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Using a low-energy effective field theory approach, we study some properties of models with large extra
dimensions, in which quarks and leptons have localized wave functions in the extra dimensions. We
consider models with two types of gauge groups: (i) the Standard-Model gauge group, and (ii) the left-right
symmetric gauge group. Our main focus is on the lepton sector of models with n ¼ 2 extra dimensions, in
particular, neutrino masses and mixing. We analyze the requisite conditions that the models must satisfy to
be in accord with data and present a solution for lepton wave functions in the extra dimensions that fulfils
these conditions. As part of our work, we also present a new solution for quark wave function centers.
Issues with flavor-changing neutral-current effects are assessed. Finally, we remark on baryogenesis and
dark matter in these models.
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I. INTRODUCTION

An interesting idea for physics beyond the Standard
Model (BSM) is that our four-dimensional spacetime is
embedded in a higher-dimensional spacewith n extra spatial
dimensions compactified on a length scale ofL ∼ 10−19 cm,
i.e., 1=L ∼ 100 TeV, in which SM fermions have strongly
localized wave functions [1,2]. These are commonly called
split-fermion (SF) models, and we shall follow this termi-
nology. Onemotivation for split-fermionmodels is that they
can explain the generational hierarchy of quark and charged
lepton masses by appropriate choices of locations of the
fermion wave function centers in the extra dimensions,
without the necessity of a large hierarchy in the Yukawa
couplings in the higher-dimensional space [1,2].
In the present work we shall study some properties

of split-fermion models. We shall give a number of
general formulas for arbitrary n, but for our detailed
phenomenological calculations, we focus on the case of
n ¼ 2 extra dimensions. Two types of gauge groups are
considered: (i) the Standard-Model gauge group, GSM ¼
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY , and (ii) the left-right symmet-
ric (LRS) group [3–6]

GLRS ¼ SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L; ð1:1Þ

whereB and L denote baryon and (total) lepton number. We
concentrate on investigating properties of the lepton sector,
including, in particular, neutrino masses and mixing. An
analysis is given of the necessary conditions that the models
with SM and LRS gauge symmetries must satisfy to be in
agreement with constraints from data. We calculate a
solution for lepton wave functions in the extra dimensions
that fulfils these conditions. Issues pertaining to flavor-
changing neutral-current processes and fine-tuning in both
the lepton and quark sectors are addressed. As part of our
work, we calculate a new solution for quark wave functions
in the extra dimensions that greatly reduces flavor-changing
neutral-current effects. To show that there is adequate
suppression of proton decay, the models must also have
sufficient separation between the centers of quark wave
functions and lepton wave functions, and we show that this
condition is met with our solution for lepton and quark wave
functions. Finally, we remark on baryogenesis and dark
matter in these models. Some early studies of phenomeno-
logical aspects of split-fermion models after Refs. [1,2]
include Refs. [7–26]. Among these works, studies of
neutrino masses and mixing focused on the case of n ¼ 1
extra dimension, and this was one motivation for our focus
on the case n ¼ 2. Amodel with n ¼ 2 extra dimensions has
two advantages, relative to a model with n ¼ 1: (i) with
n ¼ 2, the overall number of spacetime dimensions is even,
which is a necessary and sufficient condition for there to
exist chiral projection operators that project out left- and
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right-handed components of fermion fields; (ii) the use of
two, rather than one, extra dimensions gives one consid-
erablymore freedom in choosing locations for fermionwave
function centers so as to achieve an adequate fit to phe-
nomenological constraints.
This paper is organized as follows. In Sec. II we describe

the split-fermion models used for our study and the
procedure of integrating over the extra dimensions to
derive terms in the Lagrangian of the (four-dimensional)
low-energy effective field theory (EFT). In Sec. III we
review relevant aspects of the left-right symmetric gauge
theory. Sec. IV describes the Yukawa terms and the
resultant masses and mixing in the quark and lepton
sectors. In Secs. V and VI we discuss the determination
of lepton wave function centers to fit charged lepton and
neutrino masses and lepton mixing and for the extra-
dimensional models. This section also contains a new
solution for quark wave function centers. Section VII is
devoted to a discussion of the contributions of KKmodes to
various physical processes. In Sec. VIII we study con-
straints on these models arising from limits on non-
Standard-Model contributions to weak decays and neutrino
reactions, on charged-lepton flavor-violating processes,
electromagnetic properties of (Majorana) neutrinos, and
on neutrinoless double beta decays. Section IX is devoted
to a discussion of baryogenesis and dark matter in the
models. Our conclusions are presented in Sec. X. Some
auxiliary formulas and further details about the calcula-
tions are included in several appendices. Our present work
is an extension of previous studies of baryon-number
violation in extra-dimension models, including, in particu-
lar, n − n̄ oscillations, in this class of models [16,27,28]
(see also [29]).

II. EXTRA-DIMENSIONAL FRAMEWORK

In this section we describe the extra-dimensional frame-
work [1,2] used for our present study. Motivations for
hypothesizing extra (spatial) dimensions go back at least to
the effort by Kaluza and Klein (KK) to unify electromag-
netism and gravity and were further strengthened with the
advent of (super)string theories of quantum gravity. We
shall give a number of formulas for a general number n of
extra dimensions and later specialize to the case n ¼ 2 for
our phenomenological calculations. Usual spacetime coor-
dinates are denoted as xν, ν ¼ 0, 1, 2, 3, and the n extra
coordinates as yν. The fermion and boson fields are taken to
have a factorized form; for the fermions, this is

Ψðx; yÞ ¼ ψðxÞχðyÞ; ð2:1Þ

and similarly for the bosons. In each of the extra dimen-
sions these fields (including right-handed neutrinos) are
restricted to a range of finite length L [30]. We define an
energy corresponding to the inverse of the compactification
scale as ΛL ≡ 1=L. Because of the compactification, the

fields have excited KK modes, which will be discussed
further below.
Starting from an effective Lagrangian in the d ¼ ð4þ nÞ-

dimensional spacetime, one obtains the resultant low-energy
effective Lagrangian in four dimensions by integrating
products of operators over the extra n dimensions. We
use a low-energy effective field theory approach that entails
an ultraviolet cutoff, which we denote as M�. The wave
function of a fermion f in the extra dimensions has the
Gaussian form [1,2]

χfðyÞ ¼ Afe−μ
2ky−yfk2 ; ð2:2Þ

where Af is a normalization factor [see Eq. (2.6)], and
the n-dimensional vector yf denotes the position of this
fermion in the extra dimensions, with components yf ¼
ððyfÞ1;…; ðyfÞnÞ and with the usual Euclidean norm of a
vector in a compactification of Rn, namely

kyfk≡
�Xn

λ¼1

y2f;λ

�
1=2

: ð2:3Þ

A measure of the width of the Gaussian fermion wave
function is given by

σ ¼ 1

μ
; ð2:4Þ

which is
ffiffiffi
2

p
times the variance σv of the Gaussian (2.2). We

take this width to be the same for all of the fermions [30].
[An alternate normalization is σ ¼ 1=ð21=2μÞ]. For n ¼ 1 or
n ¼ 2, this fermion localization can result from appropriate
coupling to scalar localizer field(s) with kink or vortex
solution(s), respectively [31–35]. This may lead to fermion
wave functions in the extra dimensions that are localized
with profiles that are not precisely Gaussian [20], but here,
for technical simplicity, we assume Gaussian fermion wave
function profiles, as in [1,2]. Some early suggestions for
underlying physics that could provide a deeper explanation
for the locations of the fermion wave function centers were
made in [1,13], but here, in accordance with our low-energy
effective field theory approach, we shall adopt an empirical
approach to these locations, obtaining a solution for them
that fits the data of quark and lepton masses and mixing, and
investigating, in particular, the consequences in the neutrino
sector.
We shall use periodic boundary conditions for each

of the n compactified dimensions, so that the compact
n-dimensional space is the n-torus, Tn, i.e., the n-fold
topological product of circles. Consequently, the coordinate
of a point yf along the λ axis, namely yf;λ, is defined mod L,
i.e., yf;λ ¼ yf;λ � L. Without loss of generality, we shall
define the origin in each compact dimension to be sym-
metrically located, so that the range of yλ is
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−
L
2
< yλ ≤

L
2

for λ ¼ 1;…; n: ð2:5Þ

Because of the compactification on Tn, it follows that along
each direction λ, where 1 ≤ λ ≤ n, the maximal distance
between the λ components of two points yf and yf0 is L=2,
i.e., maxðjyf;λ − yf0;λjÞ ¼ L=2. Hence, the maximal dis-
tance between two points yf and yf0 on the n-torus Tn is
maxðkyf − yf0 kÞ ¼

ffiffiffi
n

p ðL=2Þ. The Euclidean metric is
used since Tn is a flat Riemannian manifold [14,15].
Although we give a number of formulas abstractly for

general n, we focus here on the case of n ¼ 2 extra
dimensions. The choice of even n is a necessary (and
sufficient) condition for there to exist a matrix γ5 with
the property fγ5; γλg ¼ 0 ∀ λ and thus for there to exist
right- and left-handed chiral projection operators PR;L ¼
ð1=2Þð1� γ5Þ for fermion fields. A more complicated
mechanism to get chiral fermions is necessary if n is
odd; for example, for n ¼ 1, one can compactify on the
space S=Z2, which projects out one chirality of fermions.
The normalization factor Af is determined by the condition
that, after integration over the n higher dimensions, the
four-dimensional fermion kinetic term has its canonical
normalization and correct Maxwellian (free-field) dimen-
sion. This yields the result

Af ¼
�
2

π

�
n=4

μn=2: ð2:6Þ

Recalling that in d ¼ 4þ n spacetime dimensions,
a fermion field has dimension df ¼ ðd − 1Þ=2 ¼
ð3þ nÞ=2, one sees that the increased mass dimension
of the fermion field ∼ðmassÞn=2 is incorporated in this
normalization constant, and is set by the inverse localiza-
tion length μ ¼ 1=σ. Because the Af accounts for this
increased dimension of a fermion field in d ¼ 4þ n
dimensions, the remaining part of the field operator has
its usual Maxwellian dimension of 3=2 appropriate for
four-dimensional spacetime. The fermion wave functions
are assumed to be strongly localized, with Gaussian width

σ ≡ 1

μ
≪ L ð2:7Þ

at various points in the higher-dimensional space. The ratio
σ=L measures the localization size of the fermions relative
to the compactification size. As in [1,16,27,28], we take

σ

L
¼ 1

μL
¼ 1

30
: ð2:8Þ

We define a dimensionless length variable

η ¼ μy: ð2:9Þ

With μL ¼ 30, the range of each component of the
n-dimensional vector η, from Eq. (2.5), is

−15 < ηλ ≤ 15 for λ ¼ 1;…; n: ð2:10Þ

Hence, the maximal distance, in terms of this dimensionless
variable η, between any two points ηf ¼ μyf and ηf0 ¼ μyf0
on the n-torus is

maxðkηf − ηf0kÞ ¼
ffiffiffi
n

p μL
2
: ð2:11Þ

For the case n ¼ 2 on which we focus here, with the
value μL ¼ 30 in Eq. (2.8), this maximal distance is
maxðkηf − ηf0 kÞ ¼ 15

ffiffiffi
2

p ¼ 21.21. We choose

ΛL ≃ 100 TeV i:e:; L ≃ 2 × 10−19 cm: ð2:12Þ

With μ=ΛL ¼ 30, this yields

μ ≃ 3 × 103 TeV; i:e:; σ ≃ 0.67 × 10−20 cm: ð2:13Þ

With these values, the particular models that we study are
consistent with bounds on extra dimensions from collider
searches [36] and from flavor-changing neutral-current
(FCNC) processes and precision electroweak constraints,
as will be discussed further below. The UV cutoff M� is
taken to be much larger than any mass scale in the models
to ensure the self-consistency of the low-energy effective
field theory analysis.
Some remarks on baryon number violation are in order

here. In [5] an example was given of a left-right symmetric
model in four dimensions in which proton decay is absent
but neutron-antineutron oscillations can occur at observable
levels. For some additional early works on neutron oscil-
lation, see [37–42]. In [1] it was observed that in split-
fermion models, it is easy to suppress proton and bound
neutron decays well below experimental limits by separat-
ing quark and lepton wave function centers in the extra
dimensions. Reference [16] showed that this does not
suppress neutron-antineutron oscillations, which can occur
at levels comparable to existing limits. This was studied
further in [27,28]; recent general reviews include [43–45].
We note that the split-fermion models considered

here are quite different from models in which only the
gravitons propagate in these dimensions (e.g., [46–49]).
One may recall that for these latter models, the fundamental
Planck mass in 4þ n dimensions, denoted MPl;4þn, is
related to the observed Planck mass in four-dimensional
spacetime, MPl ¼ ðGNÞ−1=2 ¼ 1.2 × 1019 GeV, by M2

Pl ¼
M2

Pl;4þnðMPl;4þnrnÞn, where rn denotes the compactifica-
tion radius. In the models in [46–49], the fundamental
Planck mass scaleMPl;4þn of quantum gravity in the higher-
dimensional spacetime could be much less thanMPl if rn is
much larger than the Planck length; for example, for the
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illustrative case n ¼ 2, the value MPl;4þn ≡MPl;6 ¼
30 TeV corresponds to rn ≡ r2 ¼ 2.7 × 10−4 cm. This is
obviously a much larger compactification size than the size
L ≃ 2 × 10−19 cm in the models used here. For the models
of Refs. [46–49], a mechanism was suggested to account
for light neutrino masses which hypothesized a SM-singlet
fermion in the “bulk,” with an exponentially small overlap
integral with the left-handed weak isodoublet neutrinos on
the “brane,” producing small Dirac neutino masses [50–53]
(see also [54]). It should be noted our present framework is
also different from the model considered in [55], in which
SM fields propagate in the extra dimensions, but without
strong localization of fermion wave functions.
For integrals of products of purely fermion fields,

although the range of integration over each of the n
coordinates of a vector y is from −L=2 to L=2, the strong
localization of each fermion field in the Gaussian form
(2.2) with σ ≪ L means that the integral is very well
approximated by the result that would be obtained by
extending the range of integration to the interval ð−∞;∞Þ:R L=2
−L=2 � � �

R L=2
−L=2 d

ny →
R∞
−∞ � � � R∞

−∞ dny for integrands of
operator products consisting of fermion fields. As in earlier
work [1,2,16,27,28], we shall use this approximation. In
general, we denote the integration over the extra dimen-
sions with the concise notation

R
dny… or

R
dnη… in terms

of the dimensionless coordinates η, where the dots re-
present the integrands. A general integral formula that we
use in this case is (cf. Eq. (A2) in [27]) is

Z
dnη exp

�
−
Xm
i¼1

aikη − ηfik2
�

¼
�

πP
m
i¼1 ai

�
n=2

exp

�−P
m
j;k¼1;j<k ajakkηfj − ηfkk2P

m
s¼1 as

�
:

ð2:14Þ

As is implicit in Eq. (2.14), if just one type of field is
involved, so that m ¼ 1, then the exponential factor is
absent. The presence of these exponential suppression
factors arising from the integration of various operators
over the extra dimensions gives rise to a number of general
properties in the split-fermion models, including the
ability to account for the hierarchy in the spectrum of
SM quarks and charged leptons, the ability to strongly
suppress baryon-number-violating nucleon decays, but also
an exponential sensitivity to the distances between fermion
wave function centers.
For a given process involving fermions, one part of the

analysis involves terms in an effective Lagrangian in four
spacetime dimensions containing a certain set of k-fermion
operators, indexed by a subscript r,

LeffðxÞ ¼
X
r

cr;ðkÞOr;ðkÞðxÞ þ H:c:; ð2:15Þ

where the cr;ðkÞ are coefficients. The corresponding effec-
tive Lagrangian in the d ¼ ð4þ nÞ-dimensional space is

Leff;4þnðx; yÞ ¼
X
r

κr;ðkÞOr;ðkÞðx; yÞ þ H:c: ð2:16Þ

As a k-fold product of fermion fields in d ¼ 4þ n
spacetime dimensions, Or;ðkÞðx; yÞ has Maxwellian (free-
field) mass dimension kðd − 1Þ=2 ¼ kð3þ nÞ=2, and
hence, the coefficient κr;ðkÞ has mass dimension

dimðκr;ðkÞÞ ¼ d − k

�
d − 1

2

�

¼ 4þ n − k

�
3þ n
2

�
: ð2:17Þ

It is useful to write the coefficients κr;ðkÞ in a form that
shows this dimensionality explicitly. Denoting the mass
scale characterizing the physics responsible for this process
in the d ¼ 4þ n space as M, we thus write

κr;ðkÞ ¼
κ̄r;ðkÞ

Mðkð3þnÞ=2Þ−4−n ; ð2:18Þ

where κ̄r;ðkÞ is dimensionless. The combination of the
normalization factors for a k-fold product of fermion fields
and the factor from the integration yields an overall factor
denoted bk in [27] [Eq. (2.29)],

bk ¼ Ak
fμ

−n
�
π

k

�
n=2

¼ ½2k=4π−ðk−2Þ=4k−1=2μðk−2Þ=2�n: ð2:19Þ

Note that b2 ¼ 1 to guarantee canonical normalization of a
free-field fermion bilinear operator product in d ¼ 4
dimensions after the integration over the extra dimensions.
Thus, the integral of an operator Or consisting of a k-fold
product of fermion fields has the generic form

Ir;ðkÞ ¼ bke
−Sr;ðkÞ ; ð2:20Þ

where e−Sr;ðkÞ is the exponential factor in Eq. (2.14). The
resultant coefficient in the low-energy effective four-
dimensional Lagrangian was given [as Eq. (2.30)] in
Ref. [27] and is

cr;ðkÞ ¼ κr;ðkÞIr;ðkÞ

¼ κ̄r;ðkÞ
Mð3k−8Þ=2

�
μ

M

�ðk−2Þn=2� 2k=4

πðk−2Þ=4k1=2

�
n
e−Sr;ðkÞ :

ð2:21Þ

In previous studies of baryon-number-violating processes
including ΔB ¼ −1 nucleon decay and jΔBj ¼ 2 n − n̄
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oscillations [16,27,28], we have denotedM asMNd orMnn̄.
In many of our calculations here, the massM will be set by
ΛL. In applications where the number k of fermions in the
k-fermion operator products is obvious, we shall sometimes
suppress this in the notation.
Concerning normalizations of gauge and Higgs fields

in the extra-dimensional framework, we recall that the
Maxwellian mass dimension of a boson field in d ¼ 4þ n
spacetime dimensions is db ¼ ðd − 2Þ=2 ¼ 1þ ðn=2Þ.
Given that boson fields have support on the compact
domain −L=2 to L=2 in each of the n extra dimensions,
the additional increment of n=2 in the mass dimension of
the boson field is incorporated in the normalization factor

Abos ¼
1

Ln=2 : ð2:22Þ

This factor guarantees that after the integration of quadratic
free-field products of boson fields over the n higher
dimensions, the resulting terms have their canonical nor-
malization in four dimensions. Since a gauge field-strength
tensor Fλρ has dimension dF ¼ 1þ dbos ¼ d=2 ¼ 2þ
ðn=2Þ, there is a normalization factor

AF ¼ Abos ¼
1

Ln=2 ð2:23Þ

accompanying each power of Fλρ in an operator product,
in particular, for the free gauge action −ð1=4ÞFλρFλρ. With
the dimensionful normalization constants Abos and AF
extracted, the rest of the boson fields and gauge field
strength tensor have the respective mass dimensions that
they would have in four spacetime dimensions. Regarding
gauge interactions, we also recall that a generic gauge
coupling g has mass dimension dimðgÞ ¼ ð4 − dÞ=2 ¼
−n=2, and again, this is incorporated in the normalization
constant Ln=2 that enters in a gauge coupling appearing in
an expression in d ¼ 4þ n dimensions by writing

g4þn ¼ gLn=2 ¼ g

ðΛLÞn=2
; ð2:24Þ

where g is dimensionless.

