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We study both the CP-even and CP-odd effective chiral Lagrangians of a next-to-minimal composite
Higgs model, with a symmetry breaking pattern depicted by the coset SO(6)/SO(5) through the sigma/
omega decomposition, in which the Goldstone matrix of the coset is decomposed in terms of the standard
model Higgs doublet and an additional scalar singlet s at the electroweak scale. The effective Lagrangians
are described by the electroweak chiral operators up to p* order, with a function dependence on the Higgs
boson and new scalar s, named Higgs function. This function in the effective Lagrangian incorporates the
Higgs nonlinearity or vacuum misalignment effects in the next-to-minimal composite Higgs model, leads
to various Higgs couplings deviated from the standard model ones, and also indicates the relations among
different Higgs couplings in the low energy. Matching to the Higgs effective field theory below the
electroweak scale, we obtain various low-energy observables such as the electroweak oblique parameters,
anomalous triple and quartic gauge couplings, anomalous couplings of Higgs to gauge bosons, in which the
Higgs nonlinearity effects are encoded in the ratio & = v?/ 2 of the electroweak scale and the new physics
scale. As a by-product, we obtain a generalized Maurer-Cartan equation sourced by non-Abelian gauge
fields. The equation interprets the dynamical interplay between nonlinear realization of pseudo-Nambu-
Goldstone bosons (or Higgs) and the gauge fields, and provides a nonlinear generalization of the dynamical

electroweak symmetry breaking.

DOI: 10.1103/PhysRevD.103.015013

I. INTRODUCTION

The standard model (SM) of elementary particle physics
provides a framework for all of the visible matters in
nature among the three known fundamental interactions
except gravity [1]. The model is described by the gauge
theory [2-4] with symmetry SU(3), x SU(2); x U(1)y.
Theoretically the electroweak (EW) sector of the SM still
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owns problems such as vacuum stability, too many free
parameters, and naturalness or hierarchy problem. Thus, it
is commonly believed that the SM is not a UV complete
theory at energy above a trillion electron volt (TeV) scale, at
where underlying dynamics is still unclear. To solve these
problems suffered by the SM, many models beyond the
SM are proposed, with different motivations emphasized.
Among them, the composite Higgs model (CHM) provides
a scenario [5—7], that might be related to a strong dynamics
in the high energy, to solve the electroweak hierarchy
problem. In the scenario, the Higgs-like particle arises as a
pseudo-Nambu-Goldstone boson (PNGB) [8-12] of a
global symmetry breaking at a higher energy scale f
higher than the EW scale measured by the Higgs vacuum
expectation value (vev) v =2my/g= (\/EGF)_I/2 or
equivalently the Fermi coupling constant G, and is related
with strong dynamical scale A; ~4zf for an unbroken
symmetry as the subgroup of the global symmetry.

Published by the American Physical Society
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There are many kinds of composite Higgs models in
literature; for review, see Refs. [13—16]. We could classify
different composite Higgs models based on the numbers
and EW representations of GBs in the setup. The most
economical and popular composite Higgs model is the
SO(5)/S0(4) minimal composite Higgs model (MCHM)
[16-20]. The symmetric coset SO(5)/SO(4) provides
only four GBs: three GBs eaten by the longitudinal
components of the W and Z bosons, and the Higgs boson
as the pseudo-Nambu-GB. The next-to-minimal model is
the SU(4)/Sp(4) ~S0(6)/SO(5) next-to-minimal com-
posite Higgs model (NMCHM) [21-26], in which five GBs
are presented: four SM Higgs components and an addi-
tional singlet scalar. For a heavy singlet scalar GB, this
model recovers to the MCHM. Thus the NMCHM contains
the MCHM as the limiting case. On the other hand, if this
singlet scalar is not so heavy, it provides new low-energy
phenomenology, such as dark matter candidate [24,26],
electroweak phase transition, etc.

Further classification of the CHMs could be justified
using the custodial symmetry. The theory is invariant for
the three gauge bosons in the fundamental representation of
SO(3) or adjoint representation of SU(2), [7], and guar-
antees the p parameter, the ratio defined with both mass of
gauge bosons and the EW mixing angle as below,

2
My

p= =1
e ’

(1.1)

at the tree level, although there could be a small correction
at the loop level. This custodial protection mechanism in
the SM is valid both before and after electroweak symmetry
breaking (EWSB), which entails a strong constraint for
model building beyond the SM; namely, whatever under-
lying dynamics as a possible UV completion beyond TeV
scale, its symmetry breaking pattern down to the EW scale,
always entails p = 1 at tree level. The electroweak pre-
cision tests indicate that we should consider CHMs with
the custodial symmetry imposed. Both the MCHM and
NMCHM contain the SO(3) group as the subgroup and
thus the custodial symmetry is guaranteed.

On the other hand, given the experimental results at the
LHC, the lack of evidence of new physics and the precision
measurement of the Higgs property have already pushed the
new physics scale up to the TeV scale, unless the new
particles do not carry the electroweak charge. In CHMs, the
composite particles related to the strong dynamics scale f are
typically heavy [13]. If the additional GBs rather than the
pseudo-Goldstone Higgs exist, they should not be lighter
than the electroweak scale unless the GB is the electroweak
singlet. Although there are many kinds of composite Higgs
models with different symmetry breaking patterns depicted
by the coset G/H [14,15], after integrating out heavy
composite states, and heavy GBs, what is left should at
least be the SM contents: the matter fields, the SM gauge

fields, and the Higgs boson as the pseudo-GB. There could
be an additional pseudo-GB being the electroweak singlet.
Thus the effective Lagrangian description of the composite
Higgs models should contain at least SO(5)/SO(4) sym-
metry [19]. In this work, we consider a more general case in
which an additional light GB exists at the electroweak scale.
The typical example is the SO(6)/SO(5) symmetry at the
electroweak scale, containing one light scalar singlet GB.'If
the scalar singlet GB becomes heavy, it recovers the
SO(5)/SO(4) symmetry at the electroweak scale.

From the bottom-up perspective, the low-energy effec-
tive field theory (EFT) approaches [27-57] with the
general principle of quantum field theory, such as
Lorentz invariance, unitary, causality, etc., have provided
a universal model-independent description for new
physics beyond the SM. There are usually two ways to
describe the low-energy effective field theory: the SM EFT
in the symmetric phase [37,42,43] and the EW chiral
Lagrangian in the broken phase [34,36,38]. For the case
that the Higgs boson as the pseudo-Nambu-GBs, the EW
chiral Lagrangian is usually adopted due to the Higgs
nonlinearity in the scalar manifold of the GB fields. In
the EW chiral Lagrangian, the Higgs field is nonlinearly
realized, e.g., in the coset construction of Callan-Coleman-
Wess-Zumino (CCWZ) approach [27,28].

It turns out that the phenomenological Lagrangian [27,28]
can be used not only to reproduce the soft pions, PNGBs of
chiral gauge interactions of SU(2), x SU(2); symmetry
results of current algebra [29,30], but also can be used to
justify the calculation of soft-pion matrix elements results
from the Feynman diagrams, with the advantage of not using
any operator algebra. The Lagrangians can be used to
calculate corrections to the leading soft pions to any desired
order in external momentum. In the spirit of writing down the
most general possible Lagrangian terms, it is possible to
calculates the most general possible S-matrix elements
consistent with the general principles of analyticity, pertur-
bative unitary, cluster decomposition, Lorentz invariance,
chirality, charge-parity-time symmetry, and the other assumed
intrinsic symmetries of quantum field theory (QFT). It is
possible to include all possible terms by classifying the
relevant operator with the guide of a power-counting argu-
ment: the only physical observable quantities are based upon
the matrix elements, that must take the form

M = EPf(E/p), (1.2)
where E = /s is the energy scale related to the center-of-
mass energy s, y is some arbitrary renormalization scale, of

Tt is worth noticing that not only SO(5) but also
SO(4) x SO(2) is a subgroup of SO(6). For the later case, the
symmetry breaking pattern is SO(6)/SO(4) x SO(2) and there
will be eight GBs, which serves as one of possible realizations of
the 2-Higgs-doublet model structure, with generators shown in
the Appendix. A 1.
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which, the matrix elements must be independent, f7(...) is
an arbitrary dimensionless function, and D is the power
counting of the effective Lagrangian operator with the mass
dimension [29]

D=2+ Vy(d-2)+2L, (1.3)
d

where V, is the number of vertices formed from inter-
actions with d derivatives, L is the number of loops in
a Feynman diagram, which stands for L independent
momentum not fixed by the momentum conservation,
e.g., by cutting the L lines simultaneously, the diagram
is still connected. The equation can be obtained by using
the well-known Feynman-Euler formula for the number of
loops in a one-connected graph, which is general for both
planar or nonplanar topologies [32]
V—-I+L=1, (1.4)
where V = >, V, is the total number of vertices, [ is the
total number of internal lines, and L is the Feynman loops
number. The left-hand side of Eq. (1.4) means there are V
delta functions, of which I/ — L fix internal momentum, and
leaving V — 1 4 L delta functions relating the momentum
of all incoming or outgoing particles. The right-hand side
of the equation implies that there is only a single delta
function in a one-connected graph. Thus, this equation
encodes the information of momentum conservation at each
vertex and implies that the number of vertices that can
actually be permitted are limited by the topology of the
(Feynman) diagrams. Therefore, according to Eq. (1.3), the
lowest possible number of derivatives of the Lagrangian is
determined given the spacetime dimension D, and the types
of graphs, e.g., for tree-/one-loop/two-loop graphs, L = 0,
1, 2, respectively. Given D is fixed, the power counting of
the operators are
() EP=2: L =0,d=2.
(i) EP~*:L=0,d=4;L=1,d=2.
This power counting implies that at E* order, there is only a
tree diagram contribution from effective operators with at
most two-derivatives terms; at E* order, there are not only
tree diagrams contributions from effective operators with at
most four-derivatives, but also one-loop diagrams contri-
butions from those operator with at most two derivatives.
Similarly, at E® order, in addition to diagrams from tree-
and one-loop diagrams, there are also two-loop diagrams
contributions. The leading graphs are those with the
smallest values of D. With the power-counting argument,
the phenomenological Lagrangians can be used to study
symmetry breaking in a systematic approach. The most
intuitive one is the “naive dimensional analysis” (NDA)
[30], which can provide a qualitative demo on the power-
counting approach. With ultraviolet cutoff at A = 4z f, the
fundamental QFT energy scale can be estimated by the

strong dynamical symmetry breaking scale f,2 up to
which the EFT is valid. The coefficient consistent with
NDA is [30,33]

() Gom) (R (R)"
7) \pva) \a) \a) 7
where we have neglected a universal factor (27)*5*(Y"; p;),
where * is the § function for momentum conservation at
the vertex, and p denotes the derivatives acting on either
the 7 or Aﬂ = gA, fields. D is the number of derivatives
acting on external lines. The coefficients are compatible
with gauge invariance D, = 9, + iAﬂ, and this means each
derivative and gauge field gA, are associated with coef-
ficients 1/A. The effective field theory based upon the
power-counting argument is only phenomenological, in
contrast to a fundamental QFT with all input parameters
fixed. When graphs involving higher and higher order in
PNGBs are calculated, in each successive order, one would
encounter more and more undetermined parameters. As a
result, practically, the Lagrangian is only calculated up to a
given finite order of perturbation theory.

On the other hand, the standard model effective field
theory (SMEFT) up to dimensional-six operators cannot
fully characterize the high-energy effective Lagrangian up
to the p* order, since the operators at this order can also
obtain contributions from dimensional-eight operators of
SMEFT. Moreover, in the EW chiral Lagrangian, the global
SO(4) Higgs singlet i supplies a natural embedding of
the custodial symmetry SU(2) ~ SO(3) C SO(4) after the
EW symmetry is spontaneously broken

(1.5)

AI> = |6 + (v + k)%, (1.6)
where 1 = (hy, hy, hs, hy), and @ = (@1, @2, 3) consists
of the three would-be GBs for the EW symmetry. In the
CHM scenerario, again we will specifically focus on those
with the G/SO(4) symmetry breaking pattern. We will take
the custodial symmetric CHM as an example to study the
nonlinearity of Higgs as well as its possible mixing with a
light scalar.

In this work, we take the SU(4)/Sp(4) ~ S0(6)/S0(5)
next-to-minimal composite Higgs model [21-26] as an
extension of MCHM. In the NMCHM, after the explicit
breaking of the global symmetry f, the gauge symmetry
and the Yukawa terms induce the radiative potential for the
SM Higgs, which acquires dynamically a nonvanishing
vacuum expectation value

*The 4z factor originates from the one-loop factor (47)% <
f?/A? in four-dimensional QFT. The EFT is invalid at energies
higher than A. For composite models, the cutoff scale A=
4zf/\/N, is interpreted as the compositeness scale of GB ¢,
where N, is the number of GBs, since the dynamics of the sigma
model is described by a scalar subject to a constraint ¢> = f2.
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v= fsin| — | cos| — |, 1.7

ron('8)eos(7) 7
where ¢ denote the quantum fluctuation field around the
vacuum with expectation value v, and v, denoted as the
vacuum phase of an extra singlet s relative to the Higgs /.
In the f > v limit, the nonlinear NMCHM should recover
the SM limit, in which the EWSB is linearly realized and
the Lagrangian is written in terms of the SM Higgs as an
SU(2), doublet.

We connect the low-energy EW chiral Lagrangian to the
UV CHM valid up to an energy scale A; ~4zf. In the
CHMs, according to the CCWZ formalism, the kinetic term
of the Higgs boson should originate from [39,58-61]

Ly = f*Tr(d,d") D gup(h)¥n0,x", (1.8)
where the metric g,,(h) parametrizes the curvature in the
scalar manifold. Given the nonflat metric, the degree of
nonlinearity of the theory can be quantified by the non-
linear parameter

2

F )

which recovers the flat metric if f — oo.

On the other hand, the Wilson coefficients of the
effective operators in the EW chiral Lagrangian can be
described by the Higgs functions (or radial functions) F g
[49,52,60], as

E= (1.9)

Eh:CHFH(h’S)EH_'_-H, (110)
where Ly is defined in Eq. (C9), ... denote the higher
order terms, e.g., at the p* order, including the CP-even
Lcr or CP-odd L5 defined in Egs. (C10) and (C14) in
Appendix. C. The Higgs functions encode all the informa-
tion of the Higgs nonlinearity due to the nonflat metric of
pseudo-Nambu-GBs manifold of the CHM.

The Higgs functions provide the connection between the
low-energy EW EFT and the chiral Lagrangian for the
CHM. The effective Lagrangian of the model matches with
the EW chiral effective Lagrangian up to the p* order. We
extract the Higgs functions of the model from the low-
energy EW chiral Lagrangian, which contains information
of not only the Higgs itself but also that of an additional
light scalar s. In a series expansion of /#/v in the Higgs
effective field theory (HEFT) with the parameter & fixed,
we find the effective Wilson coefficients associated with the
high-energy effective chiral Lagrangian in the NMCHM.
Observables such as the EW oblique parameters, anoma-
lous triple and quartic gauge couplings, and anomalous
couplings of Higgs to gauge bosons are obtained.

The structure of the paper is organized as follows: In
Sec. II, we study the building blocks for both Sigma and

Omega representation in the NMCHM and discuss its
symmetries. We also illuminate the significance of Higgs
nonlinearity. In Sec. III, we study high-energy chiral
effective Lagrangian of NMCHH up to the p* order. In
Sec. IV, we match the chiral effective Lagrangian of the
NMCHM with low-energy effective EW chiral Lagrangian
(EWCL), and extract the Higgs functions. In Sec. V, we
study the Higgs function at EW scale. In Sec. VI, we study
the connection of effective field theory to the corresponding
physical observables. Conclusions are made in Sec. VII.

II. NEXT-TO-MINIMAL COMPOSITE
HIGGS MODEL

In generic composite Higgs (CH) scenery, a global
symmetry group G is spontaneously broken by some strong
dynamics mechanism at the scale f down to a subgroup H.
The coset G/H is assumed symmetric and entails that
dim(G/H) > 4, e.g., the minimal version in terms of
minimal composite Higgs model (MCHM) [17]. Con-
sequently, there are (at least) four GBs that arise from
the nonlinear symmetry breaking mechanism of the global
symmetry G; one is identified with the light Higgs-like
scalar field & and three are identified with the longitudinal
components of the SM gauge bosons.

Following CCWZ in Appendix. B, we can introduce the
Goldstone field matrix €, which transform nonlinearly
under the group G. In the symmetric coset case, it is
equivalent to use either  or X parametrization in describ-
ing the GBs degrees of freedoms and its interactions. To
obtain gauge interactions by formally gauging the sym-
metry G, one has introduced the G gauge fields strength
tensor Aﬂ as introduced Eq. (B15) that satisfies the gauge
transformations in Eq. (B15). The EW gauge field V_Vﬂ and

B, are embedded as (W,,B,) C A, € G with

W,=WiQ¢ and B,=B,0y, (2.1)

Q¢ and Qy denote the embedding in G of the SU(2), x

U(1)y generators. The G gauge field A, € G can be

doubled into two copies W, and B, by taking account
of its automorphism field strength tensor [49,52].

To construct the nonlinear chiral Lagrangian, different

building blocks in the last section are utilized. The building
blocks for the Sigma parametrization in the NMCHM are

\Y B vV

Hv> Hv H

T. (22

where the corresponding gauge fields Wﬂ and B , are
defined in Eq. (2.1). For the gauged version of the nonlinear
sigma model, the chiral vector field \7” and the scalar chiral
field T are defined in Eqgs. (B34) and (B38), respectively.

For the next-to-minimal composite Higgs model with the
coset SO(6)/SO(5), there is an additional new singlet
GB s, compared with those in the MCHM. For a symmetric
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coset, equivalently the X field could be introduced, trans-
forming linearly under the group G. Of witha = 1,2, 3 and
Qy are the SU(2), x U(1), generators embedded in SO(6)
as given in Appendix. A
Qi=Ti,  Qy=Tj (23)
where we have identified the SU(2), charge operator as 7¢
and the hypercharge operator as Ty as defined in Eq. (A14).
When fermions are taken into account, the realistic hyper-
charge operator is defined as ¥ = T3 + X, where X is a
new nonvanishing charge under an additional U(1)y, in
order to reproduce the correct hypercharges of fermions.

A. Goldstone boson field matrix

The GBs of the coset SO(6)/SO(5) in the fundamental
representation can be parametrized by

O(h,) = QD). Dy = <015>, (2.4)

where @, is the vacuum expectation value in the funda-

mental representation of SO(6) as a six-dimensional unit
vector.

1. Omega parametrization
In the symmetric coset SO(6)/SO(5), it is equivalent to
use the Q or X to describe the Goldstone degree of freedom
(d.o.f.) as

Q— ei%.iT‘A'hA i

= el T=02=¢%1 (25)
where T% are the generators in the coset SO(6)/SO(5) as
given in Eq. (A3) in Appendix. A, where @ = (&,5) with
& =1,2,3,4. T* are the unbroken generators of SO(4) and
T is that of SO(2). The first four indices span a four-
parameter coset space and /i, is an SO(4) vector. Denoting
the GBs in an array

¢ = (ha hs)T,  with ¢ = \/hyh,,

where hy = (hy, hy, hs, hy)T and we have h; = h;/¢. The
Goldstone boson field matrix is expressed as

(2.6)

05,5 (?)>
_(}T 0/
(2.7)

I :?E, with E=2T%h, = —i<

3We have introduced @, to be dimensionless, so that the
kinetic terms should be defined as Ly, = f2(9,®)" (0*®)/2.
Alternatively, one may define ®, = (0s, f)7 with a dimensional
scale (f); in this case, the kinetic terms should be defined as in
Eq. (5.8).

It is convenient to define the mixing angle ¢ at strong
dynamics breaking scale f as

sy = sin (?) . c) = COs <?> (2.8)
Thus, one can express the Goldstone matrix Q as
L= (1=cy)pd" | s4¢
_ < iy S RS ) (2.9)
where
. hi"  hsh
dP" = <MT ;g ) (2.10)

and ¢'p = Tr(hh") + h2 = 1.

After the electroweak symmetry is broken, in the unitary
gauge, i.e., le = fzz = 23 =0, it is convenient to define
another angle as [25]

Sy = sin(z) = L,
AN TENE

where y = arctan (hs/hy) is pseudoscalar under CP sym-
metry due to the relative phase between the hs and hy.
In the unitary gauge, the amplitude ¢ reduces to

(2.11)

¢ = \/h% + h? and the (hy, hs) can be expressed in terms

of ¢ and y as

hy = e, hs = s, (2.12)

Thus, the GB matrix € in Eq. (2.9) can be reexpressed as

1; 0 0 0

0 cpct+s5  (cp—1)cys, ¢,
@= 0 (cp—1Deys, co+cyss 5,5

0 —Cy Sy =SSy Cy

(2.13)

In the original Cartesian (/y4, hs) basis, one has

015013-5
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1; 0 0

0 Ricy+h  hyhs(cy—1) hysy
hi+h3 hi+h3 NG

Q= 0 (ubslem)  Heythd hss, (2.14)
hy+h3 hy+h3 NG
hys hss

0 ——L =< c

N N ¢

For the latter convenience of relating the /4 5 to the SM
Higgs h, we introduce a new basis (k, s) as

h_ h VA by
I n2 + f f
h VIR o
%E > sin 4f H K (2.15)
\/ 13+ h3

in the weak coupling limit, i.e., f — oo, (A, s) just recovers
(hy, hs), respectively. One can check that

VEAR) e by h 216

f f2 ' hs s’

sin

and the phase y also represents the relative phase between
the singlet s and Higgs h as

N
ly/:tan Z .

With Egs. (2.8) and (2.11), the (h,s) fields can be
expressed in terms of (¢, ) as

(2.17)

h = fc,sy, s = [, (2.18)
The amplitude ¢ = V'h*> + s? is a scalar and consists of &
and s. In the (A, s) basis, the GBs matrix in Eq. (2.13) can

be expressed as

13 0 0 0
W \/@ﬂz hs(\/l__ £yl ) )
0 h?+s? W2 7
Q —
0 h?+s? 452 7
} T
0 _% —% 1-— I jj»zs
(2.19)

Finally let us consider the situation in the absence of a
CP-odd singlet, in which the NMCHM just recovers that of
MCHM, with

s =0. (2.20)

In the (¢, y) basis, with y = 0, the GB matrix in Eq. (2.13)
recovers that for MCHM in SO(5) C SO(6) as

I, 0 0 0
0 C(/, 0 S(/)

Q= (2.21)
0 0 1 O

0 —S¢ 0 C¢

Equivalently, in the original Cartesian (hy, hs) basis with
hy = h, hs = 0, it is just recovered as

1 0 0 0
0 cos (?) 0 sin j@)
Q= ’ (2.22)
0 0 1 0
< (h h
0 —sin (7) 0 cos (7)

While also equivalently, in the (%, s) basis, with s = 0, the
GBs matrix becomes

I, 0 0 0
0 -2 0 b

Q=| of 1 g . (2.23)
S -5

which gives the exponential nonlinear parametrization of
SO(5) transformation on GBs in terms of unconstrained
coordinates (hy, hy, hs, hy) € SO(4).

2. From Omega to Sigma parametrization

For symmetric coset, the GB matrix can be also para-
metrized as
T =Q2 (2.24)

which can be obtained from Q in Egs. (2.13), by making the
replacement as

f 1
=, —y, 2.25
f=3 v =Sy (2.25)
so that one needs to make the replacement as
C¢ - C2¢, S¢ - S2¢,
Cy = Cy Sy = Sy, (2.26)

and in the (h,s) basis, equivalent to making the
replacement

015013-6
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TABLE 1. Fields coordinate transformation among (¢, ), (hy, hs), and (h, s) for Q parametrization.
(¢.v) (hy. hs) (h.s)
(¢, w) /12 + 2, f arctan (hs/hy) farcsin (Vh* + s%/f), farctan (s/h)
(h4, h5) ¢CV/’ ¢SV, ce hf arccos(y/1=(h>+s)/f?) sfarccos(r/ 1—=(h*+s2)/f?)
(h,s) feysgs f5,54 haf sin(\/I2412/f)  hsfsin(y/B2+12/f)
N . N
= f, h — 2h, s = 2s. (2.27) 15
2 cos@ sinf
R(0) = : , (2.32)
In this case, according to Eq. (2.11), the singlets can be .
—sind cos @

reexpressed as

fooo

—ay— (©y8y) = (hy, hs), (2.28)

from which, one can reexpress the phase ¢ and y,
respectively, in terms of singlets & and s as

¢ = ]—Carcsin (;17 v+ s2> = y/h?+ hi,
n
h
w = f arctan (;) = farctan (}2) ,

where n =1 for Q parametrization and n =2 for X
parametrization, respectively. This implies that for
2 = Q", one just makes the replacement

(2.29)

, (2.30)

174
W=
n

f_)Z’

so that the ratio s// is unchanged. For the convenience of
later usage, we summarize the fields coordinate trans-
formation among (¢, ), (hy, hs), (h,s) in Table. L.

