
 

Flavor hierarchies from clockwork in SOð10Þ GUT
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The clockwork mechanism, which can naturally explain the origin of small numbers, is implemented in
SOð10Þ grand unified theories to address the origin of hierarchies in fermion masses and mixings. We show
that a minimal Yukawa sector involving a 10H and 126H of Higgs bosons, extended with two clockwork
chains consisting of 16þ 16 vectorlike fermions, can explain the hierarchical patterns with all the Yukawa
couplings being of order one. Emergence of a realistic mass spectrum does not require any symmetry that
distinguishes the three generations. We develop clockwork-extended SOð10Þ GUTs both in the context of
SUSY and non-SUSY frameworks. Implementation of the mechanism in non-SUSY scenario assumes a
Peccei-Quinn symmetry realized at an intermediate scale, with the clockwork sector carrying nontrivial
charges, which solves the strong CP problem and provides axion as a dark matter candidate.
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I. INTRODUCTION

The origin of the observed hierarchies in the masses and
mixings of quarks and leptons is a longstanding puzzle in
the Standard Model (SM) of particle physics, commonly
referred to as the flavor puzzle. Whereas the charged
fermion masses and mixings appear to be strongly hierar-
chical between generations, in the neutrino sector only a
mild hierarchy is realized. Additionally, a stronger hier-
archy is observed in the up-quark mass ratios compared to
the down-quark and charged lepton counterparts, which
have very similar patterns. The SM fails to provide an
explanation of the flavor puzzle as it simply accommodates
the observed masses and mixings in terms of completely
free Yukawa coupling parameters. Besides, neutrinos are
strictly massless in the SM, which contradicts observations.
There have been many attempts to address the flavor puzzle
among which grand unified theories (GUTs) [1–5] based
on SOð10Þ gauge group [4,5] are very attractive candidates.
In addition to unifying the strong, weak and electromag-
netic forces into a single force, in SOð10Þ GUTs, quarks,
and leptons of each family are unified into a single
irreducible 16-dimensional representation. Along with
the SM fermions, this 16-dimensional spinor representation
contains the right-handed neutrino that naturally leads
to small but nonzero neutrino masses via the seesaw

mechanism [6–10]. The unification of all fermions of a
family into an irreducible representation is a good starting
point to address the flavor puzzle, owing to the various
correlation it provides. Further appealing features of this
theory include a natural understanding of electric charge
quantization, automatic anomaly cancellation, and gauge
coupling unification at high energy scale around 1016 GeV
with or without supersymmetry (SUSY).
Because of the unification of quarks and leptons of each

family into a single irreducible representation, SOð10Þ
GUT is one of the best frameworks that can shed some light
on the flavor puzzle. The Higgs fields that can generate
fermion masses at the renormalizable level can be identified
from the fermion bilinears

16 × 16 ¼ 10s þ 120a þ 126s; ð1:1Þ

where the subscripts s and a denote symmetric and
antisymmetric flavor structures. A minimal Yukawa sector
in SUSY SOð10Þ GUT and/or non-SUSY SOð10Þ with a
Uð1Þ Peccei-Quinn (PQ) symmetry [11] consists of two
Higgs multiplets 10H and 126H having the following
interactions [12]:

LY ¼ 16TðY1010H þ Y126126HÞ16: ð1:2Þ

In the non-SUSY framework, the PQ symmetry would
require complexification of the 10H. The complex con-
jugate of 10H however, does not couple to fermions, owing
to its PQ charge, thus preserving the form of Eq. (1.2). The
flavor phenomenology would thus be similar in the SUSY
version as well the PQ-symmetric non-SUSY version, with
the Yukawa couplings given by Eq. (1.2) in both cases.
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Introduction of the PQ symmetry is of course highly
motivated on independent grounds, since it naturally solves
the strong CP problem and also provides a viable dark
matter candidate in the axion.
The fermion mass matrices derived from the minimal

Yukawa sector of Eq. (1.2) has only 19 real parameters (of
which 7 are phases) to fit 19 observed quantities, making
the theory very predictive in the flavor sector. These
observed quantities are the 6 quark and 3 charged lepton
masses; 2 neutrino mass-squared differences; 3 quark
mixing angles; 3 lepton mixing angles; and 2 Dirac CP
phases—one in the quark mixing matrix and one in the
lepton mixing matrix. Since these parameters are all
interrelated in SOð10Þ and since they should fit different
hierarchical patterns in the charged fermion and the neutral
fermion sectors, finding an acceptable fit is a highly
nontrivial task. This issue has been extensively studied
in the literature and the consistency of the minimal Yukawa
sector established [12–29]. In particular, the reactor neu-
trino mixing angle θ13 was predicted to be large and close to
its experimentally measured value. While the minimal
Yukawa sector involving 10H þ 126H of Higgs fields is
sufficient to explain observed data, a flavor-antisymmetric
120H Yukawa coupling matrix could be added to Eq. (1.2)
[30–36]. Although the clockwork mechanism we develop
here can be straightforwardly extended to this nonminimal
case, we do not purse it here.
While achieving good fits to the fermion masses and

mixings with the minimal Yukawa sector is certainly a great
success for SOð10Þ GUT, this framework does not explain
the hierarchical features observed in the spectrum. One idea
that has been pursued to explain the hierarchy is to use
additional symmetries that distinguish families which can
lead to highly regulated fermion mass matrices (for reviews
see Refs. [37–39] and references therein). In such attempts,
typically, the vacuum expectation values (VEVs) of certain
flavon fields which break the flavor symmetry have to be
arranged in a preferred pattern, which may not be entirely
satisfactory. Another widely used approach is the imple-
mentation of the Froggatt-Nielsen mechanism [40] with a
flavor-dependent Uð1Þ symmetry wherein lighter fermion
masses arise as higher dimensional operators, which are
thereby naturally suppressed. While the coefficients of the
higher dimensional operators can all be of order one, being
nonrenormalizable in nature, this setup does not provide
quantitative predictions.
Recently, an interesting mechanism dubbed as the clock-

work mechanism has been proposed [41,42] to explain
small numbers. While the initial motivation was to explain
the gauge hierarchy problem in the context of relaxions,
this mechanism has been generalized for broader model
building purposes in Ref. [43]. The clockwork mechanism
is an economical and elegant way to naturally generate
large hierarchies between different quantities within a
theory that contains only Oð1Þ couplings. Briefly, this

mechanism when applied to the flavor puzzle works as
follows. The SM is enlarged with N fermions that are
vectorlike under the SM, which may be viewed as a one
dimensional lattice. Due to an enforced symmetry, only
nearest-neighbor interactions are allowed among the lattice
sites and only along one direction. Upon integrating out
these heavy states on the lattice, hierarchy factors are
generated—which may be even exponential for large
number of lattice sites—via a sharp localization of the
zero mode (the SM fermion) towards the boundary of the
lattice. This idea can be readily extended to 3 × 3 matrices
in flavor space to create intergenerational hierarchies. For
implementation of the clockwork mechanism to address
flavor puzzle in various contexts see Refs. [44–50], and for
attempts to generate small neutrino masses and mixings see
Refs. [51–55]. In Refs. [44–46,48,49], clockwork mecha-
nism was incorporated into the SM flavor sector by
introducing a set of vectorlike fermions, where the number
of added vectorlike particles for each sector (up-type quark,
down-type quark, and charged lepton) controls the pattern
of the hierarchy for that particular sector. Reference [46]
focused on TeV scale clockwork states, where a detailed
phenomenology of vectorlike fermions is also presented.
Moreover, in Ref. [48], two anomaly free versions of
clockwork models with Uð1Þ and ½Uð1Þ�3 flavor sym-
metries are presented to explain the observed hierarchies in
the flavor sector. By allowing Yukawa couplings of the
vectorlike states with the Higgs fields that break the GUT
symmetry, in Ref. [50] flavor hierarchies are addressed in
the context of SUð5Þ and SOð10Þ GUTs in the SUSY
framework. Furthermore, by adding a set of SM singlet
fermion states, flavor structures in the neutrino spectrum
are analyzed in Refs. [51,53,54]. The observed flavor
structure for the neutrino mass matrix with scalar clock-
work has been implemented in Refs. [52,55].
In this work we present an interesting explanation to the

flavor puzzle by combining the minimal Yukawa sector of
SOð10Þ GUT, Eq. (1.2), with clockwork mechanism.
Within our framework, the GUT symmetry relates different
flavors, whereas clockwork chains assist in providing the
required hierarchical patterns. Thus the predictivity of the
minimal Yukawa sector is preserved, while the origin of the
small numbers obtained in the fit to fermion masses is also
explained. In our construction, we introduce two clockwork
chains consisting of 16þ 16 vectorlike fermions, with all
three families coupling to these clockwork chains indis-
tinguishably. The longer of the two chains is responsible for
generating small masses for the first generation fermions,
while the shorter chain produces the required hierarchy for
the second generation. While the clockwork mechanism
has been applied separately to address quark flavor puzzle
and neutrino masses and mixings, here we attempt a unified
description involving both, which occurs naturally in
grand unified theories, as in the minimal Yukawa sector of
Eq. (1.2).

