and/or the production rate of particles in the Standard
Model plasma, making the dark matter density calculation
more complex. Considering quantum corrections to the
inflaton decay [43] or the possibility of nonstandard
inflaton potentials [44,45], show that the study of physics
at the end of the coherent oscillation stage at the end of
inflation should be treated with care.
In this work, we propose to consider scenarios where the

dark matter is composed of the field ϕ which defines the
physical metric. Indeed, a quick look at Eq. (8) shows that
the disformal term is decreasing in magnitude with the
BSM scale Λ, above which the dynamical version of the
metric breaks down anyway. This scale suppression should
seclude ϕ sufficiently from the Standard Model plasma to
suppress the production of ϕ and making it a perfect FIMP
candidate, in contrast to Ref. [46] where a WIMP case of ϕ
was considered for low scale Λ. Thus, large scale Λ opens a
new window of allowed parameter space of the disformal
dark matter scenario. Moreover, the form of the metric,
dictated by the consistency conditions (conservation of the
signature and causality) implies a discrete Z2 symmetry
which ensures the stability of ϕ.
This paper is organized as follows. After a description of

our models and the expression of the couplings generated
by a disformal metric in Sec. II, we compute the dark matter
abundance in Sec. III and its phenomenological conse-
quences before concluding. Throughout this work, we use
a natural system of units in which kB ¼ ℏ ¼ c ¼ 1. All
quantities with dimension of energy are expressed in GeV
when units are not specified.

II. THE SETUP

A. The Lagrangian

Supposing that the action is divided into a part driven by
the geometrical (gravitational) metric g, whereas matter
follows the geodesics of a physical (dynamical) metric g̃,
we can write

S ¼ Sgϕ þ Sg̃m

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lϕðg;ϕÞ þ

Z
d4x

ffiffiffiffiffiffi
−g̃

p
Lmðg̃; hÞ; ð9Þ

with

Lϕ ¼ 1

2
gμν∂μϕ∂νϕ −

1

2
m2

ϕϕ
2; ð10Þ

the matter Lagrangian Lmðg̃; hÞ being the SM Lagrangian
expressed in term of the metric g̃. For instance, considering
one real scalar SM degree of freedom (denoted by h) for
simplicity gives

Lm ¼ 1

2
g̃μν∂μh∂νh − VðhÞ: ð11Þ

In the literature, the scalar ϕ is often directly or indirectly
related to dark energy, or represents the quintessences field,
and a shift symmetry ϕ → ϕþ c is then imposed to avoid
dangerous mass terms. In our case, as we want to be as
generic as possible, we do not impose this symmetry.
Concerning the matter fields, we restrict ourselves to a
singletlike scalar h field, representing the Higgs boson, to
simplify the equations and explanations. Of course, the
complete particle content of the Standard Model is con-
sidered for our numerical results. For the same reason, the
partial derivatives in Eq. (11) should be understood as
covariant derivatives. However, as discussed further on, the
covariant part of the derivatives do not contribute signifi-
cantly to the dark matter (DM) production and therefore are
omitted for the sake of simplicity. By expanding the
physical metric g̃μν in terms of the geometrical metric
gμν and a small deviation δg̃μν ≪ gμν, justified by the fact
that we consider processes occurring at energies much
below the BSM scale Λ, the matter action Sg̃m can be
expressed in the Einstein frame as

Sg̃m ¼ Sgm −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
δg̃μνT

μν
m ≡ Sgm þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lint;

ð12Þ

at lowest order in δg̃μν=gμν ≪ 1. With Tm
μν the energy-

momentum tensor of matter fields, from Eq. (8) we have

δg̃μν ¼ ðCðϕ; XÞ − 1Þgμν þDðϕ; XÞ∂μϕ∂νϕ; ð13Þ

giving

Lint ¼
1

2
ð1 − Cðϕ; XÞÞðTmÞμμ −

1

2
Dðϕ; XÞ∂μϕ∂νϕT

μν
m ;

ð14Þ

where Tm
μν can be expressed as

5We will use throughout our work MP ¼ ð8πGNÞ−1 ≈ 2.4 ×
1018 GeV for the reduced Planck mass.
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Tm
μν ¼

X
i¼0;1=2;1

Ti
μν; ð15Þ

where the sum is performed over all SM particles of spin i,
whose corresponding energy-momentum tensors are
given by

T0
μν ¼ ∂μh∂νh − gμν

�
1

2
∂αh∂αh − VðhÞ

�
;

T1=2
μν ¼ i

4
½f̄γμ∂νf − ∂μf̄γνf þ ðμ ↔ νÞ� − igμνf̄=∂f;

