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We study a mechanism of generation of Majorana neutrino mass due to spontaneous breaking of chiral
symmetry (SBCS) accompanied by the formation of a quark condensate. The effect of the condensate is
transmitted to the neutrino sector via lepton-number violating (LNV) lepton-quark dimension-7 operators
known in the literature as an origin of the neutrino-mass-independentmechanism of neutrinoless double-beta
(0νββ) decay. The smallness of neutrinomasses is due to a large ratio between the LNV scale and the scale of
the SBCS. This is a new realization of the seesaw mechanism, which we dub the quark condensate seesaw
(QCSS).We examine the predictions of theQCSS for 0νββ-decay and neutrinomass spectrum.Wewill show
that our model predicts the normal neutrino mass ordering and narrow ranges of the neutrino masses.
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I. INTRODUCTION

The smallness of neutrino masses, in comparison with
the other Standard Model (SM) fermions, remains a
mystery of particle physics theory. A common wisdom
suggests that this smallness is related to some broken
symmetry. One of the most natural candidates is Uð1ÞL
symmetry of the lepton (L) number, broken at some high-
energy scale Λ. Then at the electroweak scale there appears
the ΔL ¼ 2 Weinberg operator

OW ¼ f
Λ
LCHLH; ð1Þ

which, after the electroweak symmetry breaking (EWSB)ffiffiffi
2

p hH0i ¼ v ¼ 246 GeV, leads to the Majorana neutrino
mass

mν ¼ −fv
v
Λ
: ð2Þ

For a generic case with f ∼ 1 and for mν at a sub-eV scale
one estimates Λ ∼ 1014–15 GeV, putting lepton number
violating (LNV) physics far beyond the experimental reach.
This happens in the tree-level realizations of the Weinberg
operator (1) in the celebrated seesaw type I, II, and III,
where Λ is equal to the masses M of the corresponding
seesaw messengers which, being very heavy, have no
phenomenological significance. In order to escape this
situation and open up the possibility for a nontrivial
phenomenology, various models have been proposed in
the literature (for a recent review see, e.g., Ref. [1]) relaxing
the above-mentioned limitation on the LNV scale Λ.
Introducing new symmetries (softly broken), one can forbid
the operator (1) at the tree level, while allowing it at certain
loop level l, so that in (2) there appears a loop suppression
factor f ∼ ð1=16π2Þl. With the appropriate l the LNV scale
Λ can be reduced down to phenomenologically interesting
values in the TeV ballpark (see, e.g., Refs. [2–8] and
references therein). Another possibility is to resort to
symmetries forbidding (1) at all, but allowing higher
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dimension-(5þ n) operators which after EWSB provide an
extra suppression factor ðv=ΛÞn. As in the loop-based
models, here, for sufficiently large n, the LNV scale Λ
can be made as low as the current experimental limits. In
some models both loop and higher-dimension suppressions
can be combined.
In the present paper we consider another class of the SM

gauge-invariant effective operators

Ou;d
7 ¼ gu;dαβ

Λ3
LC
αLβHfðQ̄uRÞ; ðdRQÞg: ð3Þ

Here, all the possible SUð2ÞL contractions are assumed.
The operators (3) were previously studied in the literature
as a source of ΔL ¼ 2 interactions able to induce 0νββ-
decay with no explicit dependence on the Majorana
neutrino mass [9–12]. On the other hand, it was observed
in Ref. [13] that this operator contributes to the Majorana-
neutrino mass matrix due to spontaneous breaking of chiral
symmetry (SBCS) via the light-quark condensate hq̄qi ¼
−ω3 ≠ 0. The latter sets the SBCS scale, so that after the
EWSB and SBCS one arrives at the contribution to the
Majorana mass matrix of active neutrinos

mν
αβ ¼ −

gαβffiffiffi
2

p v
hq̄qi
Λ3

¼ gαβffiffiffi
2

p v

�
ω

Λ

�
3

; ð4Þ

with gαβ ¼ guαβ þ gdαβ, where hq̄qi≡ hūui ≈ hd̄di≈
2huLuRi ≈ 2hdRdLi. This is a kind of seesaw formula
relating the smallness of the Majorana masses of neutrino
with the large ratio between the scale Λ of lepton-number
violation (LNV) and the scale of chiral-symmetry breaking
ω ¼ −hq̄qi1=3. We call the relation (4) quark condensate
seesaw (QCSS) formula. Taking

hq̄qi1=3 ≈ −283 MeV ð5Þ

from a renormalized lattice QCDwithin the MS scheme at a
fixed scale μ ¼ 2 GeV [14] and Λ∼ a few TeV we get the
neutrino mass in the sub-eV ballpark.
In the next section we study implications of the require-

ment of the dominance of the operator (3) for ultraviolet
(UV) model building and certain phenomenological aspects
of the QCSS. In Sec. III we extract limits on the couplings
of nonstandard neutrino-quark contact interactions appear-
ing in QCSS. Then, we analyze contributions of the
operators (3) to neutrinoless double-beta (0νββ) decay
and derive strong limitations on the QCSS mechanism
from this LNV process.