K. S. BABU and SHAIKH SAAD PHYS. REV. D 103, 015009 (2021)

015009-2



The rest of the paper is organized as follow. In Sec. II we
show how to consistently implement clockwork mecha-
nism in SOð10Þ GUTs with the minimal Yukawa sector. In
Sec. III, we build complete models for both the SUSY and
non-SUSY SOð10Þ scenarios. In Sec. IV we perform a
numerical analysis of the complete fermion spectrum
and demonstrate the predictivity of the setup. Finally, we
conclude in Sec. V. The two Appendixes contain some
technical details.

II. CLOCKWORK SOð10Þ: SETUP
AND FORMALISM

In this section, we develop a clockwork extended
SOð10Þ GUT framework, which is equally applicable to
scenarios with or without SUSY. In the latter case, a Peccei-
Quinn symmetry plays the role that holomorphy of the
superpotential plays in the case of SUSY. The Yukawa
sector of the minimal renormalizable SOð10ÞGUT [56–59]
consists of 10H and 126H Higgs multiplets that interact
with the three generations of fermions 16i (i ¼ 1, 2, 3)
leading to the Yukawa interactions written in Eq. (1.2). To
address the origin of hierarchical structure, we introduce a
clockwork sector that consists of two sets of vectorlike
fermions in the 16þ 16 representations.1 One such clock-
work chain consists of n1 vectorlike pairs χa þ χ̄a
(a ¼ 1;…; n1) charged under a Uð1Þ1 symmetry. The
second clockwork chain contains n2 vectorlike pairs
ψb þ ψ̄b (b ¼ 1;…; n2) charged under a separate Uð1Þ2
symmetry. These Abelian symmetries are broken by the
VEVs of two separate scalar fields (flavons) ϕ1 and ϕ2 that
are singlets of SOð10Þ group. The Uð1Þ1 ×Uð1Þ2 charges
of all particles involved in the fermion mass generation are
listed in Table I. Although the Uð1Þ symmetries may be
taken to be global, the charge assignments are anomaly
free, and therefore theUð1Þs can be identified as true gauge
symmetries, which is what we shall adopt here.
Then the most general Yakawa interactions consistent

with the Uð1Þ1 ×Uð1Þ2 symmetry are given by

LY ¼ 16Ti ðYij
1010H þ Yij

126126HÞ16j þ
Xn1
a¼1

Maχaχ̄a

þ
Xn2
b¼1

Mbψbψ̄b þ
Xn1
a¼2

yaϕ1χa−1χ̄a þ
Xn2
b¼2

ȳbϕ2ψb−1ψ̄b

þϕ1αi16iχ̄1 þϕ2βi16iψ̄1: ð2:1Þ

Note the interesting fact that all three generations of 16i
fermions couple to the clockwork chains indistinguishably.
We shall see that a hierarchical structure will arise even in
this case. Now, without loss of generality by making
rotations in the flavor space one can bring the vectors αi
and βi to the following forms:

α ¼ ðα1; 0; 0Þ; β ¼ ðβ1; β2; 0Þ: ð2:2Þ

Furthermore, for the sake of simplicity, we assume uni-
versal coupling strength along each chain that are taken to
be real, and define the following quantities

Ma ¼ M1; α1hϕ1i ¼ yahϕ1i≡ −q1M1; ð2:3Þ

Mb ¼ M2; β2hϕ2i ¼ ȳbhϕ2i≡ −q2M2;

β1hϕ2i≡ −q3M2: ð2:4Þ

Note that, with this choice, β1 is the only term that couples
the two clockwork chains. We first discuss a scenario where
the two clockwork chains are decoupled, with β1 ¼ 0, and
later present the most general analysis with β1 ≠ 0. A
schematic diagram to understand our proposed clockwork
mechanism in SOð10Þ GUT is presented in Fig. 1.

A. Case with β1 = 0

First we analyze the decoupled scenario of the two
different clockwork chains that corresponds to β1 ¼ 0. In
this simplified version of the theory, Eq. (2.1) takes the
following simple form:

LY ¼ 16Ti ðYij
1010H þ Yij

126126HÞ16j

þM1

Xn1
a¼1

ðχaχ̄a − q1χa−1χ̄aÞ

þM2

Xn2
b¼1

ðψbψ̄b − q2ψb−1ψ̄bÞ: ð2:5Þ

In the above Yukawa interactions, the only two fermions
161 and 162 that directly couple to 10H and 126H Higges,
we denote them by χ0 and ψ0, respectively. First consider
the chain associated to χ fields. The corresponding mass
matrix written in a basis χ̄Mχχ with χ̄ ¼ ðχ̄1;…; χ̄n1Þ and
χ ¼ ðχ0; χ1;…; χn1ÞT has the following form:

TABLE I. Charges of the fields relevant for fermion mass generation under Uð1Þ1 ×Uð1Þ2 symmetry.

16i 10H 126H χað16Þ χ̄að16Þ ψbð16Þ ψ̄bð16Þ ϕ1ð1Þ ϕ2ð1Þ
Uð1Þ1 × Uð1Þ2 (0, 0) (0, 0) (0, 0) ðþa; 0Þ ð−a; 0Þ ð0;þbÞ ð0;−bÞ ðþ1; 0Þ ð0;þ1Þ

1For alternative attempts to explain the flavor puzzle utilizing
vectorlike fermions see Refs. [60–64].
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Mχ ¼ UMdiag
χ VT

¼ M1

0
BBBBBB@

−q1 1 0 � � � 0

0 −q1 1 � � � 0

0 0 −q1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � −q1 1

1
CCCCCCA

n1×ðn1þ1Þ

:

ð2:6Þ

The above matrix is digonalized by the U and V matrices
that are unitary. The eigenvalues of this matrix, including
one zero mode and n1 nonzero states are given by [65]

m2
0 ¼ 0; m2

a ¼ M2
1

�
1þ q21 − 2q1 cos

�
aπ

n1 þ 1

��
;

a ¼ 1;…; n1: ð2:7Þ

We are interested in cases with qi ≳Oð1Þ; then the mass
gap between two consecutive states is of order OðMiÞ as
can be seen from Eq. (2.7). The analysis performed in this
section is very general, and thus we need not specify the
mass scale of the vectorlike fermions. We will discuss
this in more detail in the next section where we present
complete models. The n1 × n1 unitary matrix U has
elements given by [65]

Uja¼−

ffiffiffiffiffiffiffiffiffiffiffiffi
2

n1þ1

s
sin

�ðn1−jþ1Þπ
n1þ1

�
; j;a¼1;…;n1: ð2:8Þ

Furthermore, the elements of the ðn1 þ 1Þ × ðn1 þ 1Þ
unitary matrix V are as follows [65]:

Vj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 − 1

q21 − q−2n11

s
qj−n11 ;

j ¼ 0;…:; n1; a ¼ 1;…; n1; ð2:9Þ

Vja ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

n1 þ 1

M2

m2
a

s �
q1 sin

�ðn1 − jÞaπ
n1 þ 1

�

− sin

�ðn1 − jþ 1Þaπ
n1 þ 1

��
: ð2:10Þ

From Eq. (2.9), it is clear that the massless mode is χ00 ≡
1̂61 and that the only field χ0 ≡ 161 that coupled originally
to the SM Higgs in Eq. (2.5) (contained in the first two
terms) are related by

161 ¼ V001̂61 þ � � �

¼ 1̂61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 − 1

q21 − q−2n11

s
1

qn11
≡ ϵ11̂61: ð2:11Þ

Here � � � in the first line represents additional contributions
from the heavy fields, which for our purpose are not
important, and thus omitted in the next line. Since the SM
fermions are contained in the zero modes, the above
equation demonstrates that the corresponding Yukawa
couplings will have a suppression factor of order ϵ1
associated with the first generation fermions for q1 > 1.
This suppression can even be exponential, provided that q1,
n1 ≫ 1, although to explain flavor hierarchy these numbers
need to be only somewhat larger than 1.
By repeating the whole process for the second decoupled

chain containing ψ fields, one obtains a similar expression

FIG. 1. Schematic diagram for the clockwork mechanism in the proposed SOð10Þ GUT. Solid lines correspond to the interactions
present in the theory. Dotted lines represent the repetition of the clockwork chains.
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for the massless mode ψ 0
0 ≡ 1̂62 and the original field

ψ0 ≡ 162

162 ¼ 1̂62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 − 1

q22 − q−2n22

s
1

qn22
≡ ϵ21̂62: ð2:12Þ

Hence the Yukawa couplings associated with the second
generation fermions receive a suppression of order ϵ2 ≪ 1
provided that q2 > 1. These suppression factors are the
origin of the fermion mass hierarchies. Assuming both q1
and q2 not very much larger than 1, the length of the
clockwork chain associated with χ fields is required to be
longer than the corresponding chain with the ψ fields in
order to generate the correct mass hierarchy between the
first and the second families. Thus we choose n1 > n2.
Now, integrating out the heavy fields and making use of

Eqs. (2.11) and (2.12), we obtain for the light fermion
Yukawa couplings as

LY ¼ 1̂6TΛTðY1010H þ Y126126HÞΛ1̂6;

where Λ ¼

0
B@

ϵ1

ϵ2

1

1
CA; ð2:13Þ

with 1̂6 ¼ ð1̂611̂621̂63ÞT and where the obvious identifi-
cation 1̂63 ¼ 163 has been made. This Λ matrix entering
from the clockwork sector is the origin behind the observed
hierarchical pattern of the fermion masses and mixings.
This analysis shows that the Yukawa sector of the theory
has the same number of parameters as in the minimal
SOð10Þ model but with the couplings Yij

10; Y
ij
126 being of

order one. The mass and mixing hierarchies arise from the
clockwork chains. The redefinitions Y10 → ΛTY10Λ and
Y126 → ΛTY126Λ shows that the parameter count remains
the same as in Eq. (1.2). For the convenience of the reader,
we display the modified form of the Yukawa couplings
explicitly:

ΛTYkΛ ¼

0
B@

Y11
k ϵ21 Y12

k ϵ1ϵ2 Y13
k ϵ1

Y12
k ϵ1ϵ2 Y22

k ϵ22 Y23
k ϵ2

Y13
k ϵ1 Y23

k ϵ2 Y13
k

1
CA;

Yij
k ∼Oð1Þ; k ¼ 10; 126: ð2:14Þ

As will be detailed in Sec. IV, the minimal Yukawa
couplings of SOð10Þ that reproduce the correct masses
and mixings for both the charged fermions as well as the
neutrinos have the unique hierarchical structure as that of
Eq. (2.14), which we will utilize for our numerical study.
In Sec. IV, we perform a numerical analysis of the
fermion masses and mixings and present our results for

the down-quark and up-quark mass matrices in Eqs. (4.10)–
(4.11) and in Eqs. (4.13)–(4.14) for SUSY and non-SUSY
scenarios, respectively.

B. Case with β1 ≠ 0

Generically, the term β1 in Eq. (2.2) is nonzero. In this
section, we discuss this general case and consider the
following Yukawa interactions:

LY ¼ 16Ti ðYij
1010HþYij

126126HÞ16j

þM1

Xn1
a¼1

ðχaχ̄a−q1χa−1χ̄aÞ

þM2

Xn2
b¼1

ðψbψ̄b−q2ψb−1ψ̄bÞ−q3M2χ0ψ̄1: ð2:15Þ

Compared to Eq. (2.5), the newly added term is the very last
entry in Eq. (2.15). This is the only term that couples the
two clockwork chains, due to which, in this section we will
follow a different method to compute the effective Yukawa
Lagrangian. As before, we are interested in finding the
overlap of the massless modes (1̂6i) with the 0th site (16i),
which we achieve by integrating out heavy fields one by
one as discussed below. Integrating out fermions at the pth
site leads to the following relation, which shows the overlap
of the pth site with the (p − 1)th site:

�
χp

ψp

�
¼ Lp

�
χp−1

ψp−1

�
: ð2:16Þ

This way of integrating out the heavy states is convenient
for our purpose; however, unlike the previous section, these
transformation matrices Lp are nonunitary. As a result, they
modify the kinetic terms, which need to be brought back to
the canonical form as done below.
Since we are interested in the scenario with n1 > n2, Lp

appearing in Eq. (2.16) has the form

Lp ¼

8>>>>>><
>>>>>>:

�
q1 0

q3 q2

�
; p ¼ 1.

�
q1 0

0 q2

�
; p ¼ 2; 3;…; n2:

q1;p ¼ n2 þ 1;…; n1:

ð2:17Þ

By applying the above definitions, we find the overlap
between the 0th and the last site as0

B@
χ0

ψ0

163

1
CA ¼ ðQn…Q2Q1Þ−1

0
B@

χn1
ψn2

163

1
CA: ð2:18Þ
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Recall that associated with the third generation, there is no
clockwork chain, and furthermore n1 > n2. With these
conditions, the 3 × 3 matrices Qp of Eq. (2.18) are found
to be

Qp ¼

8>>><
>>>:

�
Lp 0

0 1

�
; p ¼ 1; 2;…; n2:�

Lp 0

0 I2×2

�
; p ¼ n2 þ 1;…; n1:

ð2:19Þ

This way of integrating out the clockwork fields modifies
the kinetic terms that take the following form:

K ⊃
Xn1
p¼0

ð χp ψp 163 Þ†D

0
B@

χp

ψp

163

1
CA

¼ ð χn1 ψn2 163 Þ†DZ

0
B@

χn1
ψn2

163

1
CA; ð2:20Þ

where we have defined

Z ¼ I3×3 þ ðP−1
n Þ†ðP−1

n Þ þ � � �
þ ðP−1

1 P−1
2 …P−1

n Þ†ðP−1
1 P−1

2 …P−1
n Þ: ð2:21Þ

P−1
p ¼

8>>><
>>>:

�
L−1
p 0

0 0

�
; p ¼ 1; 2;…; n2:�

L−1
p 0

0 02×2

�
; p ¼ n2 þ 1;…; n1:

ð2:22Þ

Then canonical normalization of the kinetic terms given
in Eq. (2.20) along with Eq. (2.18) provides the desired
relation:

0
B@

χ0

ψ0

163

1
CA ¼ ðQn…Q2Q1Þ−1Z−1=2

0
B@

1̂61

1̂62

1̂63

1
CA ¼ Λ

0
B@

1̂61

1̂62

1̂63

1
CA:

ð2:23Þ

More explicitly, the suppression factors that originate
from the clockwork sector are embedded in the matrix Λ
given by

Λ ¼ ðQn…Q2Q1Þ−1Z−1=2 ð2:24Þ

¼

0
B@

q−n11 0 0

− q3
q2
q−n11 q2−n2 0

0 0 1

1
CA

×

0
BB@

q2
1
−q−2n1

1

q2
1
−1 0 0

− q3
q2
q−2n11

q2
2−q2−2n2
q22−1

0

0 0 1

1
CCA

−1=2

; ð2:25Þ

¼

0
B@

q−n11 0 0

− q3
q2
q−n11 q2−n2 0

0 0 1

1
CAK1

×

0
B@

λ−1=21 0 0

0 λ−1=22 0

0 0 1

1
CAKT

2 ; ð2:26Þ

≡
0
B@

ϵ11 ϵ12 0

ϵ21 ϵ22 0

0 0 1

1
CA: ð2:27Þ

The matricesK1;2 as well as the eigenvalues λ1;2 are defined
in Appendix A. As can be seen from Eq. (2.25), with
q3 ¼ 0 (corresponding to two decoupled chains), one
reproduces Eqs. (2.11) and (2.12).