T1
μν ¼

1

2

�
Fα
μFνα þ Fα

νFμα −
1

2
gμνFαβFαβ

�
; ð16Þ

for scalar (h), fermionic (f) and vectorial (Aμ) matter fields,
respectively. Fμν ¼ ∂μAν − ∂νAμ is the field strength of the
spin-1 field whereas VðhÞ represents the scalar potential.
Masses of various SM states are discarded as the typical
temperatures involved in early Universe processes are
much above the electroweak scale. Terms of the form
gμνVðhÞ can be discarded in the scalar energy-momentum
tensor. Indeed, as discussed below, such terms correspond
to processes involving a higher number of SM particles
and/or suppressed by additional SM couplings, compared
to processes relevant for the DM production. Moreover, the
term igμνf̄=∂f in the fermionic energy-momentum tensor
vanishes for on-shell states. In addition, the trace of the
energy-momentum tensor ðTiÞμμ vanishes for i ¼ 1=2 and
i ¼ 1 but not for i ¼ 0. This is due to the fact that the
energy-momentum tensor for massless states acquires a
conformal symmetry in four dimensions for fermions and
vectors but only in 2 dimensions for scalars. As an example,
the interaction term between our DM candidate ϕ and one
SM real scalar degree of freedom h is given by

Lint ¼ −
1

2
Dðϕ; XÞ

�
∂μϕ∂νϕ∂μh∂νh −

1

2
∂μϕ∂μϕ∂νh∂νh

�
;

þ 1

2
ðCðϕ; XÞ − 1Þð∂μh∂μhÞ: ð17Þ

Notice that we have not yet made explicit the functions
Cðϕ; XÞ and Dðϕ; XÞ. The only assumption made was that
these functions yield a small δg̃μν=gμν ≪ 1. The literature is
replete with clever propositions, ranging from invoking
shift symmetries as in [23] with a quintessence point of
view where C and D depend only on X [47], to supposing
constant X ¼ ∂μϕ∂μϕ in studies of Kerr Black Holes [22].
Other popular examples are Horndeski theories which
transform into themselves under special disformal trans-
formations of the metric when C and D depends only on ϕ
and not on X [48]. In this context, the resulting theories
form almost the most general class of ghost-free scalar-
tensor field theories. C and D can also be considered as
dependent on ϕ only with expression of the type given by

CðϕÞ ¼ ec
ϕ

MP; DðϕÞ ¼ d
Λ4

ec̃
ϕ

MP : ð18Þ

In our case, we propose to expand C and D around jϕj2 (to
ensure their positivity) which means

CðϕÞ ≃ 1þ c2
jϕj2
M2

P
þ cX

j∂μϕ∂μϕj
M4

P
; ð19Þ

DðϕÞ ≃ d
Λ4

þ d
Λ4

c̃2
jϕj2
M2

P
: ð20Þ

Considering processes at energies much below MP, it is
reasonable to stop the expansion to the first term as a first
approximation. Following (1), notice that such terms
emerge from the coupling to a scalar of mass m with

Tμν ¼ ∂μϕ∂νϕ − gμν

�
1

2
∂αϕ∂αϕ −

m2

2
ϕ2

�
; ð21Þ

where we identify Λ ¼ MP, d ¼ 1, c̃ ¼ 0, cX ¼ −1=2 and
c ¼ mffiffi

2
p

Mp
. In the following we will leave these parameters

free in a phenomenological way.

III. DARK MATTER PHENOMENOLOGY

A. Disformal production process

Now that the Lagrangian is defined, one can investigate
the DM production processes through scattering off
Standard Model particles. As we commented in the
previous section, we will focus our analysis on the case
of a Standard Model bath composed of a real scalar h,
whereas the numerical calculations will be done with the
complete set of SM particles. The corresponding Feynman
diagram is shown in Fig. 1 The production rate associated
to this process 1þ 2 → 3þ 4where 1, 2 denote particles of
the SM and 3, 4 the ϕ states as represented in Fig. 1 at a
temperature T can be written (see Appendix for details and
notations, as well as [10])

RðTÞ¼ 1

1024π6

Z
f1f2E1dE1E2dE2dcosθ12

Z
jMj2dΩ13;

where Ei denotes the energy of particle i ¼ 1, 2, 3, 4 and

FIG. 1. Example of scattering processes leading to the increase
of population for the dark matter candidate ϕ. p1;2 and p3;4
denote the momenta of the incoming and outgoing particles,
respectively.
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fi ¼
1

eEi=T � 1
ð22Þ

represents the (thermal) distribution of the incoming
particles.6 Using the Lagrangian of Eq. (17), the scattering
amplitude M can be written

M ¼ d
2Λ4

tðsþ tÞ; ð23Þ

where s and t are the Mandelstam variables. We then obtain
for the production rate from the scalar scatterers

R0 ¼
8d2π7

297675

T12

Λ8
: ð24Þ

Including the complete spectrum of the thermalized
Standard Model species, i.e., production rates from fer-
mions R1=2 and vectors R1, one obtains the total rate as

