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In the modular invariant flavor model of A,, we study the hierarchical structure of lepton/quark flavors at
nearby fixed points of 7 = i and 7 = w of the modulus, which are in the fundamental domain of PSL(2, Z).
These fixed points correspond to the residual symmetries Z3 = {1, S} and Z§" = {I, ST, (ST)*} of A,,
where S and T are generators of the A, group. The infinite 7 = ico also preserves the residual symmetry of
the subgroup Z% = {I, T, T?} of A,. We study typical two-type mass matrices for charged leptons and
quarks in terms of modular forms of weights 2, 4, and 6, while the neutrino mass matrix with the modular
forms of weight 4 through the Weinberg operator. Linear modular forms are obtained approximately by
performing Taylor expansion of modular forms around fixed points. By using them, the flavor structure of
the lepton and quark mass matrices are examined at nearby fixed points. The hierarchical structure of these
mass matrices is clearly shown in the diagonal base of S, 7, and ST. The observed Pontecorvo-Maki-
Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa mixing matrices can be reproduced at nearby fixed
points in some cases of mass matrices. By scanning model parameters numerically at nearby fixed points,
our discussion are confirmed for both the normal hierarchy and the inverted one of neutrino masses.
Predictions are given for the sum of neutrino masses and the CP violating Dirac phase of leptons at each

nearby fixed point.
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I. INTRODUCTION

In spite of the remarkable success of the standard model
(SM), the origin of the flavor of quarks and leptons is still a
challenging issue. Indeed, a lot of works have been
presented by using the discrete groups for flavors to
understand the flavor structures of quarks and leptons. In
the early models of quark masses and mixing angles, the S;
symmetry was used [1,2]. It was also discussed to under-
stand the large mixing angle [3] in the oscillation of
atmospheric neutrinos [4]. For the last twenty years, the
discrete symmetries of flavors have been developed; that is
motivated by the precise observation of flavor mixing
angles of leptons [5—14].

Many models have been proposed by using the non-
Abelian discrete groups S3, A4, S4, As, and other groups
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with larger orders to explain the large neutrino mixing
angles. Among them, the A, flavor model is an attractive
one because the A, group is the minimal one, including a
triplet irreducible representation, which allows for a natural
explanation of the existence of three families of leptons
[15-21]. However, a variety of models is so wide that it is
difficult to show clear evidences of the A, flavor symmetry.

Recently, a new approach to the lepton flavor problem
appeared based on the invariance of the modular group
[22], where the model of the finite modular group I'; >~ A4
has been presented. This work inspired further studies of
the modular invariance to the lepton flavor problem. The
finite groups Ss, A4, S4, and As are formed as the quotient
groups of the modular group and its principal congruence
subgroups [23]. Therefore, an interesting framework for the
construction of flavor models has been put forward based
on the I'5 ~ A, modular group [22], and further, based on
I, ~ S5 [24]. The flavor models have been proposed by
using modular symmetries 'y ~ S, [25] and I's ~ A5 [26].
Phenomenological discussions of the neutrino flavor mix-
ing have been done based on A, [27-29], S, [30-33], and
As [34]. A clear prediction of the neutrino mixing angles
and the CP violating phase was presented in the simple
lepton mass matrices with A, modular symmetry [28].
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The double covering groups T’ [35,36] and S, [37,38] have
also obtained from the modular symmetry.

The A4 modular symmetry has been also applied to the
leptogenesis [39—41]; on the other hand, it is discussed in
the SU(5) grand unified theory (GUT) of quarks and
leptons [42,43]. The residual symmetry of the A, modular
symmetry has presented the interesting phenomenology
[44]. Furthermore, modular forms for A(96) and A(384)
were constructed [45], and the extension of the traditional
flavor group is discussed with modular symmetries [46].
The level 7 finite modular group I'; ~ PSL(2,Z,) is also
presented for the lepton mixing [47]. Moreover, multiple
modular symmetries are proposed as the origin of flavor
[48]. The modular invariance has been also studied com-
bining with the CP symmetries for theories of flavors
[49,50]. The quark mass matrix has been discussed in the
S; and A, modular symmetries as well [51-53]. Besides
mass matrices of quarks and leptons, related topics have
been discussed in the baryon number violation [51], the
dark matter [54,55], and the modular symmetry anomaly
[56]. Further phenomenology has been developed in many
works [57-75], while theoretical investigations are also
proceeded [76-80].