B. Symmetries

1. Rotational symmetry

One may rotate the generators of unbroken SO(4) C
SO(5) in Egs. (Al4) as well as the coset generator
SO(5)/SO(4) in Eq. (A3) by an angle 0 in the SO(5)
inner space,

To = (T9,T%.T%) - T = R(O)T*R™'(9).  (2.31)

by a rotation matrix R(6)

where 1= 1;,;. The angle 6 parametrizes the misalign-
ment of SO(6) vacuum as we will discuss in the following
section. It turns out that the generators rotated become

" 1+C9 a 1—C9 " So P
T§(0) = —5"Tf +— TR—7§T,

1-c 1+c¢ Sg A
T4(0) =— T + 2"T?e+7"§T“,

To(0) =279 - 2074 4 ¢,T0,

V2 T V2

THO) =T, T5(0) = cpT° — s,T*,

a=1,2,3,

(2.33)

where s, = sin 6, and ¢y = cos 0, T>(6) is the generator of
SO(2) as defined in Eq. (A4) in Appendix. A.

It can be checked that all the generators are also
normalized as

Te[T (O)T7(0)] = 67, Tr[TR(0)TR(0)] = 5,
Tr[T%(0)T?(9)] = 6% = 2(TT?),. (2.34)

and one can also check that (T¢ zT?)ss = (TOT% 4)gs =
(T¢ xT% )es = (T¢ T )66 = 0. From the generator with
rotation 'angle 0, one can read that the components of the
external gauge fields are given by

_1+C9 1—C9

AL(0): AGH(0) =~ Wi+~ B,5",
a 1 - Ce a 1 + Cg ”
AR(6) =~ Wi+~ B8,
alp\. pd S0 wa _ sa i
AL(0): Al(B) = - (Wa—s%B,),  Al=0, (235)

where Wy, B, are the EW SU(2), x U(1)y vector bosons.
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2. Automorphism symmetry

Since the quotient space SO(6)/SO(5) is symmetric,
the symmetric coset has a automorphism or “grading”
symmetry that acts upon the generators of G as defined in
Eq. (B5) or (2.37); both lead to the same representation as

R: { Tal0) = +T14(0) (2.36)

T;(0) - —T,(6).

It is a linear transformation among the generators that
preserves the algebra. There is other automorphism given
by [23]

R,: { Ta(0) = =T4(0) (2.37)

T4(0) — T5(9).

The two linear transformations preserve the Lie algebra
following from the fact that the SO(6)/SO(5) is symmetric
space. Both these two automorphisms lead to the same
representation as Eq. (2.38).

With the generators in Eq. (2.33), the automorphism
symmetry of SO(6)/SO(5) in Eq. (2.36) is

13><3 0 0 0
R(6) = 0 cos(20) 0 —sin(20)
0 0 1 0
0 —sin(20) 0 —cos(20)
P27 diag(1,1,1,1,1,-1), (2.38)
which satisfies
R(O)TS 1 (OR(6) = T4 4 (6).
R(O)T,(0)R™(0) = —T,(6), (2.39)

where a =1,2,3and a =1, 2, 3, 4, 5.
When the SU(2), x U(1), symmetry is turned on, the
grading symmetry R is explicitly broken to
0=0,x. (2.40)
Since R is an element of the unbroken SO(4) symmetry,
i.e., it is an internal automorphism of the algebra, it will be
an exact symmetry of the low-energy Lagrangian up to any
order in the absence of gauging the EW symmetry.

It is also interesting that when 6 = z/2, the automor-
phism corresponds to the Higgs parity as [62]

0=r/2

R(0) = "diag(1,1,1,-1,1.1) =Py,  (2.41)

which transforms the generators as

TA = {T¢,T4.T%, T*} — T'A = {T%,T¢, T4, -T*},
(2.42)

implying that the operator Py flips the direction of T
through

T = P, T Py (2.43)

3. Left-right parity symmetry

There is also a left-right parity symmetry P;p in the
NMCHM,

Pug =diag(1,1,1,-1,1,-1), (2.44)
which exchanges the generators of SU(2), and SU(2)g
subgroup of SO(4), and also changes the sign of the first
three broken generators 7% as

PiRT¢ xPir =T ;.
P TP = —T°,

PRT Pl =T, (2.45)
with a=1, 2, 3 and a =1, 2, 3, 5. For the broken
generators, one should be rewritten as P, pT%Prk =
—n?T® with 5% = (1,1,1,—1)". Since it is not an element
of SO(4), one would expect it broken at p* order, although
it is an accidental symmetry of GBs Lagrangian at (p?).
When the SM gauge symmetry SU(2), x U(1) is turned
on, P;p is explicitly broken for a generic value of 6.

4. CP symmetry

The CP symmetry is a symmetry of the sigma model of
the Higgs sector in the SO(6)/SO(5) model [23]. The first
automorphism symmetry R in Eq. (2.36) makes the
vielbein V, = (D,Z)X"! change the sign, so the Wess-
Zumino-Witten (WZW) term

Lwzw = eP7"Tr[V,V,V,V,V ] (2.46)
changes the sign. While the second automorphism sym-
metry R, in Eq. (2.37) does not make the vielbein \7” =
(D,Z)E7" change the sign, so that it is a symmetry of the
WZW term.

The WZW term is unchanged under two conditions

RP,. R, (2.47)

where

Pyix = —x (2.48)
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is the spacetime parity. In the NMCHM, R'R,P, corre-
sponds to

h — ha s — =S, (249)
which defines the CP symmetry of the Higgs sector,
including the WZW term. In this case, one can write down
a gauge invariant Lagrangian of the form

s _ B -
L= W (nBBWB,w +nyW, W, + ”GG/wGﬂD)’

(2.50)

where B* = e"’°B,,/2 and ngy are integers that
measure the strengths of the gauge anomalies, which are
fixed by the fermion content in the UV.

C. Vacuum misalignment

The electroweak symmetry should be broken at the
electroweak scale. It has been shown that the EW symmetry
breaking can be viewed as due to the misalignment angle 6
with respect to the vacuum of SO(6). Even assuming there
is no misalignment at the tree level, a nonvanishing 6 =
(h)/f is generated at the loop level after the GBs obtain a
vev (h) = v, becoming PNGBs. There are two energy
scales f and v, and the EWSB can be described as a two-
step process: at first, SO(6) is spontaneously broken down
to SO(5) at the scale f, giving rise to an SU(2), doublet
and a singlet of GBs [15]; second, the EW symmetry is
spontaneously broken from SO(4) down to SO(3) at the
EW scale, which is defined as below, leaving an approxi-
mate custodial symmetry as

()

v = fsin (T) = fsin®, (2.51)

where in the last equality, the vev is related to the
misalignment of SO(6) vacuum, parametrized by the
rotation angle @; this will become clear as shown in
Eq. (2.70). In general, when the singlet s in NMCHM
also obtains nonvanishing vevs v, = (s), the quality above
needs to be slightly modified and the exact formula
becomes Eq. (5.32).

Therefore, the vacuum misalignment parameter 6 is
related to the nonlinear parameter as

h
VE=sing"Ko. (2.52)

1. Embedding of SO(4) symmetry
Here we study the correspondence between the SO(6)/
SO(5) = S° PNGBs in the NMCHM and the SM Higgs. It

it convenient to reparametrize the first three components 4,
as the three massless SM GBs ¢, with a =1, 2, 3,

Pa- (2.53)

and define the mixing angle ¢ as

_ (1ol _ o (12!
sq,:sm(T . ¢y =cos{ 7). (2.54)

with absolute value |p| = /¢"¢°.
In the following, the first four elements of the GB scalar

with SO(4) symmetry are embedded into a six-dimensional
fundamental scalar in SO(6). We can rewrite the first four
components as a 4-vector times a phase factor U as
embedding of U in Eq. (A37) into SO(6) as

U=exp (iq’—tg> =c,+ijtis,.  (2.55)
v

where 1§ = 2T¢ with T{ are SO(6) embedding generators
of custodial symmetry SU(2), ~SO(3) C SO(4). One
may define the GBs as

(2.56)

¢ = vs,Q°,

so that the unitary matrix can be reexpressed in analogy to

Eq. (A54) as
2 a
U=y/1-5+iZu,
v v

which defines the coordinate change.
In terms of the phase factor U, the GBs matrix of
NMCHM can also be reexpressed

(2.57)

m

h|

Pl
Q= e'77,

T(x) = €75, (2.58)
where |h| is the scalar singlet field and E is the would-be
GBs nonlinear field given by

B = V2Th, = —iv2Tr(Uo,)T® + V2hsT5,  (2.59)
where a = 1, ..., 5, and we have matched it to Eq. (2.5), by
using Eq. (A49) and 6% = (¢!, 6%, 6%, i1,) with y defined
in Eq. (2.17) and the definition of , in the unitary gauge as

h, =0, hy=c,. hs=s,.  (2.60)
In this case, E reduces to \/E(T‘icy, + Tgsl,,).

In a general case, we can parametrize the six-
dimensional fundamental scalar in SO(6) as Eq. (2.4),
embedding with the four-component Higgs vector in the
fundamental representation of SO(4) as Eq. (12) in
Ref. [25] or Eq. (A.5) in Ref. [26] as
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S(/)i’\l& S(/,%TI‘[UG&]
(I)& - s(/)],:lS - S(/)i:l5 B (261)
o o

where for i, with @ = 1, 2, 3, 4 and in the second equality,
we have used Eq. (A48). Thus, by using the definition of
Eq. (2.12), one can parametrize the SO(6) fundamental
scalar with the SM Higgs embedded as

$4Cy (SyPa) SpCy T
q)[l = slﬁcl//(c(p) Uzl SpCy (262)
S¢SW S(/,Sll,
C¢ C‘f’

It is convenient to reexpress the fundamental scalar in the
unitary gauge

0
05 3 0
hasy h
CyS N !
o= "= = s . (2.63)
SU,S¢ 55¢ f
/1,2 2
Cy hcths 1— h2+s?
C¢ f2

where in the second equality, we change into (/, s) basis by
using definitions in Eq. (2.18). This gives the square root
nonlinear parametrization of SO(6) in analogy to that of
SO(4) in Eq. (A53). In the absence of the singlet s, the
fundamental representation of the scalar recovers that of
MCHM in SO(5)/S0O(4) as [13,17]

SiSpPa 0
S;,C ol s
o= " |2 (2.64)
0 0
Ch Ch

2. Embedding with rotation 0

The vacuum can be associated with an angle 6, as
the rotation angle in an S° unit sphere. The vacuum in
the fundamental representation in Eq. (2.4), i.e., a five-
dimensional unit vector X, under the rotation R(6) in
Eq. (2.32), becomes

O3><1

@, (0) = R(0)® = 0 ,

Co
where 03,; = (0,0,0)7, and the angle  parametrizes the

misalignment of the vacuum with respect to the original
vacuum.

The pseudo-Nambu goldstone boson in the fundamental
representation of SO(6) in Eq. (2.62) becomes

A ills(/)
(CQS - 2],’\14.5'95'2)]7;7‘ 7
¢ g hysy
il4CgS - 2;135‘93% + So —on I,/\l S
®, = ’ ¢ 2l TR (2.66)
h5(CgS¢ — 2/’14.5'95%) h4s¢
2 A~
A h
CgC(/) - h4S9S(/, SS¢
o

where h = (hy, hy, hy) with h, = h,/¢, a =1, 2, 3. The
SM Higgs doublet can be defined as through the first four
elements of the fundamental SO(6) scalar as Eq. (A33).

Having the /5 d.o.f. decoupled, it reduces to

AT
S¢h
1:15:~O i’\l4C9S¢ + C¢S9
0

—h4S{/)S(,v + C(/)Cg

@, (2.67)

where /1 = (hy, hy, hy). In the GB-less limit, i.e., ¢ — 0 by
redefining i11‘2,3 = 123/, fz4 = ¢, and fzS = s,,, one has

1
v CWS¢

(/]_2
v C'I/S¢

P3
v CySp | fooo

= ®y(0).  (2.68)

When 6 = 0, the SM electroweak group is unbroken, and
is embedded into the global SO(4) symmetry, and the
3+ 1 =4 EW GBs form a complex doublet of SU(2),.
When y = 0 with a small 0, then

sin (%—FQ <"’T>T

®(0) 0~0 sin (% + 9>
0

cos (1—@ + 9)

When 6 #0, the SM vector bosons gauge the
S0(6)/SO(5) broken generators T¢. It triggers the sponta-
neous symmetry breaking, after which, the degrees of
freedom of the three EW GBs are transferred to the
longitudinal modes of the W* and Z, respectively, so that

(2.69)
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they obtain masses, while a fourth one is identified as the
Higgs boson. Therefore, the EWSB is due to the misalign-
ment @, which can be generated at the loop level as long as
the GB 4-vector acquires a vev (h) # 0, so that

(h)
0=+ (2.70)
o
It can be checked that under the automorphism sym-
metry in Eq. (2.38), the vacuum is inverse to itself

Zsin (Zf) cos (2’—} + 9) (p)T

sin (% - 9)

0
—cos (? — 9>
(2.71)

Thus, given a generic 6, the action of R is linear on the
0(6)/SO(5) GBs at scale f, while it is nonlinear on the
Higgs field i as well as the SU(2), GBs at scale v.
Thus, according to Eq. (2.69), the fundamental scalar in
SO(6) becomes

P's,
2
S
sin (% + 9) (': v
: s
O(hy) = e, (2.72)
Co
0
h
cos (f + 9)

where h parametrizes the SO(4) invariant quantum fluc-
tuation around the vacuum (h) = f0.

Under the left-right parity symmetry in Eq. (2.45), the
GB changes sign, while the Higgs is invariant,

h— h. (2.73)

9" = —¢",
From the two definitions in Eqs. (2.67) and (2.72), one
can identify the relations between £ and ¢ as

~ h a
,’las¢ = Sin (}"’9) %,

N h 2 h
h4S¢:c9sin (;—f—@)\/l—%—sacos (?—1—9),
h h 2
Cy = CoCOS <}+9> + §¢ sin <}+9)\/;—_—Z_:

(2.74)

which leads to a reparametrization between }Aza and (g?)a, fz4)
with a =1, 2, 3 in SO(4). In the above, we rewrite the
linearly realized ¢ in terms of nonlinearly realized z by
using Eq. (2.56).

III. HIGH-ENERGY EFFECTIVE
CHIRAL LAGRANGIAN

A. Nonlinear chiral Lagrangian in £ parametrization

1. CP-even sector

For the CP-even case, one has 13 independent operators
up to O(p*),

2 4
Lhigh = Eﬁigh + E}I,’igh, (3.1)
where the high-energy effective chiral Lagrangian Ly
denotes
thgh ¢cle +erly,

[74 _ = _ - _ - _ — —
Lyign = ¢pLp + CwLyw + CpsLlps + CwsLlws + z Ly,

n=1

(3.2)
with [49]
_ 12 _
Lc= —ZTI(V”V”),
. 2o
Lr= -7 [Tr(V,T)]%
Lp= g (B, B")
B 4g 122 ’
_ 1 - -
’CW = —Zngr(WWW’“’),
Ly = ¢*Tr(ZB,,Z'B"),
Lyz = ¢*Tr(EW, Z7IWw),
L, = ggTr(EB,,Z~'Wm),
L2 = ig Tr(B,,[9". ).
Ly = igTr(W,, [V* D
54 Tr(V, V¥)Tr ( Vo).
(_M\_/ ) ( )7
= Tr((D,V¥)?),
Tr(\_/”V"V ),
Te(V,9,949), (3.3)
where V, = (D, X)X as defined in Eq. (B34) and T =

TQyX! as defined in Eq. (B38). Since \7” is the vector
chiral field transforming in the adjoint of the gauge field,
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the corresponding covariant derivative in the adjoint
representation is defined as
D, V¥ =9,V¥ +ig, [Aﬂ, VY. (3.4)
For the SM, the explicit expression g4A, = gW, + ¢B,
is given in Eq. (B22). The gauging of the SM symmetry
represents an explicit breaking of global symmetry G
D,V = 9,9 + iglW,. V] + ig/[B,. V¥]. (3.5
The operators listed above consist of a complete set of
independent operators basis in the description of the
interactions among G gauge bosons and the GBs associated
to G/H in the X parametrization. When fermions are
introduced, all operators containing Dﬂ\_”‘ can be changed
into those containing fermions via equations of motion.

2. CP-odd sector

For the CP-odd case, the EW high-energy chiral
Lagrangian, up to the fourth derivatives, has six indepen-
dent operators as

Lyign = L + Lhign: (3.6)
where
zﬁizgh = ¢7L1,
Z}]::gh = eyLly + cpelpxy + CpzLlyy
+ ;L1 + L5 + &5L5, (3.7)
with ¢; as the coefficients [52]
A
Ls = zZTr(TD"Vﬂ),
— gz ~ —
Ly = =7 Tr(W,, W),
Lps = g’zTr( JIBE),
Ly = ¢Tr(W,EWwE),
L; = g¢Tr(W,, ZB#E),
L5 = €,,,, Tr(T[V#, V¥])Tr(T[V*, V7)),
L5 = €, Tr(VFVIPVo), (3.8)

where T is defined in Eq. (B38).

By substituting the explicit expressions of the building
blocks for the Sigma parametrization in Eq. (2.2), into the
CP-even or the CP-odd operators in the high-energy
effective Lagrangian basis Zhigh of Egs. (3.1) or (3.6),
respectively, one can produce the low-energy effective
chiral Lagrangian basis L., in Egs. (C11) or (C15) for
the NMCHM with SO(6)/SO(5) symmetry breaking

pattern, as functions of the SM gauge bosons, the SM
would-be GBs, and the CP-even scalar field 4 as well as the
CP-odd scalar singlet s.

B. Nonlinear chiral Lagrangian
in Q parametrization

The building blocks in the X parametrization, namely,
(Vw FW, T), can be expressed as

\7” = QvﬂQ‘l, F, =Qf,Q", T=QQ", (3.9)
where (v, f,,.x) are building blocks defined in Q para-
metrization, as defined in Egs. (B40), where y = QQ,Q"!
is a custodial breaking operator, in analogy to T operator in
Eq. (B38) in X parametrization.

Thus, the CP-even operators in the X parametrization

can be expressed as those in the Q parametrization, e.g.,

V.V, =Q(v,0,)Q7", Tr(V,V#) = Tr(v,1").
B = Q(fu f™)Q7",
F, ZFe R Q(f M R)Q
FW[V”,V”] = Q(f, [ v*])Q" 1,
T[V+, V] = Q)(Q_l[vﬂ, v, )Q7, (3.10)

where (after taking trace) the operator in the second row is a
kinetic term of gauge boson A of the symmetry G. The
operators in the third and fourth rows contain interactions
of gauge-GBs and gauge-gauge, respectively. Similarly, for
the CP-odd case, we have

Fyvliwu = Q(}‘yvfﬂu)g_l

Q(f Q!
NQt,

F,, ZFwRE-1 =

F,, [VE VY] = Q(F,, [v*, v (3.11)
where, (after taking trace) the operator in the first line is the
topological @ phase term for the unbroken gauge group H.
The operator in the third line contains interactions between
gauge bosons and GBs.

The covariant adjoint derivative in Eq. (3.4) becomes

_ 1
D,V = Q(V”v” +3 [0, v"])Q‘l

=2iQ(V,d" + ild,, d"])Q", (3.12)
where V, 0" = 0,0" +ile,,v"] = D,v" +i[e,,v"] where
D,v* = 9,v" + igs[A,.v*] and v* =2id". In the above
derivation, we have used the commutation relations that
[A,.Q] =[Q7' A,] =0 due to the property of unbroken
generators in A, = A4T* as well as Eq. (B50). For gauge
fields under the SM gauge group, i.e., F = (W, B), it can be
written explicitly as
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W, = Qw, Q7" B,, = Qb,Q7", (3.13)
where we have used the new notations f;, = (W,,.b,,)
which are defined in Eqs. (B53) and (B54).

In the end, all of the gauge fields f,, . (wﬂ,,, b,,) can be
decomposed in the automorphism states, by using Eq. (B55).
On the other hand, we may use the new notations for v, =
2id,, as denoted in Eq. (B48), to make replacement for all of

operators in the effective Lagrangians.

1. CP-even sector

In the Q parametrization, the CP-even operators in
Eq. (3.3) can be simplified as

2
Lo = _JIC_6TI<U”U#)’ Ly = ig Tr(b,,[v*, v*]),

—_ 2 —_
Ly = ‘Jl% [Tr(v)?. L5 = igTr(w,, [0, v*]),

) 1 )
Lp= —Zg’zTr(bWb“”), Ly = Tr(v,v*)Tr(v,0"),

—%ngr(w,ww’”), Ls = Tr(v,v,)Tr(v"1"),
Lps = *Tr(Bi0b™),  Lg=Tr((V, ")),
Ly = 2Tr(W(R)W"”), Ly = Tr(v, v v,0"),
L, —gg’Tr(b( )w’”“) Ly = Tr(v,v,0"v"), (3.14)
or, equivalently,
2
Lc= %Tr(dﬂd”),
- 12
L= T [Tr(d,x)]*
Z:B = —%g/ZTI‘[(b;}, + b;v)z]s
- 1
Ly = —Zngr[(w;,, +wi)?,
Z'B /ZTI'[(b+) _( ;w) ]’
Lys = g°Tr[(w)? —( )]s
L, = 99’ Tr[(byh, — b, )W,
Ly = —4ig'Tr((by, + by,)[d*. d"]).
L3 = —4igTr((w}, + wy,)[d". &),
Ly = 16Tr(d,d")Tr(d,d),
Ls = 16Tr(d,d,)Tr(d"d),
Le = —4Tr[(V,a")],
Ly = 16Tr(d,d"d,d"),
Ly = 16Tr(d,d,d"d"), (3.15)

where there is an addition factor 1/4 in front of L. by
imposing the rule in Eq (2.25), since we are going from X
to € parametrization. wﬂy, b/fy can be expressed in terms of
CCWZ covariant building blocks d,, e, as explicitly

shown in Eq. (B66).

2. CP-odd sector

In the Q parametrization, the CP-odd operators in
Eq. (3.8) can be simplified as

, f2 .
Ly = i1 Tr((V,0" ),

1

Ly =— Zngr(Vvﬂyw"”),

i = T, b,
ZVVZ = ngr(Wﬂvw(R)ﬂy)’
Li = gg'Tr(W,,b™"),

Z:Q /wpaTr()([v# ])TI‘(}{[UP, Uﬂ])’

Zﬁ = euvpaTr(Uﬂ” Upvd)’ (316)

or equivalently,

_ f2

Ly = —gTr[(V,,d”))d,

. 1

Liy = =3 0 Trl(wiy + ) (0 + w)],
Ly = ¢°Tx[(by, + by (b — b)),
Ly = FTr[(Wf, + W) (wH —w )],

Li = —gg Te[(Wj, + Wy, ) (b — b)),

L5 = 16€,,,, Tr(x[d", d*])Tr(y[d’, d°]).

L3 = 16¢,,,,Tr(d"d*d’d°). (3.17)

Therefore, the building blocks for the Omega para-
metrization in the CCWZ formalism are all

” wo (3.18)

Since fi = (w/w, b/i) are not independent of d, and e,,,
one can make a choice as Eq. (B77).

With the building blocks shown above, we can obtain the
high-energy effective Lagrangian up to p* order.