RðTÞ ¼ 4R0 þ 45R1=2 þ 12R1 ≡ βd
T12

Λ8
; ð25Þ

with βd ≃ 4d2. The exact expression for the rate is given in
Eq. (B9) and more details regarding the derivation can be
found in the Appendixes.
Once we know the production rate RðTÞ, the relic

abundance computation is relatively straightforward. One
needs to solve the integrated Boltzmann equation

dnϕ
dt

þ 3Hnϕ ¼ RðtÞ; ð26Þ

where RðtÞ denotes the production rate of dark matter
(per unit volume per unit time), or in terms of temperature
supposing an instantaneous thermalization,

dYϕ

dT
¼ −

RðTÞ
HðTÞT4

; ð27Þ

with Yϕ ≡ nϕ=T3,HðTÞ ¼
ffiffiffiffiffiffiffi
gTπ2

90

q
T2

MP
, gT being the effective

number of relativistic degrees of freedom at the temperature
T. Solving the Boltzmann equation when

RðTÞ ¼ β
T12

Λ8
; ð28Þ

with β a given constant gives for T ≪ TRH

Yscat
ϕ ðTÞ≡ Yscat

ϕ ¼
ffiffiffiffiffiffiffiffiffiffi
90

gTπ2

s
βMP

7Λ8
T7
RH; ð29Þ

where Yscat
ϕ is constant for T ≪ TRH. We assumed a

vanishing dark matter density prior to reheating. We have
defined the reheating temperature by the condition
ρΦðTRHÞ ¼ ρRðTRHÞ (Φ being the inflaton field), in other
words, when radiation and inflaton densities equilibrate.
Notice that different definitions of the reheating temper-
ature can lead to slightly different results, but differing
never more than by factors of the order of unity as is shown
for instance in [44].
The dark matter number density reaches its maximum

almost immediately after the reheating process for a
temperature of ð 3

10
Þ1=7TRH and decreases at lower temper-

ature with a constant nϕ=T3 ≡ Yscat. The present relic
abundance, at T ¼ T0, is given by

Ωscat
ϕ h2 ¼ nscatϕ ðT0Þmϕ

ρ0c=h2
≃ 1.6 × 108Yscat

ϕ

�
g0
gRH

��
mϕ

1 GeV

�
;

ð30Þ
where ρ0c=h2 ¼ 1.05 × 10−5 GeV cm−3 is the present criti-
cal density and gi is the effective number of degrees of
freedom at temperature7 Ti. From Eq. (29) we can compute
the relic abundance of the ϕ field produced by scattering
processes

Ωscat
ϕ h2 ≃ 2.7 × 108β

�
T7
RHMP

g3=2RHΛ8

��
mϕ

1 GeV

�
; ð31Þ

which gives, in the case of the disformal coupling,
replacing the value of β by βd as computed in Eq. (25)

Ωscat
ϕ;dh

2

0.1
¼

�
d2

0.4

��
TRH

1011

�
7
�
1014

Λ

�
8
�
mϕ

1010

�
: ð32Þ

All quantities with dimension of energy are expressed in
GeV when units are not specified. We notice that, as we
could have expected, the large suppression factor d2

Λ8 implies
to focus on heavy dark matter candidates due to its very
feeble production in the early stage of the reheating
process. We can also extract an upper bound on Λ from
the condition mϕ ≲ TRH for the production to be kinemat-
ically allowed. We then obtain

Λ≲ 103d
1
4TRH; ð33Þ

d being by definition of the order of unity.8 This condition
reflects the difficulty of producing ϕ in the earliest stage
of the Universe. Planck mass couplings for instance would
not be sufficient to produce dark matter with the right

6We consider instant thermalization in this work. For more
details regarding the noninstantaneous thermalization framework,
we redirect the reader to Ref. [40].

7With g0 ¼ 3.91, gRH ¼ 106.75 for reheating temperatures
larger than the top-quark mass TRH > mt in the Standard
Model.

8Much smaller (or larger) values of d can always be absorbed
in the definition of the BSM scale Λ.
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abundance, the majority of the reheating models predicting
TRH ≲ 1012 GeV [44].

B. Production from inflaton decay

It was shown in [43] that if dark matter is produced by
scattering one cannot avoid the concomitant direct pro-
duction of dark matter through the loop-induced inflaton
decay, as depicted in Fig. 2. The minimal way to couple the
Standard Model sector to the inflaton field Φ and to realize
the reheating process is via the Higgs SUð2ÞL doublet H:

LΦ ¼ μΦΦjHj2 ¼ μΦ
2
Φ
X4
i¼1

h2i ; ð34Þ

where hi, with i ¼ 1, 2, 3, 4, denotes the four real scalar
degrees of freedom of the Higgs doublet above the
electroweak symmetry breaking scale. The decay width
of the inflaton into these fundamental scalars is given by

ΓΦ
HH ¼ 4ΓΦ

hihi
¼ μ2Φ

8πmΦ
: ð35Þ

The loop-induced decay width of the inflaton to a DM pair,
whose corresponding diagram is depicted in Fig. 2, can be
expressed as