III. MODEL IMPLEMENTATION

In Sec. II, we have discussed the clockwork implemen-
tation of the minimal Yukawa sector of SOð10Þ without
being specific to the theory being supersymmetric or not.
In this section, we provide the necessary details to imple-
ment the mechanism in complete models with and with-
out SUSY.

A. SUSY SOð10Þ model

In minimal SUSY SOð10Þ GUT, in addition to 10H and
126H, a 210H Higgs representation is employed to con-
sistently break the GUT symmetry in the SUSY limit.
Proton decay constraints require the GUT symmetry break-
ing scale to be aroundMGUT ∼ 1016 GeV, which is also the
scale where the gauge couplings unify in the minimal
supersymmetric standard model (MSSM). On the other
hand, to generate viable light neutrino masses via type-I
seesaw mechanism, the right-handed neutrinos must have
masses which are a few orders smaller than the GUT scale,
requiring vR ∼ 1012–1013 GeV (vR is the VEV of the SM
singlet component of 126H). In this minimal setup, such a
low value of vR would lead to certain colored states from
the 126H acquiring intermediate scale masses, thus spoiling
perturbative gauge coupling unification [21,66,67].
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A simple choice to solve this issues is to introduce a 54H
Higgs multiplet [27], which can break SOð10Þ down to
SUð4Þc × SUð2ÞL × SUð2ÞR symmetry. It also supplies
GUT scale masses to the would-be light colored states.
Since 54H has no couplings to fermion bilinears, the
minimal Yukawa sector of Eq. (1.2) remains intact, which
is our focus here.
The 210H can have renormalizable couplings with the

fermions belonging to the clockwork sector of the form
χaχ̄a210H (and similarly ψbψ̄b210H). The presence of these
terms would introduce some modifications to the analysis
performed in the previous section. This can be easily
avoided by imposing a Z4 discrete symmetry. The full
charge assignment that can do the job is presented in
Table II. Note that with this charge assignment the bare
mass terms of the vectorlike fermions would break the Z4

to a Z2. Alternatively, the VEVof a flavon field carrying -2
units of Z4 charge break Z4 spontaneously to Z2.
In this setup with the Z4 symmetry, for our numerical

study presented later in the text, we shall consider a case
with n1 ¼ 4 and n2 ¼ 2. The mass scale of these vectorlike
fermions will be taken to be above the GUT scale.
Consequently, the successful perturbative gauge coupling
unification of MSSM would remain intact2 [69–72].

1. Symmetry breaking of Uð1Þi
In this subsection, we discuss the symmetry breaking of

Uð1Þi under which only the clockwork fields carry nonzero
charges. We follow the method developed in Ref. [73–75]
for achieving Uð1Þ gauge symmetry breaking in the super-
symmetric limit, taking advantage of the Fayet-Iliopoulos
term allowed for Abelian symmetries [76]. The breaking of
Uð1Þi should be achieved by flavon superfields ϕi þ ϕ̄i that

carry QðϕiÞ ¼ −qi and Qðϕ̄iÞ ¼ þqi charges under the
respective Uð1Þi. Then one immediately realizes that in
the superpotential given in Eq. (2.1), a term of the form
ϕ̄1χ̄a−1χa (and ϕ̄2ψ̄b−1ψb) must be added. Such a term
would spoil the successful implementation of the clockwork
mechanism, andmust be suppressed. This can be achieved if
the VEVof ϕ̄i is significantly smaller than the VEVof ϕi.
Herewe show that these fields can have completely different
VEVs hϕii ≠ hϕ̄ii [77]. Now to fix all the VEVs and lift the
flat directions, we introduce one more scalar Si which is
neutral underUð1Þi. Then the relevant superpotential can be
written as [73]

WUð1Þi ¼ λiSiðϕiϕ̄i − μ2i Þ; ð3:1Þ

where λi is a dimensionless parameters. In addition, the
superpotential also contains terms that are quadratic and
cubic in Si. Since the symmetry under consideration is
Abelian, in general a Fayet-Iliopoulos [76] term, which is
bothSUSYandgauge invariant, is allowed in theLagrangian
that has the form ξi

R
d4θVUð1Þi , where ξi a parameter that

has dimension of mass2. The associated D term, upon
integrating out the auxiliary component, has the form

DUð1Þi ¼ ξi − qijϕij2 þ qijϕ̄ij2: ð3:2Þ

In the unbroken SUSY limit, both the F terms and the D
terms must vanish, which from Eqs. (3.1) and (3.2) can be
written as

λiðϕiϕ̄i − μ2i Þ ¼ 0; λiSiϕ̄i ¼ 0;

λiSiϕi ¼ 0; ξi − qijϕij2 þ qijϕ̄ij2 ¼ 0: ð3:3Þ

These relations have the following solution:

Si ¼ 0; ϕiϕ̄i ¼ μ2i ;
ξi
qi

¼ jϕij2 − jϕ̄ij2; ð3:4Þ

from which the VEVs of the flavon fields can be fixed as

jϕij2 ¼
1ffiffiffi
2

p
�
ξi
qi

þ
�
ξ2i
q2i

þ 4jμij2
�

1=2
�
;

jϕ̄ij2 ¼
ffiffiffi
2

p jμij2
ξi
qi
þ
�
ξ2i
q2i
þ 4jμij2

�
1=2 : ð3:5Þ

TABLE II. Charges of the particle of SUSY SOð10Þ model with the imposition of a Z4 symmetry. Here Z4

charges are defined such that ωq4 ¼ 1 for q4 ¼ 4, where ω ¼ ei2π=4. The model also contains ϕ̄1 and ϕ̄2 fields with
charges opposite to those of ϕ1;2.

16i 10H 126H 210H χað16Þ χ̄að16Þ ψbð16Þ ψ̄að16Þ ϕ1ð1Þ ϕ2ð1Þ
Z4 þ1 −2 −2 0 þ1 þ1 þ1 þ1 −2 −2
Uð1Þ1 × Uð1Þ2 (0, 0) (0, 0) (0, 0) (0, 0) ðþa; 0Þ ð−a; 0Þ ð0;þbÞ ð0;−bÞ ðþ1; 0Þ ð0;þ1Þ

2As is well known, the minimal SUSY SOð10Þmodel has large
beta function coefficients of order Oð100Þ for gauge coupling
evolution above the GUT scale, and the theory begins to become
nonperturbative at mass scales μ few times larger than the GUT
scale, but below the Planck scale Mpl. Ways to deal with the
nonperturbative nature of the theory in this momentum scale have
been discussed in Refs. [58,59,68]. In our theory, the introduction
of six vectorlike pairs of 16þ 16 adds þ24 to this already large
beta function coefficient (if an additional 210 of Higgs is used
symmetry breaking, the b-factor changes from þ109 to þ133).
Hence, keeping the clockwork fields above the GUT scale
affects the gauge coupling evolution above the GUT scale only
minimally.
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Then our desired VEV structure can be archived in the
following limit3

ξi
qi

> 0;
ξi
qi

≫ jμij2; ð3:6Þ

jϕij ¼
ffiffiffiffi
ξi
qi

s
; jϕ̄ij ¼ jμij2

ffiffiffiffi
qi
ξi

r
; ⇒ jϕij≫ jϕ̄ij: ð3:7Þ

This justifies the omission of terms containing ϕ̄i superfields
in the superpotential Eq. (2.1). Thus, the fermion mass fits
arising from the minimal Yukawa sector of Eq. (2.1) is
realized within the model, with the clockwork mechanism
explaining the hierarchical patterns.