In the CCWZ approach, according to Eq. (B26), by
projecting upon the broken generators of the Maurer-Cartan
form, one obtains the elements of d, and e, fields, along

broken and unbroken generators, respectively as

015013-13



YONG-HUI QI, JIANG-HAO YU, and SHOU-HUA ZHU

PHYS. REV. D 103, 015013 (2021)

d = Tr(w,T?) = —iTr|(Q0,Q)T7),

e = Tr(w,T°) = —iTr[(QTaﬂQ)T“}, (3.19)
where Q is defined in Eq. (2.9), Q" = Q7.

In the NMCHM, the broken generators 7% are given in
Egs. (A5) and (A7), and can be expressed as

T 1 0, 1,
“%(—15 o)’

where 0, = diag(0,0,0,0), 1, is a 4-vector with only
nonvanishing component 1 along the ath direction. The
factor in front is normalization of the generators
in Eq. (A1).

The w, = —iQ‘IO,,Q is defined as introduced in
Eq. (B26) in the vector formalism as

M nmyp
w, = —Ii ,
my my;

with the block components as

(3.20)

(3.21)

iy = } D, J0)D + 550,8) = (1 = c)s,0 (0,8).
— }(a DI+ 551 = ¢) 0,8 (D)
—5,(0,0"). (3.22)

where ¢’ =1 so that ¢pp” = (¢p")? and 9,(¢"p) =0
are used.

With the explicit expression of w, given in Eq. (3.22),
one can read

. 1 ~s ~
di =2 (; (0,43 + s¢c¢<6u¢“>)- (3.23)
By using the identities
1oy _ Ou(@¢") 0,14
a T _ K T
, 0 |¢|
) 3.24
d, can be reexpressed as
. 1 (2s4cy 1 25¢Ch o
it = Vi[5 (- 1) e = o
(3.25)

The kinetic derivative 0, above can be generalized to be the
covariant derivative as that in Eq. (B20)

9, > D, =0, + i[AiT* Z] + i{A4T? 2}, (3.26)
For the SM, {W“,Bﬂ} € A%, we have
D, =0,+i[Wi0f.Z] +i[B,Qy.X], (3.27)

where the gauge couplings g, ¢ are absorbed into the W
and B, respectively. The explicit expression of the covar-
iant derivative terms as well as the Omega parametrization
building blocks in the EW sector of NMCHM are shown in
Appendix 1 d.

IV. MATCHING TO EW CHIRAL
LAGRANGIAN

A. CP-even sector

1. p? order in X parametrization

The leading-order high-energy effective Lagrangian up
to the two derivatives is

Lo =5 0,07 + 250 (1) 00

— f?cos? (?) sin? (%) Tr(V'V,)

=Fuly+F L+ FcLle,

1
o cos* (lg) sin (;}) Lr

= ‘FT‘CT’

Ly =
(4.1)

where we have used Eq. (B34) in the X parametrization. The
first lines are kinetic terms for the field ¢, in analogy to Ly
defined in Eq. (C9). The leading-order operator Lcy is
associated with the two gauge bosons as defined in Eq. (C10)
or more explicitly shown in Eq. (C14) in Appendix. C.

In the absence of the singlet, i.e., w = 0 (or s = 0), the
leading-order high-energy effective Lagrangian in the
NMCHM just leads to those in the MCHM as [13,17]

(4.2)

where the first two terms describe the low-energy projec-
tion of the custodial preserving two derivative operators.

2. p* order in T parametrization

In the NMCHM, the operators in the high-energy
effective chiral Lagrangian in Eq. (3.3) are related to the
low-energy chiral EW Lagrangian in Eq. (C11)
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ZB = ‘CB7
ZW = £W9

Lps = —4 [1 — cos? <§ sin? <%>] Lp,

Lyy = —4 [1 — cos? <§> sin? <%>] Lw,

L, =4Lp, + 16cos* (?) sin* (£> Ly

— 16c0s? @) sin (%) L) + 64sin* (%) Lp,
— 64cos? @) sin* (
Ls = 4Lp, + 16c0s* (%) sin? <%> Ly
e
— 64cos? (?) sin* (
(g (0) oo ()
+ 4cos? (%) sin? (%) L
— 2L, + 4cos? (?) cos? (%) c?
— 8sin? (%) Lry, + 16sin? @) sin? <%> Ly

— 2cos? (£> sin <?> (Cg(/)) — 2[,(1{8))

f
, 2W)-z(¢> W) _ o p)
+4sin| — |sin“ [ — | (£ = 2L5),
(3 )si () e - 268
| _
L; = Z(Ezt + Ls),
_ 1-
5825[,5, (4.3)

where Lﬁf’), ES") are defined as £, with the following
replacement rules:

hjv—¢/f, or, hj/v->wy/f, (4.4)

respectively, and similarly for £p, and L, etc.

The £,4 do not give independent contributions since
they can be expressed in linear combinations of other
operators. The traces of four \7” can be expressed as
products of traces of two V,. Therefore, there are
2 + 6 = 8 independent operators. The explicit expression
of the low-energy chiral Lagrangian in NMCHM are list in
Eq. (C14) in Appendix. C. in the absence of the CP-odd
singlet, w = 0 (s = 0, or ks = 0), the result just recovers
Eq. (4.18) in Ref. [49] in the MCHM.

The above are model-dependent relations relating the
d.o.f. of the high-energy sector to that of the low-energy
sector. These are still valid even after EWSB in which Higgs
obtains vev at EW scale v as will be discussed in Eq. (1.7).

B. CP-odd sector

1. p? order: Topological 0 phase

The leading-order operator with at most two derivative in
terms of p? order reads as

;= —i:cos2 (Zj) sin? <24;> Ly. (4.5)

2. p* order: Higgs couplings to gauge bosons

For the NMCHM, the dimension four operators in the
high-energy effective Lagrangian in Eq. (3.8) are related to
the low-energy EW chiral Lagrangian in Eq. (C15) as

Y

Ly =0,
ZW = ﬁﬁ/,

L5 =0, (4.6)

where we list the explicit expressions of CP-odd low-
energy chiral effective Lagrangian in Eqs. 482. The first
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two are topological @ phase terms for non-Abelian gauge
symmetry and analogous to the QCD @ term. Namely,
in principle, one has the EW 6 term as a free parameter

in the SM. For L),

Eq. (4.4). In the last equality, we have used that Eg =
e Tr(V,V,)Tr(V,V,) for SO(6)/SO(5). It is interesting
to observe that, at p* order, which can be due to
contributions from one loops, the low-energy chiral
Lagrangian of the Lj iy would lead to a nonvanishing
topological @ phase. In the absence of the CP-odd singlet,
ie, w =0 or s =0, the results just recover Eq. (4.6) in
Ref. [52] for MCHM. We also make a comparison with a
set of high-energy effective operators defined in literature
as explicitly calculated in Appendix. B 7.

we also used the rules setup in

V. HIGGS FUNCTIONS

In this section, we express the Higgs functions in the
low-energy chiral Lagrangian in terms of the Higgs
dependence on a high-energy Lagrangian.

The low-energy EW chiral Lagrangian that describes the
gauge-Goldstone and the gauge-scalar interactions up to
the four derivatives can be written as
+ o

low?

Liy = LD,

low

(5.1)

which is explicitly described in Appendix C. To match the
Wilson coefficients of the low-energy effective operators to
the high-energy Higgs-dependent function, we need to
match the different degrees of freedom above and below the
EW scale.

A. Higgs kinetic terms below EW scale

1. The (¢,y) basis: Polar coordinates

The CP-even p? order high-energy effective Lagrangian
with at most two derivatives is a custodial preserving one as
givenin Eq. (4.1) for NMCHM, in the Q parametrization [26]

L= Ly+ sin® (?) Ly,
B J; cos (%) sin? (?) Tr(V¥V,,),

Lr=— écos4 <§> sin* <§> Lr,

where L is the custodial preserving two derivative operators
as defined in Egs. (C10) with explicit expression given in
Eq. (C14). The first line describes the kinetic terms and the
second line describes the scalar gauge boson couplings. Ly,
is defined in analogy to £ in Eq. (C9), which are canonically
normalized kinetic terms for the field ¢ and the phase y. To
be explicit, the kinetic term is

(5.2)

L =5 0,0 0) + i (F) Q) @), (53

1
2 f
which just recovers Eq. (5.18) in the Cartesian (A, s) basis.
This result is consistent with that in Eq. (A.34) for MCHM
in Ref. [49].

After EWSB, the scalars obtain vevs

¢ — ¢+ (P). (5.4)

W =g+ (y).

The SM gauge bosons W and Z, obtain masses from the last
term in Eq. (5.2),

f2 v . U¢
oo (s () vy,

miy (W) + (Wi)?) + -],

Emass =

(5.5)

N =

where the W gauge boson mass by definition should be
consistent with the definition of the EW scale ». To be
consistent with the definition of the EW scale v, defined by

the W mass m?, = g*v?/4, it is entailed to impose that

(o)

which just reproduces Eq. (1.7) with v, = (¢) and
v, = (w). It is convenient to define the ratio between
the EW scale and the symmetry breaking scale f:

o ().

where £ is the parameter quantifying the d.o.f. of the
nonlinearity of the Higgs dynamics as defined in (1.7).

Equivalently, from linear representation of the funda-
mental scalar of SO(6) in Eq. (2.63), one can also write
down the kinetic terms of both a scalar ¢ and a pseudo-
scalar y, which corresponds to a sphere with standard
metric as [25]

(5.6)

(5.7)

1 1
Ekin = —aﬂCDTa/‘(I) =52 [(aﬂ¢)2 + S(Z/;(ayl//)z]’

: T (5.8)

which is consistent with the leading p? order of the
nonlinearly realized effective chiral Lagrangian from the
NMCHM, as shown in Eq. (5.2).

2. The (h.s) basis

In the projection of the (&, s) parametrization, the kinetic
terms in Eq. (5.8) become
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1 hd,h + s0,s)?
Lin = 7z (@7 + @0+ L2
1
SRRV + (WD) + (W) = 9B,

(5.9)

By making a rescaling of (h,s)— (fh,fs), so that
the dimensionful (%,s) becomes dimensionless, the
Lagrangian Ly, reads as

(hd,h + saﬂs)2>

1—h%—52

1
‘Ckin = E ((8,/1)2 + ((?ﬂS)2 +

1 2 £2 + - 1
+ g ] hz WTHW, + 'z , 5.10
1 < " ) 2 /4> ( )

where ¢y = cos Oy = g/\/g* + ¢? is by definition of the
Weinberg angle 0y,. This just recovers Eq. (11) in Ref. [23]

or Eq. (A.5) in Ref. [24] for the NMCHM.
In the absence of s, this leads to the kinetic term of the
Higgs singlet as well as the gauge boson mass term as

1 h 2
‘Ch = E [@,ha”h + <U + 1> (Zm%VW;W”' + m%Z”Z”)} s
(5.11)

where the charged weak gauge bosons are defined as
Wi = (W) FiW?)/V?2, the neutral weak gauge boson
isZ, = gWi — ¢ B, and after EWSB, i.e., h — h + (h), the
bosons Wff and Z, obtains mass

1 1
mhy =7 = (g

i (5.12)

We have the parameter & = v/ f? = v3/f* with v, = (h).
In the presence of singlet s, i.e., s — § + (s), the vevs
(v4.v,) can be expressed in terms of (v, v,) as

v
v, = farctan (—‘),
Uh
PRI
. (VU t v
v, = f arcsin (#),

; (5.13)

where v; = (s). In the EWSB vacuum identified as v,, = 0
(or vy = 0), one has
v, = f arcsin VE. (5.14)

In this case, the nonlinearity exactly recovers that in the
MCHM as

& =sin (v,/f). (5.15)

Consider the physical Higgs excitation & around v, one
has

tan <h i ”) _ VISt s

S VI=Ccp+VEsy

where s;, = sin (h/f) and c;, = cos (h/f).

In the NMCHM, one can also change from the polar
coordinate (¢, y) to the Cartesian (h,s) coordinate with
replacement rules:

1 1
£¢—>1—_§£H, ["I/_)E‘CS’

where Lg = (9,5)*/2 and we have used Eq. (2.29).
It turns out that, in the (h,s) field basis, the custodial

preserving terms in the high-energy effective Lagrangian in
Eq. (5.2) becomes

(5.17)

Le(T) = % ((a,,h)2 T (Bs)? +

cey

(hd,h + sﬁﬂs)z
f2 _ h2 _ s2
(5.18)

where the first terms are kinetic terms and are not
canonically normalized yet as

L8 = (0,0, 0,5)K (h.5)(0"h, &"s)T,  (5.19)

where K(h,s) is the matrix of kinetic terms with non-
diagonal mixing terms of 0,hd"s,

1 f2=s? hs
f2_h2_S2 fZ_hZ_SZ
Kns)=5 |77 T (5.20)
o= P

After EWSB, v, = (s) #0 and v, = (h), it can cause
mixing and the eigenvalue matrix is [63]

' F F h
O S L
Fy Fyp s

= 2 (0,h)* +2_(0,5)*. (5.21)
where
2
U
Fu=3 (14 7 0 )
1 Vp Uy
Fip = Fy 2f2 Uz_vg
1 v?
Fyp = > (1 +f2 U%, v%) (5.22)
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The kinetic matrix can be diagonalized where the eigen-
values are

Ay == T =-—, A== (5.23)
2 ;; s 20<¢>
In the SM case, s = (s) = v, =0,
S<¢> = \/E, C<¢> = \/ 1 —f, (524)
one has [26]
1 1
=_. (5.25)

B

Then after rescaling, the physical singlets can be
expressed as

h s

~ Uh /_2/1+ - 1}5 /22_ ’[]th< - U S 7/& h\/lT
2 2 2
\ Uy, + U5 \/vh + v

vh,/zz t s ,/2,@ vhs+vhc< =y
Vg + vl Vg + vl

In the following, to simplify our physical results, we use
this eigenbasis from the X parametrization to deduce the
physical observables, such as the anomalous couplings of
the Higgs boson to two gauge bosons, etc. In the EW
vacuum, one needs to impose the

(5.26)

h—v++/1-=¢Eh, s = S.

(5.27)

After redefinition, the kinetic terms are canonically nor-
malized as

‘Ckm Eh + ﬁ [(aﬂh)z + (aﬂs)z]’

where the kinetic mixing terms are vanishing.

(5.28)

3. The (hy.hs) basis: Cartesian coordinates

When going back to the original (A4, hs) basis instead of
the (h, s) and (¢, y) basis, according to Eq. (2.15), refer to
Table. I, the kinetic term in Egs. (5.8) or (5.18) can be
expressed more explicitly as

has) _ (hyOyuhy + hsd,hs)?
R R

/1,2 2
n (l’lsaﬂl’u - h48ﬂh5)2f25' 2 h4 + h5

21 1 12)? A

- (8ﬂh4, 8ﬂh5)K(h4, hs)(aﬂh4, 8’4h5>T, (529)

where K(hy, hs) is the kinetic matrix with a nondiagonal
mixing term of d,h40"hs as

1 (K K
K(h4,h5)=—< ! 12>, (5.30)
2 K21 K22
with
PO +h§fzsmz( h§‘+h§>
RGO
hyhs h4hsf2sin2(—”€f+h§)
Kip =Ky = - ,
PR R Rl (h? + h2)?
K, — 5 wpsin (M) (5.31)
Ponn s (BR) |

One can also transfer the vev from the (¢, y) basis to the

(hy, hs) basis,
\/vi+ v% v,

sin =—,
w/v4+z)5 f f

<h4> and V5 =

__\[_

(5.32)

where vy = (hs) are vevs of hy and hs,
respectively.

In the absence of /5, the kinetic term just recovers that of
MCHM in the leading p? order effective Lagrangian of
MCHM in Q parametrization in Eq. (5.3). One can promote
the hy to be the SO(4) global invariants as

|HP>=h+h3+hi+hi=(h+v)? (533)
and relabel the singlet 45 = #. In this case, the kinetic terms
in Eq. (5.29) are promoted to be more generic ones with

(VIH*+
ﬁ]((glﬂ) - sm (|H|2—|F1’] ;7 /f [8 H) (aﬂH)'i‘a/ﬂ’[a”’ﬂ
0,(|H? +n*)]? <1 frsin®(VIHP + 7 /f)
8(|H|* +1) H +n?

(5.34)

It is also interesting to observe that the metric in front of the
Higgs kinetic terms £ = g,,0,h*Oh” /2, can be expressed
with a metric

2sin? (\/|H|* + n? /f

ab'
2(HP + 1)

Jab = (5.35)

In the weak coupling limit f — oo, the second term
disappears, while the first term just recovers the kinetic
terms of the SM Higgs doublet and 7

izl S (O,H) 0" H + O] (5.36)
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By gauging the theory with replacing d, — D, after
EWSB, in the f — oo limit, one would expect to obtain
the Lagrangian of the SM effective field theory as a series
of expansions. In the unitary gauge, H'H = |H|> = (v+h)?
and 9,(H'H) = 2(v + h)9,h.

B. Higgs function in (¢,yr) basis

1. CP-even case

For CP-even operators at O(p?) order, i.e., with at most

two derivatives,
2

P

‘Clow -

Ccccfc + CTETJ:T + CH'CHfH7 (537)

where L; . are the leading-order low-energy CP-even
chiral effective Lagrangians introduced in Eq. (C11) and
Ly is the canonically normalized Higgs singlet kinetic term
defined in Eq. (C9). For briefness, henceforth we have
neglect the explicit 4 dependence expression for F(h),
instead by making the abbreviation F. The multiplicative
terms F, in terms of the Higgs functions, are the generic
polynomial functions of 4. For the composite Higgs model,
F, is the trigonometric functions of // f. For the NMCHM,
the Higgs functions can be read directly from Eq. (4.1)
through the matching below as

ECZ:C = fHCHﬁH + fSCS‘CS + ]:C'Ccﬁc,

ET‘ZT EfTCTET, (538)
where
. w2 (P
fHCHfCC, .’F_gCS—SlH ? Cc,
4 ¢> (w)
Foce = —sin cos?( = e,
e (%‘ f)c
1 Wy ¢
Fre ———cos4< >sm4< ) 5.39
rer = = geost (%) (£ (5.39

Assume that v and v, are the expectation values of Higgs h
and singlet s as

v = 2f arcsin <\f sec Ufs) =) f arcsin <\f) . (5.40)

The Higgs function after expansion gives coefficients as
Fucy = Cu.

_ h h?
chC:CC 1+2acg+bcp+ s

2

h
fTCT:_%ET<1+2GTZ+bTF+...), (5.41)

where F; = 1 when cy = ¢y and

bg ) _§
\/ 4 Vl'ZN 8’

bc—cy——égfl—if

by = 6¢2 —28"="6 - 2¢, (5.42)

where we have defined ¢, = cos (v,/f). These result for
F i in the Q parametrization after X decomposition, which
just recovers exactly Eq. (7.4) in Ref. [49].

For the CP-even operators at p* order,

26
LD, = cslFp+ cwlwFw+ Y calnFy
n=1
+ conlonFon + canlanF an
+ cpuLouF pa- (5.43)

The low-energy CP-even chiral effective Lagrangian
Lpw., 1s introduced in Eq. (C11) and Loy sy py is the
higher order operator denoted in Eq. (C9).

From NMCHM, we find the Higgs functions as

cpFp=cp—4Cpy [1 — cos? <VJ£) sin? <;;>]

CWfW = EW _4Z‘W2 |:1 — COS <l}/) sin (;4;‘)]

CDHJTgﬁf)l = 4& (¢4 + Cs),

CDH]:DH = 64&%(¢4 4 cs5)sin? <;;)

CDHF\]H = _256‘6’
_ ¢
CDHF(D"Q, = —8¢¢&sin® <§ ,
_ ¢
Cl./fl = C1C052 1’12 ﬁ

si

¢y FH = C,hcos sin

%> sin? i)
f 2f )
c4.7-"‘(1¢) = Cyy/Ecos? ( )sm <?>
f
e FY) =2z, §sm( > 2<%>,

05}" ——2C';\/ECOS ( > (? ;

cs]—'g —4c3\/_sm< > 2<2£>,

(
2<£

] IS

(
o

C3f3 = 2530052

VY
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c6Fs = 16¢,c08* <‘}’) sin* GD
(o (2)
e (7))
7 FW = —2g41/Ecos? (?) sin<
7 FW) = 426\/E sin<

~ 1S
~——

sin?

/-\

s

N——

csfgp) = —16¢5&cos? ( ) 2(%)
e CYol?)
cgF g’/) = —64¢5£cos? < ) n* (%)
+ 16¢4&sin? ( ) 2<%>,
Cgfg = 4E6COS < (%)

610‘7:(10 = 4-6‘6\/5(3052

/_\\/
€
\_/
/\
S
~—

‘ [\

c10F W) = —82¢/Esin f>51n (;;)
(%)
)(2)

ex ) = ~oseseeos (o' (7).

In the absence of the singlet s (or yw = 0), the results
recover the expression for c¢,F, custodial preserving
operators for the MCHM in Table 1 in Ref. [49].

Cllfll = 16E'SCOS <

Czofzo = —16¢4&cos?

/\\//_\

(5.44)

2. CP-odd case

The low-energy EW chiral Lagrangian that describes the
CP-odd gauge-Goldstone and the gauge-scalar interactions
can be written as

£10W = EIOW + Elow, (5.45)
where
Z1ow = cpLyF 7,
. 16
Lh, = LpFp+ LaFy+ > caliFa  (5.46)
n=1

where F; encoded a generic dependence on / but without
derivative of h. The low-energy CP-odd chiral effective
Lagrangian Lj py; are introduced in Eq. (C15) or more
explicitly shown in Eq. 482 in Appendix. C.

From the above relations, we read the Higgs functions as

ciFg=— écos2 (?) sin? <;;> 7,

5 F5 = 2¢5+/ Ecos? <§> cos <;}> sin’ < 4;)
= 4¢5/Ecos* <?> cos (;;) sin? <24;> (5.47)

When the CP-odd singlet (s or hs) is absent, i.e., w = 0,
this just recovers the results in Table 1 in Ref. [52].

C. Higgs function in (h.s) basis

1. CP-even case

From above equations in Eq. (5.2), or with the aid of
Eq. (5.39), we can transform them from the Q to X
parametrization, by making the redefinition f — f/2 (or
& —4f) and w — w/2 as in Eq. (2.25). In NMCHM, the
Higgs functions can be read directly from Eq. (4.1) through
the matching below as

Z‘CEC = FHCHLH + fSCSES + Fcccﬁc,

ET‘ZT = ‘FTCT‘CTﬂ (548)

from which, we can read the Higgs functions corresponding
to the Lagrangians, respectively, as

_ 1 . 20\ _
Fucy = Cc, Fgcg = Zsm2 <?¢> e,
1., (¢ AW
Frce = —sin? <—>cos2 <—>c ,
ccc =7 7 7)ce

Frep = — 1 cos4 <§> sin* <?> Cr.

where Ly is defined in Eq. (C9).

(5.49)
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Assume that v and v, are the expectation values of Higgs
¢ — h+ v and singlet w — s + v, as

v), = f arcsin <\/E sec %) viofarcsin(\/g). (5.50)

The Higgs function after expansion in the series up to the
order (h/v)? gives expansion coefficients as

Frucy = Cy,

h h?
FcCC:Z'(j< +2£1C +bC 2+ )

2

h h
‘7:TCT:_§5T<1+2a]";+b7‘?+...>, (551)

where F = 1 when cy = ¢y and

aC:\/c— \/1— Nl—f

be =2 —28"="1-2¢;

;=0
ar =24/t —E="2

1—E~2-¢

by =62 —85"="6 — 8¢, (5.52)
where we have defined ¢, = cos (v,/f). These result for
Fy in X parametrization, in the absence of the singlet s,
ie., vy, =0, just exactly recovers those in the MCHM
[19,49]. For Fy, cr is related to the EW oblique T
parameter as denoted in Eq. (6.11) after EWSB (h) = v.
Due to the —£/4 factor in front of the Higgs function F 7 is
suppressed at leading O(p?) order.