As well known, in non-Abelian discrete symmetries of
flavors, residual symmetries provide interesting phenom-
enology of flavors. They arise whenever the modulus 7
breaks the modular group only partially. In this work,
we study the hierarchical flavor structure of leptons and
quarks in context with the residual symmetry, in which the
modulus 7z is at fixed points. We examine the flavor
structure of mass matrices of leptons and quarks at nearby
fixed points of the modulus 7 in the framework of the
modular invariant flavor model of A,. It is challenging
to reproduce the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing angles [81,82] and the CP violating
Dirac phase of leptons, which is expected to be observed
at T2K and NOvA experiments [83,84], as well as observed
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements at
nearby fixed points.

We have already discussed numerically both mass
matrices of leptons and quarks in the A, modular symmetry
[53,85], where modular forms of weights 2, 4, and 6 are
used. In the same framework, we discuss the flavor
structure of the lepton and quark mass matrices focusing
on nearby fixed points. For this purpose, we give linear
forms of Y,(z), Y,(z), and Y5(z) approximately by per-
forming Taylor expansion of modular forms around fixed
points of the modulus 7 in the A, modular symmetry.

The paper is organized as follows. In Sec. II, we give a
brief review on the modular symmetry and modular forms
of weights 2, 4, and 6. In Sec. III, we discuss the residual
symmetry of A, and modular forms at fixed points. In
Sec. IV, we present modular forms at nearby fixed points. In
Secs. V and VI, we discuss flavor mixing angles at nearby
fixed points in lepton mass matrices and quark mass

matrices, respectively. In Sec. VII, the numerical results
and predictions are presented. Section VIII is devoted to a
summary. In Appendix A, the tensor product of the A,
group is presented. In Appendix B, the transformation of
mass matrices are discussed in the arbitrary bases of S and
T. In Appendix C, the modular forms are given at nearby
fixed points. In Appendix D, we present how to obtain
Dirac CP phase, Majorana phases and the effective mass of
the Ouvpf decay.

II. MODULAR GROUP AND MODULAR FORMS
OF WEIGHTS 2, 4, 6

The modular group I" is the group of linear fractional
transformation y acting on the modulus 7, belonging to the
upper-half complex plane as

b
Teyrzﬂ, where a,b,c,d € Z and
ct+d
ad—bc =1, Im[z] >0, (1)

which is isomorphic to PSL(2,Z) = SL(2,2)/{I,-I}
transformation. This modular transformation is generated
by S and T,

Sit—> ——,
T

T:t—>7+1, (2)

which satisfy the following algebraic relations:

§? =1, (ST)® =1 (3)

We introduce the series of groups T'(N) (N = 1,2,3, ...),
called principal congruence subgroups of SL(2,2Z),
defined by

(V) = {(“ Z) e SL(2,2),

c

(20 )]

For N =2, we define I'(2) =T(2)/{I,—I}. Since the
element —I does not belong to I'(N) for N > 2, we have
[(N) =T(N). The quotient groups defined as Iy =
[/T(N) are finite modular groups. In these finite groups
Iy, TN =T is imposed. The groups I'y with N = 2, 3,4, 5
are isomorphic to S;, A4, S4, and As, respectively [23].

Modular forms of level N are holomorphic functions
f(z) transforming under the action of I'(N) as

flrr) = (et +d)*f(z). y€T\). (5)

where k is the so-called as the modular weight.
Superstring theory on the torus T2 or orbifold T?/Zy has
the modular symmetry [86-91]. Its low energy effective
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field theory is described in terms of supergravity theory,
and string-derived supergravity theory has also the modular
symmetry. Under the modular transformation of Eq. (1),
chiral superfields # transform as [92],

P = (et +d)pD (), (6)

where —k; is the modular weight and p{!)(y) denotes an
unitary representation matrix of y € I'y.

In this paper, we study global supersymmetric models,
e.g., minimal supersymmetric extensions of the Standard
Model (MSSM). The superpotential, which is built from
matter fields and modular forms, is assumed to be modular
invariant, i.e., to have a vanishing modular weight. For
given modular forms, this can be achieved by assigning
appropriate weights to the matter superfields.

The kinetic terms are derived from a Kihler potential.
The Kihler potential of chiral matter fields ¢/) with the
modular weight —k; is given simply by

1
K matter — (I 2, 7
where the superfield and its scalar component are denoted
by the same letter, and 7 = 7* after taking the vacuum
expectation value (VEV). Therefore, the canonical form of

the kinetic terms is obtained by changing the normalization
of parameters [28]. The general Kéhler potential consistent
with the modular symmetry possibly contains additional
terms [93]. However, we consider only the simplest form of
the Kéhler potential.