II. DOMINANCE OF QCSS
AND LIGHT-QUARK MASSES

Here we discuss the conditions for the dominance of the
operator (3) in the Majorana neutrino mass matrix. As

usual, this can be guaranteed by imposing on the theory an
appropriate symmetry group G which could be either
continuous or discrete. General properties of this kind of
symmetries were studied in Ref. [13]. This symmetry must
forbid the Weinberg operator (1), but allow the operatorOq

7

in Eq. (3). Therefore, the lepton bilinear LL must be a G
nonsinglet. Requiring that G remains a good symmetry after
the EWSB and still forbids any contribution to the
Majorana-neutrino mass term

LM ¼ −
1

2

X
αβ

νCαL m
ν
αβνβL þ H:c: ð6Þ

while allowing the quark-lepton coupling

L7 ¼
1ffiffiffi
2

p
X
αβ

v
Λ3

νCαLνβLðguαβuLuR þ gdαβdRdLÞ þ H:c: ð7Þ

implies that we claim the SM Higgs H to be a G-singlet.
Thus, the condition of G invariance of the operator (3)
requires that one of the quark bilinears ðQ̄uRÞ and ðdRQÞ or
both be G nonsinglets. The latter implies that the Yukawa
couplings of u and d quarks

H†Q̄uR; HQ̄dR ð8Þ

are not G-invariant and forbidden by this symmetry.
Therefore, the light quarks do not receive their masses
as a result of the EWSB. In principle, this is in line with the
fact that the light quarks u, d are particular among other
quarks by being much lighter than the others. However, the
statement of vanishing masses mu;d ¼ 0, or even one of
them, seems to contradict the known results of lattice
calculations [15] and experimental data on the light meson
masses. Therefore, small mu;d ≠ 0 must be generated in
some way to make our scenario viable. In principle, for this
scenario it is not necessary that both Yukawa couplings in
Eq. (8) are forbidden. As seen from (3), it is sufficient that
only one of them, say the u-quark Yukawa coupling, be
forbidden as suggested in Ref. [13].
Thus, we assume that md is generated via an effective

Yukawa coupling (8), realized at some loop level for
making it sufficiently small in comparison to the other
heavier quarks. On the other hand, we require that the
Yukawa coupling for u-quark be forbidden by the symmetry
G so that above the electroweak scale the current u-quark
mass is mu ¼ 0. Therefore, in this setup we require that the
quark bilinears transform under the G-symmetry group as

G − nonsinglet∶ ðQ̄uRÞ; G − singlet∶ ðdRQÞ: ð9Þ

Consequently, we should set gd ¼ 0 in Eq. (3). Note that the
case of the vanishing current u-quark mass has long been
considered as one of the possible solutions of the strongCP
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problem, allowing us to rotate away the CP-violating angle
θ from the QCD Lagrangian.
However, the key question here is whether this is

compatible with the lattice value mlatt
u ¼2.78�0.19MeV

[15] and the light meson masses. We start with the
observation that mu ¼ 0 at some high-energy cutoff scale
does not prevent generation of a nonzero effective quark
mass meff

u at low sub-GeV scales. Here there are several
sources of meff

u ≠ 0 rooting in the strong interaction
dynamics.
First, we note that in a generic effective theory the light

quark masses can be generated due to chiral symmetry
breaking via the effective SM-invariant operators

Oqq
6 ¼ κqq

Λ2
qq
Q̄QRQRQ; Oud

6 ¼ κud

Λ2
ud

Q̄uRQ̄dR; ð10Þ

with QT
R ¼ ðu; dÞR being right-handed isodoublet. Here,

Λqq;Λud are scales of the physics underlying these oper-
ators. Both operators in Eq. (10) among their components
have

Oqq
6 ∼ uLuRuRuL þ dLdRdRdL;

Oud
6 ∼ uLuRdLdR; ð11Þ

which can contribute to the effective light-quark mass meff
u;d

after spontaneous breaking of chiral symmetry and for-
mation of the quark condensate hq̄qi. We note that the
operator Oqq

6 conserves chiral symmetry while Oud
6 breaks

it explicitly. In our setup (9) the operator Oud
6 is forbidden

by G-symmetry. In a scenario with mu ¼ md ¼ 0 above the
electroweak scale this operator is allowed and can have
interesting implications, if its scale Λud is not very high.
This scenario will be addressed elsewhere.
The chiral symmetric operator Oqq

6 in Eq. (10) is well
known in the context of the Nambu–Jona-Lasinio model
considered as chiral low-energy effective theory of QCD.
Recall, that in this approach the one-gluon exchange
diagram with the amplitude

ðQ̄γμλaQÞDðGÞab
μν ðQRγ

νλbQRÞ ð12Þ

turns to a pointlike 4-quark operator in a truncated theory,
where the gluon propagator DðGÞðk2Þ is replaced with
gμν=Λ2

QCD. Here, ΛQCD ∼ 100 MeV is a characteristic scale
of nonperturbative QCD. After Fierz rearrangement in (12)
one finds the operator Oqq

6 in Eq. (10) with the scale
κqq=Λ2

qq ∼ −αs=ð4Λ2
QCDÞ. After spontaneous breaking of

chiral symmetry this operator renders a contribution

meff
u;d ¼ mC

u;d ¼ κ
hq̄qi
Λ2
qq

¼ αs
4
ω

�
ω

ΛQCD

�
2

∼ ω ð13Þ

to the masses of u and d quarks, converting them to the
so-called constituents quarks with an effective mass
mC

q ∼ 100 MeV.
However, spontaneous breaking of chiral symmetry

cannot be the only source of the quark masses. They must
also have a piece mu;d ≠ 0, which breaks chiral symmetry
explicitly. According to the Gell-Mann–Oakes–Renner
relation (B8), this is needed in order to pions, as
Goldstone bosons of the spontaneous breaking of chiral
symmetry, acquire nonzero masses. In our setup (9)
d-quark has md ≠ 0 at a high-energy cutoff scale due to
Yukawa coupling (8) explicitly breaking chiral symmetry.
However, u-quark is also required to contribute to this
explicit breaking as follows from the analysis of the meson
mass spectrum (see, for instance Ref. [16] and references
therein). Here we adopted mu ¼ 0 above the electroweak
scale. In Ref. [17] it was advocated that the next to leading
order chiral Lagrangian terms together with the QCD
instanton are able to induce at the QCD scale ΛQCD ∼
100 MeV a contribution to u-quark mass explicitly break-
ing chiral symmetry. The resulting effective mass is
compatible with the lattice result [15]. The value of the
u-quark effective mass due to these two was estimated in
Ref. [16] with the result

mChSB
u ¼ 2.33� 0.20 MeV: ð14Þ

According to [16] this value is compatible with the light
meson masses. However, there is certain tension with the
lattice value mlatt

u ¼ 2.78� 0.19 MeV [15]. In our opinion
this situation requires further study and clarification.
Having this point in mind we adopt in this paper the setup
(9) and examine its phenomenological consequences.
Before this, the following important comment is in order.