ΓΦ;d
ϕϕ ¼

d2
��� 5
18
− i π

6

���2
8πð16π2Þ2

μ2Φm
7
Φ

Λ8
; ð36Þ

which gives for the number density of ϕ

ndecϕ ðTRHÞ ¼ BR
ρΦðTRHÞ

mΦ
¼ BR

�
gRHπ2

30

�
T4
RH

mΦ
;

where we used ρΦðTRHÞ ¼ ρRðTRHÞ9 and the branching
ratio is given by

BR ¼ NϕΓΦ;d
ϕϕ

ΓΦ
HH

≃
d2ð25þ 9π2Þ
41472π4

m8
Φ

Λ8
; ð37Þ

where Nϕ is the number of ϕ particles produced per decay,
which is Nϕ ¼ 2 in the present case. The DM relic
abundance produced from inflaton decays is thus given
by (30)

Ωdec
ϕ h2

0.1
≃ 6 ×

�
BR

10−8

��
TRH

1011

��
3 × 1013

mΦ

��
mϕ

100

�
; ð38Þ

which, for the disformal coupling, can be written

Ωdec
ϕ;dh

2

0.1
≃ d2

�
TRH

1011

��
mΦ

3 × 1013

�
7
�
1014

Λ

�
8
�
mϕ

100

�
: ð39Þ

It is remarkable that whilst at tree level, one needs to fine
tune tiny dark matter couplings to the inflaton sector to
ensure a branching ratio BR ≲ 10−9 to avoid overproduc-
tion of dark matter, when one considers radiative produc-
tion, for a BSM scale Λ of the order of 1014 GeV, the
disformal coupling d can easily reach unity without over-
closing the Universe.
Moreover, comparing Eqs. (32) and (39), we see that

the production has the same order of suppression in Λ,
although for a reheating temperature below ≲1012 GeV,
it is clear that the radiative decay dominates over the
scattering processes. To be more precise, we can ask
ourselves for which value of TRH the scattering rate will
begin to produce more dark matter than the radiative decay.
We obtain

TRH ≳ Teq
RH ¼ 2 × 1012 GeV: ð40Þ

It is remarkable that this temperature does not depend either
on mϕ or Λ.

C. Conformal production

It is relevant to compare the disformal production to
the one generated by the conformal coupling of Eq. (19).
It is easy to understand that the part proportional to
X ¼ ∂μϕ∂μϕ will not be very different from the disformal
part we just discussed. We computed the production rate in
the Appendix, Eq. (B11), and obtained a value of RðTÞ ¼
βcXT

12=M8
P, with βcX ≃ 10c2X, i.e., with a numerical pre-

factor of the same order of magnitude as for βd ≃ 4d2.
Considering the coupling cX should then give similar
phenomenological results as for the coupling d, when
cX ∼ dðMP=ΛÞ4. However, the presence of a constant c
term in Eq. (19) can affect drastically the dark matter
production. The rate will then be given by

FIG. 2. Production of dark matter through inflaton decay,
induced by a loop of SM particles.

9As shown in Sec. IV, the relation between μΦ and TRH
depends on the detail of the reheating process, and thus we take
TRH as a free parameter until then. Nevertheless, TRH vanishes
when μΦ → 0, and hence reheating is not realized and no dark
matter is produced.
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RcðTÞ ¼ βc
T8

M4
P
; ð41Þ

where βc ≃ 1.1 × 10−2c4. The exact expression is given in
Eq. (B12). This is computed the in the same manner as βd,
i.e., taking into account all the Standard Model spectrum in
the initial state. From the production rate Rc we can deduce
the relic abundance after integration on T:

Ωscat
ϕ;c h

2

0.1
≃ 1.6 × 108

g0
g3=2RH

ffiffiffiffiffi
10

p βc
π

T3
RH

M3
P
;

≃ 4.3

�
c

100

�
4
�
TRH

1011

�
3
�
mϕ

1010

�
; ð42Þ

for the scattering processes, and

Ωdec
ϕ;ch

2

0.1
≃ 0.7

�
TRH

1011

��
c

100

�
4
�

mΦ

3 × 1013

�
3
�
mϕ

107

�
; ð43Þ

for the decaying process, where we used

ΓΦ;c
ϕϕ ¼ ð4þ π2Þc4

512π5
μ2Φm

3
Φ

M4
P

: ð44Þ

More details regarding the calculations can be found
in the Appendix. We see then that for lower reheating
temperature, TRH ≲ 1011 GeV, the conformal couplings
dominate the dark matter production from scattering over
the disformal source. That is understandable because the
dependence on the production rate is lower for conformal
coupling than disformal coupling. The same can be said
concerning the decay channel Φ → ϕϕ which dominates
for the disformal coupling. The possibility of having both
conformal and disformal coupling at the same time will be
discussed below.