For the Higgs functions associated with CP-even oper-
ators at the order (p*), one has

_ _ 5 h h\?2
CBfB’NVCB_L"CBE |:1—§ <1+;>_§(1—§) <1+;> :|,

_ _ ) h h\?2
cwFwrCy—4Cws [1—5 <1+;> —5(1—§)<1+;> ]’

CDH]:DH~64§2( 4+Cs),

(w) o A\ h\* h\?s?
cppF pp~1024(¢4+¢5)E 1+; +2 1+; il
conFY) ~—8zeE,

2 s2
cDHFDH~—8c6§[§(1+ +(1—§)<1+ +F}’

csFy) z252§[§+ (2-5)(1 +%> —5(1 +%ﬂ,

chFy —85253/2<1 +%> %
QP - h h 3
csj’-'gnz—4c3.§{§+(2—§)(1+;> —.»:(1+;) ]
(w) = £3/2 h\ s
C4.'F4 %166’35 1+; ;,
B\ 4
C6‘7:6 ~ 16(_,'452 (1 +;> — 2(_/‘65(1 +;)
h h\?3
x[5+(1—5)<1+>—5<1+> }
v v
( n
h
2

07}-5(/))“_4565{54‘(2—5)(14’%)—51 %)3]
)s
+-) =,
v) v

h 2
)%—646552[5<1 U) +(1—§)<1+;> ]
h
+16c6§[1—§<1 ) F1-¢ (1 EH
1+ﬁ)4+16c6§
v
cgfgz%ﬁf[é(l +§> e _5>(1 +%)2],
3
c10.7:%)>z8565[5+(2—§)<1+%> _§<1+%> }’

_ S
Clofgv(;) ~ _32C6§3/2 ;

1 FW) ~ 1624832 <1

=

Cgfi(;/)

s FY) ~ —642583

cllfll ~ 165’552 <1 + -

2

)Zs—z — 642,83 (1 + h>4.

v

0 FW ~ —162,8 (1 +

SHES)
SHI @IN\—/J>

a0 F W) ~ —642,8 (1 +
(5.53)

The CP-even anomalous couplings for HEFT from
NMCHM can be obtained from expanding the Higgs
functions as in the series up to order (h/v)? as [45]

(5.54)

where ¢, are the global operator coefficients, a, = a,c,
and b, = b,c,. ¢, is independent of the Higgs functions
F, while a, and b, are related to anomalous couplings
beyond the SM, which are related to a three- or four-point
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function, respectively, e.g., a single or double Higgs scalar,
couplings to two gauge bosons.

For the NMCHM, we find the explicit expression of all
nonvanishing coefficients as

cp = g —4(1 = &)Cpx.

ap = 4&y/ ¢} — Etpy 282 - &)Cpy,
by = 4E(c2 — 28)Tpy m 4E(1 — 28)ps,

cw = Cw —4(1 = ¢&)eyx.

ay = 4&y/ ¢ — Eoyy R 2E(2 - E)Eyy,
by = 4&(c? = 28)eyz ~ 44(1 - 28)yy,
Cpp = 64E2(C4 + Ts5), dpy = 0,bpy = 0;

con = —8&Cs, apy = 0, boy = 03

1_ _
cos = —852 C ~ —8&Cs,
N 1 _ _
aps = —Sf? C? — &6 ~ —4E£(2 = &)C,

“ 1
bos = —85<1 - 25;) Co ~ —8E(1 — 2£)C6;
cip =& o,

Qg =E\Jc?—EC 1y EQR2 - E)/28,.

ay = 28/ c? — Ec3 m E(2 = £)is,

by = 2¢(c} — 28)e; m 2&(1 - 28)¢3;

ey =4E\[ct — &y m2E(2 - E)Ty,

a4 = 2&(c? = 28)8, & 2&(1 - 28)2,,

2 — &2y~ —88%;

cs = —8&\/cl — &y m —4E(2 - &),

a5 = —4&(c} = 28)8; & —4&(1 - 282,

bs = 16&/&?@ ~ 168225

cg = 16E%¢, — 2E(1 = €)cs,

b = 3282/ 2 — £y - 26(1 = 28) /2 - &2
~ 32822 — E(2 - 58)%,

be = 3282(3c2 — 48)ey + 2£[26(1 — 48) — (1 - 6&)c3eg
~ 9657 — 2£(1 — 8&)Te;

07 = —8&\/c} — £ty m —4E(2 - €)Ce,

a7 = —AE(c? —28)te m —4E(1 = 26)8s,

by = 16E24/ ¢ — E¢g ~ 16£2¢4;

g = —64E285 + 16E(c2 — ) ~ —6482¢5 + 16E(1 — £) 24,

g = —64E2/ 2 — £8s — 1621/ ¢* — Ecq
~—32(2-€)E%5 —8(2 — &) ¢,

by = —64E%(c§ —2&)es — 1687 (c5 — 2£)¢6
~—64(1 —28)E7¢5 — 16(1 — 2&)E2Cq;

Cog = 45667

a9 =4&\/ 3 — ECe m 2E(2 - &)Ts,

by = 48(c? = 28)c m4E(1 - 28)26;

clo = 16&\/ c§ — Ece R 8E(2 — )T,

@y = 8(c5 —28)Ce ~ 8E(1 — 28)C6,

bio = =328/} — &8 ~ =328%C;

Cll = 166265’

o]

ay, =328
by = 3282(3¢% — 4&)Es ~ 96£7Cs;
o = —64E%¢,

Gy = —6452\/ ¢} — &6y m —64E°C,,
by = —648%(c2 — 28)4 m —64£72,; (5.55)

where we have denoted ¢, = cos (v,/f), and ~ means all
terms at an order higher than O(£?) are dropped.

c% — &5~ 325255,

2. CP-odd case

We can transform Eq. (5.47) from the Q to the X,
parametrization, by making the redefinition f — f/2 (or
& —4f) and w — /2 as in Eq. (2.25). In the canonically
normalized basis of h, s, after EWSB, i.e., by making
replacement for 4 and s as h - /1 —¢h + v, and s — s,
expanding £ and s up to second order, the Higgs functions
associated with CP-odd operators at the order (p*) become

1_ h? h*

cpFp~ —4cs {1 - & (1 - %) —(1- 5)5(1 + %)2]
+45§§2<1 +ﬁ>4,
v

h
Cﬁ,}—wzéﬁ/—45‘ﬁ,|:l—§2<l —|—;>

—(1 —5)5(1 +%ﬂ +4zi<§2<1 +%>4,
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1 h h
h N2 152
e Fs %4c2§2<1 +;> Kl +;> —5—22],
h N2 152
C3f§%86‘2§2(1+;> |:<1+;> —5—22].

The CP-odd anomalous couplings for the NMCHM can
be obtained from expanding the CP-odd Higgs functions in
Eq. (5.57) by

(5.56)

h b h?
f— —1+2a——+——2+
CLv  Chv

(5.57)

where a; = a;c;, and 13;, = bjc;. We find the nonvanish-
ing coefficients a; from NMCHM to be

by =c2—28"="1-2¢,

cp = 4[=(1 = ¢&)epy + &3],

a5 = 46\/ 3 — Eegs + 883 - 25

~28[(2 - §)epy + 4855),

by = 4&(c? = 28)egy + 88 (3¢} — 4¢)¢;
~A4E[(1 - 28)egy + 6&C3),

ey = Ty +4[=(1 = §eyy + £7¢5),

— &gy + 82 \/6?7—552

~28[(2 = )eyy + 485;),

by = 4&(c} = 28)eyg + 88 (3¢] — 4)%;
R 4E(1 - 262y + 6503),

.

RN 4:<2 &),

by = 5 8(c = 28~ 61 - 292

)

5 = 452\/C2 — 55’2 I~ 4525‘5,

—48)E2¢5 ~ 6£2C5,
by = 482(3¢2 — 88)\/ 2 — &&5 m 128285,
3 =88/ 5 — &3 ~ 88783,

a3 = 48 (3¢ — 48)e; ~ 128%¢;,

by = 882/ c? — E(3¢2 — 8&)T5 ~ 24E2¢C5; (5.58)

where we have defined ¢, = cos (v,/f), and dropped all
terms at orders higher than O(£?) in the approximation.

D. Higgs functions in curved field space

In the above section, we have obtained the Higgs
functions from X decomposition of a high-energy effective
Lagrangian. One founds that in the (hy, hs) basis, such as
Eq. (5.34), the kinetic term of the Higgs is not canonically
normalized, unless in the f — oo limit. This motives us to
consider the physical meaning and origins for the Higgs
function, which is an intriguing problem. We want to
address the connection between the Higgs function and the
intrinsic coset spacetime, which shows exactly how the
Higgs functions are emergent due to the hierarchy between
EW scale v and strong symmetry breaking scale f. Inspired
by the geometric viewpoint on the PNGB effective field
theory in Ref. [39], we are reproducing, extending, and
discussing the results in Ref. [S8—60]. We consider not only
fundamental but also adjoint representations for PNGBs in
NMCHM. Moreover, we invest not only intrinsic but also
extrinsic curvature as well as torsion in the coset

0(6)/SO(5) space. The torsion is a two-form coupled
to the internal d.o.f. of the coset field space, due to the
nonvanishing structure constants of the global symmetry
group G = SO(6). We find that the dynamical exchange
between the PNGBs and gauge fields is interpreted by a
generalized Maurer-Cartan equation sourced by the matter
in the SM or beyond, as a fundamental equation in the
(EW) effective field theory. The torsion contributes to the
non-Abelian dynamics of the PNGBs, which plays a
significant role in understanding the nonlinear dynamical
(EW) symmetry breaking mechanism.

1. Curvature of SO(6)/SO(5) coset space
In the (hy, hs) basis,

ha

Py = Shs h = hah& (S SO(S), (559)

=

with a =1, 2, 3, 4, 5 and s, = sin (h/f). Then the scalar
field becomes

(BN (P hy hs by hs h\T
) )
sin (f) ( R h COtf ) (5.60)

where h = \/hzh; is SO(5) invariant if h2 = f2 or h = 1.
The @ is SO(6) invariant since ®’® = 1. In the absence of
the SM GBs, i.e., h, = 0, it just recovers
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T
h h
®=000 2 B | (561)
R RV R
where h = y/h3 + h2. Then, the metric of the fundamental

scalar field space is [39,58]

9o oo
Oh* onb

2 hAhA 2
f2 |:£2 lzl(sab + h2b <1 {1‘2 h>:| (562)

where a = 1, ..., 5. In the second line, the first terms are the
diagonal, while the second terms include nondiagonal ones.
In the strong couplings limit, the metric just becomes flat,
i.e., 8,;,in the f — oo limit. In the (¢, y) basis, when SM
GBs are present, ¢, ~ h, # 0 with a = 1, 2, 3, the SO(6)
invariant scalar can be parametrized as

T
NCRT

Gap(h) =

hy hy hy \/h3+h§

(D:sh 7’;’%’ A Cl/l’ A SW,COt? s
(5.63)
where h = \/hyh; is SO(5) invariant if h2 = f2 or h = 1.

When the GBs are vanishing, i.e., h, = 0, it just recovers
that in Eq. (2.63) in the (¢, y) basis. Then, the metric of the
scalar field space manifold is

f2 ¢2 h hﬂ f2 5
)]

fZ hZ
where a = (a, ). = (b.¢) and h, = ¢.
In the (A, s) basis, when the SM GBs are restored, i.e.,
@, =h, #0 with a = 1, 2, 3, the scalar becomes

1
= (hl,hz, hy, ha, hs,\/f2 = h&h&),

with @ = (a,4,5) and hy = h and hs = s. In the absence of
the GBs, i.e., h, = 0, it just recovers that in Eq. (2.63) in
h — s basis. Then, the metric of the scalar field space is

_ 1 5.2+ hflhl;
_f2 ab fz_héhe ’

where a =1,...,5. The metric is the nonlinear trans-
formation of the SO(5) invariant metric on the GB coset
space SO(6)/SO(5) ~ S°. This metric is more convenient
for our purpose of studying the intrinsic curvature of the
scalar space manifold. The determinant and inverse of the
metric are

2604; + =

abh =

(5.65)

9ap(h) (5.66)

a; 2y hh?
s =#hin) = (30 -1,

Once the metric is obtained, the kinetic terms of the
scalars can be expressed as [39,58-60]

(5.67)

1 N A
£ =30, 0D, (5.68)

where a, b= 1,...,5. The Lagrangian is manifestly invari-
ant under an SO(5) of linearly realized isospin trans-
formation h,, by eliminating the hg in the linear SO(6)
transformation. The triplet ¢, = h, with a =1, 2, 3 are
identified as the d.o.f. of SM Goldstone bosons. Taking the
last metric above as an example, the nonvanishing Levi-
Civita connection or Christoffel symboles are

N 1 .- A
e = 5905900+ 0:954 = 0a95) = WG (h)

PP LT
AT P nah,)

To be explicit, in the Christoffel symbols of the second
kind,

(5.69)

e h@h;)h@ 5 4o
AT T 1N C,
e =)
) he(f2 = h2 4+ h? h?l h“h2
5 = (]; T ) +t A (570)
fA(f7 = h?) (P =h?)
The Riemann curvature are
Ripea = 9as(0:T%5 — 051, + TV 3¢5 =T il a7)
1
= p (922955 — 92295 ¢)
1 5&@hAhA +5AAhahe N A
= F <5&6552{ -+ ;2d_ bd - (C <> d)) .
(5.71)
The Ricci tensors are
4hyh;, 4 A
Ry, = fz(fz hz) Fgaiz’ a#b,
P-4 4
Ryy=—mm > —mtmam_n (72
I e f (f>=n)

The extrinsic curvature of the manifold with normal vector
n, along ¢ direction is
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N h; N
Koy = ——t g0, (5.73)

Thus, the extrinsic curvature is flat along the arbitrary ¢
direction. The intrinsic Ricci curvature of the GBs scalar

coset time is G/H = SO(6)/SO(5) =~ §°

R = % > 0,
where the number 20 = 5 x 4 takes account of the degrees
of freedom of the five independent scalars. This positive
sign of R indicates that the scalar under the symmetry of
compact group SO(6) is in a curved spacetime in analogy
to the de Sitter spacetime with a positive cosmological
constant. The results in Egs. (5.72) and (5.74) just recover
the specific values of the more general result for the
SO(N 4 1)/SO(N) case in Ref. [59], which gives R, ; =
(N,-1)/f*g,; and R=N,(N,—1)/f? where N, =
dim(G/H) = N is the number of broken generators.

(5.74)

2. Torsion of SO(6)/SO(5) coset space
It is worth noticing that

Tr(w,0") = Tr[(d, + e,)(d" + /)] = Tr(d,d" + e,e")
= —Tr(Q70,QQ1"Q) = Tr(0,Q'0"Q)
= Tr(9,Q'9;Q)0, "o ¢

= 6,5()0, 2 ¢", (5.75)

where we have used the property that € is a unitary matrix
and #Q = #¢*0,Q(¢p) where ¢? is an SO(6) invariant
scalar with a = 1,...5. g,;(¢) is the metric on the coset
S0(6)/SO(5) = S manifold defined as

925(9) = Tr(0,Q79;Q). (5.76)
To be explicit, one has
925(#) = i LS it
SV IRV Ve T
(5.77)

From the definition of the metric in Eq. (5.76), one can
define the vielbeins of the coset space as

E,=E\T" = -iQ70,Q, (5.78)
where T4 = {T% T%} are the generators of SO(6) as
defined in Appendix A 1.

The nonvanishing vielbeins E4 those are related to A (x)
and s(x) turns out to be

Fi=t _ V2s 1
a=4 — T T2
f _ h24s?
1 1 77
E&=4 _ \/ih 1
a=>5 f2 l _ 1 hz}j;sz
§2 + h h2 + 52
\/E 1 I12f+92 \/5 1 I12f+s2
a=4 _ a=5 _
E§:4—7 i EZ:S—T s
E?z:5 — E?z:4 - _ \/Ehs 1
a=4 A= f o202 g w45’
W +s*—f <1+,/1—%)

(5.79)

Thus, on can check that the bilinear form of the
vielbein consists of the metric for the coset manifold as
Tr(E,;) = Tr(E;E;) = g,;(¢), where we have defined

= Ejyy + Eap) = 059210, Q + 0,Q10;,Q

1 :
=S EJE (if apcTC +{Ta, Tg}),

5 (5.80)

where f,pc 1s the (totally antisymmetric4) structure con-
stant, and d,pc is the (totally symmetric) group constant,
respectively. Thus, Tr[E,;T¢] = E{E}Tr(TAT?TC) =
ESE(if apc + dapc)/2. Taking trace of the symmetric
part just corresponds to the metric of the NL-c model in
Eq. (5.76) as g,;, =Tr(E,;) = EgEfTr({TA, Tp})/2 =
kE4EFS,5/2, where we have used Eq. (A2). According
to Eq. (5.78), one has

With the vielbein, one can define the torsion as a totally
antisymmetrized product of vielbines as

Tyjo =—iTt[[E;, ERE;]| = fABCEgEgEg

= Tr[QTa[&QQTa,;QQW@]Q], (5.82)
where in the last equality, we have used Eq. (5.88). It is
obvious that the torsion tensor is proportional to the
structure constant. Since the structure constants satisfy
the Jacobi identity as f4pcfpjea = 0, so does the torsion.
According to Eq. (5.78), the vielbein field strength E4 =
—iTr[Q79,QT"] satisfies the Maurer-Cartan equation as

*Due to cyclic property of the trace.
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8[&E’£] _ —iTr[(a[aQTai,]Q)TA] = —iTr(E[&EB]TA)

_!

5 (5.83)

fascE§ E{E-
The symmetrized part of the covariant derivative of the
vielbein vanishes. The torsion can be reexpressed as

Tape = —20Tr[Eg, EjEe] = 2Tr[Ey, j E,]

=20, EycES = —20Tr[E, 5 TVES.  (5.84)

3. Generalized Maurer-Cartan equation

It is worth noticing that the vielbeins of the coset group
are related to the Maurer-Cartan one-form in Eq. (B26) as
w, = —iQTal,Q = E,0,9°. (5.85)

Also note that in the vacuum without matter, i.e., in the
absence of an external source, i.e., the field strength tensor

1_-7”,, =0, f, = 0. Then, the MC one-form @ satisfies the
well-known two-form MC equation as

do + % [, 0] = 0, (5.86)
where w is the Cartan connection of G. Note that the MC
one-form w is related to the vielbeins of the coset manifold
through Eq. (5.85) in differential form as

o = E,d¢" = E,0°, (5.87)
where E, is a frame, and d¢p® = 6% is a coframe. Assume
that the vielbein frame satisfies the Lie algebra in a
nonsymmetric coset, as

[Ea. Ey) = if 1z, (5.88)
where f, 136 are the structure constants of the Lie algebra.
Therefore, in the intrinsic group space, it equivalently

becomes the Maurer-Cartan equation in coset manifold
space as

(5.89)

where f“,. is the structure constant of the Lie algebra. This
means in the global symmetry without explicit symmetry
breaking, i.e., F = 0, or equivalently in the f — oo limit,
the manifold of the Lie group G = SO(6) is curvatureless.

In the presence of external sources from the matter, the
global symmetry is explicitly breaking. From they dynami-
cal MC equation in Eq. (B70), we obtain a generalized
Maurer-Cartan (GMC) equation sourced by matter in the
SM or beyond as

do® — %f,;f‘&” A 0° = Tr(Ef), (5.90)
where on the right-hand side of the equation, E% is the
inverse of the vielbein E;, and f = f,, dx*dx” /2 is the two-
form gauge field strength defined in Eq. (B62). The left-
hand side of the equation interprets the dynamics of PNGBs
in the intrinsic coset space, with nonlinear contributions
from the torsion part, while the right-hand side of the
equation interprets that of the gauge field. In other words,
the GMC gives a dynamical description between the PNGB
6 and the non-Abelian gauge fields f,, = f4,T*. By using
Eq. (5.82), the GMC can also be reexpressed as

1
da)A - EfBCAa)B A\ CUC = fA, (591)

where @ = Tr[wT"] is the one-form MC form.

4. Higgs function in NMCHM

For NMCHM, the kinetic terms of the Higgs sector in
Eq. (A63) will be

1 1
L= 3 F(h)?g,,0,70" " + Eaﬂhaﬂh, (5.92)

where the Higgs function F will not be that for the SM as in
Eq. (A70). For NMCHM, the coset space
S0(6)/S0O(5) ~ §°, the scalar in Eq. (5.63) becomes

B S NA T
b :fSII’l— hl,hQ,h3,h4,h5,COt— s (593)
f f
where h = \/h,h; witha = 1, ..., 5. The vacuum of SO(5)
is (@) = (0,0,0,0,0, £)T. The kinetic action is

f2

h FEC |
in2 anppa U
L= > sin <f>8”h O"h + 28,/18 h. (5.94)

By setting set h5 = 0, the scalar above recovers those in
coset space SO(5)/S0(4) ~ §* as [59,60],

Chifs o~ 44 T
® = fsin— | hy, hy, h3, hy,0,cot—) ,  (5.95)
S f
where h = +\/h,h, with a = 1, 2, 3, 4. The kinetic term

becomes

2

. h raaura 1
L= Esm2 <?> 0, h*"h* + Eaﬂh(()”h. (5.96)

By comparing with the kinetic terms of Higgs and GBs
with those in Eq. (A63), one obtains the identity that
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F(h)2 (5.97)

= r sin? hy
v? f)’

where hy = h + v, in the £ > 1 limit and / is the quantum

fluctuations of Higgs. After EWSB, the scalars obtain vevs

S

hy = hy+ (hy),  h—h+(h),  (5.98)

and one obtains

(5.99)

i} — arcsin <U>
f f

where v, = (hy) and v = v;, = (h). One can reexpress the
Higgs function and expand it as

ERETRRNTEr R
(5.100)

which in the weak coupling limit f — oo, the scalar
manifold tends to be flat, the result above just reduces
to the SM Higgs function in Eq. (A70). By substituting
back into the curvature scalar in Eq. (A67), one just obtains

R=0, (5.101)

as expected. In contrast, in the presence of a strong
dynamical symmetry breaking scale f, by substituting
the Higgs function in Eq. (5.100) back into the curvature
function in Eq. (A67), one obtains the curvature scalar as

R:l—§> 0. (5.102)

f
The positive sign of the constant curvature indicates that the
coset manifold is a sphere $* = SO(5)/S0O(4) spacetime
with the strong dynamics breaking scale f as the radius of
the sphere. In contrast, for the coset manifold in hyperbolic
space H* = SO(4,1)/S0O(4) spacetime, the curvature sca-
lar becomes

12
R:—]Tz<0, (5.103)
which is a constant negative curvature set by strong
dynamical symmetry breaking scale f and the correspond-
ing Higgs function is of the form

F(h) = cosh(?) +£1/1+%5inh<;>
\/1+f2+2f2+6f2 V! f2

In summary, matching the high-energy -effective
Lagrangian of the model to the low-energy effective EW
chiral Lagrangian, leads to the Higgs functions in L,
encoding the information of Higgs nonlinearity.

It noteworthy that the Ricci scalar R can be negative, if
the global symmetry group is a noncompact one, but the
subgroup to be gauged is a compact one, e.g., if the scalar
manifold is a hyperbolic space with constant negative
curvature [59]. For our case, this means that the SO(6)
global symmetry can be changed into a noncompact group,
e.g., SO(1,5), then after gauging the unbroken SO(5), the
coset manifold is a five-dimensional hyperbolic space,
ie., H> = SO(1,5)/SO(5). Equivalently, one may obtain
the corresponding effective Lagrangian for noncompact
global symmetry by choosing an imaginary decay constant
f — if [64]. In the future, it would also be interesting to
consider the case of strongly coupled gauge field theory,
e.g., a four-dimensional conformal field theory CFT, with a
noncompact group manifold SO(2, 4), which is isomorphic
to a five-dimensional anti—de Sitter (AdS) space, i.e.,
AdSs = SO(2,4)/50(1,4), a space with constant negative
curvature.

(5.104)

VI. CONNECTION TO PHYSICAL
OBSERVABLES

In this section, in order to comment our results to the
physical observables, we adopt to the following procedure:

First, we need to change the GB matrix in Eq. (4.1) in the
€ parametrization to those in the X parametrization. This
can be realized by making the shift f — f/2 (or & — 4£)
and y — /2 as Eq. (2.25).

Second, for the NMCHM, since the Kinetic terms of &, s
are not canonically normalized at the stage, we need to
make eigenstate basis transformation as in Eq. (5.26), in
order to obtain the canonically normalized kinetic terms of
Higgs h and s.

Third, in order to relate our results to the physical
observables below the TeV scale, we need to consider the
EW vacuum expectation value v after EWSB. Therefore,
we make i = v 4+ +/1 —&h and s — s, and expand up to
second order of £.