In our scenario it is crucial that a nonzero effective mass of
u-quark, meff

u , is generated at a low scale of the order of the
typical QCD scale ΛQCD ∼ 100 MeV. In fact, if u-quark
acquires a mass meff

u ≠ 0, regardless of its origin, one can
close the Q̄uR legs of the operator Ou

7 in Eq. (3) via the
u-quark mass term [18] meff

u as shown in Fig. 1. This will
lead to a 1-loop contribution to the Majorana neutrino
mass, which can be estimated as

m1−loop
ν ∼

1ffiffiffi
2

p guαβ
4π2

v
1

Λ3
meff

u Λ2
u; ð15Þ

FIG. 1. The loop contribution,m1−loop
ν , of the operatorOu

7 to the
neutrino mass.
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where, Λu is a scale at which meff
u is generated. In our

modelmeff
u ¼ mC

u þmChSB
u , wheremC

u and mChSB
u are given

in (13) and (14), respectively. Both these contributions are
generated at a scale around ΛQCD ∼ 100 MeV. At a higher
scales they are rapidly decreasing, as any nonperturbative
QCD effect, providing cutoff in the loop integral in Fig. 1.
Thus, we substitute Λu ¼ ΛQCD,meff

u ¼ mC
u þmChSB

u ≈mC
u

in (15) and have the following neutrino mass with the
considered 1-loop correction

mν
αβ ≃

gαβffiffiffi
2

p v

�
ω

Λ

�
3
�
1þ αs

16π2

�
: ð16Þ

The 1-loop correction is small and irrelevant for our
estimations based on Eq. (4) with gαβ ¼ guαβ. Let us recall
that in our setup (9) we have gdαβ ¼ 0. It is worth noting that
in general the loop in Fig. 1 could present a problem. In the
case, if Λu ∼ Λ ∼ 1 TeV its contribution to neutrino mass
would be unacceptably large mν ∼ 103–105 eV. As we
have shown our setup is free of this problem.

III. LIMITS ON LNV LEPTON-QUARK
INTERACTIONS

Let us examine phenomenological limits on the strength
of the effective LNV lepton-quark interactions predicted by
the QCSS. These interactions are derived from (3) and (7).
It is convenient to introduce the dimensionless parameters

εαβ ¼
gαβv=Λ3

GF
; ð17Þ

giving a measure of the relative strength of the four-fermion
interactions (7) with respect to the Fermi constant GF ≈
1.166 × 10−5 GeV−2 of the standard weak interactions. We
denoted gαβ ≡ guαβ. The latter was introduced in Eq. (3). As
discussed in the previous section, in our setup (9) we
set gdαβ ¼ 0.
Here, assuming the dominance of the QCSS in the

Majorana mass of neutrinos, we can extract limits on εαβ
from the neutrino-oscillation data since, according to
Eq. (4), they are directly related to the elements of the
neutrino mass matrix

εαβ ¼
gαβv=Λ3

GF
¼ −

mν
αβ=hq̄qi
GF=

ffiffiffi
2

p : ð18Þ

Using Eqs. (A5)–(A10), we relate these LNV lepton-quark
parameters to the neutrino-oscillation parameters. The
current values of the latter we take from Ref. [19].
Then, varying the CP phases in the intervals δ ∈ ½0; 2πÞ
and α1; α2 ∈ ½0; πÞ, we find the exclusion plots in the plane
ðm0; jεαβjÞ shown in Fig. 2 for the best-fit values of the
neutrino oscillation parameters θij and Δm2

ij (i,j ¼ 1, 2, 3).

As is known, the upper cosmological limit on the sum of
neutrino masses

X
i

mi < 0.12 eV at 95%C:L:; ð19Þ

set by the Planck measurements [20,22], impose the limit
on the mass m0 of the lightest neutrino. Applying
Eqs. (A3)–(A4), one finds

m0 < 30.1 meV; 15.9 meV ð20Þ

for the normal (NO) and inverted (IO) neutrino-mass
orderings, respectively. These limits are shown in Fig. 2
as vertical bands.
It is instructive to show allowed ranges ðεmin

αβ ; εmax
αβ Þ of the

LNV lepton-quark interaction parameters εαβ from (18).
These ranges extracted from the exclusion plots in Fig. 2
for NO and IO are

FIG. 2. Predictions of QCSS for the nonstandard neutrino-
quark couplings jεαβj defined in Eq. (18) vs the lightest-neutrino
mass m0. The allowed gray regions between the curved lines are
derived using current best-fit values of the neutrino-oscillation
parameters [19] and CP phases δ ∈ ½0; 2πÞ and α1; α2 ∈ ½0; πÞ.
The solid and dashed lines refer to the normal (NO) and inverted
(IO) orderings of the neutrino masses, respectively. The vertical
gray bands represent the regions excluded by Planck measure-
ments at 95% C.L. [20]. The horizontal gray bands in the first plot
correspond to the regions excluded by KamLAND-Zen 90% C.L.
limits on 0νββ-decay [21]. The solid and dashed horizontal
limiting lines refer to the scenarios with and without the nuclear-
matter effect discussed in Sec. IV, respectively.
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jεNHαβ j¼

0
BB@
ð0;1.7Þ ð0;1.3Þ ð0;1.5Þ

ð0.9;2.4Þ ð0.7;2.4Þ
ð0.5;2.3Þ

1
CCA×10−4; ð21Þ

jεIHαβj¼

0
BB@
ð0.9;2.7Þ ð0;1.9Þ ð0;2.1Þ

ð0;1.7Þ ð0.1;1.8Þ
ð0;1.9Þ

1
CCA×10−4: ð22Þ

To the best of our knowledge, the only analysis of
phenomenological limits on the lepton-quark interaction
strength ε from Eq. (17) existing in the literature is given in
Refs. [13,23] where the SN 1987A and meson decays were
studied. In the former case these limits are in the range
ε < 10−3, which is an order of magnitude weaker than our
limits in Eqs. (21)–(22). As to the LFV meson decays,
reasonable limits on ε-parameters cannot be extracted from
the experimental data. Indeed, considering as an example
the LNV decay Kþ → π−μþμþ, one finds [24] for its
branching ratio BrðKþ → π−μþμþÞ ∼ jεμμj2 × 10−30,
which should be compared with the current experimental
upper bound BrðKþ → π−μþμþÞ ≤ 10−11. Of course, this
gives no practical information on the εμμ-parameter.