IV. ANALYSIS

A. Instantaneous reheating case

We show in Fig. 3 the parameter space yielding the
correct relic abundance for d ¼ 1 and c ¼ 0 in particular
the dashed blue curve corresponding to observed dark
matter abundance. We recognize clearly the two regimes
(scattering and decay) from their different dependence
on the reheating temperature, especially the change of
regime for TRH ¼ Teq

RH ≃ 2 × 1012 GeV, as expected by
our approximation (40). While the scattering process gives
a mild dependence mϕ ∝ T1=7

RH for TRH ≳ Teq
RH, the decay

processes implies a harder dependence, mϕ ∝ T−1
RH. Notice

also that for BSM scales above GUT scale, Λ≳ 1016 GeV,
it becomes almost impossible to generate the correct
amount of dark matter, neither from scattering nor from

the inflaton decay, both processes being too slow to
compete with the expansion rate driven by HðTÞ.
We also show in Fig. 4 the allowed region in the plane

(mϕ, d) assuming disformal couplings only (c ¼ cX ¼ 0)
for different values of Λ and TRH ¼ 1011 GeV. We observe
that fairly natural values of d, of the order of loop factors
1=ð4πÞ2, make it possible to obtain dark matter in sufficient

FIG. 3. Parameter space allowed in the (mϕ, TRH) plane, for
different values of Λ for d ¼ 1 and c ¼ 0.

FIG. 4. Parameter space allowed in the (mϕ, d) plane, for
different values of Λ for TRH ¼ 1011 GeV and c ¼ 0.
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quantity while avoiding overabundance. Still, larger values
of Λ imposes relatively heavy dark matter, above the
TeV-PeV scale to respect the cosmological observations.

B. Noninstantaneous reheating effects

Until now, we have considered a thermal Universe where
reheating took place instantaneously, i.e., the energy avail-
able in the last oscillations of the inflaton was instanta-
neously transferred to the radiative bath at t ≃ ðΓΦÞ−1, where
ΓΦ is the decay width of the inflaton. However, noninstanta-
neous perturbative reheating can have a strong impact on the
thermal evolution of the Universe [41], which is relevant
for production of dark matter in its first instants if the modes
of production show a large dependence on the energy of
the processes involved [44], is the case for the disformal
(conformal) scenario with a rate RðTÞ ∝ T12 (T8),
respectively.
More generally, the dark matter production during the

reheating may not be negligible, especially when RðTÞ ∝
Tnþ6 with n ≥ 6, due to the effects of noninstantaneous
reheating [41], noninstantaneous thermalization in [40],
and nonquadratic inflaton potentials during the reheating
stage [44]. In our case the contributions from the conformal
and disformal coupling terms proportional to cX and d,
respectively, correspond to n ¼ 6, whereas the reaction
rate of the conformal coupling term proportional to c
corresponds to n ¼ 2. The interference term corresponds to
n ¼ 4. In this section we discuss the noninstantaneous
reheating effect, while assuming instantaneous thermal-
ization and no preheating contributions.
As a specific example, we consider the Starobinsky

model for inflation [49] where the inflaton oscillation is
described by VðΦÞ ¼ 1

2
m2

ΦΦ2 after the end of inflation.
Then, we may use the result for the enhancement of the DM
production discussed in Ref. [8]. Solving the complete set
of combined equations for the inflaton density ρϕ, the
radiation density ρR and the dark matter has been carried
out and analyzed in [41] for any kind of dark matter
production cross section and more recently in [44] for any
type of inflationary potential. To summarize these works,
we just need to understand that the reheating process being
noninstantaneous, the temperature of the primordial plasma
evolves from a null temperature to a maximum value Tmax
before decreasing until the radiation density ρR catches the
inflaton density ρϕ, defining the thermal era, happening at
the reheating temperature TRH. The evolution between Tmax
and TRH is rather complex, but the main point is that the
production of dark matter for cross sections with a large
temperature dependence, of the order Tnþ6 with n ≥ 6, is
largely affected by the maximal temperature as most of the
dark matter is produced at this instant. In comparison with
an instantaneous treatment, there is a boost factor which is a
function of Tmax=TRH. We summarize the results in the
following paragraph.

The maximal temperature Tmax and TRH are obtained as

Tmax ¼
�
45

32

31=10

24=5
y2mΦMPρ

1=2
end

g�ðTmaxÞπ3
�1=4

≃ 1.6 × 1013 GeV ×

�
106.75
g�ðTmaxÞ

�
1=4

×

�
μΦ

1010 GeV

�
1=2

�
ρend

0.175m2
ΦM

2
P

�
1=8

; ð45Þ

TRH ¼
�
9

40

y4m2
ΦM

2
P

gRHπ4

�
1=4

≃ 1.9 × 1011 GeV ×

�
106.75
gRH

�
1=4

×

�
μΦ

1010 GeV

��
3 × 1013 GeV

mΦ

�
1=2

; ð46Þ

where again TRH is defined by ρΦðTRHÞ ¼ ρRðTRHÞ, and
we assume g�ðTmaxÞ ¼ g�ðTRHÞ ¼ gRH in the following
analysis. We have used the inflaton decay width ΓΦ

HH ≡
y2mΦ=8π with y≡ μΦ=mΦ from Eq. (35), where m2

Φ ≃
24π2AS�M2

P=N
2� with lnð1010AS� Þ ¼ 3.044 [29,50] and

N� ≃ 55þ 0.33 ln y [8]. Then, for n ¼ 6, we obtain the
boost factor Bscat ≡ nnoninstϕ ðTRHÞ=nϕðTRHÞ given by