For I'; ~ Ay, the dimension of the linear space M, (T3)
of modular forms of weight & is k + 1 [94-96]; i.e., there
are three linearly independent modular forms of the lowest
nontrivial weight 2. These forms have been explicitly
obtained [22] in terms of the Dedekind eta-function 7(z),

0= [(1-g).  q=explins). (8)
n=1

where 7(z) is a so-called modular form of weight 1/2. In
what follows, we will use the following base of the A,
generators S and 7 in the triplet representation:

. -1 2 2 1 0 O
S =3 2 -1 21, T=]10 o 0 |, (9)
2 2 -1 0 0 ?

where @ = exp(i$x). The modular forms of weight 2,

Ygz) = (Y(z),Y2(7), Y3(z))! transforming as a triplet of
Ay, can be written in terms of #(7) and its derivative [22],

) (e D) (@ 2)/3) 20 (G0)
I(T)_2ﬂ<n(f/3)+n((7+1) 23 1G9 )
LS )3 H(E+2)3)
Ya(0) ﬂ(ﬂ(7/3)+ M+ 1/3) n((7+2)/3)>’
L Si(R) e+ DB) i+ 2)/3)
Y3()_ﬂ<n(f/3) et /3 77((T+2)/3)>' (10)

The triplet modular forms of weight 2 have the following ¢ expansions:

Y (7) 1 +12¢g + 364> + 12¢° + ...
YO = | Vo) | = | —64"3(1+7q+842+...) |. (11)
Y;(7) —18¢*3(14+2g +5¢* + ...)
They satisfy also the constraint [22],
(Y(7))* +2Y,(1)Y5(z) = 0. (12)

The modular forms of the higher weight, k, can be obtained by the A, tensor products of the modular forms with weight

2, Ygz), as given in Appendix A. For k = 4, there are five modular forms by the tensor product of 3 ® 3 as

Y<14) = Y% + 2Y2Y3,

vy Y2 - Y)Y,
Yg4) - Y(24) = Y% - Y] Y2 N
Yy Y3 —Y,Ys
where Y;‘,‘,)
of A, as

YY/‘):Y%—FZYIY%

Y\ = vi4+2v,v5 =0,

(13)

vanishes due to the constraint of Eq. (12). For k = 6, there are seven modular forms by the tensor products
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Ygﬁ):Y?+Y§+Y%—3Y1Y2Y3a

6
v\ Y3 +2Y,Y,Y;
Y = | y9 | = rr, 21y, |
y© Y3Y; +2Y3%Y,

By using these modular forms of weights 2,4,6, we discuss
lepton and quark mass matrices.

III. RESIDUAL SYMMETRY OF A4
AT FIXED POINTS

A. Modular forms at fixed points

Residual symmetries arise whenever the VEV of the
modulus 7 breaks the modular group I' only partially.
Fixed points of modulus are the case. There are only two
inequivalent finite points in the fundamental domain of T,
namely, 7 =iand 7 = w = —1/2 + i/3/2. The first point is
invariant under the $ transformation z = —1/7. In the case of
A, symmetry, the subgroup Z3 = {I,S} is preserved at
7 = i. The second point is the left cusp in the fundamental
domain of the modular group, which is invariant under
the ST transformation 7= —1/(z+ 1). Indeed, Z3" =
{I,8T,(ST)?} is one of subgroups of A, group. The right
cuspatz = —w? = 1/2 4 iy/3/2isrelatedtor = wbythe T
transformation. There is also infinite point 7 = ioco, in which
the subgroup Z! = {I,T,T?} of A, is preserved.

It is possible to calculate the values of the A, triplet
modular forms of weight 2, 4, and 6 at 7 =i, 7 = w, and
7 = ico. The results are summarized in Table I.

If a residual symmetry of A, is preserved in mass
matrices of leptons and quarks, we have commutation

Y, Y3 +2Y,Y,Y;
Y3Y, +2Y5Y,

(14)

relations between the mass matrices and the generator G =
S, T,ST as

[M}L?LMRL’G] =0, M., G| =0, (15)
where M; denotes the mass matrix of charged leptons and
quarks, My and M ; on the other hand, M, denotes the
left-handed Majorana neutrino mass matrix M,.