IV. QUARK CONDENSATE SEESAW IN
NEUTRINOLESS DOUBLE-BETA DECAY

Let us consider the contribution of the operator Ou
7 in

Eq. (3) to 0νββ decay. After the EWSB this operator
generates the following interactions relevant to 0νββ-decay

L7 ¼
GFffiffiffi
2

p εeeðeLνCLuRdL þ νCLνLuRuLÞ þ H:c:; ð23Þ

where εee is defined in Eq. (17). Let us examine the
contribution of the effective ΔL ¼ 2 interaction terms (23)
to 0νββ-decay. The first term (23) combined with the SM
weak charged-current interaction leads to the contribution
shown in Fig. 3(b), which is independent of neutrino
mass in the propagator due to chiralities in the vertices

PLðmν þ =qÞPR ¼ =q. This is a manifestation of the fact that
the ΔL ¼ 2 is not provided by mν, but solely by the upper
vertex in Fig. 3(b). In our QCSS model the second term in
Eq. (23) also contributes to the 0νββ-decay via the
neutrino-mass mechanism shown in Fig. 3(a). This happens
due to the chiral symmetry breaking and formation of the
quark condensate. As we discussed in the previous sec-
tions, this term is the only source of the neutrino mass in the
present model. However, there is a subtlety with the
diagram in Fig. 3(a). It describes a process taking place
in the nuclear environment, where the chiral quark con-
densate hq̄qiN is suppressed with respect to the one in the
vacuum hq̄qi. As briefly discussed in Appendix B, this
suppression is estimated to be a factor-two effect (B9). In
what follows, we take this fact into account.
The inverse 0νββ-decay half-life in the QCSS model

reads (see Appendix C)

ðT0ν
1=2Þ−1 ¼

����εee þmββ

me
fnme

����2g2AjMϵj2G0ν

¼ jεeej2j1þ aνfnmej2g2AjMϵj2G0ν ð24Þ

where me is the mass of electron. The standard kinematical
phase-space factor G0ν is given in Table I and the nuclear
structure factor fnme is given by

fnme ¼
gAMν

Mε : ð25Þ

Nuclear matrix elements Mν and Mε associated with
mechanisms in Figs. 3(a) and 3(b), respectively, are
presented in Appendix C. gA ≃ 1.27 is the axial-vector
weak nucleon coupling constant.
In the second row of Eq. (24) we used the prediction of

the QCSS model

mββ ¼ aνmeεee; aν ¼
hq̄qiNffiffiffi
2

p
me

GF ¼ −1.83 × 10−4:

ð26Þ

Here, hq̄qiN is the value of quark condensate in the nuclear
environment of a decaying nucleus, which is different from
the vacuum value hq̄qi as displayed in Eq. (B9).
Consequently, in the QCSS we have

mββ ¼
hq̄qiN
hq̄qi mν

ee ≈ 0.5mν
ee; ð27Þ

where mν
ee is given by (4) with the chiral condensate in the

vacuum. This result contrasts with the conventional neu-
trino mass models, where mββ ¼ mν

ee in the diagonal
charged-lepton basis.
With the values of NME for 136Xe given in Appendix C,

quark condensate in matter (B9) with (5) and other known
parameters we find

(a) (b)

FIG. 3. Contributions of the effective operators (3) to the 0νββ
decay.
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aνfnme ≃ −2.00 × 10−7: ð28Þ
Recall that, the contributions to 0νββ-decay amplitude of
the diagrams in Figs. 3(a) and 3(b) are proportional to the
first and second terms in vertical brackets of Eq. (24),
respectively. Thus, due to (28) the diagram Fig. 3(b)
dominates in our scenario.
From the currently most stringent upper bound on the

0νββ-decay half-life obtained for 136Xe by the KamLAND-
Zen experiment [21]

T0ν
1=2 > 1.07 × 1026 yr at 90%C:L:; ð29Þ

we find, using (24), an upper bound

jεeej < 2.49 × 10−10: ð30Þ
Comparing the limit (30) for εee with the excluded

regions in the first plot of Fig. 2, derived from the neutrino-
oscillation data, we conclude that the QCSS predicts the
NO and a rather narrow interval of the lightest neutrino
mass

2.65 meV < m0 ¼ m1 < 6.84 meV: ð31Þ
Using the 1σ ranges of the neutrino-oscillation parameters
sin2 θij and Δm2

ij from Ref. [19], we derive according to
Eq. (A3) the following ranges for the other two neutrino
masses

9.0 meV < m2 < 11.2 meV; ð32Þ
49.8 meV < m3 < 50.8 meV: ð33Þ

From the limits (31)–(32) we find the corresponding range
for the cosmological neutrino parameter

61.4 meV < Σ ¼
X
i

mi < 68.8 meV: ð34Þ

This prediction of the QCSS is within the Planck limit (19).
We also derive the QCSS range for the single-beta-decay
parameter

9.0 meV < mβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jUeij2m2
i

r
< 11.4 meV; ð35Þ

which is beyond the reach of the current and near future
tritium beta-decay experiments (for a recent review see, for
instance, Refs. [32,33]).
At last, the limit (30) translated into the 0νββ-decay

parameter gives the upper bound

jmββj < 2.33 × 10−5 meV: ð36Þ
It is worth recalling that in the QCSS this parameter
characterizes the subdominant contribution to the 0νββ
decay shown in Fig. 3(a), while the dominant one is given
by the diagram Fig. 3(b).