B. Non-SUSY SOð10Þ model

In the non-SUSY SOð10Þ GUT, 10H Higgs can be taken
to be either real or complex. However, a real 10H with 126H
Higgs alone does not lead to a realistic fermion mass
spectrum [35,78]. If a complex 10H is employed, an
additional Yukawa coupling matrix will result from the
10�H. One interesting possibility is to augment SOð10Þ with
a global Uð1ÞPQ PQ symmetry as suggested in Ref. [12].4

This would require complexification of the 10H, but the
10�H will not couple to fermions owing to the PQ charge.
Introduction of the PQ symmetry is highly motivated, as it
solves the strong CP problem, and also provides a dark
matter candidate in the form of axion. There exists two
known classes of consistent “invisible” axion models: the
KSVZ model [81,82] and the DFSZ model [83,84]. In this
work, we adopt the KSVZ axion model that suits well
with the clockwork setup. We assume the existence of
an SOð10Þ singlet scalar ϕ0 that carries nonzero charge
under Uð1ÞPQ, whose VEV breaks the PQ symmetry
spontaneously.
Now, to reproduce the analysis performed in Sec. II, and

to achieve the same suppression for fermion masses from
the clockwork sectors, in this non-SUSY framework the
vectorlike fermions must carry charges under the PQ
symmetry. Our chosen charge assignments of fields under
Uð1ÞPQ and Uð1Þ1 ×Uð1Þ2 are presented in Table III. A
charge assignment of this type forbids the unwanted terms

involving ϕ�
1;2 in the Yukawa Lagrangian which helps

regain the true clockwork nature. With these charges, the
complete Yukawa Lagrangian including the clockwork
chains practically has the same form as that of Eq. (2.1).
Consequently, the analysis performed in Secs. II A and II B
remain valid. The most general Yakawa Lagrangian con-
sistent with all symmetries has the form:

LY ¼ 16Ti ðYij
1010H þ Yij

126126HÞ16j

þ
Xn1
a¼1

λaϕ0χaχ̄a þ
Xn2
b¼1

λ̄bϕ0ψbψ̄b

þ
Xn1
a¼2

yaϕ1χa−1χ̄a þ
Xn2
b¼2

ȳbϕ2ψb−1ψ̄b

þ ϕ1αi16iχ̄1 þ ϕ2βi16iψ̄1: ð3:8Þ

Note that, as opposed to Eq. (2.1), in the above Lagrangian,
there is no bare mass for the vectorlike fermions. The
clockwork fields get their masses only after the PQ
symmetry breaks. Following the same notation as in
Eq. (2.1), we identify λahϕ0i≡Ma and λ̄bhϕ0i≡ M̄b.
We emphasize that our particular chosen charge assign-
ments automatically forbids couplings involving ϕ�

1;2 to
preserve the clockwork nature of the Lagrangian.
Since the vectorlike fermions in the clockwork sector

receive their masses only after PQ symmetry breaking,
these fields have masses below the GUT scale and
contribute to the beta function coefficients of renormaliza-
tion group equations (RGEs) for the gauge couplings in the
momentum range fPQ ≤ μ ≤ MGUT, where fPQ is the PQ
symmetry breaking scale. This however, does not change
the unification of the gauge couplings of the minimal
SOð10Þ GUT with an intermediate scale [35,85–99], but
only change the value of the unified gauge coupling at the
GUT scale, as the clockwork chains form complete SOð10Þ
multiplets. To show the consistency of our model, in the
following we consider gauge coupling unification for two
different cases with six pairs of vectorlike in the 16þ 16
representation having masses of order the PQ scale.
For simplicity of our analysis, we take them to be
degenerate and fix their common masses at the PQ scale.
In the first scenario, we assume that a 54H Higgs
breaks SOð10Þ down to the Pati-Salam (PS) symmetry
SUð2ÞL × SUð2ÞR × SUð4Þc at the GUT scale. In this
case, we evolve the one-loop SM RGEs for the gauge
couplings with well known SM beta function coefficients

TABLE III. Uð1Þ charges of the particles of non-SUSY SOð10Þ model.

16i 10H 126H χað16Þ χ̄að16Þ ψbð16Þ ψ̄að16Þ ϕ1ð1Þ ϕ2ð1Þ ϕ0ð1Þ
Uð1ÞPQ þ1 −2 −2 þ1 þ1 þ1 þ1 −2 −2 −2
Uð1Þ1 × Uð1Þ2 (0, 0) (0, 0) (0, 0) ðþa; 0Þ ð−a; 0Þ ð0;þbÞ ð0;−bÞ ðþ1; 0Þ ð0;þ1Þ (0,0)

3There is another limit where jϕij ≪ jϕ̄ij with ξi
qi
< 0 and

jμij2 ≪ − ξi
qi
, which we are not interested in.

4For earlier works on the implementation of PQ symmetry in
SOð10Þ GUT, see for example Refs. [79,80].
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bi ¼ f41=10;−19=6; 7g [100] from low scale MZ to PQ
scale MPQ that we fix to be 1012 GeV. At this scale
contributions from six pairs of vector-like fermions are
added, which corresponds to bi ¼ f201=10; 77=6; 9g. With
these new beta function coefficients, running is done up to
the Pati-Salam scale MPS, where proper matching con-
ditions corresponding to PS symmetry with D parity are
imposed. In this procedure we have inputted the low
scale (experimental central) values of the couplings to be
α−11 ðMZÞ ¼ 59.02, α−11 ðMZÞ ¼ 29.57, and α−11 ðMZÞ ¼
8.44 [101], which gives us the PS scale to be
MPS ¼ 4.9 × 1013 GeV. Now, for the consistency of sym-
metry breaking as well as for generating realistic fermion
spectrum, the case under investigation requires the entire
126H multiplet and a complex ð2; 2; 1Þ ⊂ 10H to have
masses at the PS scale. From this scale we evolve the new
PS gauge couplings with beta function coefficients bi ¼
f74=3; 17g [here i ¼ 1, 2 correspond to SUð2ÞL, and
SUð4ÞC respectively] up to the GUT scale MGUT, where
unification is demanded.
In the second case, we achieve the GUT symmetry

breaking via 210H Higgs, and assume the absence of D
parity [102] at the PS scale. In this case we also take the PQ
and the PS breaking scale to be the same, MPQ ¼ MPS.
Moreover, above the intermediate scale gauge beta func-
tions receive contributions from the clockwork sector as
before, as well as contributions from ð2; 2; 15Þ; ð1; 3; 10Þ ⊂
126H, and a complex ð2; 2; 1Þ ⊂ 10H of Higgs bosons. The
beta function coefficients are bi ¼ f18; 74=3; 41=3g [here
i ¼ 1, 2, 3 correspond to SUð2ÞL, SUð2ÞR, and SUð4ÞC
respectively].
Perturbative gauge coupling unification can be obtained

in each of the aforementioned scenarios, and these results are
presented in Fig. 2.Wehave used one-loopRGEand ignored
high scale threshold effects in generating these figures.
From Fig. 2, one clearly sees the advantage of employing a
210H Higgs. First of all, it is possible in this case to identify
the PS scale with the PQ scale. Furthermore, unification
occurs at around 2.35 × 1016 GeV, which implies that
proton lifetime arising from gauge boson mediated proc-
esses is sufficiently long. The larger unification scale is
correlated with the smaller intermediate PS scale, which is
realized since the 210H breaks SOð10Þ down to the PS
symmetry without D parity. When a 54H is used to break
SOð10Þ symmetry instead of the 210H, one sees that the
unification scale is relatively low, about 2 × 1015 GeV. This
is correlated with a larger intermediate PS scale, which is a
consequence of an unbroken D parity. It is this symmetry
that requires the SUð2ÞL partner of the (10,1,3) Higgs
multiplet to have mass at the PS scale, thus affecting
the gauge coupling evolution more drastically. A null
observation of proton decay requires the GUT scale to be
MGUT ≥ 5 × 1015 GeV. It has been shown that including
high scale threshold corrections this model can indeed be

consistent with proton lifetime limits [96]. It should also be
noted that a 45H can be used to break the GUT symmetry,
but the viability of this scenario relies on quantum correc-
tions in the Higgs potential [97]. We note that the analysis
performed in the Yakawa sector remains valid regardless of
the choice of the Higgs field that breaks the GUT symmetry.
In the case of non-SUSY SOð10Þ embedded with clock-

work chain, the gauge couplings remain perturbative
all the way to the Planck scale. The beta-function coef-
ficient b, where dg=dt ¼ bg3=ð16π2Þ, changes from −34=3
to þ14=3 with the addition of six pairs of 16þ 16 of the
clockwork sector as an example. (This choice is not unique,
however.) This leaves the gauge coupling perturbative up to
the Planck scale. Here we assumed that an additional 54
Higgs is involved in SOð10Þ symmetry breaking.