Therefore, the mass matrices M TEM g M f]M ¢ and M,
could be diagonal in the diagonal base of G at the fixed points.
The hierarchical structures of flavor mixing are easily realized
near those fixed points. However, we should be careful with
the generator S, in which two eigenvalues are degenerate. At
7 = i, one (2 x 2) submatrix of the mass matrix respecting S
are not diagonal in general since two eigenvalues of S are
degenerate such as (—1, 1, —1). Therefore, the S symmetry
provides us an advantage to reproduce the large mixing angle
of neutrinos as discussed in Sec. V.

B. Diagonal base of S and ST

1. Diagonal base of S

The modular forms of Eq. (10) is obtained in the base of
Eq. (9) for S and T In order to present the mass matrices in
the diagonal base of S, we move to the diagonal base of S as
follows:

-1 0 0 1 0 0 -1 0 0
VaSVi, =1 0 1 0 |, Vusvh=10 -1 0|, VaSVi,=] 0 -1 0|, (16
0 0 -1 0 0 -1 0 0 1
where
TABLE 1. Modular forms of weight k =2, k =4, and k = 6 at fixed points of 7.
k r T=1 T=w T=1i00
2 3 Yo(1,1 =3, -2+ /3) Yo(1,0, -1 w?) Yo(1,0,0)
4 3 (6-3V3)Y3(1,1,1) 3Y3(1. 1w, 0?) Y%(1,0,0)
{1} Y2{6v/3-9,9 — 6/3} {0.272w} {r2.0}
6 3 3Y3(=3 +2v3,-9 + 53,12 - 7/3) 0 Y3(1,0,0)
3 3Y3(=12+7v3,3 - 2v3,9 - 5V3) Y3 (-1, 20.20?) 0
1 0 I v
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2 1 1
Vo V6 Ve 1 00

— IR L
VSi:Pi /3 /3 3 s Pl_ 01 0
0 —L L 00 1

V2 ooV2

Then, the generator 7" is not anymore diagonal.
If there is a residual symmetry of A, in the Dirac mass
matrix Mg, for example, Z5 = {I, S}, the generator S

commutes with M;LM RL>
[M;eLMRL’ §]=0. (18)

Therefore, the mass matrix is expected to be diagonal in the
diagonal base of S. However, the eigenvalue —1 of S is
degenerated, and so one pair among off diagonal terms of
M;LM gL 1s not necessarily to vanish depending on V;
of Eq. (17). For diagonal matrices S = (-1,1,-1),
(1,-1,-1), and (—1,—1, 1), those are

x 0 X x 0 0 X x 0

M;LMRL: 0 x 01,]0 x x ], x x 0],
X 0 X 0 x x 0 0 x

(19)

[T L

respectively, where “x” denotes nonvanishing entry. Thus,
one flavor mixing angle appears even if there exists the
75 ={1,S} symmetry.

20* 20 1
VSTl - Pl _a)Z 2w 2 s P4
202 - 2

and P; (i =1, 2, 3) are given in Eq. (17). The order of
eigenvalues of ST depends on P;. We have eigenvalues
(w, w*,1) for P,, (w*,1,w) for P3, (1, ®, w?) for P4, and
(1,w?, w) for Ps, respectively.

In the diagonal bases of S and ST, the Dirac mass matrix
My, is given by the unitary transformation as (see
Appendix B)

Mg = Mg, V. Mg = Mg, Vg, (23)
respectively. On the other hand, the Majorana mass matrix
M, is given as

My =VaM Vi, My = VM Vg, (24)
respectively. We will discuss the lepton and quark mass
matrices in the diagonal bases of the generators by using
these transformations.

100
p,=[0 0 1]. (17
01 0

2. Diagonal base of ST and T

If there exists the residual symmetries of the Ay
group Z37 ={I,ST,(ST)*} or zZY ={I,T,T*}, we
have

My, My, . ST] =0, My Mg, . T] =0, (20)

respectively, which lead to the diagonal M};LM g because
ST and T have three different eigenvalues.