V. PARTICULAR REALIZATION
OF QCSS MODEL

There is one potential flaw in the model described above:
the quark bilinear ðdRQÞ, being a G-singlet, allows the
d-quark tree-level Yukawa coupling shown in (8). It leads
to a tree-level d-quark mass md after the EWSB, which
makes its the smallness rather weird. The common wisdom,
allowing to avoid a fine-tuning, is to impose on theory an
additional softly broken symmetry forbidding the tree-level
Yukawa couplings of the light quarks, but allowing them at
certain loop level (for a recent review see, for instance
Ref. [1]). To this end we can extend the previously used
group G to G0 ¼ G × Gd requiring that all the fields, except
for d-quark, be neutral with respect to the subgroup Gd. In
this way we can forbid with the help of Gd the tree-level d-
quark Yukawa coupling. Once this symmetry is softly
broken, the d-quark Yukawa can appear at loop level. In
this case the d-quark mass could gain the necessary loop
suppression. Let us give an example of such symmetry
group G0 of our model

G0 ¼ Z4 × Z2!softZ4 ð37Þ

with the following Z4 × Z2—assignment of the fields

TABLE I. Nuclear matrix elementsMε (column 3),Mν (column 4) and their ratio fnme ¼ gAMν=Mϵ (column 5) calculated within the
quasiparticle random-phase approximation (QRPA) method with partial restoration of the isospin symmetry and Argonne V18 nucleon-
nucleon potential [25]. Mν and fnme are given for the unquenched value of the axial-vector coupling constant gA ¼ 1.27 In columns 6
and 7 the lower experimental limit on the 0νββ-decay half-life and the upper constraint on the εee are presented, respectively. The phase-
space factors G0ν (column 2) are taken from Ref. [26].

Nucl. G0ν [yr−1] Mε Mν fnme T0ν−exp
1=2 ½yr� Ref. jεeej

76Ge 0.237 × 10−14 5140 5.16 1.27 × 10−3 > 8.0 × 1025 [27] < 3.52 × 10−10
82Se 1.018 × 10−14 4702 4.64 1.25 × 10−3 > 2.4 × 1024 [28] < 1.07 × 10−9
100Mo 1.595 × 10−14 5751 5.40 1.19 × 10−3 > 1.1 × 1024 [29] < 1.03 × 10−9
116Cd 1.673 × 10−14 3232 4.04 1.59 × 10−3 > 2.2 × 1023 [30] < 4.02 × 10−9
130Te 1.425 × 10−14 4530 3.89 1.09 × 10−3 > 3.2 × 1025 [31] < 2.57 × 10−10
136Xe 1.462 × 10−14 2530 2.18 1.09 × 10−3 > 1.07 × 1026 [21] < 2.49 × 10−10
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H ∼ ð1; 1Þ; Q ∼ ð1; 1Þ; uR ∼ ð−1; 1Þ;
dR ∼ ð1;−1Þ; L ∼ ði; 1Þ; eR ∼ ði;−1Þ: ð38Þ

Here, we limit ourselves only to the first generation of the
fermions. With this field assignment the Yukawa couplings
of u and d-quarks (8), the analogous electron coupling
HL̄eR, as well as the operatorsOW in Eq. (1),Od

7 in Eq. (3)
andOud

6 in Eq. (10) are all forbidden byZ4 × Z2 group. On
the other hand, this group allows the operatorsOu

7 in Eq. (3)
and Oqq

6 in Eq. (10). Soft symmetry breaking (37) let the
d-quark and electron Yukawa couplings arise at certain
loop level. As a result these couplings acquire loop
suppression factors necessary to make md and me smaller
in comparison to the other SM fermions. The loop order
depends on the concrete UV model. In principle, we can
introduce an extra loop suppression to the electron Yukawa
couplings in order to achieve md > me. This can be easily
done by the extension of the scenario (37) to

G00 ¼ Z4 × Z2 × Ze
2⟶
soft½1�

Z4 × Ze
2⟶
soft½2�

Z4 ð39Þ

with all the field neutral with respect to Ze
2, but electron

having (−1) assignment to this subgroup. In this case the
electron Yukawa appears at the second stage of the soft
symmetry breaking chain and, therefore, can be realized at
higher loop order than d-quark one. In this way the SM
fermion mass hierarchy can be generated by sequential loop
suppression [34] resulting from certain chain of soft
symmetry breaking [7].

VI. CONCLUSION AND DISCUSSIONS

We studied the quark condensate seesaw (QCSS) mecha-
nism of generation of the Majorana neutrino mass matrix
due to spontaneous breaking of chiral symmetry. The effect
of the formation of chiral condensate is transmitted to the
neutrino sector via the dimension-7 quark-lepton operators
Ou

7 in Eq (3). They can originate in low-energy limit from a
certain class of UV models. We imposed on these models a
symmetry, G, forbidding the Weinberg operator OW in
Eq. (1) while allowing the operators Ou

7 . In this case the
QCSS mechanism dominates over the ordinary tree-level
Majorana neutrino mass generated by the electroweak
symmetry breaking. The symmetry G inevitably forbids
the u-quark Yukawa coupling making its mass equal to zero
at a high-energy cutoff scale. We argued, following the
existing literature, that u-quark receives a nonzero effective
mass meff

u from nonperturbative QCD effects at the scale
ΛQCD ∼ 100 MeV. We commented that meff

u generated in
this way is compatible with the light hadron mass spectrum,
but shows certain tension with the lattice simulations. A
detailed study of this issue will be carried out elsewhere.
We discussed how in this scenario d-quark and electron

can be made naturally lighter than other SM fermions.