A. Phenomenology of scalar sector

In addition to the Higgs boson h ~ hy itself, the new
scalar s ~ hs is also a PNGB singlet with no EW charge,
which could be light. At low energy, the phenomenology of
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a scalar sector of the model is very similar to that of the
singlet extended standard model. The singlet scalar s could
be a dark matter candidate, if it satisfies a Z, symmetry in
the Lagrangian below.

1. Higgs kinetics and self-interactions

The kinetic terms of the / and s, as well as the mass term
of the gauge boson, can be obtained from p? order
Lagrangian in Eq. (5.9). These kinetic terms are consistent
with Eq. (11) in Ref. [23] or Eq. (A.5) in Ref. [24] for
NMCHM as shown in Eq. (5.10). After EWSB, by trans-
forming (h, s) into the canonically normalized eigenstate
with the aid of Eq. (5.26), one obtains

N =

h h? 52
'Ceign = (6,,]’1)(8”]’1) 1 + Zahh; + bhh? + bhsF‘F e

h h2 s2
+=(9,8) () [ 1+ ZaSh;—l— bsh?ju bssﬁ_i_ .

N =

hs

N
ﬂh(?”s <CSU + dhsp+ o > - Veff(/’l, S)

+0
h h? 2 hs
+ (1 —|‘2avh*+b\/h*2+bv5*2+b‘1h572+ >
v v v v
1
X (m%VM,‘fW"‘ +§m%ZﬂZ">, (6.1)

where Vg (h,s) is the effective Higgs potential given in
Eq. (6.4), and - - - denotes higher dimensional terms. From
the above expansion, one can read the terms

__ s £(1+3¢) e
ahh—\/l—Té7 b 1—¢ b 1—&
agp = O, bvh = 0, bss = 1—55,

¢ 1 +9
Cs_m7 dhs_ 1_5 5
ayp = 1_5’ th :1_57 bVSZOv ths 207

(6.2)

which are consistent with those listed in Table 1 in
Ref. [26]. Since by,, =0, the above action has a Z,
symmetry for the singlet scalar s.

2. Higgs potential

Once an effective Higgs portential Vg (h, s) is dynami-
cally generated, e.g., through the Coleman-Weinberg
effective potential approach, the Higgs potential can be
parametrized as

2 A 2 A A
Ver(hys) =5ip2 4 Zopt  Bso Do +§h2s2. (6.3)

2 4 2 4

By making shift (h,s) —» f(h,s) so that the (h,s) are
dimensionless, the parametrization just recovers Eq. (A.8)
in Ref. [24] where 1 = 5. After transforming to eigenstates,
by using & - v + /1 —&h and s — s, one has
m2 Ay Apa m2

Vetr = 202 + 223 4 2o pt 4 =2 2

I

+ lh%hsz + ks“ + s h2s?,

. . (6.4)

where

mj, = (uj, +3072,) (1 =€) =20°4, (1 =),
Ap =202,(1=8)%2, Ay =2,(1-&)2,
/1le2:21]/1\/ l_é, /1h2S2:/1(1_§>’

where we have used that /4%1 = —v/;, from the minimization
condition in Eq. (6.9). The PNGB interactions between
(h, s) just recover the Feynman rules in Table 2 in Ref. [24].
By using the model-dependent relations as those in
Eq. (2.11), the effective Higgs portal in the NMCHM up
to quartic order can be parametrized as [26]

Ve = —ycos? (?) sin? <%) + peos* (?) sin* (?)
+ &sin? <?> + ocos? (%) sin* (?) + ysin* <?>

m; =y + 0%,
)“.3‘4 :/157
(6.5)

=" _ 7sin? (?) + psin (?) (6.6)
where 7 =y — 8, and f = + ¢ + y with
2 4
r=-Lwi-m) =t
N A S
5_7ﬂsv 0-_7</1_ﬁs)7 Z_le (67)

The parameters can also reexpress the free parameters of
the Higgs potential as

2 _ 26
ﬂ%l:—f—z% ”%:JTz’
45 2 2 4
ﬂh:_{j, /1:—(6—’:1 Z) ’Is:_)j' (6.8)
A f f

By minimizing the Higgs potential after EWSB, one
obtains an EW vey,

(6.9)

Thus, by making the transformation to the mass eigenstate,
one can read the physical Higgs / and the singlet s mass as
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o3
mh = 2,221 - 8) = 5 (1

2
m? = u2 + * = 2

- &)&,

6+ (6 +2y)ElE,  (6.10)

and there is no mixing term, i.e., m;,, = 0. The results
recover the physical masses of PNGB in Eq. (A.9) in
Ref. [24].

B. Low-energy EWPT oblique parameters

The Wilson coefficients ¢, (or ¢; for the CP-odd case) in
the low-energy effective chiral Lagrangian are related to the
most significant EW oblique parameters from EWPT due to
two-point functions, i.e., the S and T parameter [65], which
parametrize new physics contributions to electroweak
radiative corrections. For example, the EW oblique param-
eters § and T are related to ¢; and cy, respectively, as
[66,67]

a,,AS = —8e’cy, Ay AT =2¢p,  (6.11)
where a,,, = €?/(4x). In the NMCHM, we have
. &
= &c4, e == r (6.12)

at tree level. The S parameter obtains corrections from

the operator at p* order, and the 7 parameter obtains

corrections from the custodial breaking operator at p?
5

order.

C. Triple anomalous gauge-boson couplings

1. CP-even case

The triple gauge-boson couplings in the pure weak boson
sector [47,68,69] can be parametrized as

LU = —igwwy Ry WEWy Ve
+ gV (W WV — WV, W)

—iglem o (Wro,W, —W,;0,WHV,

+ ¥ (OWHW —,WHWV,], (6.13)
where V = {y,Z} and
Jwwy = gSe¢ = €, Iwwz = 9Co» (6.14)

SNote that, in the presence of heavy resonances, either scalar,
vector bosons, or heavy fermions at the one-loop level will
contribute radiative corrections to the oblique 7 parameter, too.
By integrating out these heavy resonances, the oblique T
parameter may also obtain nonvanishing correction from effective
operators at p* order.

where e is the electric charge. The chiral Lagrangian
contributes to the anomalous cubic couplings as [69]

2
e _ _ _
AK}, = —2?(6’1 —Cy — C3)§,
0
2 1 1
AKZ:262(—(,1—_C2+—2 )f,
C20 Sy
2e2 1 [ s5
AQZ ( 0 Z‘l + C3)
SH Cog
A =0,
2
e” _
Agy = —4— Ceé,
So

62

Co

It is obvious that, from the high-energy view point, the
anomalous triple gauge couplings of the SM comes from
21,2.3,6 for NMCHM.

2. CP-odd case

The CP-odd triple gauge boson couplings can be para-
metrized as [48,70]

Litor = QWWV[ il?VW;W,,f/””
+ gy W W, (0# VY + 0 V)
(WTa WH + W, 0, W)V
+ g7V WLWHOV, ),
LEEZ ) = 3322,210,2", (6.16)
where [48]
2 2
AR, 259 GE ARy = %Eié,
Agy=0.  Agf=0.
gs=0.  Agg =0,
A =0.  AF =0,
Agsz = 0. (6.17)

It is obvious that, from the high-energy viewpoint, the
CP-violating anomalous triple gauge couplings come only
from £; for NMCHM.

D. Quartic anomalous gauge-boson couplings

The effective Lagrangian of quartic gauge bosons can be
parametrized as [47,69]
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LY = Plag) 2,2 + gy Wi WHW; W
= g (W W)?
+ G WHW TV, VL + ViV,
— Gy Wi WHVAVL + il e W WV, Vi),
(6.18)

where nonvanishing couplings at the tree level in the SM
are

msm _ 1 @sm _ 1
Gww 7 Iww R
(3)smM 0_52) (3)sM _ Sy
zz T Gyy )
3)SM  S29 4)SM
G = - g™ = c.
4)SM 4)SM
g =53 @M =5 (6.19)

The chiral Lagrangian contributes to the anomalous quartic
couplings as [47,69]

62 52 _ _ _
Aglyy = ~— Hg <c—" ¢+ c3)]§ + 320552} ,

4S9 20

(2) 8S
AgWW 4—5%‘ |:<C—20C1 + 8C3 + 1266)5

_ 8(85‘4 + 46‘5 + 56)52:| ,

2
e
Ag(zlz) = _C4 [—3¢6& +2(8(24 + T5) + T6) &2,
0

455
2
3 e 1 2s _ _
Ag(ZZ) =122 [(629 1 + 8¢5ty — 8s4Te)E + 320552} ,
6o 20
2 2
@ _ e 1 520 -
PN R 4¢28, 43
g2z 455 C% H (Cza Cit gt + 66)]5
—8(8e, + 5’6)52] ;
¢ _ €
Agyy :4 zsa( 8¢6)<,
Ag(3):2i5_e —ec + 25586 + T3 | &,
vZ Sé co \Cg 1 at6 3
4¢2 s, [ 52
AdY) =€ 20 ([ J6
gyZ S% ¢y \Cop (&] +C'§ 5
Agl) =0 (6.20)

From the high-energy viewpoint, the anomalous triple

gauge couplings of the SM comes from 21!2’3!4’5,6 for
NMCHM.

E. HVV anomalous couplings

1. CP-even case

The anomalous couplings of the Higgs bosons can be
parametrized as [40,47,54,69]

HVV
L eff, CP

= Gy A A h+ gl(T-Il)ZyAﬂI/Z'M O"h+ gg)zyAuvZ” Yh
Oy O+ 037, 2, 7

+ gS%ZZ”Z”h + gS}ZZﬂZ"Dh

+ 00,2 2,0+ 0i5)(0,2h

+ gw (W W3R+ Hoe.) + gityw Wi, W h
+ g Wi WHR -+ gl W W+ TR

+ ggsz(aﬂWﬂ‘W,jﬁ”h +H.c.)

+ GO WO, Wh, (6.21)

where the contribution of the anomalous couplings are
separated from that of the SM one as

() D)SM

vy ® Iuyy T+ AgH)VV’ (6.22)

where V = {y,Z, W_}. All the tree-level SM couplings
above vanish, except the following:

(5w _ €> my _om
nzz = gy e () = 7,
2.2 0 2
(3)sm __ € Mmzcy _ Iy
Iaww = P [—4(cy +cc)] = —2_U . (6.23)

The anomalous coefficients are related to the coefficients of
low-energy effective chiral Lagrangians as [40,47,69,71]

2

Aghy, = T [~8(Cpx + Cwz — 1)
+4(cpy + cwg — 1)&).
m _ el - I,
Agyz, = 40 50y [=32(¢; — €3)& + 64(¢, — 83)¢7],
ez cy [ 8 _ _
Agg)zy 10 Se L (239632 2czcwz + g€ )E
0

4 _ _ _
2 (2s5Cpx — 2c5Cws + C29C1)52} ,
0

) 21 e 2
Agpzz = 4__ {16(02 +—= Cs)f 32 <02 + _C3>§2]

22 4
2 e ¢ s 52
A9<H>zz = ———§ [8<69 Cpx + Cwy +—601>§

dv sy p ch
st 52
—4< Cpr + Cyxr+— Cl)ifz],
5 o
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2 2
3 e’ my _
Ag;l)ZZ = _E—ezz cré,
Ag,, = e 1 (—6424¢ + 12824£2)
R A 6 6 )
HzZZ 4v 53,
AgS) = e 1 (12824 — 25624£2)
— T T 65 — 6 s
Hzz 411s%9
(©) 1 w
Agyzz = _@sz (64C6& — 32¢687),

26

e
Ag(f}sz 411 (64035 32C3§2)

2
2 e 1 _ _
AQ(H‘)VW =052 (—162yxE + 8Tyx?).
9
2 32¢2 4c
A (3) _ e_mZCG _ 6
gHWW 41} 82 ng Cl C29 CT g

e? 1 B _
Agithy = gy (326t + 64242),
0

2
5 e” 1 _ _
Ay = 53 (3284& — 6484E2),
9

2
6 e 1 _ _
Agh = ~ o2 (32868 — 162682). (6.24)
0

It is obvious that, the CP-even anomalous couplings

123
Agilvv )

while the additional Agﬁ,vv ) all attribute to one operator Lg
in the high energy.

of the SM comes from operators ﬁB}: WE.1.2.3

2. CP-odd case

The anomalous couplings of the CP-odd interactions
involving the Higgs to two gauge bosons can be para-
metrized as [48,70]

ﬁEf?’Z? = gHwhAﬂvAW + Gz hAu 2
+ gszhZ 7Zm + gHWWhW+ W—Hv
+ [t (Wi WD) + Hee )

+ [Bww (0, W W, 0 h) + Hoe, (6.25)

where the anomalous CP-odd HV'V couplings at the tree
level are [48]

L 5(—25’32 —Cyy +E7)¢

— (455Cpx — 2¢5Cws + €20C7)E

N 8e?sy 1
9HZy = —

e 459

1 _ _ _
+ 52 (455Cps — 2¢5C iy + CopCi

]
1 825(6¢3 - 1>>52}

~(2) 74625‘ 1
Hzz = vcé " 2s 4

(255Cpx + ChTyx + C555CT)E

+ 414 (255CEs + Chlis + 5s5CT
+ [=8¢29 = 3(cug + 3)]23)&%],
gg&vw =0,
i = =253 eyt + (2083 - cye))
G = 0. (6.26)

From the high-energy viewpoint, the CP-odd anomalous

couplings Aggvz‘? ) of the SM comes from operators

ﬁBZ,WZ,i.i,ﬁ for the NMCHM.

3. HVVV anomalous couplings

The anomalous couplings of the Higgs to the gauge
bosons, i.e., HVVV can be parametrized as [69]

ﬁHVVV

off.CP Z,W™h 4+ H.c.|

gHWWZ[ (@,W7)(
+ QHWWA[i(aﬂW_”)(Avw+”)h +H.c]

+ Qw2 li(Z, W) (W;0°h) + Heel

+ ggl)/VWA[i(AﬂWJrﬂ)(W;ayh) +Hcel], (6.27)
where the anomalous couplings gyyyy [69]
2.2
(1) eg (8., 4.,
A =2 (2G5 E—— )
Iuwwz a2 <v 6 Ucéf )
1 8 _ 4
AgﬁiaVWA =—eg’ ( €6 — Ce§2>,
v v
2 e“g (16 32 _
Agfm)/vwz = " 26, (7 6§ — 6 ),
eq* (16 32
A g!)/VWA g (7 68 ——C6§2> (6.28)

All of the HVVV anomalous couplings originate from one
singlet operator Lq from a high-energy viewpoint, instead
of depending upon different EWCL operators, such as
Ly 19, respectively.
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4. HHVV anomalous couplings

The anomalous couplings of the two Higgs to two gauge
bosons, i.e., HHVV can be parametrized as [69]

Liidr = gg;{WW Wi W™h? + ggI)LIWWW; WO(h?)
+ Gnw Wi Wy " hovh
+ QHHWW(a W) (9, W) ?
+ G (W) (W h)h + Hee]
+ gngzZyZ”hQ + gg},ZZZﬂZ”DhQ
+ 9S1)-lzz<zyaﬂh)2 + ggﬁzz(aﬂ")zhz

+ ggl)izz(ayzﬂ) (Z,0°h)n* (6.29)

where the only nonvanishing couplings at the tree level in
the SM are

(1)SM _92

HHWW — Z’ (630)

The anomalous couplings of gygyy turns out to be [69]

1 _
Ag;—];iWW = 1092’”%%5,

2 129 _
Agl(q;{WW = C6&’s

3
Agl('-ll)-lWW =0,

4 49 4g> _
Agﬁ-];—lWW =——5Ceé + 065
5 24g _
AgI(LII)*{WW = 2 el
1 5¢°m; _
A9(H)>LIZZ = Th Cel,
0
64°
AQSLZZ = ——5 6L,
vich
3
AQ(H;JZZ =0,
4 29 292
AQ(H;IZZ =22 Cel + 5 T2,
Cy 3

24g _
Ag;II)-IZZ =2 20652-
Co

(6.31)

It is intriguing to observe that all of the HHVV anomalous
couplings also originate from one singlet operator Lq from
a high-energy viewpoint, even though they may obtain
contributions from different EWCL operators, such as

Lor7389.10-

VII. CONCLUSIONS

In summary, we have studied the effective field theory
in the minimal composite Higgs model based upon the

0(6)/SO(5) symmetry breaking pattern up to the p*
order in the CCWZ formalism. The vacuum misalignment
is parametrized by a rotation angle in the coset space in
the effective Lagrangian framework. In order to match
with the electroweak chiral Lagrangian, we reparame-
trize the pseudo-Goldstone boson fields as (h,s), and
obtain the connection between the high-energy effective
Lagrangian and the low-energy effective electroweak
chiral Lagrangian with the Higgs function dependences.
By expanding in v/f, in the weak coupling limit
(f = ), one would expect to recover the linearly
realized SM Higgs theory.

Regarding the connection between the high-energy
effective Lagrangian for the NMCHM and the low-energy
effective chiral Lagrangian, several main results are in
order:

(i) Both CP-even and CP-odd operators, and both the
Omega and Sigma parametrizations are considered,
and exact relations between definitions of polar,
Cartesian, and mixing coordinates of fields are
provided.

(i) All the exact Higgs functions in the electroweak
chiral Lagrangian are presented, which exactly
recover the Higgs function in the SO(5)/S0O(4)
composite Higgs model, in the absence of singlet s.
The Higgs functions in the effective Lagrangian
incorporate the Higgs nonlinearity/vacuum mis-
alignment effects in the next-to-minimal composite
Higgs model.

Higgs self couplings, anomalous triple and quartic
gauge couplings, anomalous couplings of Higgs to
gauge bosons are given as criteria for detecting the
physics beyond the SM.

(v) Higgs functions provide relations among different
Wilson coefficients in the low-energy chiral Lagran-
gian. These relations may provide analysis direc-
tions for future experimental measurements.

The singlet can be light and plays a role as a dark
matter candidate, in the singlet extended standard
model with an additional Z, symmetry in scalar
sector.

In the Higgs effective theory, we could obtain the Wilson
coefficients derived from the corresponding Higgs func-
tions. At the p?> order, the corresponding expansion
coefficients are related to the EW oblique parameter T
constrained by the EWPT. While at the p* order, they are
related to not only the EW oblique parameter S (and also T
if heavy fermions are present) parameter but also the
anomalous couplings of triple or quartic gauge bosons,
the anomalous couplings coefficients of Higgs to gauge
bosons, etc. Some of these couplings are constrained by the
precision measurements of the Higgs self couplings at the

(iif)

(iv)

(vi)
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LHC. The future colliders will also be able to explore some
of these couplings, such as VVH and VVHH couplings. We
will leave this study to future work. Finally the phenom-
enology of the scalar singlet could be quite interesting, such
as the collider searches for such scalar, and its cosmological
implications, etc.
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APPENDIX A: SO(N) GENERATORS AND
HIGGS REPRESENTATION

1. Generators of the SO(6) group
In the SO(6), there are 15 generators T4 = {T¢ T%}
denoted with 10 generators of the unbroken SO(5) as 7% =
{TZ/R, T} witha = 1,2,3,a = 1,2,3,4 and 5 generators of
coset SO(6)/SO(5) as T = {T% T3} with & = 1, 2, 3, 4.
Among these generators, {77 .} belongs to the SU(2), x
SU2)r =2 S0O(4) C SO(5), and {T*} belong to the coset

SO(5)/S0(4). TS belongs to the SO(2) c SO(6). These
generators satisfy the normalization conditions as

Te[T°T?] = 570, Te[T?TP) = 525, (A1)

Note, in general, the SO(6) generators satisfy the following
commutation relations and trace properties as
[TA, TB] — ifABCTC, {TA, TB} — kéAB + dABCTC,
Tr[T4] = 0, Tr[TATE] = 58,

TI'[TATBTC] — ifABC + dABC7 (Az)

where k is a normalization constant to be determined, and
FABC and g8 are totally antisymmetric (symmetric) struc-
ture constants, respectively.

The 5 generators of the coset SO(6)/SO(5) can be
written in a compact form as [26,72]

. 1 . i . .
a — a6 _ 0 Sa 6 Sa
(1) = 5 (1) = s (006 = ef). (A3)
where a = 1,...,5,i,j = 1,...6. It can also be expressed
as5=4+15€ S0(4) ® SO(2) as
. 1 . i . |
a — a6 _ (PN 0 S A
(T )ij:_z(T )ij——\/z(c'iiéj—éjéi , a=1,273,4,
. 1 N i .
5\ 56\ _ 6 <5 6
(T )lj = \/z(T )l] - \/§<5151 _5151)’ (A4)

where T° = T is the generator of SO(2), where subscript S
denotes singlet. If the unbroken symmetry is SO(4) x
SU(2) with 9 generators or SO(4) x SO(2) with 7 gen-
erators instead of SO(5) with 10 generators, then there are
6, 8 instead of 5 GBs that will be present in the end. If one
breaks SO(6) down to instead SO(5) but SO(4) x SO(2),
the symmetry breaking pattern SO(6)/SO(4) x SO(2)
leads to 4 4+ 4 consisting of the elements of a composite
2-Higgs-doublet model [14]. In this case, T% become the
unbroken generators.

The 5 generators of the coset SO(6)/SO(5) ina 6 x6
matrix includes 3 € SU(2), C SO(4) as

0, 0, —€
i _ b 0, 0,
V2 0 ’
e 0
0, 0, —€)
7 :L 0, 0,
V2 0 ’
el 0
0, 0,
. j 0, O —e
L I . (A5)
V2 0
el 0

where 0, = diag(0,0), and ¢, , are eigenvectors of a Pauli
matrix as

e, = (1,0)7, e = (0,1)7. (A06)
The broken generator along the EW symmetry breaking

direction is denoted as T* as a 6 x 6 matrix as
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0, 0,
74 _ i |0 0 —€
V2 0 ’
el 0
0, 0,
: i 10, O
I IR , (A7)
V2 0 -1
1 0

where T3 is the generator of SO(2) and 0, = diag(0,0).
It can be checked that all generators are normalized as

Tr[TeT?) = 525,
(A8)

Te[T¢TE] =6,  Tr[T4Th] =,

and they satisfy the commutation relations as below:

T3.T41=0. [T§.T)]=ieT;, [T4.T}]=ie T,

(70T =300(TL = Th). (117 =56 (T +T),

i

T4 T (=
[ L,R] 2

(efzhéTﬁ' = 5&}7T21), [Ta?TI‘i,R} — i%(sui)Ti]

(A9)

It is obvious that in the SO(6)/SO(5) case, the unbroken
generators transform as the reducible representations
(3,1) 4+ (1,3) € SO(4) ~ SU(2), x SU(2)y, respectively.

Under the unitary transformation P as will be dis-
cussed in Eq. (A20), the 5 generator of coset SO(6)/
SO(5) in Egs. (AS5) and (A7) can be expressed expli-
citly as

02 02 [}
ti - _l 02 02 e
2 0 |
el el 0
02 02 —€)
[2 _i 02 02 €1
= > 0 ,
el —el 0
0, 0, —€]
té - l 02 02 (2]
2 0 '
—el el 0

0, 0, €]
! :i' 0, 0, €
2 0 ’
—el —el 0
0, 0,
s P[0 0y
F=7 o vl (A10)
_\/E 0

where T° is the generator of SO(2) and 0, = diag(0,0).
In the unitary of NMCHM, h, 3 = 0, the Higgs PNGBs
can be expressed explicitly as

U=exp <i$(h4t‘i+h5t§)>

0 10 0 0 0
0 01 0 0 0
| S 00+ _% o |
_% 00 _% ot CoSy =545y
Cy S, ¢ s
7 00 2 S48y ¢y
(A1)

where ¢, = cos(¢/f), sy = sin(¢/f), with ¢ = hj + h?
and fz4 = ¢y, fzs =s,. In the absence of the singlet
hs =0,w=0,¢p=hy=h,or hy =0, ¢ = hs = s, then

Hep+1) 0 0 3(cp,—1) 0O —%
0 1 0 0 0 0
uh) 0 0 1 0 0 O
T ie=1 0 0 Yt 0 =% [
0 0 0 0 1 0
200 %0 g
L 0 0
Uis)=1| 0 ¢ =541, (A12)
0 SAY CS

where 1, = diag(1,1,1,1). They just recover the GBs
matrix for the coset SO(6)/SO(4) or SO(6)/SO(2),
respectively.
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2. Generators of the SO(5) group
There are 10 unbroken generators of SO(5) € SO(6),

i (1
(1100 = = (5010 - 3307 & o101 - ) ).