III. GAUGE AND HIGGS SECTORS

We shall consider two gauge groups and corresponding
sets of fields for our study. In accordance with our low-
energy effective field theory framework, we do not attempt
to specify the physics and associated symmetries at scales
much larger than μ.
The first of these is the Standard-Model gauge group,

GSM. We denote the quark and lepton fields as Qiα
a;L, u

α
a;R,

and dαa;R, where α; β; :: are SUð3Þc color indices, i; j… are
SUð2ÞL indices, and a; :: are generation indices. Thus,
Qα

1;L ¼ ðuαdαÞL, dα1;R ¼ dαR, d
α
3;R ¼ bαR, etc. The lepton fields

are denoted La;L ¼ ðνlala ÞL and la;R with l1;R ¼ eR,
l2;R ¼ μR, etc. Extending the original SM, we also include
electroweak-singlet neutrinos νs;R and take the range of s to
be s ¼ 1, 2, 3 to match the number of SM fermion
generations. The Higgs field is denoted ϕ ¼ ðϕþ

ϕ0Þ, and
the vacuum expectation value (VEV) of the lowest KK
mode of this field in the low-energy four-dimensional
theory is denoted hϕi0 ¼ ð 0

v=
ffiffi
2

p Þ, where v ¼ 246 GeV,

with GF=
ffiffiffi
2

p ¼ g2=ð8m2
WÞ ¼ 1=ð2v2Þ. Here, GF ¼

1.1664 × 10−5 GeV−2 is the Fermi weak coupling. This
VEV sets the scale of electroweak symmetry breaking
(EWSB), i.e., the breaking of the SUð2ÞL ⊗ Uð1ÞY part of
GSM to Uð1Þem. An extension of the SM gauge symmetry
with a gauged Uð1ÞB−L symmetry to avoid excessively
large left-handed Majorana neutrino masses will be dis-
cussed below. An additional extension with the addition of
a candidate dark matter fermion will also be discussed.
A second gauge theory of considerable interest is the

left-right symmetric theory, with gauge group GLRS
given in Eq. (1.1). Among of the appeals of this theory
is the elegant relation for the electric charge, Qem ¼ T3L þ
T3R þ ðB − LÞ=2 [56]. An interesting feature of the LRS
theory is that the gauge group GLRS has a natural extension
to SUð4ÞPS ⊗ SUð2ÞL ⊗ SUð2ÞR, where SUð4ÞPS ⊃
SUð3Þc ⊗ Uð1ÞB−L [57]. The gauge fields for the
SUð2ÞL and SUð2ÞR factor groups in GLRS are denoted
A⃗λ;L and A⃗λ;R, respectively, and the gauge field for the
Uð1ÞB−L group is denoted Uλ. The quarks and leptons of
each generation transform as

Qα
a;L∶ ð3; 2; 1Þ1=3; Qα

a;R∶ ð3; 1; 2Þ1=3 ð3:1Þ

and

Lla;L∶ ð1; 2; 1Þ−1; Lla;R∶ ð1; 1; 2Þ−1; ð3:2Þ

where the numbers in the parentheses are the dimension-
alities of the representations under the three non-Abelian
factor groups in GLRS and the numbers in subscripts are the
values of B − L. The explicit lepton fields are

Lla;L ¼
�
νla
la

�
L
; Lla;R ¼

�
νla
la

�
R
; ð3:3Þ

where l1 ¼ e, l2 ¼ μ, and l3 ¼ τ. We denote SUð2ÞL and
SUð2ÞR gauge indices as Roman indices i; j… and primed
Roman indices i0; j0…, respectively, so, e.g., Li

1;L ¼ νe;L
for i ¼ 1 and Li0

2;R ¼ μR for i0 ¼ 2. An extension of the
fermion sector of the LRS model to include a possible dark
matter particle will be discussed below.
The Higgs sector contains a Higgs field Φ transforming

as ð1; 2; 2Þ0, which can be written asΦij0 , or equivalently, in
matrix form, as
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Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
: ð3:4Þ

The Higgs sector also contains two Higgs fields, commonly
denoted ΔL and ΔR, which transform as ð1; 3; 1Þ2 and
ð1; 1; 3Þ2, respectively. Since the adjoint representation of
SU(2) is equivalent to the symmetric rank-2 tensor repre-
sentation, these may be written as ðΔLÞij ¼ ðΔLÞji and
ðΔRÞi0j0 ¼ ðΔRÞj0i0 or, alternatively, as (traceless) matrices:

Δh ¼
�Δþ

h =
ffiffiffi
2

p
Δþþ

h

Δ0
h −Δþ

h =
ffiffiffi
2

p
�
; h ¼ L;R: ð3:5Þ

The minimization of the Higgs potential to produce
vacuum expectation values has been analyzed in a number
of studies [6,58–63]. With appropriate choices of param-
eters in the Higgs potential, this minimization yields
the following VEVs of the lowest KK modes of the
Higgs fields, expressed in terms in the four-dimensional
Lagrangian:

hΦi0 ¼
1ffiffiffi
2

p
�
κ1 0

0 κ2eiθΦ

�
; ð3:6Þ

hΔLi0 ¼
1ffiffiffi
2

p
�

0 0

vLeiθΔ 0

�
ð3:7Þ

and

hΔRi0 ¼
1ffiffiffi
2

p
�

0 0

vR 0

�
: ð3:8Þ

The spontaneous symmetry breaking of the GLRS gauge
symmetry occurs in several stages. At the highest-mass
stage, ΔR picks up a VEV, thereby breaking the SUð2ÞR ⊗
Uð1ÞB−L subgroup of GLRS to Uð1ÞY , where Y denotes the
weak hypercharge, i.e., SUð2ÞR ⊗ Uð1ÞB−L → Uð1ÞY . This
gives the WR a large mass, which, to leading order, is
mWR

¼ gRvR=
ffiffiffi
2

p
. The second stage of symmetry breaking,

SUð2ÞL ⊗ Uð1ÞY → Uð1Þem, occurs at a lower scale and
results from the VEVs of the Φ field. This produces a mass
mWL

¼ gLv=2, where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ κ22

q
¼ 246 GeV ð3:9Þ

is the electroweak symmetry breaking scale. The neutral
gauge fields A3L, A3R, andU mix to form the photon, the Z,
and a much more massive Z0. Since the VEV vL of the
SUð2ÞL Higgs triplet ΔL would modify the successful tree-
level relation ρ ¼ 1, where ρ ¼ m2

W=ðm2
Zcos

2θWÞ ¼ 1

(where θW is the weak mixing angle), one arranges the
parameters in the Higgs potential so that vL ≪ κ1;2. The
nonobservation of anyWR from direct searches at the Large

Hadron Collider sets a lower limit of 4.4 TeV on the W�
R

mass from the CMS experiment [64] and 4.7 TeV from the
ATLAS experiment [65]. These lower limits are accom-
modated by making vR ≫ v. There are theoretical lower
limits on the extra neutral Higgs boson from FCNC
contributions [66] of about 10 to 15 TeV. There are also
lower limits in the TeV range for the singly and doubly
charged ΔR;L from collider data [36,67]. While the masses
of the neutral and charged components of the ΔR Higgs
field can be comparable to vR, one requires that vL must be
much smaller than the masses of the components of ΔL.
A mechanism that could produce this hierarchy was
presented in [68].
In general, there is mixing of the interaction eigenstates

A�
λ;L with A�

λ;R to produce mass eigenstates. For the lowest
KK modes, this has the form (suppressing the Lorentz
indices)

�
W�

L

W�
R

�
¼

�
cos ζ eiω sin ζ

−e−iω sin ζ cos ζ

��
A�
L

A�
R

�
; ð3:10Þ

where the angle ζ is given by

tan ζ ¼ κ1κ2
κ21 þ κ22 þ 8v2R

: ð3:11Þ

Because vR ≫ maxðκ1; κ2Þ, the mixing angle jζj ≪ 1, so
this mixing is very small. This is true in the four-
dimensional LRS theory without any reference to possible
BSM extra-dimensional models. Indeed, in the LRS split-
fermion model there is an additional constraint; in order for
the rate of n − n̄ oscillations to be in agreement with the
experimental upper limit, it is necessary that vR ≳ 106 GeV
[28]. Hence Eq. (3.11) gives jζj ≲ 3 × 10−8, so this mixing
is negligibly small, and W�

L ¼ A�
L and W�

R ¼ A�
R to very

good accuracy.
Since the ΔR has B − L charge of 2, its VEV, vR, breaks

B − L by two units. As was pointed out in [5,6] (in the
usual d ¼ 4 spacetime context), this provides a natural
explanation for small neutrino masses via the Yukawa
interaction

−LνR;Maj ¼
X
a;b

yðRRΔRÞ
ab ½LT

a;RCLb;R�ΔR þ H:c: ð3:12Þ

(where the sum is over the generation indices, 1 ≤ a; b ≤ 3
which, via the ΔR VEV, vR, yields a seesaw mechanism
[69]). The gauge symmetry breaking could also be dynami-
cal [70,71], or arise because of different boundary con-
ditions [72], but here we assume a conventional Higgs
mechanism for this symmetry breaking.
Because of the compactification, the gauge and Higgs

fields have KK mode expansions (equivalent to Fourier
expansions). Since the fermions have localized wave
functions, it is necessary that the lowest KK modes of
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the gauge fields and Higgs field(s) are constants in the extra
dimensions, in order to agree with experimental data on
universality of the couplings of gauge fields to these
fermions and to guarantee that, after electroweak symmetry
breaking, the resultant vector boson masses are the same
throughout the extra dimensions. The effects of higher-
lying KK modes of the gauge and Higgs fields have been
studied in a number of works (e.g., [8,12,18–21,23,24]).
These are discussed further below. The compactification
that was commonly used in previous works with n ¼ 1
extra dimension was such that the extra-dimensional space
was S1=Z2, which, in addition to removing one chirality of
fermions, had the effect of reducing the KK expansion to a
sum of cosine term. Because we use a simple toroidal
compactification, in our case the KK expansion for a
generic Higgs field, denoted as Φ, has the form

Φðx; yÞ ¼ 1

Ln=2

X
m∈Zn

ΦðmÞðxÞ exp
�
2πiðm · yÞ

L

�
; ð3:13Þ

where m ¼ ðm1;…; mnÞ is an integer-valued vector in Zn

and m · y ¼ P
n
i¼1 miyi is the Euclidean scalar product of

the vectors m and y in these extra dimensions. As with the
use of complex exponentials in electrodynamics, it is
understood that real parts are taken in calculations involv-
ing KK expansions of the form (3.13) and (3.14) to obtain
results for fields that are real. In a similar manner, a generic
gauge field, denoted Vλ (suppressing non-Abelian group
indices where present) has the KK expansion

Vλðx; yÞ ¼
1

Ln=2

X
m∈Zn

VðmÞ
λ ðxÞ exp

�
2πiðm · yÞ

L

�
: ð3:14Þ

We use these expansions for n ¼ 2. An m’th KK mode of a
gauge or Higgs field has an excitation energy, relative to the
lowest KK mode, of 2πkmk=L ¼ 2πkmkΛL. In contrast,
because of the effective localization of a fermion field to a
distance ∼σ ¼ 1=μ, the m’th KK mode of a fermion field
has an excitation energy ∝ kmk=σ. Since μ ≫ ΛL, the KK
modes for fermions lie much higher in energy than the KK
modes for bosons, and in our low-energy effective field
theory approach, we thus neglect them, as in previous
studies (e.g., [18,19,23]).

IV. MASSES AND MIXING FOR QUARKS
AND CHARGED LEPTONS

Although our focus here is on neutrino masses and
mixing, it is also necessary to give some analysis of the
quark sector of the models. We divide this section into two
parts, corresponding to the split-fermion models with SM
and LRS gauge symmetries, respectively. In the following,
for notational simplicity, we shall often write Lagrangians
with normalization factors implicit in the fields.

A. SM split-fermion model

The Yukawa terms in the Lagrangian in 4þ n dimen-
sions for the quarks in the split-fermion model with a SM
gauge group describing the physics at the scale μ are

−LYuk;qðx; yÞ ¼
X
a;b

yðdÞab ½Q̄a;Lðx; yÞdb;Rðx; yÞ�ϕðx; yÞ

þ
X
a;b

yðuÞab ½Q̄a;Lðx; yÞua;Rðx; yÞ�ϕ̃ðx; yÞ

þ H:c:; ð4:1Þ

where

ϕ̃ ¼ iτ2ϕ�; ð4:2Þ

τ2 is the SU(2) Pauli matrix, and, as before, a, b are
generation indices.
Taking into account that the lowest KK mode of the

Higgs field is a constant as a function of the extra
dimensions, extracting the terms resulting from the
Higgs VEV, and performing the integration over these
extra dimensions, one thus obtains the low-energy effective
Lagrangian in d ¼ 4 dimensions for the quark mass
matrices in the charge Q ¼ 2=3 (u-type) and Q ¼ −1=3
(d-type) sectors. The integration over the extra n dimen-
sions of a given fermion bilinear operator product
½f̄Lðx; yÞfRðx; yÞ� in a Yukawa interaction involves the
integral [from the m ¼ 2 special case of Eq. (2.14),
including the normalization factor Af in (2.6)]:

A2
f

Z
dnye−kη−ηfLk

2−kη−ηfRk2

¼ exp

�
−
1

2
kηfL − ηfRk2

�
: ð4:3Þ

One obtains

−Lq;mass ¼
vffiffiffi
2

p
X
a;b

yðuÞab ½ūa;Lub;R�e−ð1=2ÞkηQa;L
−ηub;Rk2

þ vffiffiffi
2

p
X
a;b

yðdÞab ½d̄a;Ldb;R�e−ð1=2ÞkηQa;L
−ηdb;Rk2

þ H:c:

¼
X
a;b

X
q¼d;u

½q̄a;LMðqÞ
ab qb;R� þ H:c:; ð4:4Þ

where

MðqÞ
ab ¼ vffiffiffi

2
p yðqÞab e

−ð1=2ÞkηQa;L
−ηqb;Rk2 ; q ¼ u; d: ð4:5Þ
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The corresponding Yukawa couplings and integration over
extra dimensions for the charged leptons yields the mass
matrices terms

MðlÞ
ab ¼ vffiffiffi

2
p yðlÞab e

−ð1=2ÞkηLa;L−ηlb;Rk2 : ð4:6Þ

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix V has a hierarchical form, with off-diagonal entries
that are smaller in magnitude than diagonal entries and
become smaller as one moves further away from the
diagonal. Hence, one may begin by neglecting these off-
diagonal entries and solving for the relevant separation
distances in the absence of quark mixing, and then take into
account this mixing. In this approximation, for the gen-
eration a quark in the Q ¼ 2=3 (u) and Q ¼ −1=3 (d)
quark sectors (with u1 ≡ u, u2 ≡ c, u3 ≡ t; d1 ≡ d, d2 ¼ s,

d3 ¼ b), one obtains mqa ¼ MðqÞ
aa , whereM

ðqÞ
ab was given in

Eq. (4.5). Equivalently, one has, for the separation distance
kηQa;L

− ηqa;Rk, the relation

kηQa;L
− ηqa;Rk ¼

�
2 ln

�
yðqÞaa vffiffiffi
2

p
mqa

��
1=2

: ð4:7Þ

Analogously, for the charged leptons,

kηLa;L
− ηla;Rk ¼

�
2 ln

�
yðlÞaa vffiffiffi
2

p
mla

��
1=2

: ð4:8Þ

Since the generation of the quark and charged lepton
masses occurs at the electroweak symmetry breaking,
one uses the running masses evaluated at this scale in
these equations. As noted, a major achievement of these
split-fermion models was that they could explain the large
hierarchy in the values of quark and charged lepton masses
with roughly equal dimensionless Yukawa couplings for
different generations, by the choices of the locations of
respective centers of wave functions of the chiral compo-
nents of these fields in the extra dimensions [1,2].
As in [2], we shall choose the locations of lepton wave

function centers so that the charged lepton mass matrix is
diagonal up to small corrections. While Ref. [2] also chose
the locations of the Q ¼ 2=3 quark wave function centers
so as to render the up-type quark mass matrix diagonal, up
to small corrections, here we shall carry out this procedure
for the down-quark, instead of up-quark, wave function
centers, so as to make the down-quark mass matrix
diagonal, up to small corrections. This greatly suppresses
FCNC effects due to higher KK modes of gauge fields
[8,12,18–21,23,24], as discussed in Appendix B. Our
choice of arranging down-type quark wave function centers
so as to render the Q ¼ −1=3 mass matrix nearly diagonal
is made to satisfy the particularly stringent constraints on
FCNC effects in K0 − K̄0 and B0 − B̄0 mixing. Since we

use a low-energy effective field theory approach, we may
leave a deeper explanation of these choices of wave
function centers of charged leptons and down-type quarks
to future work on an ultraviolet completion of the theory;
however, the necessity of this stratagem of engineering the
charged-lepton and down-quark mass matrices to be nearly
diagonal may be regarded as a weakness in these split-
fermion models.
Using as inputs the charged lepton masses evaluated at

mZ from [73] in Eq. (4.8), we obtain the distances

kηL1;L
− ηl1;Rk ¼ 5.06; ð4:9Þ

kηL2;L
− ηl2;Rk ¼ 3.86 ð4:10Þ

and

kηL3;L
− ηl3;Rk ¼ 3.03: ð4:11Þ

B. LRS split-fermion model

Here we discuss the Yukawa terms and resultant
mass terms for quarks and charged leptons in the extra-
dimensional LRS model. The neutrino sector will be
analyzed in the next section. The quark terms are

−LYuk;q;LRS ¼
X
a;b

½Q̄a;LðyðqÞabΦþ hðqÞab Φ̃ÞQb;R� þ H:c:;

ð4:12Þ

where Φ̃ ¼ σ2Φ�σ2, and here yðqÞab and hðqÞab are matrices of
Yukawa couplings. Inserting the VEV of (the lowest KK
mode of) Φ from Eq. (3.6) and performing the integration,
over the extra dimensions, of the quark bilinears gives the
mass terms

1ffiffiffi
2

p
X
a;b

½ūa;LðyðqÞab κ1 þ hðqÞab κ2e
iθΦÞub;R�e−SyQ;ab

þ 1ffiffiffi
2

p
X
a;b

½d̄a;LðyðqÞab κ2e
−iθΦ þ hðqÞab κ1Þdb;R�e−SyQ;ab þH:c:;

ð4:13Þ

where

SyQ;ab ¼
1

2
kηQa;L

− ηQb;R
k2: ð4:14Þ

Note that even if one imposes left-right symmetry at a high
scale in the UV, this symmetry is broken at the scale
vR ≫ κ1; κ2, so that at the electroweak scale, ηQa;L

and ηQa;R

are different from each other. For illustrative purposes, let
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us neglect the small off-diagonal terms in these mass
matrices. We obtain two relations for the relevant separa-
tion distances, namely

kηQa;L
−ηQa;R

k¼
�
2 ln

�jyðqÞaa κ1þhðqÞaa κ2eiθΦ jffiffiffi
2

p
mua

��
1=2

ð4:15Þ

and

kηQa;L
− ηQa;R

k ¼
�
2 ln

�jyðqÞaa κ2e−iθΦ þ hðqÞaa κ1jffiffiffi
2

p
mda

��
1=2

:

ð4:16Þ

For given values of κ1 and κ2, the Yukawa couplings yðqÞaa

and hðqÞaa , and the phase factor eiθΦ can be chosen to satisfy

these relations. Taking yðqÞ11 ∼Oð1Þ and hðqÞ11 ∼Oð1Þ as
above, and using the values of the running quark masses
mu and md at the EWSB scale from Ref. [73], one can then
compute a value of kηQL

− ηQR
k that satisfies Eqs. (4.15)

and (4.16). For example, this yields the following value for
this separation distance for the first generation:

kηQ1;L
− ηQ1;R

k ≃ 4.7: ð4:17Þ

We use the same model-building strategy for the fermions
in this LRS model as we did for the SM split-fermion
model, namely to obtain solutions for the wave function
centers of the charged leptons and down-type quarks so as
to make MðdÞ and MðlÞ diagonal, up to small corrections.
The reason is the same as in the SM version, namely to
avoid excessive FCNC processes due to higher KK modes
of gauge and Higgs fields.

V. NEUTRINOS IN THE SM
SPLIT-FERMION MODEL

In this section we analyze neutrino masses and mixing in
the SM split-fermion model with n ¼ 2 extra dimensions.
Here, one expands the original lepton content with the
addition of a number ns of electroweak-singlet neutrinos,
νs;R, s ¼ 1;…; ns. We shall take ns ¼ 3. To avoid con-
fusion with left-handed neutrinos after charge conjugation,
we set νs;R ≡ ωs;R. Restricting to renormalizable terms in
the four-dimensional Lagrangian, the resultant neutrino
mass terms have the form

−Lν;m ¼
X
a;b

½½ν̄a;LMðDÞ
ab ωb;R� þ ½ωT

a;RCM
ðRÞ
ab ωb;R��

þ H:c:; ð5:1Þ

where C is the conjugation Dirac matrix. Here, MðDÞ is, in
general, a complex matrix and MðRÞ is, in general, a com-
plex symmetric matrix: ½MðRÞ�T ¼ MðRÞ. The right-hand

side of Eq. (5.1) can be written compactly by defining the
six-dimensional vector ΩR ¼ ðνcR;ωRÞT. Then, taking into
account of the fact that Ω̄c

L ¼ ðν̄L; ω̄c
LÞT , one has

−Lν;m ¼ 1

2
Ωc

LMΩR þ H:c: ð5:2Þ

where

M ¼
�

MðLÞ MðDÞ

MðDÞT MðRÞ

�
: ð5:3Þ

Here, the MðLÞ submatrix arises from the dimension-5
operator yielding Majorana masses for the active neutrinos,

X
a;b

cðLLϕϕÞ

Λab
ðϵikϵjm þ ϵimϵjkÞ½LiT

a;LCL
j
b;L�ϕkϕm þ H:c:;

ð5:4Þ

where i, j, k, m are SUð2ÞL group indices.
In order to avoid fine-tuning, one would like to have an

operative seesaw mechanism in this model, so that the
neutrino mass eigenvalues split into a heavy set with
masses of order ΛL and a light set with sub-eV masses.
A problem that one encounters was noted in the original
work on the model [1] and can be seen in the low-energy
effective theory, even before considering the embedding in
higher dimensions. From the VEVs of ϕ, the dimension-5
operators in Eq. (5.4) yield Majorana mass terms of the left-
handed neutrinos

X
a;b

cðLLϕϕÞ

Λab
ðv=

ffiffiffi
2

p
Þ2½νTa;LCνb;L� þ H:c: ð5:5Þ

The natural size for Λab is ΛL. For the terms that are
diagonal in generation, i.e., with a ¼ b, the integration over
the extra dimensions does not yield any exponential
suppression factor, so in the low-energy effective field
theory in four dimensions, these give left-handed Majorana
mass eigenvalues

cðLLϕϕÞaa ðv= ffiffiffi
2

p Þ2
Λaa

: ð5:6Þ

In order not to spoil the seesaw, these must be smaller than
the eigenvalues arising from the diagonalization of Mν in
Eq. (5.7) below, the largest of which is ≃0.05 eV [see
Eq. (A13) in Appendix A]. But with ΛL ¼ 100 TeV, the

masses in Eq. (5.6) have magnitudes ð0.3 GeVÞjcðLLϕϕÞaa j.
Without an artificial fine-tuning jcðLLϕϕÞaa j ≪ 1, this is much
too large. One modification of the model to deal with this
problem was suggested in Ref. [1], namely to extend the
SM gauge group GSM to include a gauged Uð1ÞB−L [56].
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A number of studies of such Uð1ÞB−L extensions ofGSM, in
addition to works on LRS models, have been carried out
and bounds set on the mass of the resulting Z0 (e.g., [74–76]
and [36] and references therein). The Uð1ÞB−L gauge
symmetry might play a role in explaining the overall
separation between the wave function centers of the quarks
and leptons in the extra dimensions [1]. We note that at
mass scales above the breaking scale for this Uð1ÞB−L
symmetry, it would also forbid n − n̄ oscillations.
The LRS version of the split-fermion model has the

advantage of being able to suppress the left-handed
Majorana mass terms for neutrinos without requiring any
extension, provided that the VEV vL of the ΔL Higgs is
sufficiently small, namely vL ≲ 0.05 eV for Yukawa cou-
plings of O(1). Although the masses of the components of
ΔL must be larger than O(TeV), this can be arranged [68].
Since the GLRS gauge symmetry must be broken to the SM
gauge symmetry at vR ∼ 103 TeV in the LRS split-fermion
model to adequately suppress n − n̄ oscillations [28] [see
Eqs. (6.1)–(6.3) below], in the mass range from vr down to
the electroweak symmetry breaking scale v ≃ 250 GeV,
one may analyze the physics in terms of SM fermion fields
and the relevant gauge and Higgs fields. The operators in
terms of SM fields must however arise from LRS invariant
operators.
Thus, we proceed with our analysis of the lepton sector

in the split-fermion model. The light neutrino masses are
eigenvalues of the matrix

Mν ¼ −MðDÞ½MðRÞ�−1MðDÞT: ð5:7Þ

Thus,MT
ν ¼ Mν, i.e.,Mν is a (complex) symmetric matrix.