We proposed to introduce a softly broken symmetry (37) or
(39) forbidding the tree-level d-quark and electron Yukawa
couplings, but unlocking them at some loop level. This
mechanisms can bring into d-quark and electron masses,
md and me, loop-suppression factors necessary for making
them naturally small. The order of the loop suppression
depends on the particular UV model. We postpone the
study of the possible UV completions of the QCSS scenario
for the subsequent publication. We also noted that the u,
d-quark masses always receive a contribution proportional
to the chiral condensate via four-quark operators generated
by nonperturbative QCD effects, which convert these
quarks to the constituent ones.
We derived the predictions of the QCSS model for the

LNV lepton-quark couplings (17). These couplings char-
acterize the nonstandard neutrino-quark and charged lepton-
quark interactions arising from the operators in Eq. (3). They
can be relevant for further studies of the phenomenological
and astrophysical implications of the QCSS mechanism.
We analyzed the predictions of the QCSS model for

neutrinoless double-beta decay. We calculated the corre-
sponding nuclear matrix elements within the quasiparticle
random phase approximation (QRPA) method with partial
restoration of the isospin symmetry.
We commented about the role of the nuclear-matter

effects for the neutrino mass mechanism in Fig. 3(a). We
showed that the neutrino mass independent mechanism in
Fig. 3(b) dominates in the QCSS scenario (9).
We found that the QCSS predicts the normal ordering

(NO) of the neutrino-mass spectrum and rather narrow
ranges (31)–(32) for the neutrino masses. This is in accord
with the recent global analysis of the neutrino-oscillation
data, which favors NO over IO at more than 3σ [19]. We
also derived predictions of the QCSS for some other
observables (34)–(36).
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APPENDIX A: MAJORANA MASS MATRIX

Diagonalizing the complex symmetric 3 × 3 Majorana-
neutrino mass matrix mν in Eqs. (4) and (6) UTmνU ¼
diagðm1; m2; m3Þ with a unitary lepton mixing matrix U,
one gets the usual relation
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ναL ¼
X
i

UαiνiL ðA1Þ

between the neutrino mass eigenstates νi with masses mi
and the flavor eigenstates να. The matrix U is known as the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c23

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA
0
B@

eiα1 0 0

0 eiα2 0

0 0 1

1
CA; ðA2Þ

parametrized in terms of the mixing angles θ12, θ13, θ23
(sij ≡ sin θij, cij ≡ cos θij), Dirac phase δ and Majorana
phases α1, α2 [35].
The neutrino massesmi (i ¼ 1, 2, 3) can be parametrized

by the lightest-neutrino mass m0 (which is unknown) and
the mass-squared splittings Δm2

ij ¼ m2
i −m2

j (known from
the neutrino-oscillations experiments) for two types of the
neutrino-mass ordering as
Normal ordering (NO) with m1 < m2 ≪ m3:

m1 ¼ m0; m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ Δm2
21

q
;

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ Δm2
31

q
: ðA3Þ

Inverted ordering (IO) with m3 ≪ m1 < m2:

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − Δm2
31

q
;

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ Δm2
21 − Δm2

31

q
; m3 ¼ m0: ðA4Þ

Elements mν
αβ ¼ mν

βα of the Majorana mass matrix
depend on the Dirac phase δ ∈ ½0; 2πÞ, Majorana phases
α1; α2 ∈ ½0; πÞ, and neutrino masses mi determined by the
lightest-neutrino mass m0 and neutrino-mass ordering (NO
or IO). Namely

mν
ee ¼ c212c

2
13e

−i2α1m1 þ s212c
2
13e

−i2α2m2 þ s213e
i2δm3;

ðA5Þ

mν
eμ ¼ −c12c13ðs12c23 þ c12s13s23e−iδÞe−i2α1m1

þ s12c13ðc12c23 − s12s13s23e−iδÞe−i2α2m2

þ s13c13s23eiδm3; ðA6Þ

mν
eτ ¼ c12c13ðs12s23 − c12s13c23e−iδÞe−i2α1m1

− s12c13ðc12s23 þ s12s13c23e−iδÞe−i2α2m2

þ s13c13c23eiδm3; ðA7Þ

mν
μμ ¼ ðs12c23 þ c12s13s23e−iδÞ2e−i2α1m1

þ ðc12c23 − s12s13s23e−iδÞ2e−i2α2m2 þ c213s
2
23m3;

ðA8Þ

mν
μτ ¼ −ðs12s23 − c12s13c23e−iδÞ

× ðs12c23 þ c12s13s23e−iδÞe−i2α1m1

− ðc12s23 þ s12s13c23e−iδÞ
× ðc12c23 − s12s13s23e−iδÞe−i2α2m2 þ c213s23c23m3;

ðA9Þ

mν
ττ ¼ ðs12s23 − c12s13c23e−iδÞ2e−i2α1m1

þ ðc12s23 þ s12s13c23e−iδÞ2e−i2α2m2 þ c213c
2
23m3:

ðA10Þ

We employ these relations for the analysis of the
nonstandard neutrino-quark couplings (7) and (17), which
is done in Sec. III. In this analysis, we use the neutrino-
oscillation data from Ref. [19].