Bscat ¼ f
56

3
log

Tmax

TRH
; ð47Þ

where f ≃ 1.2 to match the numerical results. Notice that
for n ¼ 2, which is the case of d ¼ cX ¼ 0 with c ≠ 0, we
do not have such an enhancement, since the DM production
is dominated at TRH.
Figure 5 shows the contours of Ωscat

ϕ h2 þ Ωdec
ϕ h2 ¼ 0.1

where only the disformal coupling contributes, namely
c ¼ cX ¼ 0 and d ≠ 0, and we take d ¼ 1, taking into
account the effect of noninstantaneous reheating just
discussed above. Notice that in the bottom-right corner
of the figure, the dark matter mass is in excess of TRH, and
thus the scattering contributions get further suppressed,
which is however irrelevant for smaller Λ (≲1015 GeV),
since the decay contribution dominates in that parameter
space, the domination occurring from Eqs. (40) and (46) for
μΦ ≃ 3 × 10−3mΦ. It would be interesting, in this frame-
work, to compare, the disformal to the conformal produc-
tion of dark matter.

C. Combining conformal and disformal coupling

The conformal and disformal couplings may coexist.
For instance, we can take both d and c being nonzero, while
cX ¼ 0. Incorporating nonzero contribution from the c
coupling, we obtain the scattering reaction rate
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RðTÞ ¼ βc
T8

M4
P
þ βcd

T10

Λ4M2
P
þ βd

T12

Λ8
ð48Þ

where βc ≃ 1.1 × 10−2c4 is given in Eq. (B12) and βd ≃
4d2 is given in Eq. (B9). The quantity βcd, arising from

interferences between conformal and disformal, couplings
is given by

βcd ¼ −c2d
24ζð5Þ2

π5
≃ −8.4 × 10−2c2d: ð49Þ

The radiative inflaton decay is also affected by the
conformal coupling contributions, and thus we obtain

ΓΦ
ϕϕ¼

d2μ2Φm
7
Φ

512π5Λ8

��
5

36
þ 2c2Λ4

dm2
ΦM

2
P

�
2

þπ2
�
1

12
þ c2Λ4

dm2
ΦM

2
P

�
2
�
;

ð50Þ

giving a branching ratio to a DM pair of

BR¼
d2m8

Φ
32π4Λ8

��
5

36
þ 2c2Λ4

dm2
ΦM

2
P

�
2

þπ2
�
1

12
þ c2Λ4

dm2
ΦM

2
P

�
2
�
:

ð51Þ

Combining the relic abundance produced by scattering
integrating Eq. (26)10 with the rate (48), combined with the
boost factor due to noninstantaneous thermalization (47)
and adding the decay process (50) we obtain

FIG. 5. Parameter space allowed in the (mϕ, μΦ=mΦ) plane, for
different values of Λ for d ¼ 1 and c ¼ cX ¼ 0.

Ωtot
ϕ h2

0.1
¼9.1×10−10d2

�
TRH

1011

�
3
�
5.9ln

�
Tmax

TRH

��
TRH

1011

�
4
�
1014

Λ

�
8

þ
�

c

100
ffiffiffi
d

p
�

4

−1.2×10−4
c2

d

�
TRH

1011

�
2
�
1014

Λ

�
4
��

mϕ

GeV

�

þ4.6×10−3d2
�
TRH

1011

��
1014

Λ

�
8
�

mΦ

3×1013

�
7
��

1þ72

5

c2Λ4

dm2
ΦM

2
P

�
2

þπ2
�
3

5
þ36

5

c2Λ4

dm2
ΦM

2
P

�
2
��

mϕ

GeV

�
; ð53Þ

where we used the following results (see, for instance, Ref. [44]):

nscatϕ ðTRHÞ
T3
RH

≃

ffiffiffiffiffiffiffiffiffiffiffiffi
90

gRHπ2

s �
2

3
βc

T3
RH

M3
P
þ 4

3
βcd

T5
RH

MPΛ4
þ 1

7
Bscatβd

MPT7
RH

Λ8

�
; and

ndecϕ ðTRHÞ
T3
RH

≃
gRHπ2

18
BR

TRH

mΦ
; ð54Þ

which is the main result of our work. Equation (53) gives
the total amount of dark matter produced in a model with a
combination of disformal (d) and conformal (c) couplings,
taking into account production through scattering from the
thermal bath and radiative decay of the inflaton, together
with instantaneous effects due its finite width. We illustrate

our results in Fig. 6 where we plot the region of the
parameter space allowed in the plane (c, d) for different
dark matter masses mϕ, fixing TRH ¼ 1011 GeV and
Λ ¼ 1014 GeV. We clearly distinguish the two regimes,
and for which values of c the conformal couplings begin
to dominate over the disformal one. For our choice of
parameters, the decay rate dominates the production of ϕ in
Eq. (53). It is interesting to notice that for any dark matter
mass, there exists a point in the parameter space, with
reasonable value of c and d, respecting the cosmological
constraint despite the large suppression due to high BSM
physics scales.
If one looks into more details at the zone of influence of

the disformal coupling versus the conformal one, we find
that for

10By taking the noninstantaneous reheating into account, one
obtains

d
dT

ðnϕT−8Þ ¼ −
8

3

RðTÞ
HT9

ð52Þ

with HðTÞ ¼ ð2=5ÞΓΦ
HHðT=TRHÞ4, instead of Eq. (27).
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Λ ≃ 1015 GeV