1 i
s (Tas)ij =T 5 (535? - 5?53-'),

(Ta)ij \/E \/E (A13)

where a =1, 2, 3, a=1, 2, 3, 4 and i,j=1,...,6.
These give the coset space SO(5)/SO(4) for MCHM
[13,17,18,20].

To be explicit, the 6 generators that span the representa-
tion 6= (3,1)+(1,3) e SU(2), x SU(2)p =2 SO(4) C
SO(5) € SO(6) can be chosen as

. 0 —0 i 0 03
1 1
T}, = E o1 0 R T% = 5 —03 0
0, 0,
. —i02 0
T3 = % 0 —ioy :
0,
. 0 i02 . 0 12
1 . 1
TIIQ = E 10y 0 N T% = 5 —12 0 .
0, 0,
. —i02 0
Ty = % 0 o, , (A14)
0,

where 0, = daig(0,0), 1, =daig(1,1), and it can be
checked that they satisfy the commutation relations as

1 i
[TL. TR =0,  TOfT;R = 7 0a + ~eap TER.

AlS

: (A15)
Four residue unbroken generators that span the repre-

sentation (2,2) € SU(2); x SU(2)x = SO(4) are

0, 0, —e
TIZL 0, 0,
V2| e 0 ’
0
02 02 —€)
TZZL 02 0,
V2| e 0 ’
0

0, 0,
T3:L 0, 0, =—e
=/ 0 s
0
0, 0,
i 10, 0 —e
Tﬁ,:ﬁ I 0 , (Al16)
0

where 0, = diag(0,0).

3. Generators of the SO(4) group

The generator of SU(2); x SU(2)r~SO0(4) in Eq. (A13)
can also be expressed as

[(J9)i; = (K?), (A17)

N =

(TZ/R)ij =

where the generators J¢ and K¢ correspond to the angular
momentum and boosts as

1 1
(‘]a)ij = Eeabc(TbC)ij = _lieabc(é?(s; - 5?59,

(K9);; = (T"4)ij = —i(é;‘é“} - 5;’5;‘). (A18)
To be explicit,
00 O 0 01
o 00 -1 Cpe 0 00 7
01 0 -1 00
03 03
0 -10
P =i ;
0 0
03
000 -1 000 O
000 O 000 -1
K'=il0 00 0 ., K*=il000 0 ,
100 O 010 O
0, 0,
000 O
000 O
K}=il0 0 0 -1 , (A19)
001 0

where 0; = diag(0,0,0) and 0, = diag(0,0).
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The representation in Eq. (A14) can be transformed to
those one is more familiar with through a similar trans-
formation with a unitary matrix P,

_ -1
11 r = PT{ P,

0 0 1 0 0
i -1 0 0 O 0
1 i 1 0O 0 O 0
P=— ) (A20)
V210 0 —i 1 0 0
00 0 0 V2 0
00 0 0 0 —2
To be explicit, we have
c o
p 1 , 1 ’
tL = E [} N tL = 5 () s
0, 0,
O
t3 —1 3 o
L — 2 3 )
0,
1, -1,
th = ! 1 I _ 1
R — 2 2 ) R — 2 2 )
0, 0,
L[
0,

where 1, =diag(1,1) and 0, = diag(0,0). Under the
above unitary transformation P in Eq. (A20), the funda-
mental representation of the scalar in SO(5) C SO(6)
becomes

h, hy + ihy ho*
h, i(hy + ihy) —h~
’ hy e 1| b+ f‘hl o a2
hy 2| hy—ihy h°
V2s K
0 0 0

which consists of the Higgs bi-doublet as denoted in
Eq. (A47) as

1 h()* h+
w- L -
V2

= s(HeH) = (| h0>’ (A23)

\S)

where H and H¢ are the SM Higgs doublet and its complex
conjugate with notation defined in Egs. (A33) and (A46),
respectively.

Under the above unitary transformation P in Eq. (A20),
the 4 generators in the coset SO(5)/SO(4) in Eq. (A24) can
be expressed more explicitly as

0, 0, e
a1 0, 0, e
20l el 0 '
0
0, 0, e
;221 0, 0, —¢
2 =l el 0 ’
0
0, 0, €1
t3:1 0, 0, —e
21l =l 0 ’
0
0, 0, —e;
il 0, 0, —e
tg:5 o0 : (A24)
0

where 0, = diag(0, 0). In the unitary of MCHM, £, 5 5 = 0,
hy = h, the Higgs PNGBs can be expressed explicitly as

Hep+1) 0 0 L(ep—=1) % 0
’ - ’ oY (A25)
- %(Ch—l) 0 0 %(Ch‘Fl) % ol
-% 00 =% ¢ 0
o 00 0 01

where ¢;, = cos(h/f) and s;, = sin(h/f).

Under the unitary transformation P in Eq. (A20), the 3
generators of angular momentum and boost in Eq. (A19)
can be reexpressed as
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0 1 -1 0
oo
y=3]-10 01 ,
0 -1 1 0
0,

0-1-1 0 0000
{10 0 -1 0-100
J2:%100—1 ., P=loo10 |
01 1 0 0000

0, 0,
0110 0 -110
1001 11 001
Klzé 1001 |, K2:% 1 00-1 |,
0110 0 110
0, 0,
1000
000 0
K=[000 0 : (A26)
000 —I
0,

where 0, = diag(0,0).

4. Representations of Higgs
a. Custodial symmetry SO(3) C SO(4)

As we will show in the following, the unbroken
H=S0(3)~SU(2), symmetry after EW symmetry
breaking originates from an enlarged G = SO(4) ~
SU(2), x SU(2), global symmetry.

It is interesting to observe that the Higgs doublet is an
SO(4) invariant as

H'H = h}+ h3 + h3 + hj = h"h, (A27)
with h = (hy, hy, hy, hy)T is 4 € SO(4). Thus the SM
Higgs action can also be reexpressed as an SO(4) C
SO(5) invariant form as

£, = 5 (D)D) + 342 (HTh) = LA (A28)

N =

with i = (hy, hy, hy, hy)T transforming linearly as the four-
dimensional vector representation 4 of global symmetry
group SO(4), it is obvious that the Higgs potential is also
invariant under SO(4) symmetry. The Higgs potential can
be reexpressed as

A
Vi==3 (Wh =), (A29)

which has a minimum as the three sphere $* with radius v
(hTh) = v (A30)

It is convenient to choose the vacuum expectation value of
h in vector representation 4 of SO(4) as

o O O

(hy = (A31)

<

Considering the shift field ¥ — v + & and nonshifted fields
as h, with a =1, 2, 3, then

(A32)
v+ h

where » is the vacuum expectation value of the Higgs
singlet 4, and h = h, is the quantum fluctuation around the
v. Thus, the SO(4) symmetry acts linearly on the Cartesian
coordinates in terms of field #,.

The vacuum () simultaneously breaks the global SO(4)
symmetry down to the unbroken O(3) global symmetry,
under which, the GBs ¢, with a =1, 2, 3 transforms
linearly as a triplet 3 under O(3), while the Higgs h
transforms as a singlet 1 € O(3). The four-real component
of the Higgs vector representation can be reorganized as the
usual SM Higgs complex doublet with two complex scalar

fields 4™ and h as
hy, +ih ht
o~ (28 () -
V2 \ hy —ihy hy V2

=)
_\/§ h+v)’

where H is related to ® = H/ \/5 due to the kinetic term,
and in the last equality, we have adopted to the uni-
tary gauge.

After EWSB, the SO(4) breaks down to a SO(3) ~
SU(2), symmetry, in terms of custodial symmetry, which
is invariant for the three goldstone bosons, or as equivalent
physical degree of freedom, the three gauge bosons Wy in
3, the fundamental representation of SO(3) or adjoint
representation of SU(2),,. The unbroken global symmetry
SO(3) leads to the well-known gauge boson mass relation
that my = my  cos @y as the prediction of the SM, which
can also be expressed through the ratio

(A33)
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_ my
P="757>
mscy

(A34)

when ¢ # 0, where ¢, = cos 6y is the Weinberg mixing
angle. The gauge boson mass relation implies that custodial
is an approximate symmetry of the SM, which is exact at
least at tree level. Thus, the custodial symmetry ensures
p = 1 attree level, and also ensures small corrections to p at
the quantum level in Eq. (1.1). It also guarantees that
m?%,/m% =1 in the absence of U(1)y, i.e., ¢ — 0.

To be brief, the unbroken SO(3) symmetry of the SM
vacuum can be originated from an SO(4) invariant fixed
point.

b. From Cartesian to polar

It is worthy of observing a fact that after the /4 obtains
vev, the SM Higgs doublet with Cartesian coordinate field
h, in Eq. (A33) can be reexpressed as below [40,46,60]

o_ ! ( hy + ihy )
V2 \h+v—ih

hl, + ic®h 0
_ (12 +&> ( X )
v V2
1)’>V>liex (h12+16ahu> (O>
T V2 P v 1

< (ia"ha) 1 < 0 )
X ex — ,
P\ ™% V2 \v+h

where e, = (0,1)7 is one of two eigenvectors of the Pauli
matrix o> for a spin-down state as denoted in Eq. (A6) and
in the last equality, we have made the identification that
@, ~ h; with a =1, 2, 3, which are exact in the limit
v — 00, i.e., the unitary gauge. Thus, one can map the
Higgs doublet in Eq. (A33) to that in the polar decom-
position, or angular coordinate ¢, as

(A35)

b=— \/_ h4U€ 2,
where hy = h + v is the magnitude of ¥ where % denotes
the radial coordinate, while U € S? is a four-dimensional

unit vector, denoting the SM Goldstone bosons matrix in
SU(2) as defined in Eq. (C2)

(A36)

a

U=exp <i6 ('0”) = ¢, + 69,5,
v

is, Sy /-
coptites gl +¢%)

@ +ig*) e, =1tk

1 1+iﬂ iwlwz _
21< e Y =01, (A37)
1=
v v

where @, = ¢,/|p| are the three dimensionless angular
coordinates and we have made the notation s, and c,
defined in Eq. (2.54). In the last equality, it is shown that the
unitary matrix just reduces to be unity in the unitary gauge,
as expected.

The metric of the coset space is SO(4)/SO(3) ~ $3 as
= Tr(9,U"9;U)
_ 2 [¢9” ( b ¢“¢b> v? 2<|¢|>]
— + [ o° ssin” | — | |,
{ |#I° 1 ) |#I* v
(A38)
which gives the determinant as
4
det[g(¢p)] = I sin <|¢|> (A39)

From which, one can define the vielbein from Eq. (5.78) as

EA = —iTr[Q70,QT"]

2. <5A ¢a¢A> .<2¢|)
el T\ e ) Tl
+ 24P Z;Tzsin <|¢|> . (A40)

According to Eq. (5.82), the torsion contribution is

TABC = |:)|2 sin <|¢|> =4e"8C g, (A4])

With the 4 in doublet H in Eq. (A33), according to
Egs. (A36) and (A37), one can read the one-to-one
correspondence as

hy

hy,=—e¢, a=1,2,3, (A42)
v

where hy = h + v with h = hy4 as the quantum fluctuation
of the Higgs field. In this case, there is a relation between
the GBs in Cartesian and polar coordinates as

hz( 2+ |(P|2) (/7;0(

|2 = hyh, =

h+v)?2  (A43)

which originates from the constraint of the polar coordi-
nate. Therefore,

2 4

% @
h:h4—v+h427v2—h474+"‘.

. (A44)

Thus, the Higgs filed 4 is SO(4) invariant, while only three
of the components of ®(h,, h,) are independent due to the
constraint above.
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In the polar coordinate, the SM Lagrangian can be
reexpressed as

L, ==~ (v + h)(9,U"0"0)

1
2
+

(9,h)? — % (h+ 072 =22 (AdS)

N[ =

where the Higgs scalar potential depends only upon the
radial coordinate 4, while the three GB fields ¢ only
appears in the kinetic terms, either gauged or not. In this
case, it is obvious that the interactions of A& with ¢
becomes nonlinear, compared to that between /, and hy
in the Cartesian coordinate. Nevertheless, by the Lehmann-
Symanzik-Zimmermann reduction formula, 4 and h, give
the same S-matrix, so that the change of coordinates does
not affect S-matrix elements [60].

c. Higgs bi-doublet in SO(4)

Since SO(4) is isomorphic to SU(2), x SU(2)z, one
can relate the SO(4) vector to H= (H, H) a complex
SU(2), x SU(2), bi-doublet (2,2) € SU(2), x SU(2);.
with the complex conjugate of H in Eq. (A33) as

hy + ih 7o
HCEiGZH*:< i ):( ) (A46)
—(hy — ihy) h~

where h~ = (h™)*. More explicitly, the polar decomposi-
tion of H into & and the SU(2) matrix U as

hy + ihy

< |

= ) ) = hyo, = |h|U, (A47)
—h2 + ll’ll

with 6, = (i, 1,) with & = (a,4),a =1, 2, 3.
From Eq. (A47), it can be found that

hy 1
4 — hr, = =T N
|h| [24 2 r[Uo-(l]’

(A48)

where 6, = (—ic, 1,) is the complex conjugate of 6.
To be explicit, fza can also be expressed as, respectively,

~

h, = —%Tr[Uaa], hy=c, (A49)

Combing Egs. (A37), the h, in the vector representation
can be expressed as

A A voo0 [Py
b= s =("0). (aso)

where ¢, = ¢,/|p| and c,, s, as defined in Eq. (2.54).
Therefore, the fundamental scalar 47 can be reexpressed as

Sy
Cp
where ¢ = ($1, @2, (3) is a three-dimensional unit vector,
which transforms linearly as the three-dimensional repre-

sentation under the unbroken O(3) symmetry. The angle ¢
together with the ¢ have 4 degrees of freedom.

d. Nonlinear transformation of SO(4)

Since there are three independent components in the
polar coordinate with the constraint in Eq. (A43), one can
make a redefinition of the GBs as below,

Ty = US,(q, (A52)
so that the fourth nonindependent component can be
expressed as a nonlinear function of these unconstrained

fields z,. In this case, the linear parametrization in
Eq. (A51) can be reexpressed in a square-root parametri-

zation as
4 7
= 55 |
V-7

where 7 has three components. Thus, the unitary GB matrix
U can also be rewritten in the nonlinear form as

2
U=1/1 -5 +ic2e,
v v

which implies that the fourth component c,, is a nonlinear
function of the independent three components z¢ with
a =1, 2, 3. The constraint of polar coordinate in Eq. (A43)
turns the SO(4) linear transformation upon ®(h,, h,) into a
nonlinear SO(4) transformation when written only in terms
of unconstrained fields z!>* € SO(3).

Thus, the SO(4) symmetry acts nonlinearly on the
angular coordinates in terms of field z, reads as

(A53)

(A54)

T 77:2 7T4
Uxl+i—-———+0 , ASS
ti—o gt ( > (A55)

ot
where 7 = 6%7,,.
In this definition, the kinetic terms of the nonlinear sigma
model can be rewritten as

<
(S

Lyin = Tr[(aﬂUT)(aﬂU)]

2
v
(au”a)z + ? S(ﬂ(aﬂ(p)z,

Nl’_l\)

(A56)

where the second term denotes the nonlinear kinetic terms
of 7“ fields, since
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1 (z°0,n)?

5 (AS7)

2 v -1

Together, the kinetic term of z% becomes in curved space
§? ~S0(4)/S0(3) as

1
‘Ckin = Egabaﬂﬂ'aaﬂﬂb, (A58)
with a nonflat metric in PNGB field space
T,
Yab = 5ab + 2 ;_2 ’ <A59)

and the Ricci scalar curvature of the coset space is
(A60)

where the number 6 takes account of the degrees of
freedom of the number of unconstrained z¢ fields.
Therefore, the PNGB, or Higgs nonlinearity originates
from the scalar S® manifold curvature. At the scale v — oo,
the physics at scale f gives nonlinear interactions due to the
metric

2 T 5(11)

ﬂﬂb+(’)<
v®

T,y
2+

Gab = 5ab +

>. (A61)

The kinetic term of the nonlinear sigma model can be
expressed in a series of expansions as

(A62)

where ... denotes higher order derivatives coupled inter-
action terms no less than 1/2° order. The Lagrangian has
only three scalar degrees of freedom.

e. Higgs function in coset SO(4)/SO(3)

Similarly, if the SM GBs are introduced in the coset
0(4)/SO(3) with the nonlinear realization, as parame-

trized in Eq. (A54), the same story above would happen,
namely the GBs also originate from the nonflat metric
induced by the EW scale v as shown in Eq. (A60).

The kinetic energy term of the Higgs can be proposed
from that in the coset as Eq. (A58) to the SO(4) manifold,
by introducing additional Higgs in fundamental SO(4) H
as the quantum fluctuations along the radial field direction
[39,58-60],

L= ga/}(h)au¢aaﬂ¢ﬁ’ (A63)

1
2

where ¢* = (7%, h) and g,z(h) is a general metric on
SO(4),

Gop = diag(F(h)zgabv Gnn)» (A64)
where F(h) is an arbitrary function of radial coordinate
filed i canonically normalized so that allows one to set
F(0) =1 and g;;, = 1. g, is the SO(4) invariant metric on

the scalar coset manifold SO(4)/SO(3) = S3 in Eq. (A59).
In this case, the Riemann tensors Rz, are

Req < (1= 02 F)(¢" cGba — 9" aFbe)-

Rahbh X FF”gab, (A65)
where F' = OF /Oh, F" = 0*F/0h? etc. are derivatives of
F with respect to h. The Ricci tensors R, are

1 /2
R, X — ( —2F"? — FF”)ga,,,

FZ
F//
th X F N (A66)

and the intrinsic Ricci scalar curvature R turns out to be

6 (1
R=— (ﬁ — (F? + FF”)> (A67)
The exterior curvature with a normal vector along the radial
coordinate direction gives

C
K, (n) = ”—5ah»

. (AGS)

where 6%, are diagonal components of the induced metric.
Thus, the extrinsic curvature is flat as before. While the
minimization of the extrinsic curvature along radial direc-
tion will entail that F' # 0. The Einstein equations G, = 0
and G, = 0 impose the constraints, respectively, as

1

2FF' + F* = —

1
) F/:_7
1}2

v

(A69)

where the second one originates from the vanishing of the
Riemann tensor curvature R%,.; in Eq. (A65) above. These
equations together give the solution to F(h) for the Higgs
kinetic energy term

h

Fsu(v) = C+ (A70)

where integral constant C = 1 is determined by imposing
F(0) = 1. This just reproduces the Higgs function in front

of the kinetic terms of the SM would-be Goldstone bosons
in Eq. (5.11), where the degrees of freedom of GBs are

015013-40



EFFECTIVE FIELD THEORY PERSPECTIVE ON ...

PHYS. REV. D 103, 015013 (2021)

transferred to the gauge boson masses after EWSB due to
Higgs mechanism.

When expanding the nonflat metric of SM GBs in
Eq. (A63) in power series of 1/v, we just obtain the

1 2
£ =2 (@,h)(@"h) +3 (1 +%> 0,7 07

N[ =

1 A2 - .

where ... denotes the higher order multi-interaction terms.
It is worthy of noticing that the GBs are derivatively
coupled.

APPENDIX B: CCWZ AND CHIRAL
LAGRANGIAN

1. Nambu-Goldstone boson matrix
a. Q parametrization

Assuming the Lagrangian is invariant under global G,
with an unbroken symmetry 7 C G, which is a linearly
realized subgroup of G. The Nambu-Goldstone bosons
due to the global spontaneous symmetry breaking pattern
G — H can be described by the Q field defined as

Q= =el, (B1)

where in the last equality, we have absorbed the decay
constant f into IT so that it is a dimensionless field. The Q is
under the action of an element of global symmetry g € G
and an element of local symmetry § € H as [27,28]
8Q(E) = Q(9(E))b(E. 9). (B2)
which transforms in a linear representation for H. While it
is a nonlinear one for the other elements under the global
symmetry G as
Q- gQh'(E.9). (B3)
which defines the nonlinear transformation of the NGBs
fields as = denoted as

[1]
[1]

aT,, (B4)

where T, are the broken generators in the coset G/H, with
a=1,...,dim(G/H). To be brief, the Nambu-Goldstone
boson fields are associated with the coset or quotient space.
The quotient space G/H is said to be symmetric if there
exists an automorphism of the grading, R, under which the
broken generators change sign.

b. Symmetric coset and automorphism

For symmetric coset, there exists an automorphism or
“grading” symmetry R that acts upon the generators of G,
which changes the sign of the broken generators as

Ty—+T,
R:{ (B5)
Ta g —Ta

where T, witha = 1,2, ..., dim(H) are the generators of H
and T, where @ = 1,2, ...,dim(G/H) are the generators of
the coset G/H. The (T,, T;) form an orthonormal basis of
G, and they satisfy
[Tav Tb] & ch

[To Tp) o T, [Ta. Tyl T,

(B6)

where the first condition follows from that H is closed, the
second condition is due to the fact that the structure
constants are completely antisymmetric for compact
groups, while the last condition is one for a symmetric
coset. These generators together consist of those for global
symmetry G with the commutations relations and trace
conditions in Eq. (A2).

To be explicit, the commutation relations for the unbro-
ken and broken generators of a group G with T4 =
{T*, T} are

[Tm Tb} = ifabCch
[Ta’ T}ﬂ = ifaiJéTz‘ + ifa!;CTC’
[Ta. Tyl = if45Te + ifa/SETev (B7)
where the structure constants f,,¢ = 0 since the unbroken
generators {7} forms a subgroup H C G. For noncompact
group G, e.g., SO(5,1), the structure constants fas€ =
—fpaC are antisymmetric in their first two indices. For
compact groups, e.g., SO(6), the structure constants in all
three indices are totally antisymmetric. Thus, the structure
constant f,;¢=0. The second commutation relation
reduces to

(T, T3] = if 35T (B8)
The antisymmetric constant can be expressed in terms of
matrix elements of unbroken generators in the adjoint
representation as f,,° = —i(t,)¢,. For the symmetric coset
case, the broken generator 7% changes its sign. As a result,
not only the structure constant f;“ = 0 vanishes, but also
f255 = 0. The third commutation relation reduces to

T4, Tp) =if ;T (B9)

Under the discrete automorphism symmetry R in

Eq. (BS), the GB fields transforms as
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R: Q- Q7L (B10)

In the symmetric coset, the nonlinear field transforma-
tion of Q can be read as below by acting on Eq. (B3) with
the grading R and taking the Hermitian conjugate

Q - hQg7!. (B11)

c. X parametrization

From Egs. (B11) and (B3), one can define a new
nonlinear field X as square of

(B12)

which transforms linearly under the global symmetry
ge g as

X — gXay. (B13)

where g is a global element of G, obtained by acting on g
with R, which is independent of the GBs field I1. Hence X
transforms linearly under G. This shows explicitly that the
transformation on IT is a realization of G and that it is linear
when restricted to H. Under the grading symmetry, the GB
fields transform as
R:XT—-X (B14)
The transformation also implies that the covariant deriva-
tive of the nonlinear X is defined as
% T (R

D,X=09,X+ig(AZ-ZAY),  (BI5)
where AM is the G gauge field and its automorphism field is
AR =TR(A,). Under the gauge transformation, it is
straightforward to have

_ i
A, —gA g ——g(0,97").
ga

A = arAfar! —giAgR(a,,g?z‘)’ (B16)
with g, denoting the associated gauge coupling constant.
For external gauge field gAAﬂ = A,, where the gauge
coupling g, are absorbed into the gauge fields. Con-
sequently, the covariant derivative of X in Eq. (B15)
transformed under local G transformation are defined as

D,E = 0,5 +iA,E - iZAP, (B17)

where A, = A4T“ + A%T% is the external gauge field and
A,SR) is obtained by acting on A, with the “grading” R as

AP = R(A,) = A9T* — AZT?, (B18)
where 7% and T are the broken and unbroken generators,
respectively and normalized as Tr(TAT?) = 58. In gaug-
ing the standard model group, i.e., AI‘;‘ = 0. The external
gauge field A, transforms under the local H symmetry as

-1 . _
Ay - gA/,tg - lgaﬂg l’

R _ . _
ALY = ar)AG — i8R 08y (B19)

Therefore, the covariant term of X above can be
expressed as

DX = 9,X + i[AST*, ] + i{AT X} (B20)

d. Explicit expression of covariant derivative

The most general high-energy effective Lagrangian for
describing the electroweak interactions of the gauge
group G and of the GBs of a nonlinear realization of
the symmetric G/H basis, up to four-derivative bosonic
interactions, can be obtained by gauging only the EW
symmetry of the SM gauge group, while keeping the group
G = SO(6) global.