The generator T is already diagonal in the original
base of Eq. (9). On the other hand, we can move to the
diagonal base of ST by the unitary transformation Vg as
follows:

@ 0 0
VeriSTVi, =P 0 o 0 |PT, (21)
0 0 1
where
0 0 1 0 0 1
01 0|, P=|10 , (22)
1 00 0 1

IV. MODULAR FORMS AT NEARBY
FIXED POINTS

The mass matrices of leptons and quarks have simple
flavor structures due to simple modular forms at fixed points.
At 7 = i, those mass matrices have one flavor mixing angle
because the representation of S for the A, triplet has two
degenerate eigenvalues. On the other hand, at 7 = @ and
7 = ioo, the square of the mass matrix is diagonal one
because ST and T of the A, triplet have three different
eigenvalues. Therefore, the modulus 7z should deviate from
the fixed point to reproduce the observed PMNS and CKM
matrix elements. We present the explicit modular forms by
performing Taylor expansion around fixed points.

A. Modular forms at nearby z=i

Let us discuss the behavior of modular forms at nearby
7 =i. We consider linear approximation of the modular
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forms Y,(z), Y,(z), and Y5(r) by performing Taylor
expansion around 7 = i. We parametrize 7 as

T=1i+e, (25)

where |e| is supposed as |e| < 1. We obtain the ratios of the
modular forms approximately as

Ya(o) | e\ (1 — Y3(7) | o) (—
Y1<‘[)_(1+ 1)(1 \/g)’ Yl(’[)_(1+ 2)( 2+\/§)’
€ = 162 = 2.05ie. (26)

2

These approximate forms are agreement with exact numeri-
cal values within 0.1% for |e| < 0.05. Details are given in

Appendix C.1. The higher weight modular forms Y Ek) in
Egs. (13) and (14) are also given in terms of ¢; and ¢, in
Appendix C.1.

B. Modular forms at nearby 7=w

We perform linear approximation of the modular forms
Y(7), Y,(7), and Y3(z) by performing Taylor expansion
around 7 = w. We parametrize 7 as

1 3
T=w+e:—2+\é—i+e, (27)
where we suppose |e| < 1. We obtain the ratios of modular
forms approximately as

Y5(7) Yi(zr) 1,
~w(l ~——w(1
1
€1 :§€2:2.1i€. (28)

These approximate forms are agreement with exact numeri-
cal values within 1% for |e| < 0.05. Details are given in
Appendix C.2.
The higher weight modular forms Y l(-k) in Egs. (13) and
(14) are also given in terms of ¢; and ¢, in Appendix C.2.
C. Modular forms towards 7=ico

We show the behavior of modular forms at large Imr,
where the magnitude of g = exp (2ziz) is suppressed.
Taking leading terms of Eq. (11), we can express modular
forms approximately as

Y, (1) = —6pies,
€= e 2m_(29)

Yi(7) =21+ 12pe,
Y3(7) 5—18]7%5%,

p= e2riRer
Indeed, we obtain ¢ = 3.487 x 107® for Imr = 2. The
leading correction is e = 0.0152 in Y,(z) while other
corrections of €3 and € is negligibly small. Then,

Y1 (20)] = 1.00004,  |¥,(2i)| ~0.09098,
|Y5(2i)| ~ 0.00413, (30)

which agree with exact values within 0.1%. Higher weight
modular forms Y Ek) in Egs. (13) and (14) are also given in

terms of p and e approximately in Appendix C.3.

V. LEPTON MASS MATRICES IN THE A,
MODULAR INVARIANCE

A. Model of lepton mass matrices

Let us discuss models of the lepton mass matrices. There
are freedoms for the assignments of irreducible represen-
tations of A, and modular weights to charged leptons and
Higgs doublets. The simplest assignment has been given in
the conventional A, model [17,18], in which three left-
handed leptons are components of the triplet of the Ay
group, but three right-handed charged leptons, (e¢, u¢, 7¢),
are three different singlets (1,1”,1) of A,, respectively.

Supposing neutrinos to be Majorana particles, we
present the neutrino mass matrix through the Weinberg
operator. The simple one is given by assi%ning the A, triplet
and weight —2 to the lepton doublets, where the Higgs
fields are supposed to be A, singlets with weight 0. On the
other hand, the charged lepton mass matrix depends on the
assignment of weight for the right-handed charged leptons.
If those weights are O for all right-handed charged leptons,
the charged lepton mass matrix are given in terms of only
the weight 2 modular forms of Eq. (10). That is the
simplest one.

Alternatively, we also consider weight 4 and 6 modular
forms of Egs. (13) and (14) in addition to weight 2 modular
forms by taking nonvanishing weights. The assignment is
summarized in Table II.