�
104d
c2

�
1=4

�
TRH

4 × 1012

�
1=2

�
Bscat

74

�
1=8

; ð55Þ

both processes gives a similar contribution to the relic
abundance, smaller values of Λ favoring of course the
disformal production. We illustrate this situation in Fig. 7
where we take c¼100 and d ¼ 1. For Λ below ∼1015 GeV
we recognize the characteristic of disformal production
observed in Fig.(5) whereas for Λ≳ 1015 GeV, the pro-
duction begins to be independent of Λ, which is a clear
signature of a conformal production of dark matter.
Finally, we briefly comment on the thermalization of the

dark matter.11 The assumption that DM has never thermal-
ized gives a constraint on the interaction strength, which
can be obtained by comparing nϕhσvi and H at TRH with
nϕhσvi≡ RðTÞ=neqϕ and neqϕ ¼ ζð3ÞT3=π2.12 For instance,
in Fig. 7, the disformal coupling dominates in the reaction
rate at TRH (except Λ ≥ 1016 GeV), and thus requiring
nϕhσvi < H we obtain

Λ≳ 2.1 × 1015 GeV ×

�
μΦ
mΦ

�
7=8

; ð56Þ

where we have assumed d ¼ 1 and mΦ ≃ 3 × 1013 GeV.13

Therefore, for Λ ¼ 1014 GeV, our analysis is valid when
μΦ=mΦ ≲ 0.03, while for Λ ≥ 1015 GeV, the dark matter
always remains nonthermal, and the corresponding lines
shown in Fig. 7 are valid.

V. CONCLUSIONS

We have shown that in models where the geometrical
metric governing gravitational physics is different from the
dynamicalmetric felt by the Standard Model particles via a
scalar field ϕ, this scalar ϕ can play the role of dark matter.
In this scenario, dark matter is produced via freeze-in and it
is possible to respect cosmological constraints on the relic
abundance of dark matter. Moreover, this can happen even
though the suppression scale of the coupling between the
scalar field and matter particles could be almost as large as
the Planck scale. The number density of scalar dark matter
particles would then be produced in the early stages of
the Universe, by a freeze-in mechanism due to its very
feeble coupling to the Standard Model sector, i.e., due to
the large suppression scale. In such a disformal dark matter
scenario where the dark matter field would be disformally
coupled to the Standard Model fields, the low production
rate of ϕ would be counterbalanced by a large mass mϕ,
making disformally coupled scalars perfect candidates for

FIG. 7. Parameter space allowed in the (mϕ, μΦ=mΦ) plane, for
different values of Λ for c ¼ 100 and d ¼ 1.

FIG. 6. Parameter space allowed by cosmological constraint
in the plane (c, d) for different dark matter masses mϕ and TRH ¼
1011 GeV and Λ ¼ 1014 GeV.

11We thank the referee for pointing out this interesting issue.
12Notice that if the dark matter thermalizes at Tmax and

decouples at Tdec>TRH, nϕ is diluted by a factor of
ðTRH=TdecÞ8 as nϕ ∝ a−3 ∝ T8 as can be seen from Eq. (52)
with a vanishing right-hand side, leading to nϕðTRHÞ=nϕðTdecÞ ¼
ðTRH=TdecÞ8 when Tmax > Tdec > TRH. Thus, we can neglect the
freeze-out contributions in nϕ at later times, and the dominant
production, induced by freeze-in, takes place between Tdec and
TRH in this case. Therefore, in order for the freeze-in to work, ϕ
should be out of equilibrium at TRH.

13Note thatmΦ depends onN�, and hence TRH (or equivalently
μΦ), as mentioned below Eq. (46). Here, we have taken
mΦ ≃ 3 × 1013 GeV, which corresponds to fixing N� ≃ 55, to
a good approximation, since the N� dependence in mΦ is not
significant.
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experiments looking for superheavy dark components like
ANITA or IceCube [51].
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APPENDIX A: PRODUCTION RATE:
DEFINITIONS

Assuming that DM is predominantly produced by 2 → 2
annihilations of SM particles, the Boltzmann equation for
the DM number density can be written as

dnDM
dt

þ 3HnDM ¼ RðTÞ; ðA1Þ

where the quantity on the right-hand side RðTÞ represents
the temperature-dependent DM production rate per unit of
volume and time. The rate can be expressed as a sum of the
contribution of SM species of spin i to

RðTÞ ¼
X

i¼0;1=2;1

NiRi ¼ 4R0 þ 45R1=2 þ 12R1; ðA2Þ

where Ni is the number of the SM species of spin i. The
partial rate Ri can be expressed as