We take this to be diagonalized by a unitary transformation
Uν thus [77]

UðνÞTMνUðνÞ ¼ Mν;diag: ð5:8Þ

The unitary transformationUν is determined by the relation

U†
νðMνM

†
νÞUν ¼ M2

ν;diag: ð5:9Þ

Note that if Mν is transformed to M0
ν ¼ MνU, where U is

unitary, then M0
ν is diagonalized by the same Uν, since

M0
ν½M0

ν�† ¼ MνM
†
ν in Eq. (5.9).

A general charged lepton mass matrix MðlÞ, is diagon-
alized by a bi-unitary transformation analogous to Eq. (A4)
for the quarks, as follows:

UðlÞ†
L MðlÞUðlÞ

R ¼ MðlÞ
diag: ð5:10Þ

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton
mixing matrix U that enters in the charged weak current is
then given by

Jλ ¼ l̄LγλνL ¼ l̄LUγλνL; ð5:11Þ

where here lL and νL denote vectors of mass eigenstates
and

U ¼ UðlÞ†UðνÞ: ð5:12Þ

With our assumption that MðlÞ is diagonal, it follows that

UðlÞ
L ¼ UðlÞ

R ¼ I: ð5:13Þ

The distances between left- and right-handed chiral com-
ponents of charged leptons are then fixed, with the values
given in Eqs. (4.9)–(4.11). In standard notation,
Δm2

ij ¼ m2
νi −m2

νj . The lepton mixing matrix is given by
Eq. (A8) in Appendix A, in terms of the angles θ12, θ23, and
θ13 and the CP phase δ [78]. The neutrino oscillation data
determine values of these angles that depend on whether the
neutrino masses exhibit the normal ordering, mν3 > mν2 >
mν1 , or the inverted ordering, mν2 > mν1 > mν3 (where we
have incorporated the fact that solar neutrino data imply
that mν2 > mν1). However, for our present purposes, the
differences in the resultant values are not large enough to be
important. A fit to current data [79] yields the values

jΔm2
32j ¼ ð2.517þ0.026

−0.028Þ × 10−3 eV2 ð5:14Þ

and

Δm2
21 ¼ ð0.742þ0.021

−0.020Þ × 10−4 eV2; ð5:15Þ

and, for the case of normal ordering, the three rotation
angles and CP phase angle [in degrees, in the standard
parametrization (A8)]

θ23=° ¼ 49.2þ0.8
−1.2 ; ð5:16Þ

θ12=° ¼ 33.440.77−0.74; ð5:17Þ

θ13=° ¼ 8.57� 0.12 ð5:18Þ

and

δ=° ¼ 197þ27
−24 : ð5:19Þ

Another recent fit yielded similar results [80]; a recent
review is [81]. Substituting the central values of these
angles in the leptonic mixing matrix (A8), one obtains
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U¼

0
B@

0.825 0.545 −0.149eð−17°Þi

−0.2715eð−5.8°Þi 0.605eð1.7°Þi 0.7485

0.495eð2.8°Þi −0.581e−ð1.6°Þi 0.646

1
CA:

ð5:20Þ

Although we shall use this experimentally determined
lepton mixing matrix for our analysis, a parenthetical
historical remark is useful concerning a simple approximate
form for the matrix. The fact that sin2ð2θ23Þ is close to 1
(maximal 2–3 mixing), i.e., θ23 is close to π=4, was evident
in the first atmospheric data analysis by the Super-
Kamiokande experiment in 1998. By the early 2000s, it
was also known from solar neutrino data from the Davis,
SAGE, GALLEX, Super-Kamiokande, and SNO experi-
ments, that sin2 θ12 ≃ 1=3. The data from atmospheric,
solar and terrestrial neutrino oscillation experiments also
showed that θ13 was substantially smaller than θ23 and θ12
by this time. This motivated the suggestion [82] that these
mixing angles have so-called tribimaximal (TBM) values

TBM∶ θ23 ¼ 45°; θ12 ¼ arcsin

�
1ffiffiffi
3

p
�

¼ 35.26°;

θ13 ¼ 0: ð5:21Þ

Substituting these into the lepton mixing matrix (5.12)
(with UðlÞ ¼ I1) yields the tribimaximal form

U ¼ Uν ¼ UTBM ¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1
CCCA

¼

0
B@

0.816 0.577 0

−0.408 0.577 0.707

0.408 −0.577 0.707

1
CA: ð5:22Þ

As one can see by comparing U in Eq. (5.20) and (5.22),
the form of the lepton mixing matrix determined by
experimental measurements is moderately close to
UTBM, with the exception of the Ue3 ≡ U13 element and
the fact that the UTBM is real. Thus, one can express a

realistic lepton matrix as a perturbation of the TBM
form [83].
We proceed with our analysis, using the lepton mixing

matrix determined by the (central values of the) exper-
imentally measured rotation angles and CP-violating phase
in Eq. (5.20). Since we take the charged lepton mass matrix
to be diagonal, it follows that UðlÞ ¼ I and so U ¼ Uν.
The Eq. (5.8) is equivalent to the relation

UνMν;diagUT
ν ¼ Mν: ð5:23Þ

We shall assume a hierarchical neutrino mass spectrum,
i.e., m2

ν3 ≫ m2
ν2 ≫ m2

ν1 , so that, to a good approximation,

mν3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

32

q
¼ 5.0 × 10−2 eV ð5:24Þ

and

mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

21

q
¼ 0.86 × 10−2 eV: ð5:25Þ

The mass mν1 is undetermined by this procedure; for
definiteness, we shall use the illustrative value
mν1 ¼ 1.0 × 10−3 eV. We take the elements of MR to
be set by the overall mass scale inherent in the compacti-
fication, namely ΛL, and, for simplicity, we further assume
that it is proportional to the identity:

MR ¼ −r × I; r ¼ ΛL: ð5:26Þ

In general, combining Eq. (5.7) with (5.8), we can write

Mν;diag ¼ UT
νMνUν ¼ UT

ν ð−MðDÞ½MðRÞ�−1MðDÞTÞUν

¼ ½r−1=2UT
νMðDÞ�½r−1=2MðDÞTUν�;

ð5:27Þ

so that

MðDÞ ¼ r1=2Uν½Mν;diag�1=2: ð5:28Þ

Evaluating this, we find the following numerical results for
MðDÞ, where the entries are in units of MeV:

MðDÞ ¼

0
B@

0.261 0.506 −0.334e−ð17.0°Þi

−0.0858e−ð5.82°Þi 0.561eð1.72°Þi 1.68

0.157eð2.75°Þi −0.539e−ð1.55°Þi 1.45

1
CA: ð5:29Þ

The minus signs and complex phases can be accommodated by the requisite complex entries in the Yukawa coupling
matrices. The corresponding distances kηLa;L

− ηνb;Rk between the La;L and νb;R wave function centers with 1 ≤ a; b ≤ 3 are
then determined from the magnitudes of these entries inMðDÞ. These distances are listed in Table I [84]. We focus on these
distances henceforth.
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The next step in our analysis is to find a set of wave
function centers of the lepton fields that satisfies these
distance constraints. Recall that we use periodic boundary
conditions for the compactification, and with μL ¼ 30,
the range of each coordinate ηλ is −15 < ηλ ≤ 15 for
1 ≤ λ ≤ n. The full problem to solve requires one to
(a) specify a set of wave function centers for the Q ¼
2=3 and Q ¼ −1=3 quarks so as to yield acceptable quark
masses and the CKM quark mixing matrix; (b) specify a set
of wave function centers for the lepton fields that yields the
required form for the Dirac neutrino mass matrix MðDÞ and
charged lepton mass matrix MðlÞ [with the Majorana mass
matrixMðRÞ in Eq. (5.26)]; and (c) arrange so that the wave
function centers of the quarks are sufficiently distant from
those of the leptons that baryon-number-violating nucleon
decays are suppressed enough to satisfy current experi-
mental limits.
For our determination of lepton wave function centers,

it will be convenient to choose a coordinate system,
denoted ηðlÞ, whose origin is approximately in the middle
of the set of these lepton wave function centers. Then we
will carry out an analogous calculation of quark wave
function centers using a coordinate system ηðqÞ. For our
overall assignment of locations for centers of wave
functions for the full set of quarks and leptons, we
determine translation vectors and rotation angles of the
ηðlÞ and ηðqÞ coordinate systems relative to the η system.
With no loss of generality, we pick an intermediate point
between the quark and lepton wave function centers and
denote this as the origin of the η coordinate system.
Furthermore, we take both of the rotation angles to be
zero, so that the horizontal directions in the ηðlÞ, ηðqÞ, and
η coordinate systems are all the same, and similarly with
the vertical directions. Anticipating our results to be
presented below, we choose these translation vectors to

be such that a quark field with coordinates ðηðqÞ1 ; ηðqÞ2 Þ has
the coordinates ðη1; η2Þq given by

ðη1; η2Þ ¼ ðηðqÞ1 ; ηðqÞ2 Þ − ð8; 8Þ ðfor quarksÞ ð5:30Þ

and a lepton field with coordinates ðηðlÞ1 ; ηðlÞ2 Þ has coor-
dinates ðη1; η2Þ given by

ðη1; η2Þ ¼ ðηðlÞ1 ; ηðlÞ2 Þ þ ð5; 3Þ ðfor leptonsÞ: ð5:31Þ

The overall translation between the wave function centers
of the quarks and leptons is thus in a roughly diagonal
direction. The choices of the translation vectors in
Eqs. (5.30) and (5.31) is made on the basis of the last
step of our analysis, namely step (c), ensuring that the
distances between quark and lepton wave function centers
are large enough to produce adequate suppression of
baryon-number violating nucleon decays.
We now carry out steps (b) and (c) of the analysis. For

step (b), the abstract mathematical problem can be stated as
follows (denoting the number of SM fermion generations as
ngen.): Let Tn denote an n-torus in which each circle S1j ,
j ¼ 1;…; n has circumference c. Specify a set of n2gen
Euclidean distances kηLa;L

− ηνb;Rk, where 1 ≤ a; b ≤ ngen
between the positions of the wave function centers of the
SUð2ÞL-doublet left-handed lepton fields La;L and the
SUð2ÞL-singlet right-handed neutrino fields νb;R. Find an
actual set of points ηLa;L

and ηνb;R , 1 ≤ a; b ≤ ngen in the
n-torus Tn satisfying these distance constraints. Then, for
the given set of Euclidean distances kηLa;L

− ηlak between
the positions of the SUð2ÞL-doublet lepton wave function
centers and the SUð2ÞL-singlet charged lepton wave func-
tion centers, with 1 ≤ a ≤ ngen and with ηLa;L

fixed from the
previous calculation, find a set of wave function centers for
the right-handed charged leptons la;R. If the embedding
space were Rn rather than Tn, then each one of the n2gen
distance constraints involving ηLa;L

and ηνb;R implies two
geometric conditions, namely that (i) the point ηνb;R must lie
on the (n − 1)-sphere Sn−1 centered at ηLa;L

with radius
rab ¼ kηLa;L

− ηνb;Rk and (ii) the point ηLa;L
must lie on the

(n − 1) sphere centered at ηνb;R with radius rab. With the
positions ηLa;L

fixed, the second distance constraint implies
the condition that the point ηla;R must lie on an (n − 1)
sphere centered at ηLa;L

with radius kηLa;L
− ηla;Rk. Since

the embedding space is Tn rather than Rn, these distances
and positions are understood to be defined for this n-torus.
For the case of n ¼ 2 extra dimensions that we consider
here, the (n − 1) spheres are circles, S1. Depending on n,
ngen., and the specified distances, this mathematical prob-
lem may have no solution, a unique solution, or multiple
solutions.
Returning to the realistic value ngen ¼ 3 and the case

n ¼ 2 considered here, we discuss the method that we use
to solve for a set of lepton wave function centers satisfying
the distance constraints. Further details on this are given in

TABLE I. Distances kηLa;L
− ηνb;Rk, determined from the Dirac

neutrino mass matrix MðDÞ in Eq. (5.29). As defined in the text,
the numerical subscript on each fermion field is the generation
index of the weak eigenstate, with 1 ≤ a; b ≤ 3.

a b kηLa;L
− ηνb;Rk

1 1 5.179
1 2 5.050
1 3 5.131

2 1 5.389
2 2 5.029
2 3 4.807

3 1 5.276
3 2 5.037
3 3 4.837
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Appendix C. The L2;L and L3;L wave function centers are
taken to lie along the horizontal ηðlÞ, axis, equidistant from
the vertical ηðlÞ axis; that is, we set ηðlÞL2;L

¼ ðd; 0Þ and

ηðlÞL3;L
¼ ð−d; 0Þ, where the parameter d is allowed to have

either sign. From the nine kηLa;L
− ηνb;Rk distance con-

straints in Table I we solve for the nine points ηLa;L
, ηνb;R ,

and ηlc;R for the lepton wave function centers. Since the
distance constraints are nonlinear equations, they yield
several solutions, all of which produce identically the same
MðDÞ and lepton mixing matrix U [with MðRÞ as in
Eq. (5.26)]. We focus on one of these solutions for our
analysis. Although this solution is not unique, it demon-
strates the ability of this model to fit observed data on
neutrino masses and mixing and also to satisfy other
phenomenological constraints. We note that the fact that
a set of solutions for lepton wave function centers that yield
the form of MðDÞ in Eq. (5.29) does not, in and of itself,
guarantee that this set also yields predictions in accord with
all electroweak data, so the fact that we find solutions that
are in accord with this data is a further achievement. We list
the results for one of our solutions to these constraints in
Table II, expressed in the ηðlÞ and η coordinates.
In Fig. 1 we show the locations of the lepton wave

function centers graphically. With the toroidal boundary
conditions, the left edge of the figure is identified with the
right edge and the lower edge is identified with the upper
edge, i.e., ηλ is equivalent to ηλ � μL ¼ ηλ � 30. As
discussed above, the L2;L and L3;L wave function centers
lie along the horizontal axis of the ηðlÞ coordinate system

defined by ηðlÞ2 ¼ 0, i.e., η2 ¼ 3, spaced equidistant from
the vertical axis of the ηðlÞ coordinate system, defined by

ηðlÞ1 ¼ 0, i.e., η1 ¼ 5. In Table III we list the distances
between the different wave function centers of the lepton
fields given in Table II. The minimal distance for this set of

lepton wave function centers occurs between the L2;L and
L3;L fields, with kηL2;L

− ηL3;L
k ¼ 1.878. With our pro-

cedure for determining locations for lepton wave function
centers, we find that the property that one pair of SUð2ÞL-
doublet leptons has a relatively small separation distance is
rather general, but we do not exclude the possibility that a
viable set of lepton wave function centers exists in which
the separation distances between all pairs of lepton fields,
including in particular, these SUð2ÞL-doublets, are larger
than this value. Further discussion of our procedure for
determining these wave function centers is given in
Appendix C.
Using methods similar to those for our determination of

lepton wave function centers, we have obtained a new
solution for quark wave function centers in the split fermion
model. An earlier solution was given in [2]. In view of later
studies on FCNC effects due to higher KK modes of gluons
and other gauge fields [8,12,18–21,23,24], we have carried
out an analysis designed to greatly reduce these FCNC
effects. The method that we use for this purpose is similar
to the method that we used above for the leptonic sector;
there we chose lepton locations so as to render the charged
lepton mass matrix diagonal, and here we calculate a new
solution for quark wave function centers that renders the
Q ¼ −1=3 quark mass matrix diagonal, up to small
corrections. This diagonality of the MðdÞ mass matrix
removes what would otherwise be excessive FCNC con-
tributions to processes such as K0 − K̄0 and B0 − B̄0

TABLE II. Locations of lepton wave function centers, ex-
pressed in the ηðlÞ and η coordinate systems, related by the
translation (5.31). As defined in the text, the numerical subscript
on each fermion field is the generation index of the weak
eigenstate. Toroidal compactification is used, so that ηλ is
equivalent to ηλ � μL ¼ ηL � 30.

Field ðηðlÞ1 ; ηðlÞ2 Þ ðη1; η2Þ
L1;L (4.157, 7.843) (9.157, 10.843)
L2;L (0.939, 0.000) (5.939, 3.000)
L3;L ð−0.939; 0.000Þ (4.061, 3.000)

ν1;R ð−0.320; 5.240Þ (4.680, 8.240)
ν2;R (0.0219, 4.944) (5.022, 7.944)
ν3;R (0.0783, 4.729) (5.078, 7.729)

l1;R (0.000, 10.723) (5.000, 13.723)
l2;R (4.763, 0.500) (9.763, 3.500)
l3;R ð−3.931; 0.500Þ (1.069, 3.500)

FIG. 1. Plot showing locations of fermion wave function
centers in the split-fermion model with n ¼ 2. As defined in
the text, the numerical subscript on each fermion field is the
generation index of the weak eigenstate. Toroidal compactifica-
tion is used, so that ηλ is equivalent to ηλ � μL ¼ ηL � 30.
Lepton wave functions are colored blue.
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mixing. We have also checked that FCNC contributions to
processes such as D0 − D̄0 mixing are sufficiently small.
(Recall that the dominant contributions to D0 − D̄0 mixing
actually arise from long-distance contributions [36].) We
list our new solution for these quark wave function centers
in Table IV and the resultant distances between quark and
lepton wave function centers in Table V [84].
The last step, namely step (c), is to relate the ηðqÞ and ηðlÞ

coordinate systems to each other. We choose the separation
vector between the quarks and leptons to be approximately
in the diagonal direction, with the separation distances
between quarks and leptons chosen so as to achieve
sufficient suppression of baryon-number-violating nucleon
decays. For this purpose, we recall some results from
Refs. [27,28]. Let us denote the sum of squares of wave
function separation distances that occur in the integration
over the extra dimensions of an operator Or contributing to

nucleon decay (Nd) as SðNdÞ
r . The current limits on nucleon

decay [36] imply [27]

SðNdÞ
r > ðSðNdÞ

r Þmin; ð5:32Þ

where

ðSðNdÞ
r Þmin ¼ 48 −

n
2
ln π − 2 ln

�
MBNV

100 TeV

�

− n ln

�
MBNV

μ

�
; ð5:33Þ

where MBNV denotes the mass scale characterizing the
physics responsible for baryon-number-violating (BNV)
nucleon decay. In our model with n ¼ 2 extra dimensions
[and value μ ¼ 3 × 103 TeV, as given in (2.13)], with the
illustrative value MBNV ¼ 100 TeV, this is the inequality
kηQL

− ηLl;L
k > 8.4, while for MBNV ¼ μ, this is the

TABLE III. Distances between wave function centers of lepton fields, as determined from the lepton wave function centers listed in
Table II. As defined in the text, the numerical subscript on each fermion field is the generation index of the weak eigenstate. The
horizontal entries at the top of the table and the vertical entries on the left-hand side of the table list the fields. Thus, for example, the (1,4)
entry in the table is the distance kηL1;L

− ην1;Rk, and the (1,7) entry is the distance kηL1;L
− ηl1;Rk.

f1 L1;L L2;L L3;L ν1;R ν2;R ν3;R l1;R l2;R l3;R

L1;L 0 8.477 9.353 5.179 5.050 5.131 5.057 7.368 10.924
L2;L 8.477 0 1.878 5.389 5.029 4.807 10.764 3.856 4.896
L3;L 9.353 1.878 0 5.276 5.037 4.837 10.764 5.724 3.034

ν1;R 5.179 5.389 5.276 0 0.4522 0.6482 5.492 6.950 5.959
ν2;R 5.050 5.029 5.037 0.4522 0 0.2229 5.778 6.498 5.948
ν3;R 5.131 4.807 4.837 0.6482 0.2229 0 5.994 6.311 5.828

l1;R 5.057 10.764 10.764 5.492 5.778 5.994 0 11.278 10.9525
l2;R 7.368 3.856 5.724 6.950 6.498 6.311 11.278 0 8.694
l3;R 10.924 4.896 3.034 5.959 5.948 5.828 10.9525 8.694 0

TABLE V. Distances between quark and lepton wave function
centers for our assignments of locations of quark and lepton wave
function centers in Tables II and IV. As defined in the text, the
numerical subscript on each fermion field is the generation index
of the weak eigenstate. Toroidal compactification is used.

Quark L1;L L2;L L3;L ν1;R ν2;R ν3;R l1;R l2;R l3;R

Q1;L 15.2 17.4 18.3 20.2 20.2 20.3 16.7 15.0 16.3
Q2;L 18.4 15.8 14.5 17.1 17.5 17.7 13.3 18.7 13.2
Q3;L 15.6 19.2 17.8 17.9 18.4 18.6 15.1 17.6 16.3
u1;R 19.3 15.8 14.1 17.7 17.8 17.7 18.2 14.0 11.9
u2;R 18.9 16.1 14.5 18.5 18.5 18.4 16.7 15.4 12.6
u3;R 16.5 18.3 16.9 17.6 18.1 18.3 14.5 17.8 15.4
d1;R 16.9 13.2 14.8 17.4 17.0 16.8 17.1 10.5 16.0
d2;R 18.7 12.0 10.7 15.3 15.2 15.1 13.8 15.3 9.41
d3;R 14.5 20.1 18.9 15.7 16.2 16.4 13.6 18.6 16.7

TABLE IV. Locations of quark wave function centers, ex-
pressed in the ηðqÞ and η coordinate systems, related by the
diagonal translation (5.30). As defined in the text, the numerical
subscript on each fermion field is the generation index of the
weak eigenstate. Toroidal compactification is used, so that ηλ is
equivalent to ηλ � μL ¼ ηL � 30.