1. Neutrino mass matrix

Let us begin with discussing the neutrino mass matrix.
The superpotential of the neutrino mass term, w, is given as

1
W, = (H H,LLY™),, (31)

where L is the left-handed A, triplet leptons, H, is the
Higgs doublet, and A is a relevant cutoff scale. Since the
left-handed lepton doublet has weight —2, the superpoten-

tial is given in terms of modular forms of weight 4, Yg4>,

Y;4>, and YY}). By putting the VEV of the neutral compo-
nent of H,, v,, and taking (v,, v, v;) for left-handed

neutrinos of L, we have

"There is a possible assignment of weight —1 to the lepton
doublets of the A, triplet. The neutrino mass matrix is given in
terms of weight 2 modular forms through the Weinberg operator.
However, this case is too simple to reproduce the lepton mixing
angles as discussed in Ref. [28].
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TABLE II. Assignments of representations and weights —k; for MSSM fields and modular forms.

¢ pf 1 ©) y(© @ vy y@ )
L (e, 6, 79) H, H, Yy, Y vy, v, vy Y,
SU(2) 2 1 2 2 1 1 1
Ay 3 1,1, 1) 1 1 3 31 3
—k; -2 I: (0, 0, 0) 0 0 k=6 k=4 k=2
I: (—4,-2,0)

WV, — VU — Vi,

2
v
w, = X" v, — vy, — i, | ® Yg4)+(yez/e +v ) ® gplYgd') + (Vevy + v, +rr,) @ g,,ZYY,‘)
200, — Vil — U,y
2
= % [(21/31/6 — Uyl — v,vﬂ)YY‘) + v, —vu, — uﬂye)Yg4) + U, — v, - vevT)Yf)

(Ve + vt + V)G Vi + (e + vy + vk gy |, (32)
where Yg4>, Yg4), and Yg‘,‘) are given in Eq. (13), and g,, g,, are complex parameters. The neutrino mass matrix is written as
follows:

, S C 100 00 1
vll
M= v o) |+ g Y10 0 1] +g.Y [0 1 0 . (33)
—Y§4) —Y§4) 2Yg4) 01 0 1 00 y

2. Charged lepton mass matrix

The relevant superpotentials of the charged lepton masses are given for two cases as follows:

It wp = a,eHyYY'L + B HYPL + o HYPL, (34)
0wy = a,eHyYOL + e HyYS'L + B H YL + y o H YL, (35)

where L is the left-handed A, triplet leptons and H , is the Higgs doublet.
The charged lepton mass matrices Mg are given as

a 0 0 vy vy
I Mg=v,| 0 . 0 y? vy : (36)
0 0 7, @ 40 O
Y3 YZ Yl RL
a 0 0 ARERR G GRS G SO A
I: Mg=wv,| 0 B 0 yY Y\ Yy : (37)
0 0 2 2 2

RL

respectively, where coefficients «,, 3., and y, are real parameters while g, is complex one, and v, is VEV of the neutral
component of H .

Model parameters of leptons are @,, fo, ¥e, (9¢)> gu1, and g,, in addition to the modulus z. We examine these mass
matrices around the fixed points.
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B. Lepton mass matrix at z=i
1. Neutrino mass matrix at T=i

We get the neutrino mass matrix at 7 = i by putting modular forms in Table I into Eq. (33) as

5 2 -1 1 1 0 0 0 0 1
My:%(6_3ﬁ)yg -1 2 =1 |+g|0 0 1|+g|l0 1 0]/, (38)
-1 -1 2 01 0 1 0 O
where
6v3 -9 9-6V3
= g =30, =2 g, =—V3g,. 39
g1 6_3\/§91 9u1 92 6—3\/592 92 ( )

We move to the diagonal basis of S. By using the unitary transformation of Eq. (22), Vs,, the mass matrix is transformed as

g1+ 9 0 0
io=vomyvh =il 0 34l 3 40
v=VllVe =310 91 =79 5 0 . (40)
0 By, 3-g1+39

Off diagonal entries of (2,3) and (3,2) are nonzero as discussed in Eq. (19). At the limit of vanishing ¢; and g,, the lightest
neutrino mass is zero, and other ones are degenerated.