The gauge covariant derivative as defined in Eq. (B20)
becomes

DX =0,Z+ i[WiQ¢ + B;Qy. X (B21)
where the external gauge field as g4A, = gW, + ¢/'B, by
using the embedding representations in the SM as
Egs. (2.1) and (2.3), we find the explicit expression of
the gauge invariant fields strength as

! 0-2AM —ialgW}, + 1639W124
gAA,, =5 ialgW}, - i0'3gW,2, 0,2, ,
0,
(B22)

where A, =gW;+¢B,,Z,=gW;—¢ B,, and 0,=daig(0,
Then, we can obtain the field stress tensor of the SM g, FW
(gW,,. gB,,) in a similar expression.

The SO(6)/SO(5) explicit expression of the building
block with the SM gauge group is

0).

—(W.B)
_ 0 \2
V(@) = _(;B)T Com | (B23)
v v

where 0; = diag(0,0,0), and V,"® and V{**) are both
3 x 3 matrixes those can be expressed, respectively, as
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| gcﬁ,(l - c¢)Wl£ g(1 - C¢)SWCWW/£ gcl,,sd)W}l
- (W.B
V/(t ) = E gci(l — C¢)W/% g(l - Cqb)sy/Cy/W/zl gcl//s(ﬁW/zl ’
cr(l—cp)Z, (1—cy)spc,Z, ¢, 542,
| 0 0 ¢ 0 cp—1 —s45,
Vl(f’*'” = 7 0 0 sy [+ ]| 1-cy 0 CySp |V (B24)
-, -5, O S4Cy  —CySy 0
where ¢, = 9,¢ and y, = 0,. The scalar chiral field T in Eq. (B38) becomes
0 1 0 0 0 0
-1 0 0 0 0 0
g__i[ 00 0 e l=cy) (1=chlsye, cpsy (B25)
210 0 1- ci(1—cy) 0 0 0
0 0 —(1-cy)syc, 0 0 0
0 O —Cy Sy 0 0 0

2. Q decomposition
In the CCWZ’s general approach, one can redefine the
GB fields as d, and e, through the Maurer-Cartan (MC)

one-form w, which is decomposed along the broken and
unbroken directions, respectively,

w, = _igfayg = d}‘;’T& +e,T'=d, + e, (B26)

where Q is defined in Eq. (B3) as defined in Eq. (2.5) and the
kinetic term can be generalized to be a covariant derivative
term. T% € G/H while T* € 'H are respectively the broken
and unbroken generators normalized as Tr(7AT?) = 8. In
the group space manifold, (dz, ef}) can be viewed as the
vielbeins of G, where ej are the vielbeins of H, and dﬁ are
those of the coset G/H vacuum manifold.

Since Q(I1, g) is transformed under global symmetry G
as Eq. (B3),

- Q79,9 > —ihQ'q7'0,(s2h ™)
= —if)Q_lﬁﬂ(Qf)_l)
= —ihQ~'(9,Q)h~" - ih(9,57")
= b, b~ —iH(9,57),
where hw, b’ € G, while the shift term i§0, 5" € H.
From the above transformation, together with Eq. (B26),
one deduces that under any element g € G, d, and e,
transform as
d, — H(I1. g)d, 5! (1, g),
e, = H(IL. g)e,h~'(IL. g) — ih(T1, )0, 57! (I g).

(B27)

(B28)

Thus, d, transforms linearly under local symmetry H as the
NGBs, while ¢, transforms nonlinearly as a gauge field
with gauge symmetry .

It is obvious that the covariant field e, transforms like a
gauge field under H, i.e., transforms as a connection, and it
will be more obvious by defining a field strength

e = 04e,—0e, +ile,. e, (B29)
where e, can be viewed as a nonlinear relation of the gauge

field with gauge symmetry H. e, transforms linearly under
the local symmetry H again, like that of d, as

¢ — H(IL. g)e,, 7' (IL. g). (B30)
Therefore, d,(IT) and e, (IT) are covariant variables, and
together with those by acting upon the covariant derivative
V, consist of the building blocks of the low-energy
effective Lagrangian.

Except the covariant derivative V,, for local symmetry H,
one might be interested in gauging an external local
symmetry H' C G, e.g., a subgroup SU(2), x U(1)y,
which plays the role of the SM electroweak group. In this
case, one can replace the kinetic derivative with the a
covariant derivative of the external gauge field A, as

D, =, +iA, (B31)

where the gauge couplings g, are absorbed into the gauge
fields.
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3. Building blocks in CCWZ
a. Building blocks for X

The global vector chiral field (if the interactions are not
gauged) is defined as

v, = (0,2, (B32)

and it transforms in the adjoint representation of G as

V,->aV,g7". (B33)
The effective Lagrangian describing the GB interactions in
the context of the nonlinearly realized G breaking mecha-
nism, with symmetric coset G/H can be constructed from
\7,,. Then the gauged version of the chiral vector field of the
nonlinear sigma model can be defined as through the
formally gauging of the full group as

\7” = (DME)E‘I. (B34)
The Cartan form for G of the above
(x-1dx)e, (B35)

after projecting onto the subspace of broken generators,
gives a vielbein corresponding to the metric on G/H. As
will be seen, the leading-order terms with at most two
derivatives are built out of two vielbein. The Wess-Zumino-
Witten term is a five-form, which can be built out of five
vielbein [23].

The building blocks for the effective chiral gauge theory
includes a G invariant vector chiral field \7# and the gauge
field strength F,, = (W,,,B,,) which transform in the
adjoint of G.

The building blocks are

V.., E,.  ZEY=

(B36)

with the automorphism symmetry in the symmetric coset,
one can introduce the graded vector chiral fields
V=RV, = DI 'T=-2'V,E (B3
One additional custodial symmetry breaking source besides
the SM ones, in analogy to the scalar chiral field T in the
high energy can be embedded in G of the hypercharge
generators Qy as
T = EQYZ_I. (B38)
To be brief, the building block of the high-energy

effective Lagrangian for a UV complete model, i.e., a
symmetric CHM are

Vv, E, EEXz! T. (B39)

Based upon these, we can construct the gauge covariant
operators in the following.

b. Building blocks for Q

In the Q parametrization, the building blocks V,, and F,,,
under the adjoint of G, should be transformed in the adjoint
of the preserved subgroup H as

v, =QV,Q=0"D0Q-0D,Q",
UE[R) = Q\_/LR)Q_l = QDﬂQ—l _ Q—ID”Q -
fu=Q'F,Q, fff) = 91—:}(]5) ol

7=Q7'TQ =Q0,Q7!,

&

(B40)

where R denotes the automorphism (aut) symmetry
and for the custodial breaking chiral scalar y, we have
used the definition of T in Eq. (B38) as well as Eq. (2.24).
Since v,(,R) = —v, is not independent of v,, there are three
building blocks in the Q parametrization as {v,, f,. fE/ .
By defining the aut-even and aut-odd components of

v, as

(v, + ), (B41)

+
1]/4—

M| —

from which, we can deduce that v, always belongs to the
coset sector, i.e., it runs only over the broken generators but
does not sum over the unbroken ones at all, as expected

vy =0€H, (B42)

v, =v, =viT" € G/H.

Therefore, in the X parametrization, there are four building

block in the Q parametrization as {v,. f,,. f,(]j), xt Itis
useful to make the notations as below

Q_lD Q= U P, 1 &T& jed T
M =?+zeﬂ—§vﬂ +ie, T,
=iw, = i(d, +e,), (B43)
where the factor 1/2 is due to the fact that v, =
207190,Q 4 --- where ... represents those due to the
covariant derivative. Thus, the MC one-form can be

expressed as

i (R) l
=V Wy =e,+-v

2 Ve (B44)

which gives
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1 R R
e, Ei(a)”+a),(4 )) = e,(l ),
v, =i(w, - a),(lR)) = —U,SR). (B45)
Therefore, one has
1 1 R
dﬂ:_livﬂzi(wﬂ_w/(‘ >). (B46)

Similar to Eq. (B42), one has

di =0eH., d,=d,=dT" € G/H,
ey =e, =e T €N, e, =0€G/H. (B47)

Therefore, e,(,m = ¢, is not independent of ¢,. In the last

equality in Eq. (B43), we have also used the notations in
Eq. (B97) with
v, = 2id,,

e, =¢,+ Aﬂ, (B438)

and e, transforms under the unbroken symmetry H as

v, = f)vﬂf)'l, e, = be, - iaﬂ)f)'l. (B49)
Thus, e, transforms as a connection and it is possible to
define the extended covariant derivative of v, as

Vv, =D, +ie, v,] = 0,0, +ile,v], (B50)

where

D,v, =D,v, +i[A, v,]. (B51)
Equation (B50) is consistent with Eq. (B63) by considering
that v, = 2id,, thus,

V,d,=0,d,+ile,d)|=D,d, +ile,d]. (B52)

For the gauge field strength F,, = (W,,.B,,) under the
SM gauge group, as a subgroup of invariant gauge
symmetry H, according to Eq. (B40), it is convenient to
make the new notations more explicitly for the gauge field

strength f,, = (w,,.b,,) and f,(]f) = (wff), b,(f)) as

w,=Q'W,Q  b,=Q"B,Q

wid =0 'wiha,  plM=018Ma, (B53)
and more over, they can be expressed in terms of aut-even
and aut-odd gauge fields as

(R)

— ot
W' = Wy — Wiy,

b\ = byt — b,

— ot - -
Wi =Wy + Wips

b,, = b, + by,

Hw

(B54)

Therefore, for the SM gauge group as a subgroup

of unbroken symmetry group H, we have fff) =
(W(R) b(R)).

uv > Puv

With the field strength of the gauge field Fﬂ,,, in the

symmetric coset case, under the grading/automorphism
(aut) R as f ,(,75) = R(f ), one can also redefine the gauge
field as a new covariant structure variables fﬁ as

- R -

fﬂuEfﬂu+f/J4ru’ fl(ﬂ/)E_f/w_Ff;rU' (BSS)
where f* are the aut-even and aut-odd components of f s
and can be viewed as the gauge fields under the H and

G/H, respectively as

1

which can be expressed in terms of CCWZ covariant
building blocks d,, e, as explicitly shown in Eq. (B66).
The automorphism of these components of f,, satisfies
R[fiv] = j:fin (B57)

which also implies that the gauge field f;j carries even and
odd R parity.

For the symmetry breaking pattern G/SO(4) =SU(2), x
SU(2)g, one can decompose the gauge fields as [19]

10=(3,1)+ (1,3) +4: fi, = /L5 + /8 + 11,

S—4+1: f5,=f0 4+ f2) (B58)

where f,, = ;,?T& €G/H, fu=I T, €N, ,I;D/R —
LIRapL/R and £1% = £9°T, with TLR are the six
generators of SU(2); r, those embedded into the unbroken
generators 7.
The new covariant structure variable fff,, and its auto-

morphism partner transforms as gauge covariants under the
local symmetry § € H

fiw = B 8)fb~ (11 g).

Fi" =9I, g) fid 97 (11, g). (B59)

According to Eq. (B55), with the aid of the trace

property, one finds that the gauge invariant field
Lagrangian can be decomposed as
Tr(F, F*) = Tr(fuf ™) + Tr(fuf™).  (B60)

Thus, one obtains a building block as below
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Tr(fuf™), Te(fuf™). (B61)

From the gauged version of Eq. (B26), i.e., (B97), one
expand the G invariant strength tensor as below:
fuw = QTFWQ = —iQf D,,.D,]Q
= QTDM (Qw,) — Q*D,,(Qa)ﬂ)
= ilw,, 0] + 0,0, — 0,0, = w,,
=V,d,-V,d,+id,d)+e,

=d, +e,. (B62)

where Qf =Q~' and we have used the factor that

[D,.D,] = iF,,, and made the notations as below

w,, = 0,0, — 0,0, +ilw,, 0],

d,=V,d,-V,d,+ i[d#, d,),

e, =0,e,—0e, +ile, e,
V,d,=0,d,+ile,d),
V,d,=0,d,+ile,d,),

v Yu

(B63)

where w,, e, are the Cartan connection of G and H,
respectively. w,, and e, are the corresponding field strength
or curvature of the w, and e, respectively. Note that there is
an exchange symmetry between d, and e, in the above
definition of f,,, originating from w, = d,, + e, so that we
have

f/,w =€ + d;w - i[dw eﬂ] + i[dw eu]

= vueu - vl/eﬂ + i[e/u el/] + dmﬂ (B64)
where
Ve, =0,e,+ild, e,
Ve, =0,e,+ild,e,. (B65)

By comparing the identities in Eq. (B62) with the
decomposition of the gauge field in Eq. (B55), we find
the relations between the gauge fields with the e, and d, as
below

f;v = i[d/w du] + €uv» f;v = 2v[ﬂdl/]’ (B66)
where V|, d,) = (V,d, —V,d,)/2. By imposing the auto-
morphism symmetry upon both side of the first equation one
has

. R

b= ild,,d,] + el (B67)
Then one concludes that e,(]f) =e,,. By substituting
Eq. (B46) back into Eq. (B66), and by using Egs. (B29)
and (B52), the gauge fields can be reexpressed as

Sy =ild,. d)] +20ye, +ile,. e,]

1 R 1 R
=5 (@ + Op) = e +5(du + ),
f;l, = 2(9[/461,/] + 21'[6[”, dl,]]
1

R 1 R
= §<wﬂv - wfw)) - E(dﬂb - d/(w))’

(B68)
where we have defined the field strength of MC one-form
with aut parity even and aut partity odd as

Wy = 20,0, + ilw,, ®,],

a),(]j) = 2(“)[”(1)(R> + i[a),(lR), wf,R)].

These are nothing but the two-form gauge fields in the
dynamical Maurer-Cartan equation as

1
fa):dw—'_il[a)’w] :f++f_v

B = do® + 2 (0P, 0®] = £+ - f~.  (B70)

Thus, in differential form, the two-form f* becomes

7= =5 G 1), (B71)

where f* is aut-even while f~ is aut-odd. Therefore, as
expected, one has two independent building blocks as

ild,.d) == (d, +d¥) = d

Hy

20,V, =5 (d,, —di)) = dy,. (B72)

[N NI SR

By substituting back into Eq. (B55), one has

flw = i[d#, dy] + € + 2dey],

F = ild,, d,) + ey —2Vdy, (B73)

which can be reorganized as

flw —e, = valdy] + i[dﬂ, dy],

0 e, = -2Vyd, +ild,d).  (B74)

To be brief, the CCWZ covariant building blocks

d

s € (B75)

can be reexpressed in terms of X, which is manifestly
invariant under global G
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i i
d, = -7 (D,E)Q = 2Q(D,E)'Q,
ew = -7 (D,ED,X" - D,ID,E")Q
- _
+5 @R+ Q o), (B76)

where in a symmetric coset G/'H. Thus e, and it is related
to the unbroken sector field strength f,;, and the commu-
tator of the d, field.

Therefore, in the end we have a set of covariant building
blocks as

{dﬂ’ f/flvcu} or {dw f;w em/}' (B77)
In summary, we have three independent building blocks of
the effective Lagrangian in the CCWZ formalism as d,, e,,,,
and V,, since they are covariant variables, which satisfies
the local transformation under H,

d;t - f)d/l[)_l’ € = f)e;w[)T’ f/tiu - I)VME)T'
(B78)
For the SO(6)/SO(5) case, one has
e, = €4 T + edRTR oo T,
fuw = F T + ful TR + f,T° (B79)

where two independent gauge invariant field strength
tensors can be defined as

L.Ra __ L.Ra L.Ra . L.R
euy = 0,6, = 0pe " +ile,, e, )P,

e, = 0,ef — 0,ef +ile,. e,]". (B80)

Under the automorphism symmetry R in Eq. (BS), its
representation in the coset SO(6)/SO(5) is shown in
Eq. (2.38). Because the broken generators 7% change sign,
while the unbroken ones 7% do not, thus one has

a a a a —a —a
h* — —h P dy - _d/n f}tl/ - _fﬂl/ ’
a a +a +a
e;w - euw )12% - J2Z (BSI)

If e, and fj, are absent, ie., 6= (3,1)+(1,3) €
SU(2), x SU(2)r € SO(4), then under left-right parity

symmetry P;r in Eq. (2.44), one has

T%: ht — —p*h?, dfj - —ﬂ&d,‘z, f;y& - —ﬂ&f;ua’
e R e, g e (B

where 7% = (1,1,1,-1)".

4. External gauge symmetry: SM or beyond

Once an external gauge symmetry 7, C G is turned on,
e.g., the SM electroweak group Hy = Ggm = SU(2)y %
U(1)y, the ordinary derivative 0, is promoted to be the
covariant derivative D, =0, + iA,, where the external
gauge fields A, = AZT? + AT € G, i.e., still a general
element of G, transform under the local H,, transformation,
namely

A, = g(A, - iaﬂ)gT, F, = gFﬂDgT, (B83)
where F,, = J,A, —0,A, +i[A,,A,] is the field strength
of external gauge field A,. Some of the above external
gauge field source will become dynamical while the
others will be turned off, i.e., by setting the others to
zero. Explicitly, the dynamical part of A, will be those

transforming under the local Hy = Ggw = SU(2)y %
U(l)y CH,

g [—
A, =—=WiTf + AWl + gW;T; +g¢B,Y, (B84)

V2 V2

where TF = T} =+ iT?. The charged weak boson fields are
defined as

1 ,
Wit :7§(W}, FiW2).

For SM, A, = g(W,6' + Wj6* + W;6?)/2 4+ ¢B,Y with
Y =1/2, g, ¢ are the SU(2), and U(1) gauge coupling,
respectively. The neutral gauge boson fields are

(BSS)

gWiT] + g B,Y = gz(T° = 53,0)Z, + eQy,,
()= (5 o) ()

Bﬂ —Sw Cw }/ﬂ '
where ¢y =cosOy = g/\/ ¢ + g% sy =sinOy =
d/\/g* + g% denote the cosine and the since of the weak
mixing angle, and tan@y = ¢ /g and g, ¢ are the gauge

couplings of SU(2); and U(1), in the SM. The commu-
tator of the gauge field strength is

(BS6)

1
[D,.D,] = igW,, +ig 5 Bu- (B87)

Similarly, if one want to turn on the residual H invariant
gauge source, e.g., SU(2)r C H, then one can include an
additional term at a high-energy scale f # v.

_ IR IR

V2 V2

where T3 = Th +iT% and generally, gz # g, = g. One
may also denote respectively Wx, Z, as W=, Z'. While in

A= LW T+ LW T + 2 T (BSS)
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the effective Lagrangian description, one may integrate out
these heavy particle fields.

For mater field ® which transforms as ® — Y(I1, g)®,
the covariant derivative is

V,® = (0, +ie,T")®. (B39)
Therefore, ordinary derivative d, can be promoted to be
covariant derivative
V,=0,+ie, (B90)
which is gauge invariant under H.

One may also introduce the vector resonances p*. The
strength of the external gauge fields transforms under the
local symmetry H, Fi, (IT) — §(IL, g) F;, (IN)H~' (11, g).
F;, = pis,, which takes even and odd R-parity respectively,
e, Fi, =piT*€adj(H), F,,=p,T*€G/H and
transform under G. Then kinetic and mass terms of the
gauge field are

1 1
Lp= ETr[V/‘Fi,VDFﬂ”] + ZmiTr[Fi,Fi””}, (B91)

where

VA, =0,A, +ile,.A,) (B92)
One may also introduce the next order effective
Lagrangian, by coupling the external gauge symmetry with
the building blocks as

L =c, Tr(F,ld,. d)]) + cp Te(F,,f)

u

+ ¢ Tr(Fp, f™), (B93)

which is relevant to the S parameter.

5. Nonlinear chiral Lagrangian

It is worth noticing that the GBs field IT in Eq. (B1)
enters in the effective Lagrangian only through its deriv-
atives. The derivative of the Q field can be expanded
through the one-form w, as

o, i (_2!”_ LTI, ... [I.8,11]...]

i 1
3”1_[ ) [H, 8ﬂH] - 8 [H, [Hv aﬂn]]

" (ML [T [T, 8,10 + - - -

ol (BO4)

where [IT, 0,11 =110 ,IL In this case, the leading-order
terms expanding the filed d, and e, are

d,=9,11- é [I1, [I1, §,I1]] + O(IP),

0, = —é[n, 9,11 + i [TL 1, [IL. &, IT]]) + O(II°).

(B9S)

When external gauge interactions l_:,w = F, T, Aﬂ =
AyT? are turned on, i.e., 8” - D, :8ﬂ+iAzT“, the
Higgs will be interacting with gauge bosons too. Then,
the covariant derivative of the IT field is

D,I1* = (9, +iAT*)1* = 9,11% 4 iA5(T)211",  (B96)

where for simplicity, one may restrict attention to the case

. . O . .

in which A, belongs to H" C H is given by Eq. (B84),
w, = -iQ'D,Q = -iQ'9,Q + QA ,Q

=d,+e,+A, (B97)

Thus, for the gauged version, one can redefine e, in a way
as

e,=e,—A, d,=d, (B98)
and the gauge field strength is
ey = —F, + e (B99)

Under the automorphism symmetry R in Eq. (BS), we have

R(dZ) — —dﬁ, R(ed) — ed.

4 et (B100)

By using the building blocks d?, the lowest order
Lagrangian can be written as

2 2
P | 1, _©u <
Egj :?dﬂd p =5 (a,,naun+3(na IT)(I19 1) + -- >

— %(8,,71)2 +3—ch2 (ﬂgﬂﬂ')a(ﬂ'(g#ﬂ)& +0(#%), (B101)

<>
where 10 ,IT = [I1, 0,I1] and in the last equality we make
the notation as II1=x/f and 7 = hE/2. In this case,
phenomenologically, z has an extra derivative self-
interactions, and interactions with Higgs 4. In the presence
of the external gauge field A,, the gauge interactions are
introduced with ﬁﬂ — D, and the second term involves
interactions of two-derivative invariant operators with four
Higgs doublet.
The next-to-leading-order Lagrangian with derivative
up to the four-derivative for the gauge field ¢,, can be
written as
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ﬁﬁ? = Trle, e] = ef,e™ = (0,e, — O,e, + ile,, e])?

% (0,,([T1, 8,11]) — 9,,([T1, 9,IT))

+ i[[1, 9,11], [I1, ,11]])2

2 (202,10 0,11) + i[01 0,11, [1, 2,12

= —f14 [0,7. d,7)? + O(n%)

1
_ _(fabefcde) F 8ﬂﬂaayﬂbaﬂﬂcayﬂd (B 102)

The interactions are suppressed by f~, while when the
gauge interactions are turned on, the external gauge field A,
is present, the first term involves interactions of four-
derivative invariant operators with four Higgs doublet,
which are enhanced with ¢*.

Another next-to-leading-order Lagrangian with mixing
between ¢, and d, fields are

= Tit[d,, d,)e"] = foedidber
i

= _zfabc(aﬂna ’ ')(avnb + - )

x (2[aﬂn e - -2)

— fabcfdeca ﬂ”@m“@”ﬂda”ﬂ 4.

- (B103)

Thus, these lowest order Lagrangians relating to the gauge
field will appear at least at an order higher than p*/f*.
When the gauge interactions are turned on, one must make
the replacement for e, — F,, while keeping d, the
same, then the interactions involving two Nambu-
Goldstone bosons and two gauge fields will appear.

6. Explicit expression of CCWZ
a. d, field

In the NMCHM, the explicit expression of d, fields in
the coset sector SO(6)/SO(5) are

12
d},’z = g\VZ% cos (?) sin (?)
W) - ¢B ,
it 3 o)
V2 . .
dy = - [Gﬂq’z cos (?) — d,y sin <§) sin <?>} ,
V2 . .
d5 = a [8#45 sin (ljlf) + O, cos (;{) sin <?>} .