C. SUSY SOð10Þ with PQ symmetry

The Peccei-Quinn symmetry can be implemented in the
SUSY SOð10Þ framework along the line discussed in the
previous subsection.5 With the PQ symmetry, the unwanted
couplings of the 210H field with the vectorlike fermions

FIG. 2. One-loop gauge coupling unification for non-SUSY
SOð10Þ model for two different scenarios: (i) symmetry breaking
with 54H Higgs (upper plot), (ii) symmetry breaking with 210H
withoutD parity (lower plot). In both cases six pairs of vectorlike
fermions are kept at the PQ scale.

5In this work, we do not discuss the details of the PQ symmetry
breaking and refer the reader to Ref. [28] for successful
implementation of Uð1ÞPQ in the context of minimal SUSY
SOð10Þ GUT.
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will be forbidden, and there would be no need for a Z4

symmetry adopted in Sec. III A. This however, modifies the
successful gauge coupling unification of the MSSM. The
reason is that, in this setup, the vectorlike fermions acquire
their masses only after the PQ symmetry is broken. Hence,
above the PQ scale, the beta function coefficients for the
gauge coupling evolution receive additional contributions.
Consequently, perturbative unification of gauge couplings
even up to the GUT scale becomes challenging. We have
checked that, unlike the non-SUSY case, adding six pairs
of vectorlike fermions at the PQ scale certainly does not
work for the SUSY scenario. In Fig. 3, we demonstrate a
viable perturbative one-loop gauge coupling unification
scenario, with three vectorlike fermion pairs 16þ 16
having masses at the PQ scale. In this analysis, we evolve
the MSSM RGEs from the SUSY scale (MSUSY ¼ 1 TeV)
up to the PQ scale with the MSSM beta function coef-
ficients bi ¼ f33=5; 1;−3g. The input values at the TeV
scale for the gauge couplings are taken to be α−11 ðMSUSYÞ ¼
57.43, α−11 ðMSUSYÞ ¼ 30.67, and α−11 ðMSUSYÞ ¼ 11.19
[101]. Then at the PQ scale, we add contributions from
three pairs of vectorlike fermions that modifies the new beta
function coefficients to be bi ¼ f93=5; 13; 9g and further
run the RGEs up to the GUT scale. Whereas Fig. 3 shows
the consistency of keeping three vectorlike pairs at the
intermediate scale, adding any more pairs would bring
the theory to a nonperturbative regime before reaching the
GUT scale. Since the implementation of clockwork mecha-
nism typically requires larger number of vectorlike states,
this scenario with the added PQ symmetry is not a preferred
option, since it makes clockwork not very efficient.
Furthermore, due to the presence of the plethora of fields
lurking around the GUT scale, large threshold corrections
are expected to play vital role in the running of the gauge
couplings (see for example Ref. [103]), which we have not
taken into consideration. However, even this scenario
can explain partially the hierarchies in the fermion and
mixing angles.

IV. FIT TO THE FERMION SPECTRUM

A. SUSY case

To fit the fermion masses and mixings, we perform a χ2

analysis, for which we closely follow the procedure
discussed in detail in Refs. [27,28]. From Eq. (2.13), first
we obtain the fermion mass matrices which have the
following form:

Md ¼ ΛTðH þ FÞΛ; ð4:1Þ

Mu ¼ rΛTðH þ sFÞΛ; ð4:2Þ

Me ¼ ΛTðH − 3FÞΛ; ð4:3Þ

Mν
D ¼ rΛTðH − 3sFÞΛ; ð4:4Þ

MR ¼ rRΛTFΛ; ð4:5Þ

MN ¼ −Mν
D
TM−1

R Mν
D; ð4:6Þ

where we have defined

r ¼ v10u
v10d

; s ¼ 1

r
v126u

v126d

; rR ¼ vR
v126d

; ð4:7Þ

H ¼ v10d Y10; F ¼ v126d Y126: ð4:8Þ

Here v10u is the VEVof the up-type Higgs doublet from 10H,
etc. As in Ref. [27], these mass matrices are written in
fcMff basis. Note that in Eq. (4.6), the type-II contribu-
tions to neutrino mass is omitted, since the weak triplets
have masses of order the GUT scale, hence the correspond-
ing type-II contributions are negligible.
In our numerical analysis, we will take these ratios r and

s given in Eq. (4.7) to be free parameters. Note however
that, in a theory where the Higgs sector is completely
specified, these ratios are related to the parameters that
appear in the Higgs potential. Since the focus of the present
work is on the minimal Yukawa sector, rather than a
minimal and complete symmetry breaking sector, we do
not make such a connection here. Detailed studies along
this line have been made in Refs. [27,28,103–105].
It should be pointed out that due to the presence of the

right-handed neutrinos that have masses a few orders less
than the GUT scale, the running of the RGEs from the MZ
scale to the MGUT get modified. We properly include
these corrections to the Yukawa couplings due to the
intermediate scale threshold; for details of this implemen-
tation we refer the reader to Ref. [27]. Furthermore, we take
the GUT scale values of the charged fermion masses and
CKM mixing parameters from Ref. [28]. In this procedure,

FIG. 3. Gauge coupling unification for SUSY SOð10Þ model
with three sets of vectorlike 16þ 16 fermions added at the PQ
scale. For this illustration, we set MSUSY ¼ 1 TeV and used the
one-loop RGE evolution of gauge couplings.
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the Yukawa couplings, the CKM parameters, and the d ¼ 5
effective operator for neutrino masses and mixings are run
from theMZ scale to the SUSY scale, which is chosen to be
1 TeV.6 Above this scale, the full MSSM RGEs are used up
to the GUT scale. For neutrinos, on the contrary, the d ¼ 5
effective operator running is carried out up to the inter-
mediate scale. For neutrinos, we have taken the low energy
values from the recent global fit performed in Ref. [106].
These input values are collected in the second column in
Table IV.
We remind the reader that the original Yukawa couplings

Y10 and Y126 are allowed to have entries that are ∼Oð1Þ,
whereas the hierarchies among different generations are
generated via the suppression factors ϵ1 and ϵ2 originating
from the clockwork sector. It is crucial to understand that
compared to the minimal SOð10Þ Yukawa sector, our setup
does not introduce any new parameters into the theory. In
our fit, we fix tan β ¼ vu=vd ¼ 10, where vu and vd are the

VEVs of the MSSM fields HMSSM
u and HMSSM

d . With these,
we find an excellent fit that corresponds to χ2 ¼ 7.98;
the best fit values and the associated pulls are presented in
the third and the fourth columns of Table IV. The full set of
best fit parameter values can be found in Appendix B 1.
From this fit, we chose the following suppression
factors

Λ¼

0
B@

ϵ1 0 0

0 ϵ2 0

0 0 1

1
CA¼

0
B@

0.06117 0 0

0 0.32983 0

0 0 1

1
CA: ð4:9Þ

Here ϵ1 ≃ λ2 and ϵ2 ≃ λ, with λ ¼ sin θc, where θc is the
Cabibbo angle. A choice of these values for ϵ1 and ϵ2
correspond to q1 ¼ 1.93445, q2 ¼ 1.55098 for n1 ¼ 4,
n2 ¼ 2. The down-quark and up-quark mass matrices (after
taking into account the intermediate scale threshold cor-
rections) corresponding to the best fit are then given below,
which explicitly demonstrates how clockwork is respon-
sible for generating the required hierarchies in the fermion
masses and mixings. All other mass matrices can be readily
obtained from these two matrices (or from the parameter set
given in Appendix B 1).