In order to discuss the flavor mixing angle, we show MM, as

L 91 + g 0 0
M =i, = () |0 G eRelo] - Rel] 4 (6Relge)+ 20mlgigs) |, @)
0 “3(6Relg] —2im[gigs]) G, — 6Re[g)] + 3Re[g,)
where
G, =9+ |g*+ |gl* - Re[g}9s). (42)

The imaginary part of this matrix is factored out by using a phase matrix P, as

, o, [l el 0 0
() 2| 0 GoreRelnl-dRels]  VAVIRGDTE (el | B @)
0 V3\9Re[p])> + (Imlgiga])* G, —6Re[g(] + 3Re]g)]
where md, = g1 + 6%,
1 0 0 mg, + mgy = 18 +2(|g1 > + [92]*) — 2Re(g; 92).
=01 o [ (44) mimls = |9 = gt — & + 192, (46)
0 0 e

in the unit of (v2/A)*Y§. The mixing angle between the

with second and third family, 8%, is given as

1 \/9(Re[g,])* + (Im[g; g2])
V3 Re[g,] —2Re[g)]

On the other hand, mass eigenvalues mg,, m,, and mgz of  [f we put Re[g,] = 2Re|g;], we obtain the maximal mixing
Mf(o) satisfy angle 6%, = 45°. Thus, the large mixing angle is easily

Im[g; g,
tan ¢p* = . 45 tan 265, =
3Relg) 43) 5

(47)
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obtained by choosing relevant parameters g; and g,. It is
also noticed that 6%; vanishes for g, = 0. Thus, 8%, could be
0°-45° depending on g; and g,.

2. Neutrino mass matrix at nearby t=i

As discussed in the previous subsubsection, the large
04, is easily reproduced at = i. The large flavor mixing
angle between the first and second family, €, is also
realized at nearby r = i. The mass matrix of neutrinos in
Eq. (33), M,, are corrected due to the deviation from the
fixed point of 7 = i. Putting modular forms of Eq. (26) (see
also Appendix C.1) into M,, the corrections to Eq. (41) are
given by only a small variable € in Eq. (26) in the diagonal

|

base of S. In the first order approximation of e, the

. 21) . .
correction M,,( ) is given as

) 2 0 51/2 51/3
2(1) Uy v *
My — (X YO) 502 5y4 51/5 ) (48)
i3 05 Ous

where 0,; (i = 2—6) are given in terms of ¢, g;, and g,. Due
to the first order perturbation of €, we can obtain the mixing
angle 64,, which vanishes in the zeroth order of perturba-
tion. In order to estimate the flavor mixing angles, we
present relevant o,; explicitly as

b = (a1 + )1 + Ve + e + 63 +.00)(1+ V3 =200 + 616+ 91) + (1= Vo)
~ —3.34(9’1‘ + gz)el —(10.04 +3.35¢g, — 2.4592)€’f,
b = {51+ )3~ V3)er + (V3= + 613 = V33~ 1) - 23
+ 63[(2\/:; -3)3-g1)-(3- \/g)gﬂ} o~ 0.90(ng + g;)el + (2.69 — 0.90g, — 2.45g2)6’1‘, (49)

where e¢; = 2.05i¢, and €, = 2¢; in Eq. (26) is used in last approximate equalities.

Let us estimate the mixing angles, 8%, and 6%, in terms of ,, and 6,5. The eigenvectors of the lowest order in ./\/15(0)

are given,

for eigenvalues mg,, mf,, and mg; of Eq. (46), respectively.
We can calculate corrections of eigenvectors in the first
order of e. In order to estimate the nonvanishing mixing

angle between the first and second family, we calculate the

. . 1 . . .
eigenvector of first order, uiz), which is given,

) = C5ul)) + Chul? (51)

vl

where

WM )

2 2

|
= —
my; — My

(52)

Therefore, the nonvanishing (1-2) mixing appears at the

first component of ”1(112) as

! 5%, cos 04, — &, sin 04, e'?
”52)[1» 1] =03 = 2 23 ~ 93 3¢

(53)

2 2
My — My,

0
14
cos 0,

s v —i(/)l'
sin @5;e

0
, Y= sinesy |, (50)

v ,—id”
cos 05;e

|

Here, we take 2¢g; = ¢,, which leads to the maximal mixing
04, = 45° as seen in Eq. (47). Then, the mass squares are
given from Eq. (46) as

; m3y =33+ || — 2V3[Reg, |).
), (54)

in the unit of (v2/A)*Y{. Supposing NH of neutrino
masses, we take the observed ratio of AmZ,/Am?, =
34.2, which leads to g; = 0.61 by neglecting the imaginary
part of g;. Then, J;, and 5, are given in terms of € by using