Field ðηðqÞ1 ; ηðqÞ2 Þ ðη1; η2Þ
Q1;L ð−2.539; 0.000Þ ð−10.539;−8.000Þ
Q2;L (2.539, 0.000) ð−5.461;−8.000Þ
Q3;L ð−0.511;−1.628Þ ð−8.511;−9.628Þ
u1;R ð−0.288; 4.185Þ ð−8.288;−3.815Þ
u2;R (0.288, 2.486) ð−7.712;−5.514Þ
u3;R ð0.303;−1.198Þ ð−7.698;−9.918Þ
d1;R ð−5.000; 3.883Þ ð−13.000;−4.117Þ
d2;R (5.000, 3.016) ð−3.000;−4.984Þ
d3;R ð0.000;−4.450Þ ð−8.000;−12.450Þ
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inequality kηQL
− ηLl;L

k > 7.3. Since SðNdÞ
min depends only

logarithmically on the mass scale MBNV, it follows that the
lower bounds on the fermion separation distances also
depend only logarithmically on MBNV, i.e., only rather
weakly on this scale. A very conservative solution to the
coupled quadratic inequalities would require that each of
the relevant distances kηfi − ηfjk that occurs from the
integrals over the extra dimensions of the various four-
fermion operators giving the leading contributions to
nucleon decay should be larger than the square root of
the right-hand side of Eq. (5.33). As is evident from
Table V, the inequality (5.32) is satisfied by our solutions
for quark and lepton wave function centers.
We also recall a constraint from searches for neutron-

antineutron (n − n̄) oscillations, namely that [16,27]

Mnn̄ > ð44 TeVÞ
�

τnn̄
2.7 × 108 sec

�
1=9

×

�
μ

3 × 103 TeV

�
4=9

�jhn̄jOðnn̄Þ
4 jnij

Λ6
QCD

�
1=9

; ð5:34Þ

where τnn̄ is the free n − n̄ oscillation time and

ΛQCD ¼ 0.25 GeV, and Oðnn̄Þ
4 was the six-quark operator

that gives the dominant contribution to n − n̄ oscillations in
this model [16,27]. This bound is not very sensitive to the

precise size of hn̄jOðnn̄Þ
4 jni because of the 1=9 power in the

exponent. The operator Oðnn̄Þ
4 ¼ −Q3 in the notation of a

lattice calculation of these matrix elements in [85], which
obtains jhn̄jQ3jnij ¼ 5 × 10−4 GeV6 ¼ 2Λ6

QCD; substitut-
ing the resultant factor of 21=9 ¼ 1.08 in Eq. (5.34) yields
the lower bound Mnn̄ > 48 TeV. The current best pub-
lished lower limit on τnn̄ is τnn̄ > 2.7 × 108 sec from the
Super-Kamiokande experiment [86], and hence this is used
for normalization in Eq. (5.34). The Super-Kamiokande
experiment has reported a preliminary result that would
raise this lower limit by approximately a factor of 2 [87];
the resultant factor of 21=9 would increase the lower bound
onMnn̄ to 51 TeV. In this SM split-fermion model, one thus
requires that Mnn̄ must satisfy this lower bound.

VI. NEUTRINOS IN THE LRS
SPLIT-FERMION MODEL

The LRS version of the split-fermion model is consid-
erably better than the SM version in accounting for light
neutrinos. In this section we explain this difference. First,
we discuss a relevant constraint on the scale at which the
LRS gauge symmetry is broken to the SM gauge symmetry.
The analysis of proton decay and n − n̄ oscillations in

the LRS split-fermion model in Ref. [28] showed that,
although it is easy to suppress baryon-number-violating
nucleon decays well below experimental bounds (by
appropriate separation of quark and lepton wave functions),

this does not suppress n − n̄ transitions, which may occur at
levels comparable to current limits. Furthermore, it was
shown that in the LRS split-fermion model, the integration
of certain six-quark operators mediating n − n̄ oscillations
over the extra dimensions does not yield any exponential
factors, in contrast to the situation in the SM split-fermion
model. As a consequence, the experimental limit on n − n̄
oscillations implied a lower limit on the mass scale Mnn̄
characterizing the physics responsible for n − n̄ oscillations
in the LRS split-fermion model that is significantly higher
than in the SM split-fermion model, namely (for n ¼ 2
extra dimensions) [28]

Mnn̄ > ð1 × 103 TeVÞ
�

τnn̄
2.7 × 108 sec

�
1=9

×

�
μ

3 × 103 TeV

�
4=9

�jhn̄jOðnn̄Þ
4 jnij

Λ6
QCD

�
1=9

: ð6:1Þ

Since the vacuum expectation value, vR, of the ΔR Higgs
field in the LRS model breaks (B − L) by two units and this
is the largest mass scale associated with n − n̄ oscillations
in this model, it follows that

Mnn̄ ¼ vR; ð6:2Þ

so

vR ≳ 103 TeV ð6:3Þ

in the LRS split-fermion model.
In contrast to the SM, where a right-handed Majorana

mass term can occur as a gauge-singlet operator, neither an
½LT

a;LCLb;L� nor a ½LT
a;RCLb;R� term can occur in a theory

with GLRS gauge symmetry, since they violate the Uð1ÞB−L
and, respectively, the SUð2ÞL and SUð2ÞR gauge sym-
metries. Similarly B − L conservation also forbids the term
LΦLΦ (Φ being the bi-doublet field) which in LRS would
be the analog of the LHLH operator in the SM.
The LRS model features a profound relation between the

breaking of total lepton number and the breaking of baryon
number and also features a natural basis for a seesaw
mechanism that explains light neutrino masses [5,6]. For
the vR scale of about 1000 TeV, the observed neutrino
masses would require leptonic Yukawa couplings of order
10−4 which is of the same order as the leptonic and quark
Yukawa couplings in the SM (4.12) and (4.13). There is
also a direct type II seesaw contribution coming from the
left triplet Yukawa coupling given by

−LνL;Maj ¼
X
a;b

½yðLLΔLÞ
ab ½LT

a;LCLb;L�ΔL þ H:c: ð6:4Þ

[where the SUð2ÞL and SUð2ÞR group indices are left
implicit]. The seesaw mechanism proceeds naturally since
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vR is much larger than the VEVs κ1 and κ2 of the Φ field in
Eq. (3.6). As noted above, in order for the left-handed
Majorana mass terms arising from (6.4) not to spoil the
seesaw, it is necessary that the left-handed Majorana mass

terms yðLLΔLÞ
ab ½νTa;LCνb;L�vL arising from the Yukawa inter-

action in Eq. (6.4) must be small compared with the
respective seesaw terms in Eq. (5.1). Again, we focus on
the terms that are diagonal in generation indices, i.e., have
a ¼ b, since for these, the integration over the extra
dimensions does not yield any exponential suppression
factor. Since the maximum physical neutrino mass is
∼0.05 eV, it is necessary that vL should not be much
larger than the eV scale, unless one uses a small Yukawa
coupling yðLLΔLÞ. Although the masses of the components
of ΔL must be larger than O(TeV), the necessary condition
that vL is much less than these masses can be arranged [68].
The mechanism in Ref. [68] involves the breaking of parity
separately at a high scale leaving the SUð2ÞR ×Uð1ÞB−L
breaking to TeV scale.
For mass scales below vR, the gauge symmetry is

reduced to the SM gauge group, GSM, and, following
the usual application of low-energy effective field theory,
one analyzes the physics in terms of the fields of the SM
model. This is true, in particular, in the mass range from
vR ∼ 106 GeV down to the electroweak symmetry breaking
scale of v ≃ 250 GeV where the matrix MðDÞ is generated
by the vacuum expectation values κ1 and κ2 in hΦi0. Hence,
the analysis in Sec. V applies, and we reach the same
conclusion, that this model is able to fit the constraints from
limits on proton decay and n − n̄ oscillations.

VII. CONTRIBUTIONS OF KK MODES TO
PHYSICAL PROCESSES

It is evident from Eq. (3.14) that the KK modes of the
SM gauge bosons have nonflat profiles in the extra
dimensions. The higher KK modes of gauge fields (and
Higgs fields) lead, in general, to tree-level flavor-changing
neutral currents, as has been discussed in a number of
works (e.g., [8,12,18–21,23,24]). We review the relevant
formalism in Appendix B. A key feature of our current
study is that, by design, our solution for the fermion wave
function centers given in Table II and Table IV, and shown
in Fig. 1 yields nearly diagonal charged lepton and down
quark mass matrices, greatly suppressing FCNC KK
couplings for the charged leptons and charge Q ¼ −1=3
quarks. Still, there are FCNC effects in the neutrino and up-
quark sector, as discussed in Appendix B. Although there
are FCNC contributions from higher KK modes to decays
such as D0 → πþπ− and D0 → 2π0, they are strongly
suppressed, relative to the SM contribution in amplitudes,
by the factor in Eq. (7.4) and hence are negligible. As
mentioned above, we have also estimated FCNC contri-
butions to D0 − D̄0 mixing and find that it is tolerably
small, taking account of the fact that the dominant

contributions to D0 − D̄0 mixing actually arise from
long-distance contributions [36]. Here we will focus on
the neutrino sector and demonstrate that these effects are
sufficiently small for our models with either the GSM or
GLRS gauge symmetries to be in accord with experimental
constraints.
As discussed above with regard to the constraint from

limits on baryon number violation, in the split-fermion
model with GLRS gauge symmetry, below the scale of
vR ∼ 103 TeV [recall Eqs. (6.1) and (6.2)], the GLRS
symmetry is broken to GSM. Hence, using usual low-
energy field theory methods, one analyzes the physics in
terms of the fields of the SMmodel. This analysis applies to
the split-fermion models with both a GSM gauge symmetry
and a GLRS gauge in the ultraviolet.

A. Neutrino nonstandard interactions
mediated by KK modes

In this subsection we analyze the effects of the higher
KK modes of the W and Z bosons in producing FCNC
effects in the neutrino sector, commonly referred to as
neutrino nonstandard interactions (NSI). (Some recent
papers on neutrino NSIs with further references to the
literature include [88–90].) In a low-energy effective field
theory approach, nonstandard interactions between neutri-
nos and matter beyond the SM can be represented by the
following neutral-current (NC) and charged-current (CC)
effective four-fermion operators

LðNSIÞ
NC ¼ −4

GFffiffiffi
2

p
X
X¼L;R

εðf;XÞab ½ν̄aγλPLνb�½f̄γλPXf�;

LðNSIÞ
CC ¼ −4

GFffiffiffi
2

p
X
X¼L;R

εðff
0;XÞ

ab ½ν̄aγλPLlb�½f̄0γλPXfÞ: ð7:1Þ

Here f ∈ ðu; d; eÞ, PL;R ¼ ð1 ∓ γ5Þ=2 are the usual chiral
projection operators, and a, b denote the generational
indices. These new couplings modify the neutrino propa-
gation in matter [91] and also alter the production and
detection in various neutrino experiments. Analyses of data
from from these experiments have yielded stringent bounds

on the coupling strengths of the new interactions, εðff
0;XÞ

ab

and εðf;XÞab [88,90].
The W-boson KK modes contribute to the charged-

current NSI parameter εðud;LÞab . Using Eqs. (B14), (B6), we
find

εðud;LÞab ¼
�

mW

2πΛL

�
2

V�
11U

�
baSWðηLb;L

; ηQ1;L
Þ; ð7:2Þ

where, as above V is the CKM quark mixing matrix, U is
the PMNS lepton mixing matrix, and we have collected the
terms that depend on the fermion locations in the extra
dimensions and defined these as
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SWðηLb;L
; ηQ1;L

Þ≡ X
m∈Z2

≠0

e
− π2

ðμLÞ2kmk2

kmk2

× cos

�
2π

μL
m · ðηLb;L

− ηQ1;L
Þ
�
: ð7:3Þ

The numerical values of the sum SWðηLb;L
; ηQ1;L

Þ are listed
in Table VI. As is evident from this table, because of the
oscillating cosine functions and the damping by the
exponential factors, the partial sums converge rapidly.
(To show this, we display these values to five significant
figures in this table; in the subsequent tables, SW and SZ
values are usually listed to four significant figures.)
Furthermore, the dependence on the locations of the
fermion wave function centers is embodied in a factor of
order unity and is not very sensitive to these locations.
Therefore, the magnitudes of the NSI interaction param-
eters are predominantly determined by the prefactor in
Eq. (7.2), which does not depend on the details of the
fermion wave function centers, but, instead, only on the
scale ΛL. Numerically,

�
mW

2πΛL

�
2

¼ 1.64 × 10−8: ð7:4Þ

Using this result, we can estimate the CC NSI interaction
strengths produced by the higher W boson KK modes.
These are displayed in Table VII. The magnitudes of these
CC NSI parameters are largely determined by the factor in
Eq. (7.4). These values are far below current experimental
upper bounds on the magnitudes of these parameters,
which are of Oð1Þ [88,90].
In a similar manner, we can evaluate the NC NSI

parameters due to the higher KK modes of the Z boson.

For illustrative purposes, let us write down the NC NSI
parameters for f ¼ e, d:

εðf;XÞab ¼
�

mW

2πΛL

�
2 TðfXÞ

Z

cos2θW
× SZ;abðηfXÞ; ð7:5Þ

where X ¼ L, R,

TðfXÞ
Z ¼ TðfXÞ

3L −Qfsin2θW; ð7:6Þ

Qf is the electric charge of fermion f, and the term that
depends on the wave center locations is defined as

SZ;abðηfXÞ≡
X

m∈Z2
≠0

e
− π2

ðμLÞ2kmk2

kmk2
X3
k¼1

U�
ka

× cos

��
2π

μL

�
fm · ðηLk;L

− ηfXÞg
�
Ukb:

ð7:7Þ

This sum can be evaluated numerically, and we show the

resultant εðf;XÞab in Table VIII. As is evident from this table,
the magnitudes for these NC NSI parameters are essentially
determined by the prefactor in Eq. (7.4), which does not
depend on the locations of wave function centers, but only

on ΛL. Similar comments apply for εðu;XÞab . Thus, the
strengths of the nonstandard neutrino operators generated
by the higher Z and W KK modes are much smaller than
current experimental upper bounds on the magnitudes of
these parameters, which are of Oð1Þ [88,90]. We comment
on the NSI interactions generated by local four-fermion
operators below.

TABLE VI. Demonstration of convergence of the partial sums
for SWðηLb;L

; ηQ1;L
Þ defined in Eq. (7.3) as a function of

generation index b wave center. With the fermion wave function
centers in Fig. 1, the partial sum of contributions from m ¼
ðm1; m2Þ up to kmk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2

p
¼ km0k is displayed for each

ηLb;L
.

b km0k=
ffiffiffi
2

p
SWðηLb;L

; ηQ1;L
Þ

1 3 0.056419
1 30 0.10331
1 300 0.10331
2 3 0.526714
2 30 0.53884
2 300 0.53884
3 3 0.40892
3 30 0.43437
3 300 0.43437

TABLE VII. Value of the KK W boson mediated (charged-

current) NSI parameters jεðud;LÞab j. Here a, b are generational
indices. See text for further details.

b a SWðηLb;L
; ηQ1;L

Þ jεðud;LÞab j
1 1 0.1033 1.36 × 10−9

1 2 0.1033 0.90 × 10−9

1 3 0.1033 0.25 × 10−9

2 1 0.5388 2.33 × 10−9

2 2 0.5388 5.20 × 10−9

2 3 0.5388 6.43 × 10−9

3 1 0.4344 3.43 × 10−9

3 2 0.4344 4.02 × 10−9

3 3 0.4344 4.47 × 10−9
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VIII. SOME FURTHER PHENOMENOLOGY
INVOLVING LEPTONS

A. Weak decays

Weak decays that proceed at the tree level have
amplitudes involving coefficients ∝ GF multipled by
four-fermion operators. These include pure leptonic, semi-
leptonic, and nonleptonic weak decays. The amplitudes
for the latter two types of decays include CKM quark
mixing matrix elements, which we denote as a coefficient
cq, where cq ¼ Vud for decays such as πþ → μþνμ and
nuclear beta decay (abbreviated as NβD); cq ¼ Vus for
Kþ → μþνμ, Kþ → π0lþνl, and Λ → peν̄e; cq ¼ V�

usVud

for Kþ → πþπ0; and so forth for weak decays of heavy-
quark hadrons. We may retain this factor cq for pure
leptonic decays such as μ → νμeν̄e also by setting cq ¼ 1

for these decays. The amplitudes for (tree-level) weak
decays can thus be written generically as

Amp ¼ 4cV
GFffiffiffi
2

p ½ψ̄4;Lγλψ3;L�½ψ̄2;Lγ
λψ1;L�; ð8:1Þ

where ψ j, j ¼ 1;…; 4 are the fermions involved in the
decay. The wealth of data on tree-level weak decays
yields a number of constraints on possible BSM effects.
For example, the agreement of the measured rate for μ
decay with the Standard Model prediction provides one
such constraint, since BSM effects from split fermions
would spoil this agreement, just as, e.g., massive neu-
trino emission via mixing would [92,93]. The ratios of

branching ratios RðπÞ
e=μ ≡BRðπþ → eþνeÞ=BRðπþ → μþνμÞ,

RðKÞ
e=μ, R

ðDsÞ
e=τ , and R

D
e=τ, and the measured branching ratios for

Bþ → μþνμ and Bþ → τþντ with Standard Model predic-
tions provide another set of constraints [92–99].
In the split-fermion models, there are additional contri-

butions to these amplitudes arising from the respective four-
fermion operators composed of fermion fields defined in the
d ¼ 4þ n dimensional space. The effective Lagrangian that

describes these decays has the form (2.16) with these four-
fermion operators and hence k ¼ 4. In this Leff;4þn, a four-
fermion operator Or;ð4Þ has a coefficient of the form (2.18),
namely cr;ð4Þ ¼ κ̄r;ð4Þ=M2þn. For these SMweak decays, the
relevant mass scale M that describes the new contributions
from the presence of the higher dimensions is M ¼ ΛL.
From Eq. (2.21), it follows that after integration over the
extra dimensions, the new split-fermion model contribution
(in addition to the SMcontribution) to the amplitude, in four-
dimensional spacetime, for a given decay involves operator
products of four-dimensional fermion fields with coeffi-
cients of the form

cr;ð4Þ ¼
κ̄r;ð4Þ
Λ2
L

�
μ

π1=2ΛL

�
n
e−Sr;ð4Þ ; ð8:2Þ

where e−Sr;ðkÞ was defined in Eq. (2.20). The full amplitude
for a tree-level weak decay is thus ASM þ ASF. Since
jASFj=jASMj ≪ 1, the leading effect on the observed rate
is due to the interference term ReðASMA�

SFÞ. The ratio of the
SFM to the SMcontribution to a given tree-level weak decay
is then

jASFj
jASMj

∼
jPrκ̄r;ð4Þe

−Sr;ð4Þ j
2cV

�
v
ΛL

�
2
�

μ

π1=2ΛL

�
n
; ð8:3Þ

where we have used the SM relation 4ðGF=
ffiffiffi
2

p Þ ¼ 2=v2

with v ¼ 246 GeV. In the split-fermion model with n ¼ 2
and the values ΛL and μ taken here (as in [2]) and
jκ̄r;ð4Þj ∼Oð1Þ, for a leptonic or CKM-favored semileptonic
or nonleptonic weak decay, this ratio is generically

jASFj
jASMj

∼
10−3

jcV j
����
X
r

κ̄ e−Sr;ð4Þ
����; ð8:4Þ

where the sum
P

r is over the four-fermion operators that
contribute to this decay. The exponential factor e−Sr;ð4Þ
depends on the type of decay. For example, with the

TABLE VIII. Values of the KK Z boson mediated neutral-current NSI parameters jεðf;XÞab j, for f ¼ e, d and X ¼ L, R. Here a, b are
generational indices. The sum jSZ;abðηfX Þj, defined in Eq. (7.7), is numerically evaluated and displayed for f ¼ e, d and X ¼ L, R.

a b jSZ;abðηeLÞj jSZ;abðηeRÞj jSZ;abðηdLÞj jSZ;abðηdRÞj jεðe;LÞab j jεðe;RÞab j jεðd;LÞab j jεðd;RÞab j
1 1 2.8128 0.8291 0.2167 0.2920 1.64 × 10−8 3.89 × 10−9 1.94 × 10−9 4.57 × 10−10

1 2 2.4595 1.2181 0.1659 0.09353 1.44 × 10−8 5.72 × 10−9 1.49 × 10−9 1.46 × 10−10

1 3 0.5970 0.4419 0.02269 0.02563 3.48 × 10−9 2.07 × 10−9 0.20 × 10−9 0.40 × 10−10

2 1 2.4595 1.2181 0.1659 0.09353 1.44 × 10−8 5.72 × 10−9 1.49 × 10−9 1.46 × 10−10

2 2 0.6836 0.1401 0.3743 0.4023 3.99 × 10−9 0.66 × 10−9 3.36 × 10−9 6.30 × 10−10

2 3 0.5216 0.06354 0.07358 0.10035 3.04 × 10−9 0.30 × 10−9 0.66 × 10−9 1.57 × 10−10

3 1 0.6290 0.4419 0.02269 0.02563 3.67 × 10−9 2.07 × 10−9 0.20 × 10−9 0.40 × 10−10

3 2 0.5216 0.06354 0.07359 0.10035 3.04 × 10−9 0.30 × 10−9 0.66 × 10−9 1.57 × 10−10

3 3 0.83705 0.8404 0.48555 0.47799 4.88 × 10−9 3.95 × 10−9 4.35 × 10−9 7.47 × 10−10
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assignments for locations of wave function centers in
Tables IV and II, shown graphically in Fig. 1 [84], a factor
contributing to μ decay is

μ → νμeν̄e∶ e−kηL1;L−ηL2;Lk
2 ¼ 0.618 × 10−31: ð8:5Þ

Exponential factors that occur for semileptonic weak decays
are extremely small because of the separation of quark and
lepton wave function centers required to suppress proton
decay. In general, we find that the ratio (8.4) is negligibly
small for Standard-Model weak decays. Consequently, the
split-fermion models satisfy constraints from data on these
weak decays.