APPENDIX B: QUARK CONDENSATE

Chiral symmetry is approximate invariance of the QCD
Lagrangian under the global SUð3ÞL × SUð3ÞR transfor-
mations in the space of the lightest quark flavors q ¼ u, d,
s. Below the chiral scale 4πfπ ∼ 1 GeV, this symmetry is
spontaneously broken by the light-quark condensates
h0jq̄qj0i≡ hq̄qi ≠ 0 in the QCD ground state (vacuum)
j0i. The corresponding Goldstone bosons form the octet of
light mesons. Their nonzero masses originate from the
explicit breaking of the chiral symmetry by the light-quark
current mass terms in the QCD Lagrangian/Hamiltonian:

Hm ¼ muūuþmdd̄dþmss̄s

¼ 1

2
ðmu þmdÞðūuþ d̄dÞ

þ 1

2
ðmu −mdÞðūu − d̄dÞ þmss̄s

¼ 2mqq̄qþ…; ðB1Þ

where we separated the isospin-singlet and isospin-triplet
quark combinations. In what follows, we retain the singlet
and consider only the lightest u and d quarks, denoting
mq ¼ 1

2
ðmu þmdÞ and q̄q ¼ 1

2
ðūuþ d̄dÞ. Note that in our

scenario the mass mu of u-quark, explicitly breaking chiral
symmetry, originates not from the electroweak symmetry
breaking, which is the case for all the other current quark
masses, but from nonperturbative QCD. Thus, throughout
this section, it is implied that mu ¼ mChSB

u , as defined
in Eq. (14).
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Here, we will examine the effect of nuclear environment
on the formation of light quark condensate. Following
Ref. [36], we use the Hellmann–Feynman theorem,
allowing one to analyze the condensates in a model-
independent way to the first order in nucleon density.
The Hellmann–Feynman theorem states

hψðλÞj d
dλ

HðλÞjψðλÞi ¼ d
dλ

EðλÞ; ðB2Þ

where jψðλÞi and EðλÞ are, respectively, the normalized
energy eigenstates and eigenvalues of the Hamiltonian
HðλÞ with explicit dependence on the parameter λ.
Choosing λ ¼ mq and H ¼ R

d3x⃗Hm we get

2mqhψðmqÞj
Z

d3x⃗ q̄ qjψðmqÞi ¼ mq
dEðmqÞ
dmq

; ðB3Þ

where both parts of this equation are multiplied by mq to
ensure renormalization-group invariance of this relation
[37]. Let us consider two cases jψðmqÞ ¼ j0i; jρNi, where
j0i is the QCD vacuum and jρNi refers to the ground state
of (uniform) nuclear matter at rest with nucleon density ρN.
Writing Eq. (B3) for these two cases, we subtract one from
the other and obtain

2mqðhρN jq̄qjρNi − h0jq̄qj0iÞ ¼ mq
dEN

dmq
; ðB4Þ

where EN is the energy density of nuclear matter. Provided
the kinetic and potential energy of nucleons are known to
be small, one has

EN ¼ mNρN: ðB5Þ

On the other hand, there is a current-algebra relation [38]

σN ¼ mq
dmN

dmq
; ðB6Þ

where σN is the pion-nucleon sigma term measuring the
nucleon-mass mN shift from the chiral limit mu;d → 0.
Then, using Eqs. (B4), (B5), and (B6), one finds a model-
independent relation [36]

hq̄qiN
hq̄qi ¼ 1þ σρN

2mqhq̄qi
¼ 1 −

ρσN
f2πm2

π
; ðB7Þ

characterizing the amount of chiral-symmetry restoration
in dense medium. Here, we denoted hq̄qiN ≡ hρN jq̄qjρNi
and hq̄qi≡ h0jq̄qj0i. The Gell-Mann–Oakes–Renner
relation [39]

2mqhq̄qi ¼ −f2πm2
π; ðB8Þ

has been used to derive Eq. (B7). In order to estimate the
nuclear-matter effect on the quark condensate on the basis
of Eq. (B7), we adopt the usual value for the nucleon
density ρ ¼ ρp þ ρn ¼ 0.17 fm−3, the recent large value of
σ ¼ 64 MeV from a partial-wave analysis of the π − N
scattering [40], fπ ¼ 92 MeV and the charged-pion mass
mπ ¼ 140 MeV. Then, Eq. (B7) yields

hq̄qiN ≈ 0.5hq̄qi; ðB9Þ

demonstrating a substantial suppression of the quark
condensate in the nuclear matter. The value hq̄qiN can
be interpreted as the sum of scalar densities of the u (or d)
quarks in vacuum and inside nucleons. The nucleon
component of hq̄qiN is estimated in Ref. [23] to be
≈ð100 MeVÞ3. The sign of the nucleon component is
opposite to the sign of the vacuum component; the latter
is also numerically higher.

APPENDIX C: THE 0νββ-DECAY RATE AND
NUCLEAR MATRIX ELEMENTS

The β-decay Hamiltonian contains standard model and
nonstandard neutrino interactions

Hβ ¼ Gβffiffiffi
2

p ēγρð1 − γ5Þνeūγρð1 − γ5Þd

þ Gβffiffiffi
2

p εee
4
ēð1þ γ5ÞνCe ūð1 − γ5Þdþ H:c: ðC1Þ

Here, Gβ ¼ GF cos θC, where cos θC is the Cabbibo angle.
By the higher order perturbation of strong and electro-

magnetic interactions quark currents are converted into the
ones involving nucleons. We have

hnðp0Þjd̄γαð1 − γ5ÞujpðpÞi

¼ n̄ðp0Þ
�
gVðq2Þγα

þigMðq2Þ
σαβ

2mp
qβ − gAðq2Þγαγ5 − gPðq2Þqαγ5

�
pðpÞ;

hnðp0Þjd̄ð1 − γ5ÞujpðpÞi
¼ n̄ðp0Þ½gSðq2Þ − gPSðq2Þγ5�pðpÞ; ðC2Þ

where mp is the nucleon mass, qμ ¼ ðp0 − pÞμ is the
momentum transfer and p0 and p are the four momenta
of neutron and proton, respectively. For the nucleon form
factors gVðq2Þ, gMðq2Þ, gAðq2Þ and gPðq2Þ we use para-
metrization as follows [41]:
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gV;M;Sðq2Þ
gV;M;S