RiðTÞ ¼
1

1024π6

Z
fiðE1ÞfiðE2ÞE1dE1E2dE2d cos θ12

×
Z

jMij2dΩ13; ðA3Þ

with pjðEjÞ is the 4-momentum (energy) of particles j ¼ 1,
2, 3, 4 for processes 1þ 2 → 3þ 4 with 1, 2 being
particles of the SM and 3, 4 dark matter states. fi represents
the Bose-Einstein (i ¼ 0, 1) and Fermi-Dirac (i ¼ 1=2)
statistics distribution functions. θ13 and θ12 are the
angle formed by momenta of 1,3 and 1,2, respectively.
The differential solid angle can be expressed as
dΩ13 ¼ 2πd cos θ13. These kinematics quantities are related
to the Mandelstam variables in the ultrarelativistic limit
t ¼ ðs=2Þðcos θ13 − 1Þ and s ¼ 2E1E2ð1 − cos θ12Þ. More
details can be found in the Appendixes of Ref. [8].

APPENDIX B: PRODUCTION RATE:
SCATTERING

1. Rate for a generic amplitude

We assume an amplitude squared for the process
iþ i → DMþ DM, where i denotes one SM particle of
spin i, of the form

jMij2 ¼
X
n;k¼0

cink
sntk

Λ2ðnþkÞ : ðB1Þ

As the Mandelstam variables are related by sþ tþ u ¼ 0
in the ultrarelativistic limit, our expression contains all the
possible processes. The integrated amplitude squared reads

Z
dΩ13jMij2 ¼

X
n;k¼0

cinkð−1Þk
4π

kþ 1

snþk

Λ2ðnþkÞ : ðB2Þ

Taking the integral expression of Eq. (A3), the contribution
of a particle of spin i to the rate is

RiðTÞ ¼
X
n;k¼0

cinkð−1Þk
22ðnþkÞΓ2ðnþ kþ 2Þζ2ðnþ kþ 2ÞT2ðnþkþ2Þ

128π5ðkþ 1Þðnþ kþ 1ÞΛ2ðnþkÞ ×

�
1; ði ¼ 0; 1Þ;
ð1 − 2−ð1þnþkÞÞ2; ði ¼ 1=2Þ; ðB3Þ

and the corresponding contribution to the relic density is given by

Ωi
DMh

2 ≃
X
n;k

cinkð−1Þk
135

ffiffiffiffiffi
10

p
MPmDM

256π8g3=2�

22ðnþkÞΓ2ðnþ kþ 2Þζ2ðnþ kþ 2ÞT2ðnþkÞ−1
RH

ðkþ 1Þðnþ kþ 1Þð2ðnþ kÞ − 1ÞΛ2ðnþkÞ
s0h2

ρ0c
×

�
1;

ð1 − 2−ð1þnþkÞÞ2; ðB4Þ

with mDM being the dark matter mass, where the first and
second cases correspond, respectively, to the Bose-Einstein
(i ¼ 0, 1) and the Fermi-Dirac (i ¼ 1=2) statistics for the

initial state particles. We used the expression of the
Hubble rate in terms of the SM temperature in the
radiation domination era HðTÞ ¼ ðg�π2=90Þ1=2T2=MP and

DISFORMAL DARK MATTER PHYS. REV. D 103, 015028 (2021)

015028-11



considered constant relativistic degrees of freedom for
simplicity g� ¼ gRH. s0 and ρ0c are the entropy density
and critical density of the present time. Assuming that for
each SM particle of spin i, the DM production amplitude
squared is given by Eq. (B1), the total relic density can be
expressed as

ΩDMh2 ¼ 4Ω0
DMh

2 þ 45Ω1=2
DMh

2 þ 12Ω1
DMh

2: ðB5Þ

2. Rate for disformal couplings

The amplitudes jMij2 for the processes iþ i →
DMþ DM, where i denotes one SM particle of spin i,
are given by

jM0j2 ¼ d2
t2ðsþ tÞ2

8Λ8
; ðB6Þ

jM1=2j2 ¼ −d2
tðsþ tÞðsþ 2tÞ2

16Λ8
; ðB7Þ

jM1j2 ¼ d2
t2ðsþ tÞ2

4Λ8
: ðB8Þ

The total rate is given by

RdðTÞ ¼ d2
100589π7

76204800

T12

Λ8
≡ βd

T12

Λ8
; ðB9Þ

with βd ≃ 4d2.

3. Rate for conformal couplings

As previously mentioned, in this case only the scalar
particles contribute to the rate. The amplitude is given by

jM0j2 ¼
s2

8M4
P

�
cX

s
M2

P
− 2c2

�
2

; ðB10Þ

For the case c ¼ 0, the total rate is given by

RcXðTÞ ¼ c2X
64π7

19845

T12

M8
P
≡ βcX

T12

M8
P
; ðB11Þ

with βcX ≃ 9.74c2X. For the case cX ¼ 0, the total rate is
given by

RcðTÞ ¼ c4
π3

2700

T8

M4
P
≡ βc

T8

M4
P
; ðB12Þ

with βc ≃ 1.1 × 10−2c4.
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