B. Neutrino reactions

We next discuss neutrino reactions. We focus on the
reactions νee → νee and ν̄ee → ν̄ee, since these involve
lepton fields located at the same point in the extra
dimensions and hence could exhibit especially large
non-SM effects. As is well known, in the SM, these involve
both charged-current and neutral-current contributions. For
example, the amplitude for νee → νee is

Aνee;SM ¼ 4
GFffiffiffi
2

p ½ν̄eLγλνeL�
��

1

2
þ sin2θW

�
½ēLγλeL�

þ sin2θW ½ēRγλeR�
�
; ð8:6Þ

where sin2 θW ≃ 0.23. Since ΛL ≫ v, it follows that the
operators in the effective Lagrangian in 4þ n dimensions
must be invariant under the SUð2ÞL ⊗ Uð1ÞY electroweak
SM gauge symmetry. The lowest-dimension operators are
four-fermion operators. Of particular importance are the
operators

OðνeeÞ
LLLLðx; yÞ ¼ κðνeeÞLLLL½L̄1;Lðx; yÞγλL1;Lðx; yÞ�

× ½L̄1;Lðx; yÞγλL1;Lðx; yÞ� þ H:c:; ð8:7Þ

where here the Lorentz index λ runs over all 4þ n values

and we write κðνeeÞLLLL;ð4Þ ≡ κðνeeÞLLLL. From the k ¼ 4 special

case of Eq. (2.18), we have κðνeeÞLLLL ¼ κ̄ðνeeÞLLLL=M
2þn, and, as

before, the relevant mass in the higher-dimensional theory

is ΛL, so κðνeeÞLLLL ¼ κ̄ðνeeÞLLLL=Λ
2þn
L , where κ̄ðνeeÞLLLL is dimension-

less. This operator gives the dominant correction to the SM
amplitude for the νee → νee and ν̄ee → ν̄ee reactions
because the lepton fields are located at the same point in
the extra-dimensional space, so the integration of the four-
fermion operator products over the extra dimensions does
not involve any exponential suppression factor. In contrast,
the integration of the operator ½L̄1;Lðx; yÞγλL1;Lðx; yÞ�×
½l1;Rðx; yÞγλl1;Rðx; yÞ� over the extra dimensions does
yield an exponential suppression factor; with our

assignments for wave function centers, this exponential

factor is e−kηL1;L−ηl1;Rk
2 ¼ 0.78 × 10−11.

Now we estimate the correction in the amplitudes for the
νee and ν̄ee reactions due to these new contributions.
Performing the integration over the operator product (8.7)
over the higher dimensions, we obtain the operator in four-
dimensions

OLLLLðxÞ ¼
κ̄ðνeeÞLLLL

Λ2
L

�
μ

π1=2ΛL

�
n

× ½L̄1;LðxÞγλL1;LðxÞ�½L̄1;LðxÞγλL1;LðxÞ�: ð8:8Þ

The amplitude for the νee → νee reaction can be written as
Amp ¼ Aνe;SM þ Aνe;SF and similarly for ν̄ee → ν̄ee. As
before, the leading correction arises from the interference
term. The relative importance of this is given by the ratio
jAνee;SFj=jAνe;SMj. We find

jAνee;SFj
jAνee;SMj

≃ jκ̄ðνeeÞLLLLj
�

v
ΛL

�
2
�

μ

π1=2ΛL

�
n
: ð8:9Þ

With n ¼ 2, κ̄ðνeeÞLLLL ∼Oð1Þ, and our values of μ and ΛL, we
obtain

jAνee;SFj
jAνee;SMj

≃ 10−3; ð8:10Þ

and similarly for jAν̄ee;SFj=jAν̄ee;SMj. This is sufficiently
small to be in accord with data on these neutrino reactions.
There are also contributions to the ratio (8.10) from the
neutrino NSI terms generated by higher KK modes of the
W and Z, but these are much smaller than the contribution
that we have calculated in Eq. (8.10) because they enter
with a factor of 10−8 suppression from Eq. (7.4).

C. Charged lepton flavor-violating decays
μ → eγ and τ → lγ

Here we discuss charged lepton flavor violation (CLFV).
A particularly stringent constraint is the upper limit on the
decay μ → eγ, namely [36,100]

BRðμ → eγÞ < 4.2 × 10−13: ð8:11Þ

This and other experimental limits are given at the
90% confidence level (90% C.L.). Recall that the rate
for regular μ decay, μ → νμeν̄e is, to very good accuracy,
given by Γμ ¼ G2

Fm
5
μ=ð192π3Þ. The contribution to the

decay μ → eγ (abbreviated μeγ) from diagrams in the
Standard Model, as extended to include massive neutrinos,
is smaller than this upper limit by many orders of
magnitude [101,102] and is thus negligible. Given the
lower limit on vR ≳ 103 TeV, and hence on mWR

, in an
LRS split-fermion model from the nonobservation of n − n̄
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oscillations [28], it is also the case that diagrams with WR
exchange make a negligible contribution to μ → eγ [105].
In a low-energy effective field theory applicable below the
EWSB scale, the terms in the effective Lagrangian that are
responsible for the decay μ → eγ involve the operators

f½ēLσλρμR�Fλρ
em; ½ēRσλρμL�Fλρ

emg; ð8:12Þ

where σλρ ¼ ði=2Þ½γλ; γρ� is the antisymmetric Dirac tensor

and Fλρ
em is the electromagnetic field strength tensor. These

lepton bilinears connect left-handed and right-handed
components of the lepton fields and hence violate both
the SUð2ÞL ⊗ Uð1ÞY SM electroweak gauge symmetry and
the SUð2ÞL ⊗ SUð2ÞR part of the LRS gauge symmetry.
We begin our analysis with the split-fermion model with

GSM gauge and fermion content and will then consider the
corresponding SF model with GLRS. The effective field
theory relevant for the SM SF theory in the energy interval
v < E < ΛL (i.e., 250 GeV < E < 100 TeV) the effective
Lagrangian for this decay must be invariant under GSM and
hence must involve the Higgs field, ϕ. This effective
Lagrangian for μ → eγ is

Leff;μeγ;4þn ¼ ½κðμeγÞ01 ½L̄1;Lσλρl2;R�ϕ
þ κðμeγÞ02 ½l̄1;RσλρL2;L�ϕ̃�Fλρ

B þ H:c:; ð8:13Þ

where here Fλρ
B is the Uð1ÞY field strength tensor and, as

before, ϕ̃ ¼ iτ2ϕ�.
We have discussed above how the Higgs and gauge

fields are taken to have flat profiles in the extra dimen-
sions. Hence, as in our earlier operator analyses of
operators involving Higgs fields in [28], although a boson
field in d ¼ 4þ n dimensions has Maxwellian mass
dimension 1þ ðn=2Þ, in the integration of the boson field
over the n extra dimensions, the normalization constant for
the d-dimensional boson field just cancels the additional
powers of 1=ΛL that appear in coefficients. Hence, it
suffices to consider just the fermionic part of the operators
in the integration over the extra dimensions. After this
integration, the operators (8.12) result from the vacuum
expectation value, v=

ffiffiffi
2

p
, of the ϕ field in Eq. (8.13).

Hence, in the effective theory below this EWSB scale, the
operators (8.13) involve a factor of v=

ffiffiffi
2

p
. Furthermore,

since the decay is absent unless mμ is nonzero (with
mμ > me), the operators involve, as prefactors, not just

v=
ffiffiffi
2

p
, but also the requisite Yukawa couplings that yield

mμ. Because there is an emission of a photon in the
μ → eγ decay, the amplitude also contains a factor of the
electromagnetic gauge coupling, e. To make the factors
of e and mμ explicit, we write

κðμeγÞ
0

j ¼ emμκ
ðμeγÞ
j ; j ¼ 1; 2: ð8:14Þ

Starting with the operators in d ¼ 4þ n dimensions, and
using the property that b2 ¼ 1, the integration of the
fermion bilinear ½L̄1;Lðx; yÞσλρl2;Rðx; yÞ� over the y coor-
dinates yields the operator in four spacetime dimension

½L̄1;LðxÞσλρl2;RðxÞ�e−ð1=2ÞkηL1;L−ηl2;Rk
2

¼ ½L̄1;LðxÞσλρl2;RðxÞ� × ð1.63 × 10−12Þ; ð8:15Þ

where we have used the value of kηL1;L
− ηl2;Rk listed in

Table III. Similarly, the integration of the operator
½l̄1;Rðx; yÞσλρL2;Lðx; yÞ� over the y coordinates yields
the operator

½l̄1;RðxÞσλρL2;LðxÞ�e−ð1=2Þkηl1;R−ηL2;Lk
2

¼ ½l̄1;RðxÞσλρL2;LðxÞ� × ð0.695 × 10−25Þ; ð8:16Þ

where we have used the value of kηl1;R − ηL2;L
k listed in

Table III. Reverting to general notation, the resultant
effective Lagrangian for μ → eγ in d ¼ 4 dimensions is
(suppressing the x arguments)

Leff;μeγ;4D ¼ emμ

Λ2
L
½κ̄ðμeγÞ1 ½L̄1;Lσλρl2;R�e−ð1=2ÞkηL1;L−ηl2;Rk

2

þ κ̄ðμeγÞ2 ½l̄1;RσλρL2;L�e−ð1=2Þkηl1;R−ηL2;Lk
2 �Fλρ

þ H:c: ð8:17Þ

Since the Maxwellian (mass) dimension of the operators
L̄1;Lσλρl2;R�Fλρ and ½l̄1;RσλρL2;L�Fλρ in four-dimensional
spacetime is 5, their coefficients in Leff;μeγ;4D have
dimension −1 and since the operators have mμ as a

prefactor, this means that κðμeγÞj , j ¼ 1, 2 have dimension
−2. In Eq. (8.17) we have conservatively taken the
normalization mass to be ΛL, writing

κðμeγÞj ¼ κ̄ðμeγÞj

Λ2
L

; j ¼ 1; 2; ð8:18Þ

where the κ̄ðμeγÞj are dimensionless, by construction.
Combining these results with the general formulas
[specifically, Eqs. (2.63) and (2.65)] in Ref. [102], we
calculate the branching ratio

BRðμ → eγÞ ¼ 192π3αem
ðGFΛ2

LÞ2
½jκ̄ðμeγÞ1 j2e−kηL1;L−ηl2;Rk2

þ jκ̄ðμeγÞ2 j2e−kηl1;R−ηL2;Lk2 �
¼ ð0.908 × 10−32Þ½jκ̄ðμeγÞ1 j2

þ ð1.81 × 10−27Þjκ̄ðμeγÞ2 j2�: ð8:19Þ
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With jκ̄ðμeγÞj j ∼Oð1Þ for j ¼ 1, 2, this is considerably
smaller than the experimental upper limit on BRðμ → eγÞ.
In a similar manner, we calculate the branching ratios for

the decays τ → eγ and τ → μγ in the GSM split-fermion
model with the locations of the lepton wave function
centers given above. Since both m2

e=m2
τ ≪ 1 and

m2
μ=m2

τ ≪ 1, the rates for each of the two leptonic decay
modes of the τ are given, to very good accuracy, by

Γτ→ντlν̄l ¼
G2

Fm
5
τ

192π3
for l ¼ e; μ: ð8:20Þ

The corresponding measured branching ratios are [36]

BRðτ → ντeν̄eÞ ¼ ð17.82� 0.04Þ%≡ Bτ−e ð8:21Þ

and

BRðτ → ντμν̄μÞ ¼ ð17.39� 0.04Þ%≡ Bτ−μ: ð8:22Þ

Analogously to Eq. (8.17), we calculate the effective
Lagrangian for τ → lγ with l ¼ e or l ¼ μ (symbolized
as τlγ) in d ¼ 4 dimensions to be

Leff;τlγ;4D ¼ emτ

Λ2
L
½κ̄ðτlγÞ1 ½L̄a;Lσλρl3;R�e−ð1=2ÞkηLa;L−ηl3;Rk

2 þ κ̄ðτlγÞ2 ½l̄a;RσλρL3;L�e−ð1=2Þkηla;R−ηL3;Lk
2 �Fλρ þ H:c:; ð8:23Þ

where a ¼ 1, 2 corresponds to l ¼ e, μ. Here, analogously to Eq. (8.14), we set

κðτlγÞ
0

j ¼ emτκ
ðτlγÞ
j ; j ¼ 1; 2: ð8:24Þ

Substituting the values of the distances kηLa;L
− ηl3;Rk and kηla;R − ηL3;L

k with a ¼ 1, 2 from Table III and again using
Eqs. (2.63) and (2.65)) in Ref. [102], we calculate the following branching ratios in this GSM split-fermion model:

BRðτ → eγÞ ¼ Γτ→eγ

Γτ
¼ Bτ−eΓτ→eγ

Γτ→ντeν̄e

¼ 192π3αemBτ−e

ðGFΛ2
LÞ2

½jκ̄ðτeγÞ1 j2e−kηL1;L−ηl3;Rk2 þ jκ̄ðτeγÞ2 j2e−kηl1;R−ηL3;Lk2 �

¼ ð2.93 × 10−60Þ½ð3.08 × 10−2Þjκ̄ðτeγÞ1 j2 þ jκ̄ðτeγÞ2 j2�; ð8:25Þ

BRðτ → μγÞ ¼ Γτ→μγ

Γτ
¼ Bτ−μΓτ→μγ

Γτ→ντμν̄μ

¼ 192π3αemBτ−μ

ðGFΛ2
LÞ2

½jκ̄ðτμγÞ1 j2e−kηL2;L−ηl3;Rk2 þ jκ̄ðτμγÞ2 j2e−kηl2;R−ηL3;Lk2 �

¼ ð2.30 × 10−20Þ½jκ̄ðτeγÞ1 j2 þ ð1.52 × 10−4Þjκ̄ðτeγÞ2 j2�: ð8:26Þ

As is the case with the predictions of BRðτ → lγÞ in the
Standard Model extended to include massive neutrinos,
these GSM split-fermion model predictions are many orders
of magnitude below the respective experimental upper
limits [36,100]

BRðτ → eγÞ < 3.3 × 10−8 ð8:27Þ
and

BRðτ → μγÞ < 4.4 × 10−8: ð8:28Þ

D. CLFV decays la → lblcl̄c

Here we analyze the CLFV decays la → lblcl̄c,
where a, b, and c are generation indices. In the

Standard Model extended to include massive neutrinos,
the rates for these decays were calculated in [102,103].
The decay is very strongly suppressed by a cancellation
between different contributions, and the resultant branching
ratio is many orders of magnitude smaller than the current
limit [36,100]

BRðμ → eeēÞ < 1.0 × 10−12: ð8:29Þ

An analogous comment applies to the correspon-
ding leptonic CLFV decays of the τ lepton, for which
experimental searches have obtained the upper limits
[36,100]

BRðτ → eeēÞ < 2.7 × 10−8; ð8:30Þ
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BRðτ → μμμ̄Þ < 2.1 × 10−8; ð8:31Þ

BRðτ → eμμ̄Þ < 1.7 × 10−8; ð8:32Þ

BRðτ → μeēÞ < 1.5 × 10−8: ð8:33Þ

In the GSM split-fermion model these decays can arise in
several ways. We begin with an analysis of contributions
from higher KKmodes of SM gauge bosons. Recall that the
locations of the lepton wave function centers in the higher
dimensions, as listed in Table II and displayed in Fig. 1,
produce a nearly diagonal charged lepton mass matrix.
Hence, the photon and Z boson KK mode couplings to the
charged leptons are flavor-diagonal up to very small
corrections, as can be seen in Eqs. (B13) and (B15).
Therefore, they do not contribute significantly to the decays
la → lblcl̄c. We next consider the contributions of the
higher KK modes of the Higgs boson. From Eq. (B17), we
see that the nondiagonal couplings of the Higgs boson to
the charged leptons are heavily suppressed. This is a
consequence of the fact that the Higgs interaction connects
opposite-chirality components of fermion fields, and, due
to the large separation among La;L and lb;R for a ≠ b, the
flavor-violating Higgs KK mode couplings are also sup-
pressed. We will estimate the contribution of the higher
KK modes of the Higgs to the branching ratios for la →
lblcl̄c here.
For illustrative purposes, let us consider the contribution

of Higgs boson KK modes to the branching ratios of CLFV
decays la → lblbl̄b, where a, b are generational indices.
Using Eq. (B17), and assuming Oð1Þ higher-dimensional
Yukawa couplings, the branching ratio for la → lblbl̄b
mediated by the Higgs KK modes is

BRðla → lblbl̄bÞ ≃ BRðla → νalbν̄bÞ
1

210π4ðGFΛ2
LÞ2

× ðjSðLÞ
H;abj2 þ jSðRÞ

H;abj2Þ; ð8:34Þ

where we have defined the term that depends on fermion
wave center locations as

SðLÞ
H;ab ≡

X
m∈Z2

≠0

e
− π2

ðμLÞ2kmk2

kmk2 cos

�
π

μL
fm · ðηla;L − ηlb;LÞg

�

× exp

�
−
1

2
ðkηla;L − ηlb;Rk2 þ kηlb;L

− ηlb;Rk2Þ
�
:

ð8:35Þ

Similarly, the expression for SðRÞ
H;ab is obtained from

Eq. (8.35) via the replacement L → R. From Eq. (4.6) it

follows that the factor e−ð1=2Þkηlb;L−ηlb;Rk
2

is proportional to
the mass of the lepton lb. This is a result of the fact that it

arises from the Higgs KK modes. The resulting numerical
branching ratios are as follows:

BRðμ → eeēÞ ≃ 2.6 × 10−50; ð8:36Þ

BRðτ → eeēÞ ≃ 4.5 × 10−78; ð8:37Þ

BRðτ → μμμ̄Þ ≃ 5.3 × 10−35: ð8:38Þ

Evidently, these contributions from the KK modes are
extremely small, many orders of magnitude below exper-
imental limits. Similarly we have analyzed other CLFV
la → lblcl̄c processes, and we find that their branching
ratios are also far below experimental bounds because of
the exponential suppression in the nondiagonal Higgs KK
mode couplings.
A second way that la → lblcl̄c decays can occur is via

local four-lepton operator products not directly involving
KK modes of gauge or Higgs fields. We write these as

Lðla→lblcl̄cÞ
4l ðxÞ ¼

X
r

cðla→lblcl̄cÞ
r Oðla→lblcl̄cÞ

r ðxÞ: ð8:39Þ

These operators are local at the level of the low-energy
effective theory in four-dimensional spacetime but arise
from four-fold products of lepton fields in the higher
dimensions with wave function centers located at differ-
ent points in the higher-dimensional space. These are
given by the effective Lagrangian in the 4þ n dimen-
sional space

Lðla→lblcl̄cÞ
4l;4þn ðx; yÞ ¼

X
r

κðla→lblcl̄cÞ
r Oðla→lblcl̄cÞ

r ðx; yÞ:

ð8:40Þ

As before, one obtains the operators and their coefficients
in the 4D Lagrangian (8.39) by integration of the
Lagrangian (8.40) over the higher dimensions.
A third way in which the decay la → lblcl̄c can arise

is via a combination of an operator involving la, lb and
some set of virtual SM fields producing the lcl̄c pair.
For example, an initial la can make a transition to lb

and a photon, as mediated by the operators in Lðla→lbγÞ
eff

in Eq. (8.17), but instead of the photon being on-shell, it
is virtual and materializes into the lcl̄c in the final state.
The amplitude for this contribution to la → lblcl̄c does
not involve a four-lepton local operator of the form
(8.39), but instead the operator in Eq. (8.17) combined
with the virtual photon propagator connected to the lcl̄c
bilinear. A similar contribution arises from diagrams
in which the virtual photon is replaced by a Z boson.
These are analogous to the diagrams shown in Figs. 2(a)
and 2(b) of Ref. [102]. A third type of contribution arises
from a box diagram involving virtual Wþ and W− vector
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bosons and two internal neutrino lines, analogous to
Fig. 2(g) in Ref. [102].
We first calculate the contribution from the four-

lepton operators in Eq. (8.39) in the GSM split-fermion
model. As in [27,28], we classify these according to the
resultant integrals that they yield upon integration over
the extra dimensions. We find six classes of integrals.
Since the effective mass scale governing the decay is

required to be large compared with the electroweak
symmetry breaking scale, it follows that the operators

Oðla→lblcl̄cÞ
r must be invariant with respect to the SM

gauge group, GSM. Six such operators are listed below
[with Roman indices being SUð2ÞL indices here and the
subscripts such as LLLL indicating the chirality of the
four lepton fields]:

Oðla→lblcl̄cÞ
LLLL ¼ ½L̄b;L;iγλLi

a;L�½L̄c;L;jγ
λLj

c;L� ¼ ½½ν̄b;Lγλνa;L� þ ½l̄b;Lγλla;L�� × ½½ν̄c;Lγλνc;L� þ ½l̄c;Lγ
λlc;L��; ð8:41Þ

Oðla→lblcl̄cÞ
LLRR ¼ ½L̄b;L;iγλLi

a;L�½l̄c;Rγ
λlc;R� ¼ ½½ν̄b;Lγλνa;L� þ ½l̄b;Lγλla;L��½l̄c;Rγ

λlc;R�; ð8:42Þ

Oðla→lblcl̄cÞ
RRLL ¼ ½l̄b;Rγλla;R�½L̄c;L;iγ

λLi
c;L� ¼ ½l̄b;Rγλla;R�½½ν̄c;Lγλνc;L� þ ½l̄c;Lγ

λlc;L��; ð8:43Þ

Oðla→lblcl̄cÞ
RRRR ¼ ½l̄b;Rγλla;R�½l̄c;Rγ

λlc;R�; ð8:44Þ

Oðla→lblcl̄cÞ
LRRL ¼ ½L̄b;L;ila;R�½l̄c;RLi

c;L� ¼ ½ν̄b;Lla;R�½l̄c;Rνc;L� þ ½l̄b;Lla;R�½l̄c;Rlc;L�; ð8:45Þ

Oðla→lblcl̄cÞ
RLLR ¼ ½l̄b;RLi

a;L�½L̄c;L;ilc;R� ¼ ½l̄b;Rνa;L�½ν̄c;Llc;R� þ ½l̄b;Rla;L�½l̄c;Llc;R�: ð8:46Þ

(Here we show all terms arising from these GSM-invariant operators, but only the ones with all charged leptons are relevant
for our analysis in this section.)
Integrating these four-lepton operator products over the extra dimensions and using the integration formula (2.14), we

obtain the following results:

Iðla→lblcl̄cÞ
LLLL ¼ b4 exp

�
−
1

4
fkηLa;L

− ηLb;L
k2 þ 2kηLa;L

− ηLc;L
k2 þ 2kηLb;L

− ηLc;L
k2g

�
; ð8:47Þ

Iðla→lblcl̄cÞ
LLRR ¼ b4 exp

�
−
1

4
fkηLa;L

− ηLb;L
k2 þ 2kηLa;L

− ηlc;Rk2 þ 2kηLb;L
− ηlc;Rk2g

�
; ð8:48Þ

Iðla→lblcl̄cÞ
RRLL ¼ b4 exp

�
−
1

4
fkηla;R − ηlb;R

k2 þ 2kηla;R − ηLc;L
k2 þ 2kηlb;R − ηLc;L

k2g
�
; ð8:49Þ

Iðla→lblcl̄cÞ
RRRR ¼ b4 exp

�
−
1

4
fkηla;R

− ηlb;Rk2 þ 2kηla;R
− ηlc;Rk2 þ 2kηlb;R − ηlc;Rk2g

�
; ð8:50Þ

Iðla→lblcl̄cÞ
LRRL ¼ b4 exp

�
−
1

4
fkηLb;L

− ηla;Rk2 þ kηLb;L
− ηlc;Rk2 þ kηLb;L

− ηLc;L
k2

þ kηla;R − ηlc;Rk2 þ kηla;R − ηLc;L
k2 þ kηlc;R − ηLc;L

k2g
�
; ð8:51Þ

Iðla→lblcl̄cÞ
RLLR ¼ b4 exp

�
−
1

4
fkηlb;R − ηLa;L

k2 þ kηlb;R − ηLc;L
k2 þ kηlb;R − ηlc;Rk2

þ kηLa;L
− ηLc;L

k2 þ kηLa;L
− ηlc;Rk2 þ kηLc;L

− ηlc;Rk2g
�
: ð8:52Þ

Following the notation of Eq. (2.20), we list the values of the integrals of these operators over the extra dimensions in
Table IX for the various la → lblcl̄c decays.
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In presenting a result for the contribution of these four-
lepton operators to the decay la → lblcl̄c in the case
where la ¼ τ, it is convenient to normalize relative to one
of the allowed leptonic decays of the τ, using the identity

BRðla → lblcl̄cÞ ¼
Γla→lblcl̄c

Γla

¼ BRðla → νalbν̄bÞΓla→lblcl̄c

Γla→νalbν̄b

;

ð8:53Þ

where BRðμ → νμeν̄eÞ ¼ 1, and the values of BRðτ →
ντlν̄lÞ were given in Eqs. (8.21) and (8.22) for l ¼ e, μ.
The contribution of these local four-lepton (4l)operators to
the branching ratio for the decay la → lblcl̄c is

BRðla → lblcl̄cÞ4l
¼ ξabcBRðla → νalbν̄bÞ

×

�
v2

2Λ2
L

�
2
����
X
r

κ̄ðla→lblcl̄cÞ
r e−S

ðla→lblc l̄cÞ
r

����
2
�

μ2

πΛ2
L

�
2

:

ð8:54Þ

Here, ξabc is a factor that takes account of the presence of
the direct minus the crossed diagram and the factor of 1=2
in the rate in the case where two of the fermions in the final
state are identical; this will not be important for our
conclusions here.
For μ → eeē in this GSM split-fermion model with n ¼ 2

and assuming the dimensionless coefficients κ̄ðμ→eeēÞ
r ∼

Oð1Þ, the operator Oðμ→eeēÞ
LLLL gives the dominant contribu-

tion, and we find

BRðμ → eeēÞ4l ≃ 10−53: ð8:55Þ

We conclude that, with our set of lepton wave function
centers, contributions of the second kind dominate over
these contributions of four-lepton operators to the decay
μ → eeē. A rough estimate of the second type of contri-
butions can be obtained by focusing on the process la →
lb þ γ mediated by Lμeγ that was studied in Sec. VIII C,
but with the modification here that the photon is virtual
instead of real, and produces the eþe− pair in the final state.
We obtain the approximate estimate

Γμ→eeē ≃ ð4παemÞ
�
R̄ðeeēÞ
3

RðeγÞ
2

�
Γμ→eγ; ð8:56Þ

where RðeγÞ
2 and R̄ðeeēÞ

3 are the two-body and dimensionless
three-body phase space respectively. Since m2

e ≪ m2
μ,

these phase space factors reduce to RðeγÞ
2 ¼ 1=ð23πÞ and

R̄ðeeēÞ
3 ¼ 1=ð28π3Þ. Denoting the four-momentum carried

by the virtual photon as q, we note that the 1=q2 factor in
the amplitude from the photon propagator is cancelled by
momenta of order m2

μ in the calculation of the rate. From
Eq. (8.56), using the result (8.19), we thus obtain the
following estimate for the contribution to μ → eeē decay in
this GSM split-fermion model:

BRðμ → eeēÞ ≃
�
αem
8π

�
BRðμ → eγÞ

¼ ð2.6 × 10−36Þ½jκ̄ðμeγÞ1 j2

þ ð1.8 × 10−27Þjκ̄ðμeγÞ2 j2�: ð8:57Þ

This is many orders of magnitude below the current
experimental upper limit, (8.29), on the branching ratio
for this decay.
In a similar manner, we can analyze the CLFV processes

τ → lblcl̄c, where lb and lc can be e or μ. We focus on
the decay τ → μμμ̄, because, for our choice of lepton wave

function centers, the integral Iðτ→μμμ̄Þ
LLLL is relatively unsup-

pressed. This is due to the fact that the dimensionless
distance kηL3;L

− ηL2;L
k ¼ 1.878 is relatively small com-

pared with other distances entering into the relevant

integrals. Therefore, the operator Oðτ→μμμ̄Þ
LLLL provides the

dominant contribution to the decay τ → μμμ̄. The corre-
sponding effective Lagrangian in the four-dimensional low-
energy field heory is

Lðτ→μμμ̄Þ
eff;4D ðxÞ ¼ κ̄ðτ→μμμ̄Þ

Λ2
L

�
μ2

πΛ2
L

�
exp

�
−
3

4
kηL2;L

− ηL3;L
k2
�

× ½L̄2;LðxÞγλL3;LðxÞ�½L̄2;LðxÞγλL2;LðxÞ�
þ H:c: ð8:58Þ

Using Eq. (8.53), we find that in the GSM split-fermion
model with n ¼ 2,

TABLE IX. Integrals Iðla→lblcl̄cÞ for la → lblcl̄c decays.

Decay a b c ILLLL ILLRR IRRLL IRRRR ILRRL IRLLR

μ → eeē 2 1 1 3.92 × 10−24 3.06 × 10−39 0.709 × 10−31 3.74 × 10−42 0.709 × 10−31 3.06 × 10−39

τ → eeē 3 1 1 3.21 × 10−29 0.618 × 10−40 3.23 × 10−45 0.846 × 10−39 3.23 × 10−45 0.618 × 10−40

τ → μμμ̄ 3 2 2 0.0709 1.88 × 10−11 2.29 × 10−17 2.40 × 10−25 2.29 × 10−17 1.88 × 10−11
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BRðτ → μμμ̄Þ ≃ 2BRðτ → ντμν̄μÞjκ̄ðτ→μμμ̄Þ
LLLL j2

�
v2

2Λ2
L

�
2

×

�
μ2

πΛ2
L

�
2

e−
3
2
kηL2;L−ηL3;Lk2 : ð8:59Þ

Substituting the value of BRðτ → ντμν̄μÞ from Eq. (8.22)
and the value of kηL2;L

− ηL3;L
k from Table III, we obtain the

resulting estimate

BRðτ → μμμ̄Þ ≃ 10−9jκ̄ðτ→μμμ̄Þ
LLLL j2: ð8:60Þ

For jκ̄ðτ→μμμ̄Þ
LLLL j≳Oð1Þ, this is in accord with the current

experimental upper bound BRðτ → μμμ̄Þ < 2.1 × 10−8

given in Eq. (8.31). As discussed in Appendix C, although
the nine distance constraints in Table I do not restrict
kηL3;L

− ηL2;L
k, the selection criteria in this appendix, in

conjunction with the symmetries observed there for
a class of solutions essentially fix this distance. This, in
turn, produces the branching ratio (8.60), which, for

jκ̄ðτ→μμμ̄Þ
LLLL j ≃ 1, is approximately a factor of 20 smaller than

the current experimental limit on BRðτ → μμμ̄Þ in
Eq. (8.31). Using similar methods, we find that the
branching ratios for the other CLFV τ decays τ → eeē,
τ → eμμ̄, and τ → μeē are many orders of magnitude
below the respective experimental upper bounds.

E. Transition magnetic moments
of Majorana neutrinos

The diagonal magnetic and electric dipole moments
vanish for a Majorana (i.e., self-conjugate) neutrino, but
the transition magnetic and electric dipole moments are
nonzero. These are given by the following terms in the
matrix element hνbjJem;λjνai:

½ν̄bσλρfðFV
2 Þν;ba þ ðFA

2 Þν;baγ5gÞνa�qρ; ð8:61Þ

where q is the four-momentum of the photon. The
transition magnetic and electric dipole moments of a
Majorana neutrino νa to νb (with a ≠ b) in the SM
(extended to include neutrino masses) have the respective
magnitudes [105–108]

jμν;baj ¼
3eGFðmνa þmνbÞ

16π2
ffiffiffi
2

p
����
X3
k¼1

ImðU�
kbUkaÞ

�
m2

la

m2
W

�����
ð8:62Þ

and

jdν;baj ¼
3eGFjmνa −mνb j

16π2
ffiffiffi
2

p
����
X3
k¼1

ReðU�
kbUkaÞ

�
m2

la

m2
W

�����;
ð8:63Þ

where mla denotes the mass of the charged lepton la.
In contrast, for example, the diagonal magnetic moment of
a Dirac neutrino is [104]

μν ¼
3eGFmν

8π2
ffiffiffi
2

p

¼
�
3GFmνme

4π2
ffiffiffi
2

p
�
μB

¼ ð3.20 × 10−19Þ
�

mν

1 eV

�
μB: ð8:64Þ

The most stringent upper limit on a diagonal Dirac or
transition magnetic or electric moment of a neutrino arises
from astrophysics, specifically stellar cooling rates, and is
∼10−12μB [36,109,110].
We proceed to calculate contributions to the transition

magnetic moment of a Majorana neutrino in the split
fermion model with n ¼ 2. the operator contributing
to transition magnetic moment in the six-dimensional
theory is

Omm;ba;4þn ¼
g0

Λ3
L
A2
fA

2
bosAF½LT

b;LCσλρLa;L�ϕ2Fλρ
B ; ð8:65Þ

where g0 ¼ e=sin θW and Fλρ
B are the weak hypercharge

Uð1ÞY gauge coupling and field strength tensor, and
the dimensionful normalization constants Af, Abos, and
AF were given in Eqs. (2.6), (2.22), and (2.23). We
have also incorporated the mass dimension of the
gauge coupling g0 in the prefactor. The integral of
the fermion bilinear over the extra dimensions yields
the factor

Imm;ba ¼ e−ð1=2ÞkηLb;L−ηLa;Lk
2

: ð8:66Þ

With our solution for the locations of the wave function
centers of the leptons in the extra dimensions, these have
the values Imm;12 ¼ 2.49 × 10−16, Imm;13 ¼ 1.01 × 10−19,
and Imm;23 ¼ 0.171. The fact that Imm;23 is much larger
than Imm;12 and Imm;13 is a consequence of the property that
the distance kηL2;L

− ηL3;L
k is considerably smaller than the

distances kηL1;L
− ηL2;L

k and kηL1;L
− ηL3;L

k, combined with
the exponential sensitivity of Imm;ba to the squares of these
distances.
After this integration, the operator reduces to

eðv= ffiffiffi
2

p Þ2
Λ3
L sin θW

Imm;ba½LT
b;LðxÞσλρLa;LðxÞ�: ð8:67Þ

The resultant transition magnetic moments of a Majorana
neutrino, μν;ba, are of order
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μν;ba ≃
ev2

2Λ3
L sin θW

Imm;ba

≃
�ð2meÞv2

Λ3
L

Imm;ba

�
μB: ð8:68Þ

The largest of these is μν;23 ≃ 10−14μB, while μν;12 and μν;13
are much smaller. A similar analysis applies for the
transition electric dipole moments of the neutrinos.
These transition magnetic and electric dipole moments
are all well below the astrophysical upper bound of
∼10−12μB on the (magnitude) of diagonal or transition
magnetic or electric neutrino dipole moments [36,109,110].

F. Neutrinoless double beta decay
and jΔLj= 2 hadron decays

Here we analyze predictions for neutrinoless double beta
decay and jΔLj ¼ 2 hadron decays in split-fermion models.
Neutrinoless double beta decay is a ΔL ¼ 2 process and its
occurrence would indicate that neutrinos are self-conjugate,
Majorana fermions. As discussed above, the Majorana
nature of the neutrino is natural in both (a) the SM extended
to include SM-singlet right-handed neutrinos, since the
right-handed neutrino mass terms are jΔLj ¼ 2 operators,
and (b) in the LRS model, since the vacuum expectation
value of the ΔR Higgs breaks B − L by two units and,
among other things, yields jΔLj ¼ 2 right-handed neutrino
bilinears [5,6,111–113]. Searches for neutrinoless double
beta decay have been performed for many decades and have
set quite stringent lower bounds on the half-lives of various
decays of this type involving parent nuclei such as 76Ge and
136Xe; some recent reviews are [115–118]. With calcula-
tions of nuclear matrix elements, these lower limits can be
transformed into upper limits for the effective Majorana
mass quantity mββ ¼ jP3

j¼1U
2
ejmνj j; at present the non-

observation of neutrinoless double beta decays yields upper
limits of mββ ≳ 0.3 eV. At a nucleon level, neutrinoless
double beta decay is the process nn → ppee, and at the
quark level, dd → uuee; in both cases, the coefficient cββ
of the corresponding six-fermion operator in an effective
Lagrangian has Maxwellian mass dimension −5 (in four-
dimensional spacetime). Thus, an equivalent way of
expressing the experimental limits from the nonobservation
of neutrinoless beta decay is as an upper limit on this
coefficient. Current data give the upper limit [36,116–118]

jcββj≲ 10−19 GeV−5: ð8:69Þ

There are many operators arising from physics beyond
the Standard Model that can contribute to neutrinoless
double beta decay [5,6,116–119]. We first consider one of
the lowest-dimension operators invariant under the SM
gauge group, namely the six-fermion operator in the d ¼
4þ n space,

Oββ ¼ κββ½d̄RγλuR�½d̄RγλuR�½eTRCeR� þ H:c:; ð8:70Þ

where here the Lorentz index runs over all 4þ n dimen-
sions and we set κββ;ð6Þ ≡ κββ. The η-dependent part of the
six-fermion operator product in (8.70) is

A6e−2kη−ηu1;Rk
2−2kη−ηd1;Rk2−2kη−ηl1;Rk2 : ð8:71Þ

Carrying out the integration over the extra dimensions, we
obtain the corresponding Oββ in d ¼ 4 with coefficient

cββ;SF ¼
κ̄ββ
Λ5
L

�
2μ2

31=2πΛ2

�
n
e−Sββ;ð6Þ ; ð8:72Þ

where, from an application of Eq. (2.14),

e−Sββ;ð6Þ ¼ exp
�
−
2

3
fkηu1;R − ηd1;Rk2 þ kηu1;R − ηl1;R

k2

þ kηd1;R − ηl1;Rk2g
�
: ð8:73Þ

With our choice of locations of wave function centers, we
calculate that kηu1;R − ηd1;Rk ¼ 4.72, kηu1;R − ηl1;Rk ¼
18.22, and kηd1;R − ηl1;Rk ¼ 17.08. Substituting these val-
ues into Eq. (8.73) yields an extremely small value, e−Sββ;ð6Þ ,
since Sββ;ð6Þ ¼ 430.70. When one encounters such a small
number, one naturally inquires how stable it is to pertur-
bations in the distances of the wave function centers of the
fermion fields. The property that this quantity e−Sββ;ð6Þ is
extremely small remains true under small perturbations of
the positions of the relevant wave function centers and
hence the relevant distances entering into Sββ;ð6Þ. With
jκ̄ββj ∼Oð1Þ and n ¼ 2, using our values of μ and ΛL, the
prefactor multiplying e−Sββ;ð6Þ in Eq. (8.72) is ≃1 × 10−20,
yielding an even smaller value for the coefficient cββ, which
is many order of magnitude smaller than the current upper
limit (8.69). Thus, the contribution from the split-fermion
models to neutrinoless double beta decay are negligibly
small. For operators with higher dimensions, the contribu-
tions are even smaller, and therefore we do not discuss
them. Similar comments apply to other jΔLj ¼ 2 processes
such as Kþ → π−μþμþ [120,121]. As noted above, in the
LRS split-fermion model, below the scale of vR ∼ 103 TeV
the GLRS symmetry is broken to GSM. Hence, using
usual low-energy field theory methods, one analyzes the
physics in terms of the fields of the SM model. Therefore,
our discussion above applies to the split-fermion model
with a GSM gauge symmetry and also a GLRS gauge in the
ultraviolet.
Returning to the 4D LRS theory, for completeness, we

add some further remarks. In this theory, one contribution
to neutrinoless double beta decay arises from a graph in
which two d quarks make transitions to u quarks via
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vertices connecting to two virtualW−
L vector bosons, which

then connect via an internal light neutrino line with
emission of the two electrons. There are also additional
contributions, which have been analyzed in a number of
papers; some early studies were [5,6,111–114,122,123] and
some recent ones are [124–127]. These contributions
include (i) a graph in which two d quarks make transitions
to u quarks via vertices connecting to two W−

R vector
bosons, which then connect to an internal heavy νR
neutrino line, with emission of the 2e−; (ii) the correspond-
ing graph in which the twoW−

R lines meet at a single vertex,
producing a virtual Δ−−

R in the s channel, which then
materializes to the 2e− pair; (iii) the corresponding graph in
which the W−

R lines are replaced by W−
L lines and the

s-channel Δ−−
R by a Δ−−

L ; and (iv) other corresponding
graphs with theW−

R orW−
L lines replaced by ϕ−

1 or ϕ−
2 lines

meeting to produce s-channel Δ−−
L or Δ−−

R Higgs. In the
present LRS extra-dimensional model, because vR and
hencemWR

are quite large, ∼103 TeV, the graphs involving
WR and/or ΔR internal propagators make negligibly small
contributions. These additional contributions are also in
accord with the bound (8.69). For example, the WLWLΔL
vertex in the graph (iii) can be suppressed by a large ΔL
mass and, moreover, contains a factor of vL, which is
required to be ≪ v in order not to upset the experimentally
observed property that m2

WL
=ðm2

Z cos
2 θWÞ is very close

to 1.

IX. BARYOGENESIS AND DARK MATTER
IN THE MODELS

We now discuss ways to incorporate baryogenesis and
dark matter in the models. We argue that all the ingredients
for baryogenesis are already present in the models dis-
cussed above, whereas to understand dark matter of the
universe, one needs a very minimal extension.

A. Baryogenesis

Baryogenesis requires that the three Sakharov conditions
are satisfied: (i) baryon number violation, (ii) C and CP
violation, and (iii) dynamical evolution that is out of
thermal equilibrium [128]. One of the mechanisms that
can account for baryogenesis is to generate the baryon
asymmetry via a first step involving leptogenesis [129]. In
our models, this leptogenesis mechanism can be used to
explain baryogenesis. The basic mechanism of leptoge-
nessis [129] requires the presence of right-handed neutrinos
producing a seesaw mechanism for small neutrino masses,
together with CP-violating Dirac neutrino Yukawa cou-
pling coupling that leads to the Dirac mass for the neutrinos
in the seesaw mechanism. Both of these ingredients are
present in the models, as is evident from Eq. (5.25).
Moreover, since the right-handed neutrinos (RHNs) are
in the multi-TeV range, the Dirac Yukawa couplings are too
small to yield a sufficient amount of baryon asymmetry if

the RHNs are hierarchical in mass. However it is well
known that if the RHNs are quasi-degenerate, the mecha-
nism can be resonantly enhanced [130,131]. In our models,
as Eq. (5.26) shows, we have chosen a quasi-degenerate
right-handed neutrino spectrum to fit neutrino masses. We
have not computed the magnitude of the baryon asymmetry
generated by our models but it is known that with resonant
leptogenesis mechanism, the mass and width of the RHNs
generically provide sufficient enhancement to give the right
order of magnitude for the baryon asymmetry.