¼
�
1þ q2

m2
V

�−2
;

gAðq2Þ
gA

¼
�
1þ q2

m2
A

�−2
;

gPSðq2Þ
gPS

¼
�
1þ q2

m2
A

�−2�
1þ q2

m2
π

�−1
: ðC3Þ

Here, mπ is the mass of pion, q2 ¼ q · q (a small energy
transfer in the nucleon vertex can be neglected), mV ¼
0.84 GeV and mA ¼ 1.09 GeV and the renormalization
constants: gV ¼ 1, gA ¼ 1.269, gM ¼ ðμp − μnÞ ¼ 3.70,
gS ¼ 1.0 [42,43] and gPS ¼ 349 [43]. The induced pseu-
doscalar coupling is given by the PCAC relation

gPðq2Þ ¼
2mp

q2 þm2
π
gAðq2Þ: ðC4Þ

To obtain nuclear matrix elements of interest, non-
relativistic expansion of nucleon matrix elements in
Eq. (C2) have to be performed. For nuclear currents we get

Jμ†V−AðxÞ ¼
XA
n¼1

τþn ½gμ0J0V−AðqÞ þ gμkJkV−AðqÞ�δðx − rnÞ;

J†S−PðxÞ ¼
XA
n¼1

τþn JSPðqÞδðx − rnÞ ðC5Þ

with k ¼ 1, 2, 3 and

J0V−AðqÞ ¼ gVðq2Þ;
JV−AðqÞ ¼ gMðq2Þi

σ × q
2mp

− gAðq2Þσ þ gPðq2Þ
qσ · q
2mp

;

JS−PðqÞ ¼ gSðq2Þ − gPSðq2Þ
σ · q
2mp

; ðC6Þ

where rn is the coordinate of the nth nucleon.
The nucleon recoil terms associated with the initial and

final vertices in the 0νββ-decay transition contain the
nucleon recoil momenta qm and qn, respectively. They
are opposite in direction and their absolute values qm ¼
jqmj and qm ¼ jqnj are roughly equal to the absolute value
of neutrino momentum p ¼ jpj. We have [44]

qm ≃ −qn ≃ p: ðC7Þ

In the amplitude only linear term in εee is considered. The
main contribution to corresponding nuclear matrix element
for ground state to ground state 0þ → 0þ transition is given
by combinations of gPS term with gA and gP terms of
nucleon currents and the spatial component of neutrino
propagator proportional to neutrino momentum p.
For the inverse 0νββ-decay half-life we obtain

1

T1=2
¼ G0ν

����εeegAMε þmββ

me
g2AM

ν

����2 ðC8Þ

Here, G0ν is the known phase-space factor. Nuclear matrix
elementsMν andMε, depend on the nuclear structure of the
particular isotopes ðA; ZÞ, ðA; Z þ 1Þ and ðA; Z þ 2Þ under
study. The explicit form ofMν can be found, e.g., in [25,45]
and Mε is presented in a similar way here.
The nuclear matrix elementMε consists of the Gamow–

Teller (GT) and tensor (T) parts

Mε ¼ Mε
GT þMε

T: ðC9Þ

In the QRPA method, Mν;ε is written via sums over the
virtual intermediate states labeled by their angular
momenta and parities Jπ and indices ki and kf [25,45]

MK¼
X

Jπ ;ki;kf;J

X
pnp0n0

ð−1Þjnþjp0þJþJ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jþ1

p

×

�
jp jn J

jn0 jp0 J

	
hpð1Þ;p0ð2Þ;J kOKknð1Þ;n0ð2Þ;J i

×h0þf k½ gc†p0 c̃n0 �JkJπkfihJπkfjJπkiihJπkfik½c†pc̃n�Jk0þi i:
ðC10Þ

The reduced matrix elements of the one-body operators
c†pc̃n (c̃n denotes the time-reversed state) in the Eq. (C10)
depend on the BCS coefficients ui, vj and on the QRPA
vectors X, Y [25].
The two-body operators Oε

K in (C10), where K ¼ GT, T
(Tensor), contain neutrino potentials, spin and isospin

operators, and RPA energies E
ki;kf
Jπ :

Oε
GTðr12; Ek

Jπ Þ ¼ τþð1Þτþð2ÞHε
GTðr12; Ek

JπÞσ12;
Oε

Tðr12; Ek
Jπ Þ ¼ τþð1Þτþð2ÞHε

Tðr12; Ek
JπÞS12 ðC11Þ

with

r12 ¼ r1 − r2; r12 ≡ jr12j; r̂12 ≡ r12
r12

;

σ12 ¼ σ1 · σ2;

S12 ¼ 3ðσ1 · r̂12Þðσ2 · r̂12Þ − σ12: ðC12Þ
Here, r1 and r2 are the coordinates nucleons undergoing the
beta decay.
The neutrino potentials are

Hε
Kðr12; Ek

JπÞ ¼
2

π
R
Z

∞

0

fKðpr12Þ
hεðp2Þpdp

pþ Ek
Jπ − 1

2
ðEi þ EfÞ

;

ðC13Þ

where fF;GTðqr12Þ ¼ j0ðqr12Þ and fTðqr12Þ ¼ −j2ðqr12Þ
are the spherical Bessel functions. The potentials (C13)
depend explicitly—though rather weakly—on the energies
Ek
Jπ of the virtual intermediate states. The functions hðp2Þ

in Eq. (C13) is defined as
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hεðp2Þ ¼ 1

12

Fð3Þ
P ðp2ÞgAðp2Þ

gA

�
1 −

p2

p2 þm2
π

�
p2

mpme
:

ðC14Þ

In Table I, we show nuclear matrix elementsMε,Mν and
their ratio fNME calculated within the QRPA method with
partial restoration of the isospin symmetry. Details of the
calculation are given in [25]. By glancing at Table I we see

that Mε is by about factor 200 larger when compared with
Mν, what is a result of the additional factor p=ð2meÞ in the
neutrino exchange potential [see Eq. (C13)]. It is worth
noting that within considered approximations Mε does not
depend on axial-vector coupling constant gA. The most
stringent current experimental limits on the 0νββ-decay
half-life and corresponding upper bounds on the absolute
value of εee are presented in Table I as well.
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