TABLE IV. Inputs and the corresponding best fit values of the observables along with their pulls at the GUT scale
μ ¼ 2 × 1016 GeV for both SUSY and non-SUSY cases are summarized here. In both these cases, type-I seesaw
dominance is assumed, for details see the text.

Observables
(masses in GeV)

SUSY non-SUSY

Input Best Fit Pull Input Best Fit Pull

mu=10−3 0.502� 0.155 0.515 0.08 0.442� 0.149 0.462 0.13
mc 0.245� 0.007 0.246 0.14 0.238� 0.007 0.239 0.18
mt 90.28� 0.89 90.26 −0.02 74.51� 0.65 74.47 −0.05

mb=10−3 0.839� 0.17 0.400 −2.61 1.14� 0.22 0.542 −2.62
ms=10−3 16.62� 0.90 16.53 −0.09 21.58� 1.14 22.57 0.86
mb 0.938� 0.009 0.933 −0.55 0.994� 0.009 0.995 0.19

me=10−3 0.3440� 0.0034 0.344 0.08 0.4707� 0.0047 0.470 −0.03
mμ=10−3 72.625� 0.726 72.58 −0.05 99.365� 0.993 99.12 −0.24
mτ 1.2403� 0.0124 1.247 0.57 1.6892� 0.0168 1.688 −0.05

jVusj=10−2 22.54� 0.07 22.54 0.02 22.54� 0.06 22.54 0.06
jVcbj=10−2 3.93� 0.06 3.908 −0.42 4.856� 0.06 4.863 0.13
jVubj=10−2 0.341� 0.012 0.341 0.003 0.420� 0.013 0.421 0.10
δ∘CKM 69.21� 3.09 69.32 0.03 69.15� 3.09 70.24 0.35

Δm2
21=10

−5ðeV2Þ 8.982� 0.25 8.972 −0.04 12.65� 0.35 12.65 −0.01
Δm2

31=10
−3ðeV2Þ 3.05� 0.04 3.056 0.02 4.307� 0.059 4.307 0.006

sin2 θ12 0.318� 0.016 0.314 −0.19 0.318� 0.016 0.316 −0.07
sin2 θ23 0.563� 0.019 0.563 0.031 0.563� 0.019 0.563 0.01
sin2 θ13 0.0221� 0.0006 0.0221 −0.003 0.0221� 0.0006 0.0220 −0.16
δ∘CP 224.1� 33.3 240.1 0.48 224.1� 33.3 225.1 0.03

χ2 - - 7.98 - - 7.96

6When 54H Higgs is added alongside 210H Higgs as in
Ref. [27], consistency of proton lifetime requires a minisplit
SUSY spectrum with the sfermions having masses of order
100 TeV, accompanied by TeV scale gauginos and Higgsinos. In
this case, RGEs running will be somewhat different, which
corresponds to slightly different input values of the observables
at the GUT scale.

FLAVOR HIERARCHIES FROM CLOCKWORK IN SOð10Þ GUT PHYS. REV. D 103, 015009 (2021)

015009-11



Md ¼ 0.80166e2.18422i

0
B@

1.27815 ϵ21e
−3.0004i 1.26174 ϵ1ϵ2e−2.71759i 1.11777 ϵ1e1.63891i

1.26174 ϵ1ϵ2e−2.71759i 1.61178 ϵ22e
−2.31606i 1.20224 ϵ2e2.02843i

1.11777 ϵ1e1.63891i 1.20224 ϵ2e2.02843i 1

1
CA GeV; ð4:10Þ

Mu ¼ 79.1467e2.27241i

0
B@

1.09514 ϵ21e
3.10025i 1.17556 ϵ1ϵ2e−2.80578i 1.04143 ϵ1e1.55072i

1.17556 ϵ1ϵ2e−2.80578i 1.24674 ϵ22e
−2.42765i 1.12012 ϵ2e1.94025i

1.04143 ϵ1e1.55072i 1.12012 ϵ2e1.94025i 1

1
CA GeV: ð4:11Þ

It can be seen from the above matrices that all the Yukawa
couplings are very close to 1. Even though in writing
Eqs. (4.10) and (4.11) we have used the clockwork chain
lengths to be n1 ¼ 4 and n2 ¼ 2, however, from the best fit
parameters presented in Appendix B 1 various different
chain lengths can be considered without needing to modify
the fit at all. By demanding order unity Yukawa couplings,
this corresponds to longer chain length for qi very close
to 1, and shorter chain length when qi starts to become
larger than 1. Finally, the analysis presented here can
be trivially extended for the case β1 ≠ 1 discussed in
Sec. II B. In the case of SUSY SOð10Þ with a Peccei-
Quinn symmetry, concentrating on the gauge coupling
unification scenario presented in Fig. 3, where we have
assumed n1 þ n2 ¼ 3, setting n1 ¼ 2 and n2 ¼ 1 returns
q1 ¼ 3.9779 and q2 ¼ 2.8622, which are not too far
from unity.
Note that the parameters of this class of models cannot be

chosen randomly. There is a GUT sum rule involving the
masses and mixings in the model. This should not be
considered as a fine-tuning of parameters, rather it is a
result of a GUT symmetry. This has been noted in the
Ref. [12], and the sum rule has been explicitly worked
out in Ref. [107] for the case of real parameters. Indeed, in
the case of all parameters being real, one can write Ml ¼
aMu þ bMd, with the mass matrices being symmetric. In a
basis whereMu is diagonal,Md ¼ V:Mdiagonal

d :VT , where V
is the CKMmatrix. Thus all elements of the charged lepton
mass matrixMl is determined in terms of the quark masses,
CKM mixing angles, and the two free parameters ða; bÞ.
This leads to one sum rule involving the masses of the
charged fermions. Even with the inclusion of phases the
GUT mass sum rule is present in the model, the corre-
sponding relation becomes more involved. However, for
any given set of masses and mixings the magnitudes as well
as the phases are constrained, such that this mass sum rule
is satisfied. This constraint is implemented numerically in
our fits, and, as a result, the order one complex parameters
in Eqs. (4.10) and (4.11) cannot be arbitrarily chosen [the
same argument goes for the fit associated to Eqs. (4.13) and
(4.14)]. This mass sum rule is a prediction of SOð10Þ GUT,
which prevails in our clockwork extension.
Before closing this section we compare the fit we obtain

here with the fit presented in Ref. [28]. In the present work

the total χ2 obtained is about 8, whereas, it is about 6 in
Ref. [28]. The reason for obtaining a slightly higher χ2 is
mainly due to the fact that in this work in the fitting
procedure, we have included the Dirac phase in the lepton
sector as well, which was left out in the χ2 minimization in
Ref. [28]. Additionally, in the present work, we have taken
the recent global fit values of the neutrinos, which have
somewhat smaller experimental uncertainties compared to
the previously used values in Ref. [28].