B. Dark matter

There is compelling cosmological evidence for dark
matter (DM), which makes up about 85% of the matter in
the universe. An intriguing possibility is that dark matter is
comprised of one or more particles, and there has been, and
continues to be, an intense experimental effort to detect
dark matter particles predicted by various models. (Some
recent reviews with references to the extensive literature are
[132–134].) Many possible dark matter candidates have
been proposed and studied, ranging in mass from
∼10−22 eV [135] to primordial black holes. While the cold
dark matter (CDM) paradigm has received much attention,
scenarios with warm dark matter have also been studied
(e.g., [136]). Here we shall suggest a CDM scenario in the
context of the split-fermion models. In thermal dark matter
models, to account for the observed value of the dark
matter, ΩDM ¼ 0.265ð7Þ [36,137], the (co)annihilation
cross section σDM ann times velocity v [in the center of
mass of the (co)annihilating DM particles] should satisfy

hσDM annvi ≃ ð2–3Þ × 10−26 cm3 s−1; ð9:1Þ

i.e., hσDM annðv=cÞi ∼ 10−36 cm2 [132,134,138]. In the
thermal dark matter scenario, the freeze-out of the χ
DM, which thus determines the relic DM density, occurs
as the temperature T in the early universe decreases below a
value given by T=mχ ≃ 0.05. Since most of the DM χ
particles are nonrelativistic at this point, the corresponding
v=c value is ∼0.3.
In order to account for dark matter, we will extend our

minimal split-fermion models with the addition of a dark
matter particle which is a chiral fermion, denoted χ, that,
like the other fermions, has a wave function that is strongly
localized with a Gaussian profile in the n ¼ 2 extra
dimensions. [Here we follow a common convention of
using the symbol χ for a dark matter fermion; the reader
should not confuse this with the χ in Eq. (2.1).] There is a
nonzero overlap between the wave function of this χ field
and the SM fermions if there are gauge-invariant operators
connecting a single χ and an appropriate number of SM
fermions, as we discuss below. In this case, these operators
will lead to the dark matter being an unstable particle.
However for a χ that transforms according to a sufficiently
high-dimensional representation of the gauge group and
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for sufficiently large separation distances between χ and
SM fermions in the extra dimensions, the resultant cou-
plings in the low-energy effective Lagrangian in four
spacetime dimensions will be highly suppressed, so the
DM fermion can be considered effectively stable. Thus the
first thing we note is that the dark matter in the SM split-
fermion model is necessarily a decaying dark matter, whose
decay rate depends on the representation of χ under the SM
gauge group, GSM. In order for χ to be sufficiently weakly
interacting, it must be a singlet under color SUð3Þc, so in
the SM split fermion model, we are referring to the
representation of the weak isospin group, SUð2ÞL. For
instance, if χ belongs to a very high-dimensional repre-
sentation of SUð2ÞL, there can be high-dimensional oper-
ators connecting the DM to SM fermions.
The situation can be very different if the gauge group is

GLRS, since it is known that certain kinds of fermions in the
LRS case do not have any operator connecting a single DM
field to SM fermions. The DM fermion can therefore be
absolutely stable dark matter [140]. We briefly elaborate on
these ideas below.

1. Dark matter with SM gauge group

As noted above, the simplest dark matter particle in the
case of the SM gauge group is a chiral fermion, which we
can denote as χ, with a Majorana mass term of the form
χTCχ þ H:c:, belonging to a higher-dimension (color-
singlet) representation of the SUð2ÞL SM weak isospin
group [139]. Clearly, such a mass term is allowed only for
certain representations, namely those which have zero weak
hypercharge, Yχ ¼ 0. The Yχ ¼ 0 property is also neces-
sary to avoid a tree-level coupling of the χ with the Z. Let us
denote the value of weak isospin of the SUð2ÞL represen-
tation containing χ as ðTLÞχ . This value must be an integer,
since the relation Qem ¼ T3L þ ðY=2Þ implies that if χ
were in an SUð2ÞL representation with a half-integer value
of ðTLÞχ , then no component in the corresponding weak
isomultiplet would be electrically neutral, as required for
dark matter. Since ðTLÞχ is an integer, χ actually transforms
as a representation of SO(3) and does not produce any
triangle gauge anomaly or global anomaly in the SUð2ÞL
sector of the Standard Model. The values ðTLÞχ ¼ 0 and
ðTLÞχ ¼ 1 will be excluded below. The fact that Tχ is
nonzero means that the full SUð2ÞL weak isomultiplet will
contain electrically charged components. However, gauge
interactions naturally raise the masses of the charged
components of this weak isomultiplet, so that χ is the
lightest member of this multiplet [139]. In the split-fermion
models with n ¼ 2 and thus d ¼ 6 spacetime dimensions, a
chiral fermion is a four-component fermion (denoted by
ψþ), which, in a domain-wall background, plays the role of
a two-component Weyl fermion in four spacetime dimen-
sions. After the extra-dimensional wave function overlap
effect is taken into account, this will induce an effective

operator in the 4D low-energy effective theory, which can
let the χ field decay to SM fields. It follows that a DM
fermion transforming according to a smaller representation
would have a shorter lifetime compared to the required
lifetime τχ ≳ 1025 sec [141] and hence could not be dark
matter. For example, if χ were to have ðTLÞχ ¼ 0 and would
thus be an SM singlet, then there would be an effective
operator

X3
a¼1

cðχLϕÞa ϵij½χTLCLi
a;L�ϕj þ H:c: ð9:2Þ

[where ϕ is the SM Higgs doublet, i, j are SUð2ÞL group
indices, and ϵij is the antisymmetric SU(2) tensor] that
would enable χ to mix with known leptons with a mass
mixing ∝ v (where v is the SM Higgs VEV) and would
hence make it decay very fast. Furthermore, the weak
isovector value ðTLÞχ ¼ 1 is also forbidden [139], since
there would then be an operator

X3
a¼1

cðχLϕ0Þa ðϵkiϵmj þ ϵkjϵmiÞ½χkmT
L CLi

a;L�ϕj þ H:c: ð9:3Þ

Here, one uses the property that the isovector representation
of SU(2) is equivalent to the symmetric rank-2 tensor
representation to write χkm as a two-index symmetric
tensor. So one needs to choose χ to be in a higher-
dimensional SUð2ÞL representation. The study in
Ref. [139] concluded that the value ðTLÞχ ¼ 2 is allowed
for a fermion [and ðTLÞ ¼ 3 would be allowed for a scalar
DM particle, which we do not consider here].
For a DM χ, belonging to the ð1;NÞ0 representation

under SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY, whereN ¼ 2ðTLÞχ þ 1

(and the subscript denotes the weak hypercharge, Y), an
effective operator in 4þ n ¼ 6 dimensions will be

ODM ¼
X3
a¼1

X
r

κðχ;LaÞ
r ½χTLCLa;L�ϕOSM;r; ð9:4Þ

where the operator(s) OSM;r consist of SM fermions whose
effective GSM representation is such that it makes the full
ODM operator an SM singlet. [In Eq. (9.4) we have left the
SUð2ÞL indices implicit on the fields, with it being under-
stood that they are contracted to make an SUð2ÞL singlet.]
The corresponding effective operator in 4D, after the Higgs
VEV is substituted, and after the integration over the two
extra dimensions is performed, has a prefactor that depends
on the number and types of fields in ODM and an
exponential factor e−SOSM;r that depends on the separation
distances between their wave function centers. In particular,
with k fermions comprising (part or all of)OSM;r, and hence
kODM

¼ kþ 2, this prefactor is given by the n ¼ 2 special
case of cr;ðkODM

Þ in Eq. (2.21) with the parameter k in that
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equation set equal to kODM
and the mass scale M ¼ ΛL.

This prefactor contains an exponential prefactor e−SODM ;r

that depends on the separation distances between the fields
comprisingODM. Thus, just as with proton decay operators,
one can suppress this operator very strongly. For the case
ðTLÞχ ¼ 2 andmχ ∼Oð10Þ TeV, the relevant SM-invariant
interaction in the six-dimensional space is of the form

ODM ¼
X3
a¼1

κðOaÞ½χTLCLa;L�ϕðϕ†ϕÞ; ð9:5Þ

where the weak isospinors La;L and ϕ are combined to
make a TL ¼ 1 state; the ϕ†ϕ product is also in a TL ¼ 1
state; these are combined to make TL ¼ 2; and this is
contracted with χ to form an SUð2ÞL singlet. In this case,
the exponential factor e−SOSM ¼ exp½−ð1=2ÞkηLa;L

− ηχk2�.
With jκ̄ðOaÞj ∼Oð1Þ, and a separation distance kηLa;L

−
ηχk≳ 10, we calculate that the χ lifetime τχ satisfies the
requisite condition of being greater than 1025 sec. This
separation distance can be arranged in the model with the
solutions for the quark and lepton wave function centers
that we have obtained. It should be recalled that in this type
of model, because the χ is an SUð2ÞL nonsinglet, it has tree-
level couplings with W and Z.

2. Dark matter with GLRS gauge group

The situation in the left-right split-fermion model is,
however, very different. As has been pointed out in [140],
in this case there are representations to which a dark matter
fermion can belong which do not have any effective
operator that consists of a single DM field together with
SM fields coupled in a gauge-invariant way. As a result,
the dark matter can be stable and can only annihilate to give
the relic density. Examples of some GLRS representations
for which this situation holds are fð1; 1; 1Þ0; ð1; 1; 3Þ0;
ð1; 3; 1Þ0; ð1; 1; 5Þ0; ð1; 5; 1Þ0;…g, where we use the same
notation for a representation of GLRS as in Eqs. (3.1) and
(3.2). Note that in this case a χ which is a singlet under
GLRS is allowed. Here the stability of dark matter is
guaranteed by the remnant ðZ2ÞB−L symmetry in the model.
It can be the conventional WIMP DM and its relic density is
determined by their annihilation to SM fields via WL;R

exchange [142,143].
The detailed phenomenology of such dark matter in the

split-fermion model with GLRS gauge symmetry is beyond
the scope of this paper; however, we would like to make
some general comments about it. The first point is that, at
the tree level, the various members of the DM multiplet are
degenerate in mass, and their masses are split only by
radiative corrections due to the exhange of WL;R bosons
[142,143]. Furthermore, the relic DM density in the LRS
model depends on the representation of χ under both the
SUð2ÞL and SUð2ÞR gauge groups. In particular, if χ is a

nonsinglet under SUð2ÞR, then the relic density depends on
the WR and Z0 masses. The heavier the WR and Z0, the
higher the relic density. Since in our model, the WR and Z0

are already in the 103 TeV range [recall Eqs. (6.1) and
(6.2)], the cross section for the reaction χ̄χ → ff̄ from Z0
(where f is an SM fermion) is quite suppressed. If the χ is a
nonsinglet under SUð2ÞL, then a calculation and result
similar to those obtained in [139] would apply. The new
point about such models is that, depending on the location
of χ in the extra two dimensions, there will be an additional
contribution to the DM (co)annihilation in the early
universe. The dominant operator will be of four-fermion
type, with a bilinear χ term multiplying bilinears composed
of SM fermions. After integration over the extra dimen-
sions, the resultant 4D operators will have prefactors of
the form

�
μ2

πΛ4
L

�
e−Sχf : ð9:6Þ

The generic size of this new contribution is of order
10−3GF and can be adjusted by suitably choosing the
location of χ in the extra dimensions to give the right relic
density. For example, if the fermion is very close to the SM
fermions, the exponential can be close to unity and the DM
annihilation cross section will be of order

σχχ ann ∼
10−6G2

Fm
2
χ

4π
: ð9:7Þ

This gives the desired relic density for mχ ∼ 30 TeV. The
detailed phenomenological implication of such dark matter
in the LRS version of this split-fermion model are beyond
the scope of this paper, but merit further investigation.

X. CONCLUSIONS

In this paper we have studied several properties of
models with large extra dimensions, in which quarks
and leptons have localized wave functions in the extra
dimensions. We have focused on the case of n ¼ 2 extra
dimensions and have considered models with two types of
gauge groups: (i) the Standard-Model gauge group, and
(ii) the left-right symmetric group. In particular, we have
investigated how well these split-fermion models can
account for neutrino masses and mixing. With an extension
to include a gauged Uð1ÞB−L symmetry, the SM version of
the split-fermion model can be in accord with current data.
As compared with the SM version, the LRS version of the
split fermion model has the advantage that it can account
for data on neutrino masses and mixing without the need
for any extension, provided that the vacuum expectation
value of the ΔL Higgs is ∼Oð1Þ eV. The LRS solution
involves a seesaw mechanism arising from a naturally large
vacuum expectation value of the ΔR Higgs. As part of our
work, we have also calculated a new solution for quark
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wave functions. In order to suppress flavor-changing
neutral-current effects due to higher KK modes of gauge
and Higgs fields sufficiently in the split-fermion models,
we have chosen locations for the wave function centers of
Q ¼ −1=3 quark fields and charged leptons so as to render
the corresponding mass matrices diagonal, up to small
corrections. We have shown that, within the context of this
approach, the LRS and augmented SM split fermion
models are in accord with experimental constraints, includ-
ing those from limits on non-Standard-Model contributions
to weak decays and neutrino reactions, FCNC processes,
neutrino electromagnetic properties, and neutrinoless dou-
ble beta decays. We have also discussed baryogenesis and
dark matter in the context of the models with each type of
gauge symmetry group and suggested extensions of these
models with a candidate fermion that could comprise dark
matter.
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APPENDIX A: GENERALITIES ON QUARK
AND LEPTON MIXING

We recall the procedure for diagonalizing the various
fermion mass matrices. For this purpose, let us denote
the chiral components of the weak eigenstates as ξf;L and
ξf;R, for Q ¼ 2=3 and Q ¼ −1=3 quarks, and charged
leptons, denoted generically as f ¼ u; d;l, where each
of these is a three-dimensional vector with generation
indices a ¼ 1, 2, 3, which are henceforth implicit in the
notation. A generic mass term is then

ξ̄f;LMðfÞξR þ H:c: ðA1Þ

Each MðfÞ can be diagonalized by a bi-unitary trans-
formation For f ¼ u or f ¼ d, we write

UðfÞ†
L MðfÞUðfÞ

R ¼ MðfÞ
diag: ðA2Þ

To do this, one constructs the Hermitian products
MðfÞMðfÞ† and MðfÞ†MðfÞ, which can be diagonalized
according to

UðfÞ†
L MðfÞMðfÞ†UðfÞ

L ¼ M2
diag ðA3Þ

and

UðfÞ†
R MðfÞ†MðfÞUðfÞ

R ¼ M2
diag: ðA4Þ

(See, e.g., Eqs. (2.12)–(2.15) in [102] with requisite changes
in notation.) The corresponding transformations relating the
weak eigestates ξðfÞ and mass eigenstates, denoted ψ ðfÞ
(each a three-dimensional vector) for f ¼ u, d are

ψ ðfÞ
L ¼ UðfÞ†

L ξðfÞL ; ψ ðfÞ
R ¼ UðfÞ†

R ξðfÞR : ðA5Þ

The weak charged current involving quarks, in terms of
weak eigenstates, is

Jλ ¼ ξ̄ðuÞL γλξ
ðdÞ
L ¼ ψ̄ ðuÞ

L γλVψ
ðdÞ
L ; ðA6Þ

where the CKM quark mixing matrix is

V ¼ UðuÞ†
L UðdÞ

L : ðA7Þ

One step in the construction of a split-fermion model is
to work backwards from the known CKM matrix V to
determine MðuÞ and MðdÞ and, from these, a set of quark
wave function centers that yield thesemassmatrices. It should
be recalled that these mass matrices are not unique; in view of
the relation (A7), a different set of mass matrices MðuÞ and
MðdÞ and hence different UðuÞ0

L and UðdÞ0
L (and different UðuÞ0

R

and UðdÞ0
R , yielding the same mass eigenvalues) satisfying

UðuÞ0†
L UðdÞ0

L ¼ UðuÞ†
L UðdÞ

L would yield the same CKM quark
mixing matrix V. Indeed, many forms have been studied for
quark mass matrices (e.g., [144]). A standard convention for
parametrizing the CKMmatrix V is in terms of three rotation
angles, θ12, θ13, θ23, and a phase, δ is

V ¼ R23ðθ23ÞK�R13ðθ13ÞKR12ðθ12Þ ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA; ðA8Þ

where RjkðθjkÞ is the matrix for a rotation by an angle
θjk in the j, k subspace and K is the phase matrix
K ¼ diagð1; 1; e−iδÞ. (A different convention was used in
early papers [145,146].)
The diagonalization of the charged lepton mass matrix

and the neutrino mass matrix is discussed in the text

[see Eqs. (5.10), (5.9)], and the resultant lepton mixing
matrix U is given by Eq. (5.12). The same convention as
Eq. (A8) is used for the lepton mixing matrix U, with
respective leptonic mixing angles θij and phase δ. If
neutrinos are Majorana fermions, then the transformation
(A9) also involves a Majorana phase matrix, which may
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be written as KMaj ¼ diagð1; eiα2 ; eiα3Þ [78]. One often
writes

U ¼

0
B@

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

1
CAKMaj: ðA9Þ

However, these Majorana phases do not affect the fit to
neutrino oscillation data.
Concerning the seesaw mechanism, we recall the alge-

braic origin of the problem that one encounters with the SM
version of the split-fermion model. To show this, it will
suffice to illustrate the problem in a simplified case of one-
generation, where the matrix in Eq. (5.1) is a 2 × 2 matrix.
We write this as

M ¼
�
mL mD

mD mR

�
: ðA10Þ

The neutrino mass eigenvalues of this matrix are given by

m� ¼ 1

2

�
mR þmL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmR −mLÞ2 þ 4m2

D

q �
: ðA11Þ

With mR ≫ mD, these eigenvalues have the expansions

mþ ¼ mR þm2
D

mR
þ � � � ðA12Þ

and

m− ¼ mL −
m2

D

mR
þ � � � ðA13Þ

where … indicate higher-order terms. For the small
eigenvalues to be of the seesaw form, it is necessary
that mL < m2

D=mR.

APPENDIX B: COUPLINGS OF KK MODES OF
GAUGE BOSONS WITH FERMIONS

Here we review the couplings of KK modes of gauge
bosons with fermions in split fermion models [8,12,
18–21,23,24] and show how the diagonality property of
the charged lepton and Q ¼ −1=3 mass matrices greatly
reduces FCNC effects. We first recall that the diagonaliza-
tion of a general charged lepton mass matrix is carried out

with the bi-unitary transformation UðlÞ†
L MðlÞUðlÞ

R ¼ MðlÞ
diag,

as in Eq. (5.10). Since MðlÞ is diagonal here, we have

UðlÞ
L ¼ UðlÞ

R ¼ I. A corresponding comment applies to
the bi-unitary transformations that diagonalize the Q ¼
−1=3 quark mass matrix, so UðdÞ

L ¼ UðdÞ
R ¼ I. We often

display formulas for the general case of n dimensions,
although we focus on the case n ¼ 2 in this work. As in the

text, m is an n-dimensional integer-valued vector, m ∈ Zn

with components m ¼ ðm1;…; mnÞ, (Euclidean) norm
kmk ¼ ðPn

i¼1m
2
i Þ1=2 and scalar products such as m · η ¼P

n
i¼1miηI. Because the fermions are localized on a

scale σ ≪ L, the integration, over the extra dimensions,
of an operator product involving the m’th KK mode
of a generic neutral gauge field Vλ and the y-dependent

part of a chiral fermion bilinear, VðmÞ
λ ½χ̄fðyÞLγλχfðyÞL� or

VðmÞ
λ ½χ̄fðyÞRγλχfðyÞR� (where possible non-Abelian group

indices are suppressed) essentially picks out the value of the
gauge field at the location of a chiral fermion fL:

CðmÞ
ηf ¼ jAj2

Z
L=2

−L=2
dnye

2πi
L ðm·yÞe−2μ2ky−yfk2

≃ exp
�
2πi
μL

ðm · ηfÞ
�
exp

�
−

π2

2ðμLÞ2 kmk2
�
; ðB1Þ

where here f refers to fL or fR and the generation indices
on f are implicit. In Eq. (B1), A is the fermion field
normalization constant defined in Eq. (2.6), and the
factor of 1=ðLn=2Þ in Eq. (3.14) is cancelled by the Ln=2

dependence of the coupling. In accordance with our
effective field theory approach, the KK modes with kmk
so large as to probe distances much smaller than σ are
excluded, and hence exp½−π2kmk2=ð2ðμLÞ2Þ� ≃ 1.
With the help of Eq. (B1), let us write down the effective

interaction Lagrangians for the SM gauge bosons and their
corresponding KK modes with the fermion zero modes. As
has been mentioned in the text, since μ ≫ ΛL, the higher-
order fermion modes effectively decouple from the theory.
The coupling of the photon Aλ with the (zero-mode)
fermion f is given by the following Lagrangian:

LðAffÞ
eff ¼ eqf

�
ψ̄fa

�
Að0Þ
λ δab þ

X
m∈Zn

≠0

KðmÞ
A;f;abA

ðmÞ
λ

�
γλψfb

�

ðB2Þ

where qf is the electric charge of the fermion f, and a, b are

generational indices. Að0Þ
λ (where the superscript denotes

the n-dimensional zero vector) is identified with the SM
photon, which couples in a flavor-diagonal manner with
fermions. Them’th mode of the photon withm not equal to

the zero vector, denoted AðmÞ
λ withm ≠ 0, has the following

coupling with the fermions:

KðmÞ
A;f;ab ¼

X3
k¼1

½ðUðfÞ
L Þ�kaCðmÞ

ηfk;L
ðUðfÞ

L ÞkbPL

þ ðUðfÞ
R Þ�kaCðmÞ

ηfk;R
ðUðfÞ

R ÞkbPR�; ðB3Þ

where PL;R ≡ ð1 ∓ γ5Þ=2 are the usual chiral projection
operators. Similarly, suppressing the color indices, the
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coupling of the gluons to the SM quarks q ¼ u, d is
determined from the following Lagrangian:

LðGqqÞ
eff ¼ gs

�
ψ̄qa

�
G⃗ð0Þ

λ δab þ
X

m∈Zn
≠0

KðmÞ
G;q;abG⃗

ðmÞ
λ

�
· T⃗γλψqb

�
;

ðB4Þ

where gs is the strong coupling constant, and T⃗ denotes a
generator of the algebra of color SUð3Þc. The KK gluons,

G⃗ðmÞ
λ have the following coupling to the SM quarks:

KðmÞ
G;q;ab ¼

X3
k¼1

½ðUðqÞ
L Þ�kaCðmÞ

ηqk;L
ðUðqÞ

L ÞkbPL

þ ðUðqÞ
R Þ�kaCðmÞ

ηqk;R
ðUðqÞ

R ÞkbPR�: ðB5Þ

From Eqs. (B3), (B5) it is evident that if UðlÞ
L;R, U

ðdÞ
L;R were

different from the identity matrix, then the presence of

KðmÞ
G;d;ab, K

ðmÞ
A;l;ab, and KðmÞ

A;d;ab would lead to FCNC terms
for KK modes other than the zero-mode term with m ¼ 0,
the zero vector in Zn. However, in our case, since

UðlÞ
L;R ¼ UðdÞ

L;R ¼ I, these FCNC terms are absent for the
charged leptons and down-quark sector. They are, however,
present in the neutrino and up quark sector, and we discuss
the resultant effects in the text.
The coupling of the KK modes of the W-boson to SM

fermions is given by

LðW;KKÞ
eff ¼ gffiffiffi

2
p

X
m∈Zn

≠0

ð½ν̄a;LWðmÞ
λ KðmÞ

W;L;abγ
λlb;L�

þ ½ūa;LWðmÞ
λ KðmÞ

W;Q;abγ
λdb;L�Þ þ H:c:; ðB6Þ

where

KðmÞ
W;L;ab ¼

X3
k¼1

ðUðνÞ
L Þ�kaCðmÞ

ηLk;L
ðUðlÞ

L Þkb;

KðmÞ
W;Q;ab ¼

X3
k¼1

ðUðuÞ
L Þ�kaCðmÞ

ηQk;L
ðUðdÞ

L Þkb: ðB7Þ

Similarly, the coupling of the KK modes of the Z boson to
the fermion f is given by the effective Lagrangian

LðZffÞ
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q X
X¼L;R

TðfXÞ
Z

�
ψ̄fa;X

�
Zð0Þ
λ δab

þ
X

m∈Zn
≠0

KðmÞ
Z;fX;ab

ZðmÞ
λ

�
γλψfb;X

�
þ H:c: ðB8Þ

where g and g0 denote the SM SUð2ÞL and Uð1ÞY gauge
couplings, TZ was defined in Eq. (7.6), and the matrix

product KðmÞ
Z;f has elements given by

KðmÞ
Z;f;ab ¼

X3
k¼1

½ðUðfÞ
L Þ�kaCðmÞ

ηfk;L
ðUðfÞ

L ÞkbPL

þ ðUðfÞ
R Þ�kaCðmÞ

ηfk;R
ðUðfÞ

R ÞkbPR�; ðB9Þ

which is the same as KðmÞ
A;f;ab.