(B104)

b. d,, field

From the dﬂ fields above, one can obtain their anti-
commutators as

a
d, =

[d,, d,]". (B105)

The explicit expressions of d , in (1,3) +

i(dht 4 df)) —;gcos ( )sm < > (W2zZ,—WaZ,),
i(dh) —df)) = }gcos ( ) sin <f> < - ¢,W}))
+tan< )sm( (y, W ))
. L2 R.2 1 2 [ ¢ 1 1
i(diy +duy) = 5 geos <—> sin ?) W,z2,-W,Z,),
e
+ tan< ) (?) l//yW,Z, - lI/ﬂle/))’
-S5O s

2
i(dﬁf—dff —}cos< >s1n( ((/)DZ -,z y)

n(s)

From the above, itis obvious that the chiral sector is relatively
suppressed with an order 1/ f comparing to the vector sector.
For those in (2,2) due to 7%, we have

i) (2 -
+ cos @) sin @) (W, W, = %W,)) :

-y ) 5o
+oos(5)sin( D) w2 -3 ).

b8 -
+ cos (?) sin (?) (W, Z, — %Z,,))

2
id,, = f—\/;sin (?) Wy — buys)-

(3,1) are given in

[\S]

i(dhs g*cos

~I[€
=

~ IS

(w.Z,—w,Z )

(B106)

wih

- ¢I/W[24)

(B107)
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Comparing to the leading order, the first three d,ﬂ;,%’3 are
suppressed by 1/f, while the fourth dfw is suppressed

by 1/f2.

c. e, field

The e, fields in the unbroken SO(5) sector, have 10
components, which can be decomposed into 10 = (3, 1) +
(1,3) 4+ (2,2) € SU(2), x SU(2)g =~ SO(4) components.
The (3.1) 4 (1,3) due to the generators T¢ , gives

eL” —gW —gWLﬂcos <U;>sm (;})
ej, = gWj, —cos’ (?) sin? <;;) (9Wi, —9B.);

e = gW | cos® <l/f/> sin? (;;)

ey, = oS> (l;) sin? (;}) (gW3, = 9'B,):;

where hence and forth, we have made the abbreviation of
the subscript L for the W bosons field, i.e., W, = W, . The
(2,2) due to T* gives

12 QWI’Z . (2w ¢
° ‘_\5sm<f%m<w>
e = _\}E(QW; - ¢B,)sin <2}l/> sin’ <2¢}>
V2
€ = 76”1,//[1 - cos(?)} )

d. i, field

In the Omega representation, the building blocks of the
gauge field are not F,,, but fffy as we will give the explicit
expressions in the following.

According to the deﬁnitions in Eq. (B56), we have

R.a r+.a

the gauge field f,, —( ws fus fu”) in the unbroken
sector as

ﬁul ? QW;lw2 [1 — cos (j:) sin? (Z)]
b = w3, = o (W)siv (£) W3, - /B,0)
R12 = gWiicos? (?) sin? < ;;)

W = gB,, + cos? (j:) sin? (;}) (gW

(B108)

(B109)

;1/ - g/Buzz)’

(B110)

which leads to an equivalent linear-independent combina-
tion as

L12 | (RI2 _ opyl2
W,g;{l_zcos () (2)]
P S = Wi+ 9By = Ay,
5&3 - =2, [1 - 2cos? (Zﬁ) sin? <2¢}>} (B111)
where Z,, = ngw —¢B,,. It is obvious that the vector

,31;3 +f 5,;3 is nothing but the gauge stress tensor for photon
fields in the SM. The components in the (2,2) are

= % W, sin <2}’U> sin (;})
(2

;1;2 = - % Wl2lv slIl( }ll) sin’ (i)

o =

(gW;, — ¢B,,) sin (271//) sin? (%) ,
f wo=

For the gauge field f, in the coset SO(6)/SO(5) sector,

+,3

" -

(B112)

' = \/§W1 cos<l}/> sin<?>,
-2 _ 9 un AYNE Y
S = \/EW”DCOS<f> sm(f),

fai = % (gW3, = B,,g) cos <§> sin @) ’
fat=0. 1@ =0 o

where Wy, and B, are the gauge field stress tensors for
SU(2), and U(1), symmetry

Wi, =0,Wy — 8DW,€ - geabCWfZWf,,
B,, = 0,B,—9,B,, (B114)
since we have defined F,, = 0,A, — 0,A, +i[A,.A,].

e, field

In NMCHM, the gauge field stress tensor in Eq. (B29)
becomes

e = e +en, + e,(jf), (B115)
Where e}l;l{R = ﬁl{R’aTé’/R an d e/(ﬂ/) = el(jll)(lTa_
The e, can be computed through separating into the two

sector as
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e, = 20ye,,—le,,, (B116)
where the Abelian sector of the fields is
d,e, — 0ye, =20)e,, (B117)
while the non-Abelian sector is
e, =le,. e (B113)

The explicit expression in the NMCHM turns out to be

i(el) + ef)) = 2gcos? <1/?/> sin* <%) (W2Z, - W2Z,),
2 2
i(eh) —ef)) = 79s1n <7’//) sin* (%) (W, W) —w,W}),
i(eh? + eRZ) = 2gcos? ¥\ sin 12 Wz, -wlz))
v uy ) = «g 7 2f utv v&u)»
2 2
i(ef? —ef?) = 79sin (71’[/) sin* (%) (W, Wi —w,W?),
i(eld + Ry = 2¢2cos? (?) sin* ;} (W2W) — Wiw2),
2 2
15820 s (o,

The situation is similar to what has happened in d, ,, the

vector contribution is larger than the chiral contribution.
For e, , in (2,2), they are

ie), = %590052 <§) sin* (%) (W, W) —w,W)),

ies, = % gcos? (?) sin* (%) (w, W2 —yw,W2),

f
ie;, = %ﬁcos2 <§> sin* <%> Wz, —w,Z,),
e, =0 (B120)

We have also calculated all of the commutative parts of
e,, in Eq. (B117),

onel = o (e (5o -

(o ) (2
+ 25sin (27"’> sin? (%) (w,Wi? - %W},*z)) :
Del’ = cos? (?) sin? <%> 0,2, - 9,2,)
gl (2) (-
+ 2sin <2}”> sin? <;;> W, Z, — y/yzﬂ)> ,

V123 — 0’ (BIZI)

Y

awe

V/A.a
Y

where we have made the recombination 8U,e
e £ dyel with a =1, 2, 3.
For the (2,2), one has

ity (v s

1 1. /2 .
e (7) on (7)o -

+2cos <271l/> Sin2 <%> (l//y W/llz - l//y Wllzz)) P

1 . /2 .
1 1. 2w\ . (¢
+ W <§ sin <7> sin (?> (¢DZM - ¢#ZU)
2 .
+2cos <71//> sin? (%) .z, - '//uzy)> )

|
a[}le;j] = \/z 5 sin <?> (¢yl//u - Wﬂ¢u)'

(B122)

According to Eq. (B66), the field strength ¢, is also
related to the unbroken sector jp and d,, field through an
identity

eyu :f;ru - i[dwdu] :f;ru - idu,lz' (B123)
Thus, they are not linear independent of f,),. Thus, we can
either use e, or f;, as the building block. The easiest but

nontrivial check to determine the sign is through a =4
components, which leads to

e, = 0,6l —0,eh = za[,,ej] = —id},, (B124)
since f,i;* = 0.
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7. High-energy effective operators in literature

In literature [19,49,50,73], there are a set of high-energy
effective operators defined in studying MCHM. In this
section, we compute them explicitly in the NMCHM and
also we make comparison with our results in Sec. I'V.

At p? order, there are two CP-even operators, either
keeping or breaking the custodial symmetry, and one
CP-odd operator can be defined, respectively, as

Oc¢ = f*Tr(d,d") « L.

Or=f? [Tr(d”;()]z & ZT’

07 = f2Tr((V,d" )] « L7, (B125)

where the factor 1/4 in front of L. is chosen for the
canonical normalization of the kinetic term of the scalar in
the € parametrization, as will be clear in Eq. (5.3). Both
operators Oy 7 are the custodial breaking terms that can
contribute to the T parameter.

At p* order there are seven CP-even operators con-
structed from the building blocks as below [19,49,50],

Ol [Tr(d dﬂ)] X 24,
02 = Tr(d,d,)Tr(d"d") « Ls,

= Tr|(e W)z (efa)]:
04 = Tr[(f £ flu)ild", a"]),
O; = r[(fmz) ] ﬁf - Eva
05 =Tr[(f)* = (fi)]. (B126)
where we have used Eq. (B66) and used the fact that
df,R) = —d/,, which is not independent of dﬂ. Therefore, (’)j‘IE

can be viewed as a linear combination of Zm with its own
automorphism partner, and OF is a linear combination of
L; and Ly. Note that f = (w, b), OF (f) includes a set of
four operators, so does (’)5jE (f). Later on, as neglected in
Eq. 459, we have also calculated OO; and find the exact
relation as below O3 = OF —20;. Thus, O; is not a
linearly independent operator.

The first seven p* operators defined in Eq. (B126) can be
expressed in an EW chiral Lagrangian as

Ok — _4‘CW - 4[:3,
O, = cos* (?) sin* <?> L — 4cos? (?) sin? <%) £y

+4Lp,, — 4cos? <?> sin* <?) [I%) + 4sin* ?) Lpy.

0, = cos* <§> sin <?> L, — 4cos? (jﬁ) sin? <

+4Lp,, — 4cos? <%> sin* <%> Eg") + 4sin* <?> Ly,

f
o)l
(-sBp(g) e -2
o)) ()
x <1—2cos <l;>sm ( ))(ﬁ Y —2c¥),
-l o) - )e(2)

X (L5 —2L3) — cos? (?) sin (?) (£ + 2

1. 2y (w)
Aa()w(O)er )

OF = —cos? (Zﬁ) sin <?) (L) +2Lg +2Ly),

O; =4 <1 — 2cos? <§) sin? (%) ) (Ly—Ly), (B127)

where the low-energy effective Lagrangian £, is defined
in Eq. (C11), and £§,¢) etc. follows the replacing rules in
Eq. (4.4). The results are consistent with Eq. (A.34) in
Ref. [49], after combining the known matching results
in Eq. (4.3).

It is also worth noticing that the first two operators can
also be reexpressed without expanding the square as

16 1 . 2
0, = = [£¢ + sin (?) L, + Ecos2 (?) sin? (%) EC] ,
16 1
0= [2 OO0+ sin @ SO+ i <f>

2
X cos? <§> [P (WW, + WaWs) + ZMZ,J]} )

O =- é—l‘ cos? <K> sin? <§> (Ly+2L5)

Ll

(B128)

Thus, when y = 0, it is also consistent with Eq. (30) in
Ref. [50], by substituting back the EW chiral Lagrangian in
Eq. (C11) and keeping the implicit form.

Similarly, five of the next-to-leading-order C P-odd oper-
ators can also be constructed from those as below [19,73]

OF =2Tx((f}, + Fi)ild, &) « O,
OF = 2e(f ") & Ly - L.
07 = 2Tx( fII;U]fLw - % FRv).

OF =Tr[(eg,)* + (ef), (B129)
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where fﬁ = €upo fP°* /2 is a dual antisymmetric tensor. The
O3 can contributes to the S parameter. This will become clear
by transforming the basis into the SMEFT up to dimensional-
SiXx operators.

To match with part of our basis in the € parametrization
in Egs. (3.15) and (3.17), with the building block f,ﬂf,,, we
speculate that the more natural definitions of the seven
effective CP-even and five CP-odd operators such as O;
etc. in Eq. (B126) and (B129), might be defined as below,

O, = [Tr(d,d")]* x Ly,
0, = Tr(d,d,)Tr(d"d") Ls,
(’); = Tr(d,;,d") £7 85
= Tr(d,, [*)
O? = Tr(fu /") « Ef iﬁf}:,
=Tr(d ufi'w) & ['23 + Zg,?’
)

O?: Tr(f4 ocﬁf:l:[:fx,

OF =Tr(d;, ") « L5, (B130)
where we have used Eq. (B66) so that d,j, = f!, — € and
d,, = fu- It is worth noticing that e,, and d, is not

linearly independent of f,z and f,,, respectively. From this,
one finds that O — 20, = 4Tr(f,,e") # O;.

APPENDIX C: EW CHIRAL LAGRANGIAN
AND OPERATORS

1. Building blocks of low-energy EW chiral Lagrangian

The (pseudo-)scalar T and vector chiral fields V, are
defined as [34,49,50]

T=Us U, V,=(D,U)U", (C1)

where U is the three Goldstone bosons (GBs) in the coset
SU(2), x SU(2)x/SU(2)- and are parametrized as the
longitudinal components of the SM gauge bosons by a
nonlinear ¢ model as a dimensionless unitary matrix U at

low energies as
1
U=exp|(i-cp” ]|,
v

where v is the scale associated with the SM GBs, and ¢¢ are
the usual Pauli matrices. The dimensionless unitary SM GB
matrix transforms as a bi-doublet under the global
SU(2); x SU(2)r symmetry as

(C2)

U - g, Ug},. (C3)

After EWSB, the global SU(2), x SU(2) symmetry is
spontaneously broken down to the diagonal SU(2). in
terms of custodial symmetry, and explicitly broken by
gauging the U(1), hypercharge and by the fermion mass
splittings.

The covariant derivatives are’
D, U= 8ﬂU +igW,U — ig’B,,Ua3/2, (C4)

where W, = Wi,/2 with Wi and B, denote the SU(2),
and U(1), gauge bosons, respectively, and g, ¢ are the
corresponding gauge coupling. Both T and V,, transform in
the adjoint symmetry representation of SU(2), as

T - g, Tg; . V, - a,V,a;, (C5)

while the chiral scalar field T breaks explicitly the SU(2),
symmetry and is not invariant under SU(2) . Thus, it can be
considered as a custodial symmetry breaking term. Thus, the
covariant derivative D, denotes that in the adjoint represen-
tation of SU(2),, i.e., when acting upon V,,, is given by

D,V,=0,V,+iglW,.V,], (Co)

and satisfies a useful identity (D,U)" = -U~"(D,U)U". In
this case, one obtains frequently useful equalities as [34]

/

N
i BT+ [V, Vo).

V,.T],[D,.D,]O = ig]W,,. O],

Hys

vV,=D,V,-D)V, =igW, —

D, T= (C7)
where O is a generic operator covariant under SU(2), and
invariant under U(1),.
It is worth noticing that it is concise to use the building
block V,,, comparing to use the explicit expression of U as
Tr(V,V#) = Tr[U"(D,U)U*(D,U)], (C8)
where in the last equality, we have used the Hermitian
condition for the Lagrangian up to kinetic terms.

2. Low-energy EW chiral Lagrangian
a. Higgs singlet

The physical Higgs £ is an iso-singlet of the SM gauge
symmetry with vacuum expectation value at EW scale
v & 246 GeV. In the low-energy effective Lagrangian, there
are four pure Higgs operators. One is that with two derivatives,
and the other three are those with four derivatives as [47]

1
Ly =5 (0,0)(0"h)
Lon =5 (Oh)?
Lan = % (8,h) (0 h)TIh
Lon =~ (@1 )P (©9)

where [1 = 0,,0".

®The bold of the characters implies that we have adopt
abbreviations for SU(2), generators.
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b. CP-even case

Operators with two derivatives are [35]

DZ
‘CC = —ZTr(VﬂVM),

2

v
L7 =7 Te(TV,)Te(TV¥), (C10)

where C and T indicates the custodial preserving and
custodial breaking, respectively.

For operators with four derivatives one has’ [34,36,38,
45,45,47,49,53]

‘CB:_

g v
‘CW = _ETI‘(W/JUWM ),
Ly = gg'B,, Tr(TW*),

L, = ig'BWTr(T[V”, V),
Ly = igTr(W,, [V¥, V¥]),
Ly = igB,,Tr(TV*)0*(h/v),

Ls = igTr(W,, V*)0"(h/v),

Lo = [Tr(V, V92,

Ly = Tr(V,V*)0,0"(h/v),

Lg =Tr(V,V,)0"(h/v)0"(h/v).
Ly = Tr[(D”V/‘)Z],

Ly =Tr(V,D, V)0 (h/v),

= [Tr(V, V),

F[Tr(TW,,)>,

Ly3 = igTr(TW,, ) Tr(T[V¥*, V¥]),
L1y = 9€,,,, Tr(TVF)Tr(VVWP),
L15 = Te(TD,V/)Te(TD, V*),

L6 = Tr([T, V,]D,V¥)Tr(TV),
Ly7 = igTr(TW,,)Tr(TV#*)0" (h/v),
TH(T(V,, V,])Te(TVA) O (/v),

b
58]
[

"These 26 p* operators in the EW chiral Lagrangian are
redundant if the fermion sector is included [46]. Thus, we only
need to focus on the NMCHM setup with only composite vector
boson states included.

L9 = Tr(TD,V¥)Tr(TV,)0" (h/v),

Lo = Te(V, V4D, (h/0)? (h/v).

La1 = [Te(TV, )P0, (h/0)0* (h/v).

Ly = Tr(TV,)Tr(TV,)0¥(h/v)0* (h/v),

£23 = TI'(V V”)[TI'(TVU>]2

Loy = Tr(V,V,)Tr(TVH)Tr(TVY),

La5 = [TE(TV,)|[Tr(TVA)]0, 0 (h/v).

L6 = [Tr(TV,)Tr(TV,))%,
where the first 13 Lagrangians Lp ;. 13 correspond to
the custodial preserving ones, while the residue corre-
sponds to the custodial breaking ones, which describes tree-
level effects of custodial breaking sources beyond the SM
ones. Since the gauging of the SM symmetry breaks
explicitly the custodial symmetries, these custodial sym-
metry breaking operators are generated due to the quantum

corrections induced by the SM interactions. The covariant
derivatives of V, are defined as [34]

)
) (C11)

D,V,=0,V,+iglW,,V,]. (C12)
In the absence of a light CP-even Higgs-like scalar singlet
h in the low-energy spectrum, the 12 operators containing
derivatives of Higgs are absent. Thus, there are a complete
18 (independent) CP-even operators: those preserving
SU(2); x U(1)y symmetry.

Among the operators, two SU(2). custodial symmetry
preserving and three custodial violating operators
L 11232426 exhibit quartic vector-boson interactions,
which leads to new anomalous quartic couplings [74] such
as Z,2,72¢7", WiW,Z'Z", and W W, WHW=,

The CP-even low-energy effective Lagrangianin Eq. (C11)
can be expressed more explicitly in the unitary gauge as

1
Lo =g [F[(Wi)? + (W] + (aW} - 9'B,)),
1
‘CT = —ZU2<9W2 - ng”)27
g/2 ,
‘CB = —ZBIMDB'M 3

g2
Ly == Wi, W,

'Cl = gg/BﬂuW3”D’

£y = PgB(WLWE = WiW)),
Ly=gB"(gB,—gW;)0,h/v,
2
g
Ly = 5 [gW3 (WLW2 — WaW))
T (gW3 = o B,) (W W2 — Wl W)
= (gW; = g B)(WH W — Wy W),
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g
L: — __[g(Wlwl;tv+W2w2;¢y) |
+ (gW;5, — ¢'B,)W>*|0,h/ v,
S Log = (gW¥ — B2 (gW> - gB*)2,  (C13)

1
L5 = S PWLR + PWER + (W5 — g B, P ]
where W = e#7°W¢_ /2. Note that in the weak coupling
L, = 21 & ((Wl) 4 (W5)2) 4 (ng —g’Bﬂ)z]Dh, limit, i.e., f = o0 or & = 0, L4 just recovers that in the
i) low-energy effective Lagrangian, while Eff> justdecoupled. It
Ly = — [92(W1 W1 + W2 W2) is worth noticing that for NMCHM with symmetry breaking
2 pattern as SO(6)/SO(5), the custodial violating operator
+ (W, — dB,)(gW; — ¢ B,)|0"hd* b, Ly =—-2Lc+ ---is not independent of L.
1
Ly = D) (0, W + ¢ B,W)? ¢. CP-odd case
+ gz(aﬂ W — ¢ B”WU‘)2 For operators with two derivatives one has
+ (90,W¥ — ¢9,B")’], L& =0,
1
2wl v 2 W 2
Ly = , > (W, 0,W" + W,0,W*) Ly = i%Tr(TDﬂV”), (C14)
+ (gW;, = ¢'B,)?* (gW3 — ¢ B))]0"h, ) )
| - where C and T indicates the custodial preserving and
Ly = 4 lg" (W, W, + W W) custodial breaking, respectively.
For operators with four derivatives one has [48,52,53]
+ (W, ~ B, (gW: ~ B, b
3uv i3 2
L = gWH W, I
Lz =gWH (W, W, — W, Wy), )
~ ~ g X\ v
Lia = g(gW¥ — g BY)[g(WW,, + W> W) Liy = =7 Te(W,, W),
+ (gW¥ — ¢B )W, ], Ly = 2gg’BWTr(TW"”),
Lis = —(90,W¥* —g0,B")?, L5 = 2ig B, Te(TVR) (h/v),
Lig = —g*(gW> — ¢ B)[(W;0,W' — W)0,W*) L35 = 2igTr(W*V,)d,(h/v),
+ g B (W, W, + WiWp)), L; = gTe(WV,)Tr(TV,),
1 ; v
L7 =—=g(gW; — ¢B,)W*0,h, L5 = iTr(V*V)Tr(TV,)0,(h/v),
v

Lg = iTe(VAV,)Te(TVY)3, (h/v),

—12 3 _ 1Tw?2 _ w2wl)Aav
Fia =y g LW = GBI = WaW) o7l L3 = gT(TIWH. V)0, (h/2).

Lo ==L (W = ) (g0, W — 0,5)0,h L5 = 2P TH(TWTH(TW,,),
v ~
Lo, - \ ) , Ly = 2igTr(TW*)Tr(TV,,)0,(h/v),
_ 3 _
‘CZO - 21)2 [g ((WM) + (Wﬂ) ) + (gWﬂ gBll) ](aph) ’ ‘Clb — iTr(VﬂDuV )Tr(TV )
1 v
£21 = ——2(9W3’l - g’B")zayhﬁ”h, £ll - lTI‘(TD#V )Tr(V V )
v
L ! W3* — ¢ B# 3u BY)0,h0,h = VA TIDY.)0,(8/2),
22__F(g -9 )(QW _d ) ultOutts lTI‘(TD ) ) (h/v)
Loy = % (gW — g B 2[R (WHW! + W2W2) = iTe(TD*V,)&* (h/v)d,(h/v),
+ (gw3/4 _ g’B”)z], ‘Cl~5 - lTr(TV )(TI‘(TV”))za (h/’l))
Ly = iTr(TD*V,) (Tr(TV¥))2, (C15)

1
Loy =5 (gW = g B)(gW™ — ¢/ B")x
where the first five Lagrangians L y, 1 5 5 correspond to the

2wl wl 21172 3 3_
[ (W, W, + WaW3) + (gWu — g B)(gWy — 9Bl custodial preserving ones, while the residue operators
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correspond to (tree-level) custodial breaking ones. In the
custodial breaking class, the presence of the scalar chiral
field T implies that the custodial symmetry is violating.

The dual tensors are defined by BW = €,,,B”° and
W/w = €, W?. The covariant derivative of V is defined

in Eq. (C6). In the absence of a light Higgs-like, i.e.,
CP-odd scalar singlet /4 in the low-energy spectrum, the 10
operators containing derivatives of Higgs are absent. Thus,
there are a complete nine (independent) CP-even operators,
those preserving SU(2), x U(1), symmetry.

The CP-odd low-energy effective Lagrangian in
Eq. (C15) can be expressed more explicitly in the unitary
gauge as

i
— 7V 0u(gW¥ - g B,

)
~p
I

1 -

‘CW _ _1.9/2‘)‘/;”“/51/41/7
1 .

Ly =~79"B.B".

Ly = 2g¢B,wV~V3””,
2 .

Ly = ——gB"(gW; - 9B,)0,h,
1 - .

Ly = =@ (W Wi + Wiwe)

+ gW3 (gW3 — ¢B,)]0,h,

1

Ly = =5 [ (W, Wh + Wiwae)

+ g(gW;?: - g/Bu)W3#y)](gW3 - g/Bu)’

1
L5 =5 (W5 — g B[ (WHW' + W)
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