B. Non-SUSY case

To get the GUT scale values of the fermion masses and
mixings for the non-SUSY scenario, we closely follow the
procedure discussed in Ref. [35]. In this method, the low
scale values are evolved up to the GUT scale using SM
RGEs. However, this one-step RGE running receives
corrections due to the intermediate scale right-handed
neutrinos. In our numerical fit, we take into account these
modification of the Yukawa couplings following the
method detailed in Ref. [35], where a basis of fMijfc is
used, and we stay with such a basis. Then, for the non-
SUSY case, the mass matrices Eqs. (4.1)–(4.6) derived in
the previous section are still applicable with the only
exception that MD

ν should be transposed in Eq. (4.6). As
before, we focus on the type-I dominance scenario for the
neutrino masses. It is to be pointed out that type-II seesaw
for non-SUSY case fails to provide a realistic fit [23]. The
GUT scale inputs for charged fermion masses and mixings
are obtained from Ref. [35], whereas, for neutrinos, we
have collected the recent low scale values from Ref. [106],
and evolved the d ¼ 5 effective operator up to the right-
handed neutrino mass scale. These input parameters are
summarized in the fifth column of Table IV. A good fit to
these data is obtained from our numerical procedure, and
the best fit corresponds to χ2 ¼ 7.96. The best fit values for
physical quantities and their pulls are presented in the sixth
and the seventh columns of Table IV. The theory parameters
of this best fit are summarized in Appendix B 2. As before,
no new parameters enter in this fit process compared to the
minimal SOð10Þ Yukawa sector. Hence, our fit is appli-
cable for cases with or without clockwork extension (for
both SUSY and non-SUSY models). Following our pre-
vious analysis, we fix the clockwork chain lengths to be
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n1 ¼ 4, n2 ¼ 2, then the corresponding chosen suppression
factors are

Λ¼

0
B@
ϵ1 0 0

0 ϵ2 0

0 0 1

1
CA¼

0
B@
0.03783 0 0

0 0.23973 0

0 0 1

1
CA: ð4:12Þ

Like in the SUSY case, here we also get suppression
factors of same order: ϵ1 ≃ λ2 and ϵ2 ≃ λ that amount to
q1 ¼ 2.20312, q2 ¼ 1.89219. The associated down-
quark and up-quark mass matrices (after taking into
account the intermediate scale threshold corrections) are
found to be

Md ¼ 0.94968e−1.68947i

0
B@

1.45089 ϵ21e
2.18915i 0.97791 ϵ1ϵ2e2.37807i 1.10034 ϵ1e1.04364i

0.97791 ϵ1ϵ2e2.37807i 1.22764 ϵ22e
2.18995i 0.89334 ϵ2e1.09213i

1.10034 ϵ1e1.04364i 0.89334 ϵ2e1.09213i 1

1
CA GeV; ð4:13Þ

Mu ¼ 71.505e1.23138i

0
B@

1.11401 ϵ21e
2.51117i 0.91309 ϵ1ϵ2e2.5988i 1.0274 ϵ1e1.26437i

0.91309 ϵ1ϵ2e2.5988i 0.73257 ϵ22e
2.69088i 0.83413 ϵ2e1.31287i

1.0274 ϵ1e1.26437i 0.83413 ϵ2e1.31287i 1

1
CA GeV: ð4:14Þ

All the conclusions we have reached for the SUSY case are
also applicable in this non-SUSY scenario.
From the results presented in the previous subsection as

well as in this subsection, it is clear that our simple
clockwork extension to the minimal Yukawa sector of
SOð10Þ with or without SUSY naturally explains the
hierarchies in the fermion spectrum.

V. CONCLUSION

In this work, we have presented a minimal and highly
predictive mechanism to address the flavor puzzle. In
particular, our proposed framework is based on the minimal
Yukawa sector of SOð10Þ GUT with or without SUSY,
extended with two clockwork chains. Each of these chains
consists of a set of 16þ 16 vectorlike fermions that couples
indistinguishably with different fermion generations.
Whereas SOð10Þ symmetry correlates different fermion
sectors, clockwork sector supplies proper suppression

factors to incorporate the required hierarchies. The pro-
posed setup to explain the origin of flavor hierarchies is
simple in its construction and is also renormalizable. All
Yukawa couplings of these theories are of order unity
which is shown to provide a consistent fit to the fermion
masses and mixings. Detailed numerical analysis has been
carried out, and the results summarized in Table IV to
demonstrate the robustness of the theory.
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APPENDIX A: EXPRESSIONS FOR λi AND K1;2

In this Appendix we present the exact analytical forms
for λi and K1;2 matrices as defined in Eq. (2.26):

0
BB@

q2
1
−q−2n1

1

q2
1
−1 0 0

− q3
q2
q−2n11

q2
2−q2−2n2
q22−1

0

0 0 1

1
CCA≡

0
B@

a 0 0

b c 0

0 0 1

1
CA ¼ K1

0
B@

λ1 0 0

0 λ2 0

0 0 1

1
CAKT

2 : ðA1Þ

λ1;2 ¼
�
1

2

�
a2 þ b2 þ c2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2 − 4a2c2

p ��1=2
: ðA2Þ

K1 ¼

0
BBBBBB@

− −a2þb2þc2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p

2ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−a2þb2þc2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4a2b2
þ1

q − −a2þb2þc2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p

2ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2−b2−c2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4a2b2
þ1

q 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−a2þb2þc2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4a2b2
þ1

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2−b2−c2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4a2b2
þ1

q 0

0 0 1

1
CCCCCCA
: ðA3Þ
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K2 ¼

0
BBBBBB@

− −a2−b2þc2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p

2bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þb2−c2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4b2c2
þ1

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þb2−c2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4b2c2
þ1

q 0

− −a2−b2þc2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p

2bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þb2−c2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4b2c2
þ1

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2þb2−c2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þ2ðb2−c2Þa2þðb2þc2Þ2

p
Þ2

4b2c2
þ1

q 0

0 0 1

1
CCCCCCA
: ðA4Þ

APPENDIX B: BEST FIT PARAMETERS

As discussed in the main text, the Yukawa sector is
effectively identical to the minimal SOð10Þ model. It is
because the clockwork sector does not introduce any new
parameters, rather it accounts for the hierarchical factors.
Hence, the fit we perform is identical to the minimal
Yukawa sector of SOð10Þ model. Also our fit can be used
for arbitrary lengths of the clockwork chains. Due to these
attractive features, in the following, for the convenience of
the readers, we present our best fit parameters in the form
that is readily used for general purpose. Following
Refs. [27,35] we present the best fit parameters in a basis
where the ΛTY126Λ is diagonal and real. We have used

these best fit parameters to reconstruct the down-quark
and up-quark mass matrices, which are presented in
Eqs. (4.10)–(4.11) and in Eqs. (4.13)–(4.14) for SUSY
and non-SUSY models, respectively. As can be seen from
these mass matrices, all the Yukawa couplings are of the
same order and in fact very close to unity, which is our
desired result. Note however that besides the Yukawa
couplings, a fit to the fermion spectrum contains two
VEV ratios s and r as defined in Eq. (4.7). For the
former, our fit prefers a value of s ≃ λ, and for the latter
r ≃mt=mb is required. These VEV ratios do not have any
direct connection to the Yukawa couplings and do not
necessarily have to be of order unity. Within our frame-
work, their values are predicted directly from a fit to
the data.

1. SUSY SOð10Þ
r ¼ 93.9719; s ¼ 2.96269 × 10−1 þ 1.27201 × 10−2i; rR ¼ 8.73689 × 1012; ðB1Þ

ΛTFΛ ¼ 10−1

0
B@

6.59098 × 10−3 0. 0.

0. 3.41720 × 10−1 0.

0. 0. 1.33390

1
CA GeV; ðB2Þ

ΛTHΛ ¼ 10−3

0
B@

1.96740 − 2.79338i 17.5736 − 10.3763i −42.5697 − 34.5327i

17.5736 − 10.3763i 105.17 − 18.4787i −152.329 − 279.013i

−42.5697 − 34.5327i −152.329 − 279.013i −594.884þ 655.504i

1
CA GeV: ðB3Þ

2. Non-SUSY SOð10Þ
r ¼ 70.3027; s ¼ 2.57526 × 10−1 þ 5.27538 × 10−2i; rR ¼ 4.57993 × 1012; ðB4Þ

ΛTFΛ ¼ 10−1

0
BB@

5.29819 × 10−3 0 0

0 3.82033 × 10−1 0

0 0 3.04637

1
CCA GeV; ðB5Þ

ΛTHΛ ¼ 10−3

0
BB@

1.20097 − 0.94480i 6.50337 − 5.35207i 31.5693þ 23.7924i

6.50337 − 5.35207i 20.5847 − 32.1521i 168.169þ 114.396i

31.5693þ 23.7924i 168.169þ 114.396i −417.079þ 943.005i

1
CCA GeV: ðB6Þ
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