In a similar manner, we can write down the coupling of
the KK modes of the Higgs boson with the SM fermions.
Let us illustrate the coupling of the KK modes of the Higgs
boson to the leptons:

LðHllÞ
eff ¼

�
L̄a;L

��
mlb þ

gmlb

2mW
Hð0Þ

�
δab

þ
X

m∈Zn
≠0

KðmÞ
H;l;abH

ðmÞ
�
lb;R

�
þ H:c:; ðB10Þ

and KðmÞ
H;l;ab is given by

KðmÞ
H;l;ab ¼ yðlÞab

X3
k¼1

X3
q¼1

ðUðlÞ
L Þ�kae−

1
2
kηLk;L−ηlq;Rk2

× CðmÞ
η̄kq

ðUðlÞ
R Þqb; ðB11Þ

where the notation η̄kq is defined as

η̄kq ≡
ηLk;L

þ ηlq;R

2
; ðB12Þ

and yðlÞab is the higher-dimensional Yukawa coupling, taken
to be of Oð1Þ. Here Hð0Þ is the SM Higgs boson.
Having noted the general coupling formulas for n-extra

dimensions and arbitrary mixing matrices, let us specialize
for the case applicable to our current work, namely n ¼ 2,

and UðlÞ
L;R ¼ UðdÞ

L;R ¼ I, and hence UðνÞ ¼ U, the lepton

mixing matrix, and UðuÞ
L ¼ V†, where V is the CKM quark

mixing matrix. In this scenario, the couplings of the KK
gauge bosons to the SM fermions reduce to the following
forms. We have denoted this special case with a tilde over
the coefficients. The photon KK couplings are

K̃ðmÞ
A;l;ab ¼ δabðCðmÞ

ηLa;L
PL þ CðmÞ

ηla;R
PRÞ;

K̃ðmÞ
A;d;ab ¼ δabðCðmÞ

ηQa;L
PL þ CðmÞ

ηda;R
PRÞ;

K̃ðmÞ
A;u;ab ¼

X3
k¼1

½VakC
ðmÞ
ηQk;L

V�
bkPL

þ ðUðuÞ
R Þ�kaCðmÞ

ηfu;R
ðUðuÞ

R ÞkbPR�: ðB13Þ
From Eq. (B5) we see that the gluon KK modes will have

the same coupling form as above, namely KðmÞ
G;f;ab ¼

KðmÞ
A;f;ab, for f ¼ u, d. For our mixing matrices, Eq. (B7)

will reduce to
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K̃ðmÞ
W;L;ab ¼ U�

baC
ðmÞ
ηLb;L

;

K̃ðmÞ
W;Q;ab ¼ VabC

ðmÞ
ηQb;L

: ðB14Þ

Similarly, Eq. (B9) reduces to Eqs. (B15) and (B16) below:

K̃ðmÞ
Z;l;ab ¼ δabðCðmÞ

ηLa;L
PL þ CðmÞ

ηla;R
PRÞ;

K̃ðmÞ
Z;d;ab ¼ δabðCðmÞ

ηQa;L
PL þ CðmÞ

ηda;R
PRÞ; ðB15Þ

and

K̃ðmÞ
Z;ν;ab ¼

X3
k¼1

½U�
kaC

ðmÞ
ηLk;L

UkbPL�;

K̃ðmÞ
Z;u;ab ¼

X3
k¼1

½VakC
ðmÞ
ηQk;L

V�
bkPL

þ ðUðuÞ
R Þ�kaCðmÞ

ηuk;R
ðUðuÞ

R ÞkbPR�: ðB16Þ

The couplings of the Z KK modes are diagonal in
Eq. (B15), but are nondiagonal in Eq. (B16). Similarly,
the Higgs coupling to the charged leptons is

K̃ðmÞ
H;l;ab ¼ yðlÞab e

−1
2
kηLa;L−ηlb;Rk2CðmÞ

η̄ab
; ðB17Þ

where η̄ab was defined in Eq. (B12).

APPENDIX C: CALCULATION OF LOCATIONS
OF LEPTON WAVE FUNCTION CENTERS IN

THE EXTRA DIMENSIONS

In this appendix we describe the method that we use to
determine the wave function centers for the lepton fields
La;L, νb;R, and lc;R. As in the text, the subscripts a, b, c are
generational indices. Although the Dirac neutrino mass
matrix MðDÞ in Eq. (5.29) does not uniquely fix the lepton
wave function centers, the distances among different lepton
wave functions in the extra dimensions, as displayed in
Table III, enter cross sections and decay rates for various
physical processes. Therefore, it is important to stipulate a
set of necessary selection criteria for the wave function
centers, based on physical grounds. Our criteria are as
follows:

(i) C1: The wave function centers for the leptons should
reproduce the observed neutrino mixing matrix and
charged lepton masses.

(ii) C2: The charged lepton mass matrix generated by the
solution should be approximately diagonal, to justify
the choice UðlÞ ¼ I in Sec. V.

(iii) C3: The separations between lepton wave function
centers for different generations should provide
adequate suppression for the charged-lepton flavor-
violating processes to be in accord with current
experimental bounds. Together with criterion C2,

this condition requires adequate separation among
the wave function centers of the La;L and Lb;L fields
with a ≠ b.

(iv) C4: The overall lepton wave function centers in the
extra-dimensional space should be sufficiently sep-
arated from the quark wave function centers to yield
adequate suppression of baryon-number-violating
nucleon decays to be in accord with experimental
bounds on these decays.

Let us give some pedagogical examples concerning this
general problem of choosing lepton wave function centers
that satisfy the distance constraints to reproduce the Dirac
mass matrixMðDÞ. To make these as simple as possible, we
take n ¼ 1 for these examples, so that the compactified
space is a circle (of circumference c). The simplest subcase
is ngen ¼ 1. Then there are three possibilities for the
distance kηL1;L

− ην1;Rk required to fit the Dirac matrix

MðDÞ (which reduces to a scalar for ngen ¼ 1): (i) if
0 < kηL1;L

− ην1;Rk < c=2, then there are two solutions,
depending on whether one proceeds in a clockwise or
counterclockwise manner along the circle to get from the
point ηL1;L

to the point ην1 ; (ii) in the special case where
kηL1;L

− ην1;Rk ¼ c=2, there is a unique solution, in which
ηL1;L

and ην1;R are located at opposite points on the circle;
and (iii) if kηL1;L

− ην1;Rk > c=2, then there is no solution.
Having given this pedagogical example, we return to the
realistic value ngen ¼ 3 for our further discussion.
To begin with, let us consider the set of 2ngen ¼ 6 fields

fLa;L; νb;Rg, where ngen ¼ 3 denotes the number of
fermion generations. If the set of solutions for wave

function centers fηðlÞLa;L
; ηðlÞνb;Rg satisfies the criteria that

La;L, Lb;L are sufficiently far apart for a ≠ b, then the
positions for lc;R fields can easily be chosen so as to
produce an approximately diagonal charged lepton mass
matrix, thereby satisfying criterion C2. Here, we follow the
notation in the text, where the superscript l indicates that
these coordinates are relative and are to be translated by an
appropriate translation vector relative to the quark wave
function centers, as shown in Fig. 1. Thus, let us focus on
determining the wave function centers for the fields
fLa;L; νb;Rg. For n ¼ 2 extra-spatial dimensions we have
2ngenn − 3 ¼ 12 − 3 ¼ 9 parameters for the lepton wave
function centers of the above set of fields, where we
have subtracted two overall translational degrees of free-
dom and one rotational degree of freedom, since these
do not affect the relative positions of the lepton wave
function centers. Thus, we have to satisfy the n2gen ¼ 9

distance constraints listed in Table I using these nine
parameters. Using the 3 degrees of freedom (translational
and rotational) mentioned above, let us choose the origin
and orientation of the axes of the ηðlÞ coordinate system
such that we can parametrize two of the locations as
follows:
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ηðlÞL2;L
¼ ðd; 0Þ; ηðlÞL3;L

¼ ð−d; 0Þ: ðC1Þ

We write the components of ηðlÞL1;L
and ηνb;R with 1 ≤

b ≤ 3 as

ηðlÞL1;L
¼ ðηðL1;LÞ

1 ; ηðL1;LÞ
2 Þ;

ηðlÞνb;R ¼ ðηðνb;RÞ1 ; ηðνb;RÞ2 Þ ðC2Þ

using superscripts here to avoid overly cumbersome
notation. Since the nine distance constraints in Table I
are quadratic equations in terms of the components of the
wave function centers, they do not uniquely specify these
centers uniquely, but rather yield sets of solutions that are
related to each other by various reflections about the
chosen axes. We categorize the solutions into classes that
have the same magnitude for the nine parameters in
Eqs. (C1) and (C2). As part of our analysis, we address
the following question: Are the distances among different
lepton fields identical for different solutions in a class, or
do the reflections change the unconstrained distances?
The unconstrained distances are those that are not
specified from the Dirac neutrino mass matrix. These
include the distances kηLa;L

− ηLb;L
k and kηνa;R − ηνb;Rk for

1 ≤ a; b ≤ 3. In other words, only the fLa;L; νb;Rg wave
center distances kηLa;L

− ηνb;Rk in Fig. 1 are constrained
from the neutrino mixing matrix. So can we move these
points in such a way that keeps these constrained distances
unaltered, but modifies the unconstrained distances?
Determining the answer to this question is crucial for
our analysis, since the distances kηLa;L

− ηLb;L
k appear in

the decay rates for various charged-lepton flavor-violating
processes la → lbl̄blc, as discussed in Sec. VIII D in the
text. In answer to this question, we will show that the
various reflections that take us from one solution to
another form the Klein four-group V4 (Vierergruppe),
which is defined by the group elements and operations,

V4∶ hI; R; R1jR2 ¼ R2
1 ¼ ðR · R1Þ2 ¼ Ii; ðC3Þ

where I is the identity element. (Note that V4 is the
smallest noncyclic Abelian group and is isomorphic to
Z2 ⊗ Z2 and the dihedral group of order 4, denoted D4.)
This restricted symmetry for the reflections also keeps the
unconstrained distances unaltered. Thus for a class of
solution, all the distances among different lepton fields in
the extra dimensions are fixed.
We proceed as follows: from Table I it is evident that

since the distances involved are less than L=2 ¼ 15, the
toroidal distance evaluation function for these points
becomes identical to the ordinary Euclidean distance
function. Therefore, the distance constraints in Table I,
in the parametrization of Eqs. (C1) and (C2) read:

ðηνb;R1 − η
ðL1;LÞ
1 Þ2 þ ðηνb;R2 − η

ðL1;LÞ
2 Þ2 ¼ kηL1;L

− ηνb;Rk2;
ðηðνb;RÞ1 − dÞ2 þ ðηðνb;RÞ2 Þ2 ¼ kηL2;L

− ηνb;Rk2;
ðηðνb;RÞ1 þ dÞ2 þ ðηðνb;RÞ2 Þ2 ¼ kηL3;L

− ηνb;Rk2;
ðC4Þ

for b ¼ 1, 2, 3. We have already used the rotational and
translational degrees of freedom that keep the relative
distances unaltered by choosing the parametrization in
Eqs. (C1) and (C2). Now we determine the set of reflection
operations that keeps Eq. (C4) invariant. These operations
are as follows:

I∶ ηðlÞf → ηðlÞf ;

r∶ ηðlÞf → −ηðlÞf ;

r1∶ fηðνb;RÞ2 → −ηðνb;RÞ2 ; ηðL1;LÞ
2 → −ηðL1;LÞ

2 g;
r2 ¼ r · r1∶ fd → −d; ηðνb;RÞ1 → −ηðνb;RÞ1 ;

η
ðL1;LÞ
1 → −ηðL1;LÞ

1 g; ðC5Þ

for b ¼ 1, 2, 3. Here f represents elements of the set

fLa;L; νb;Rg, i.e., ηðlÞf → −ηðlÞf means that all the wave
function positions for fLa;L; νb;Rg are reflected in the origin
of the ηðlÞ coordinate system. The notation in Eq. (C5) is
such that those positions omitted from an operation are
left unaltered by that operation. For example, r2 leaves

fηðνb;RÞ2 ; ηðL1;LÞ
2 g unaltered. The notation η

ðνb;RÞ
2 → −ηðνb;RÞ2 is

used as a shorthand for representing fηðν1;RÞ2 →

−ηðν1;RÞ2 ; ηðν2;RÞ2 → −ηðν2;RÞ2 ; ηðν3;RÞ2 → −ηðν3;RÞ2 g; thus r2, r1
denote only one operation each. This restricted nature of
the reflection is evident in Eq. (C4), where, for example,

η
ðνb;RÞ
2 is linked with η

ðL1;LÞ
2 , for all b ¼ 1, 2, 3; that is, if we

reflect one of these points, the other ones also have to be
reflected. A similar comment applies for the set

fd; ηðνb;RÞ1 ; ηðL1;LÞ
1 g. Therefore the set of operations that

generates other equivalent solutions for the fLa;L; νb;Rg
wave function centers from one solution in a class is
given by G≡ fI; r; r1; r2 ¼ r · r1g, where r2 ¼ r21 ¼
ðr · r1Þ2 ¼ I. This shows that these sets of operations form
the group V4. We note that each of the elements g ∈ G
leaves the unconstrained distances kηLa;L

− ηLb;L
k, kηνb;R −

ηνc;Rk unchanged, thereby completing our proof that sol-
utions in a class generated by the action of g ∈ G are
completely equivalent to each other in the sense that all the
distances among the lepton wave function centers are the
same for the class.
Now we look for a class of solutions that satisfies the

criteria C1, C2, C3, and C4. We find one class of solutions
for the lepton wave function centers that satisfies these
conditions and display the locations for these centers in
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Table II. The magnitudes for our chosen parameters for this
class are shown in Table X.
Table XI shows different equivalent positions for the set

fηðlÞLa;L
; ηðlÞνc;Rg that forms the class defined by the values in

Table X. For each of these solutions ηðlÞlb;R
can be chosen

such that they produce the desired diagonal charged lepton
mass matrix. The action of the group elements in G
produces the other solutions, which are completely equiv-
alent to each other as the different distances among lepton
wave function centers that enters into the physical cross
section and decay rates are the same in a class of solutions
due to the V4 symmetry. As we are free to choose the
overall translation of these locations for the lepton fields,
we do not show the table for the quark-lepton separation
matrix for these different solutions, but mention that it is
possible to place the leptons such that all the constraints
from Ref. [27] can be easily satisfied that provide adequate
suppression for the nucleon and dinucleon decays to
leptonic final states. We have chosen the first row in
Table XI translated by (5,3) in the text for the analysis.
Our conclusions remain unchanged with the choice of any
of the other equivalent positions.

In a similar manner, we have evaluated a new set of
solutions for the quark wave function centers that produces
the CKM quark mixing matrix V. Moreover, this has the
desirable feature of greatly reducing the flavor-changing
neutral currents of the higher KK modes of the gauge
bosons by generating a nearly diagonal Q ¼ −1=3 quark
mass matrix. In other words, the wave function centers are

such that UðdÞ
L ≃ I in Eq. (A7). Using Eqs. (A3), (A4), (A7)

and following the notations in Appendix A, we get MðdÞ ¼
MðdÞ

diag and

MðuÞMðuÞ† ¼ V†ðMðuÞ
diagÞ2V: ðC6Þ

We choose MðuÞ ¼ V†MðuÞ
diag, where the mass eigenvalues

for the quarks inMdiag have been taken at the same scalemt

[73]. Equation (4.7) gives the required wave function
separation matrices in the higher dimensions as shown
in Table XII. Following a similar approach as the lepton
sector, we choose the orientation of the axes and origin
of the relative quark coordinate system ηðqÞ such that

the fields Q1;L and Q2;L lie on the ηðqÞ1 axis and are
equidistant from each other. Therefore, we parametrize
the coordinates as

ηðqÞQ1;L
≡ ð−dq; 0Þ; ηðqÞQ2;L

≡ ðdq; 0Þ;
ηðqÞua;R ≡ ðηðua;RÞ1 ; ηðua;RÞ2 Þ;
ηðqÞdb;R

≡ ðηðdb;RÞ1 ; ηðdb;RÞ2 Þ; ðC7Þ

where a, b ¼ 1, 2, 3 are the generational indices, and dq
can have both signs. To begin with, let us focus on the set

fηðqÞQa;L
; ηðqÞub;Rg. Once we have a solution for this set, ηdc;R can

be chosen accordingly that satisfies the constraints in
Table XII. Hence, we look for the solutions of the following
equations where the right-hand side values are taken from
Table XII,

TABLE X. Set of values for the parameters that determine the
locations for the wave function centers of La;L; νb;R fields.
Different locations with these parameters are shown in Table XI.

Parameter Value

d 0.93907
η
ðL1;LÞ
1 4.15696

η
ðL1;LÞ
2 7.84265

η
ðν1;RÞ
1 0.32032

η
ðν1;RÞ
2 5.23999

η
ðν2;RÞ
1 0.02191

η
ðν2;RÞ
2 4.94447

η
ðν3;RÞ
1 0.07834

η
ðν3;RÞ
2 4.72885

TABLE XI. Different solutions for the class defined by the values of the parameters in Table X. The parameters mentioned in the
parentheses are to be taken from Table X. The operations g ∈ G≡ fI; r; r1; r2g take one solution to the other within the class. This V4

symmetry keeps all the distances among different lepton wave function centers unaltered. We use the first solution in the text, with the
translation vector specified by Eq. (5.31).

g ∈ G ηðlÞL1;L
ηðlÞL2;L

ηðlÞL3;L
ηðlÞν1;R ηðlÞν2;R ηðlÞν3;R

I ðþη
ðL1;LÞ
1 ;þη

ðL1;LÞ
2 Þ ðþd; 0Þ ð−d; 0Þ ð−ηðν1;RÞ1 ;þη

ðν1;RÞ
2 Þ ðþη

ðν2;RÞ
1 ;þη

ðν2;RÞ
2 Þ ðþη

ðν3;RÞ
1 ;þη

ðν3;RÞ
2 Þ

r ð−ηðL1;LÞ
1 ;−ηðL1;LÞ

2 Þ ð−d; 0Þ ðþd; 0Þ ðþη
ðν1;RÞ
1 ;−ηðν1;R2 Þ ð−ηðν2;RÞ1 ;−ηðν2;R2 Þ ð−ηðν3;RÞ1 ;−ηðν3;RÞ2 Þ

r1 ðþη
ðL1;LÞ
1 ;−ηðL1;LÞ

2 Þ ðþd; 0Þ ð−d; 0Þ ð−ηðν1;RÞ1 ;−ηðν1;RÞ2 Þ ðþη
ðν2;RÞ
1 ;−ηðν2;RÞ2 Þ ðþη

ðν3;RÞ
1 ;−ηðν3;RÞ2 Þ

r2 ¼ r1 · r ð−ηðL1;LÞ
1 ;þη

ðL1;LÞ
2 Þ ð−d; 0Þ ðþd; 0Þ ðþη

ðν1;RÞ
1 ;þη

ðν1;RÞ
2 Þ ð−ηðν2;RÞ1 ;þη

ðν2;RÞ
2 Þ ð−ηðν3;RÞ1 ;þη

ðν3;RÞ
2 Þ
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ðηðub;RÞ1 − η
ðQ3;LÞ
1 Þ2 þ ðηðub;RÞ2 − η

ðQ3;LÞ
2 Þ2 ¼ kηQ3;L

− ηub;Rk2;
ðηðub;RÞ1 − dqÞ2 þ ðηðub;RÞ2 Þ2 ¼ kηQ2;L

− ηub;Rk2;
ðηðub;RÞ1 þ dqÞ2 þ ðηðub;RÞ2 Þ2 ¼ kηQ3;L

− ηub;Rk2;
ðC8Þ

for b ¼ 1, 2, 3. Comparing with Eq. (C4), we again
identify the V4 symmetry that relates elements within one
class of solutions. Requiring that the quark wave centers
be sufficiently spread out to suppress the effects of
various BSM local operators, we arrive at the solution
listed in Table IV. Needless to say, similar to Table XI,
there exist three other equivalent sets of quark wave
centers that are related to each other by the elements in
the group V4.
In passing, we note that the results in Refs. [16,28]

regarding n − n̄ oscillations are not sensitively dependent
on the different solutions for the locations of the wave
function centers in the extra dimensions. This is because in
the SM split-fermion model, the corresponding amplitude
for the dominant operator mediating n − n̄ oscillations
depends only on the distance kηQ1;L

− ηd1;Rk, which, in
turn, is determined by the physical mass of the d-quark,
md [16]. Moreover, in the LRS split-fermion model, the
dominant operator contributing to n − n̄ oscillations
involves quark fields at the same point in the extra
dimensions and hence does not yield any exponential
suppression factor [28].
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