€; = 2.05ie in Eq. (26) as follows:

m(2)1 = 9|9%

mgz =33+ [gi| + 2v/3|Reg,

¢ = —18.6ic — 12.6ic*, &3 = —1.76ie — 0.52i¢",

(55)
Neglecting 6,5 because of |5;,| > |6!5], we have
o o5 18.6€ + 12.6¢*
uilz)[l,l]z ygcos 33:__ €+ € . (56)
Mg, — Mg, 0.383v2
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where 0%, =45° is put. We obtain u'})[1,1]0.55
(07, ~35° by putting € = 0.05i. Thus, the large (1-2)
mixing angle could be reproduced by the correction terms
in the neutrino mass matrix due to the small deviation from
7 = i. It is remarked that the sum of three neutrino masses
is around 110 meV taking 2g; = g, = 1.22.

On the other hand, the nonvanishing (1-3) mixing is
derived as

% ot AV * v i
55, sin 055 + 5i5 cos O55e

ud[11] = ¢4, =

51= (57)

2 2
Mz — Ny,
: 2
Since (mg;

ug)[l, 1] is suppressed compared with ul(jlz)[l, 1]. Indeed,

the (1-3) mixing angle is (3(0.01). Therefore, the observed
013 ~ 0.15 of the PMNS matrix should be derived from the
charged lepton sector. It is noted that the correction to the
|

—m3,) is 30 times larger than (m3, —m3,),

a, 0 0 Yl Y3 Y2
0 p, O Y, Y| Y3
0 0 Ye Y3 Y2 Y1

ME:’Ud

a
=10
0

(2-3) mixing is also O(0.01) because ul%) [2,1] is sup-
pressed due to the large (m3; — m3,).

We can also discuss the case of IH of the neutrino masses
by taking Am2,,/ Amso1 = —34.2. The large mixing angles
05 and 0%, are obtained if we take g, = g,/2 = —2.45. The
sum of three neutrino masses is around 90 meV.

Thus, our neutrino mass matrix is an attractive one at
nearby 7 = i. Therefore, we should examine the contribu-
tion from the charged lepton sector carefully for both NH
and IH of neutrinos.

3. Charged lepton mass matrix I at T=i

The charged lepton mass matrix [ is the simplest one,
which is given by using only weight 2 modular forms. It is
given at fixed points of 7 = i in the base of S of Eq. (9) as

follows:

0 0 1 24+vV3 1-3

pe O 1-3 1 2+V3 . (58
0 7./ \2++V3 1-3 1

where @&, = v,Yoa,, f, = v,Yofe. and 7, = v,Yoy.. We move to the diagonal base of S. By using the unitary
transformation of Eq. (17), the mass matrix is transformed as presented in Eq. (23). Then, we have

0 0
e .3 B .

M = VoMMV, = 5|0 @+202-VIE+
0 —(2=3)(a?

which is a real matrix with rank 2.

Since the lightest charged lepton is massless at 7 = i, the
small deviation from 7 = i is required to obtain the electron
mass. It is remarked that the flavor mixing between second
and third family appears at the fixed point 7 = i as seen in
Eq. (59). It is given as

L= V)@ -2+ 72)

tan 2605, = —
: 22V3-3)(72 - @)
1 2
=- —% (60)
\/g 7@ —a,
which leads to 65, ~ 15° for a, > BV, 0%, ~ —15° for
7o > .. @, 05, ~ 45° for B.>a,>7,, and 0, ~ —45°

for B, > 7, > @,, respectively. This mixing angle leads to
|

5 =%{W§ —1)ej +

+[(3V3=5)e; +

(V3 = 2)e3)a2 +

(4 =2V3)et +

(7-4V3)es]7e} = 7

0
(7T-4V3)72  —Q-V3(@-28+7) |, (59
SR+ (T-4B)@R+22-VI)B + 72

0,3 of the PMNS matrix by cooperating with the neutrino
mixing angle 6%, in Eq. (47).

4. Charged lepton mass matrix I at nearby t=i

In order to obtain the electron mass, 7 should be deviated
a little bit from the fixed point 7 = i. By using modular
forms at nearby r = i in Eq. (26), we obtain the additional

contribution M?l) to /\/lé(o) in Eq. (59) of order € as

0 6@2 5@3

2(1 .
MV = | 8 by Bus |
5:3 5:5 566

(61)

where 8,; are given in terms of ¢, &2, 2, and 72. In order to
estimate the flavor mixing angles, we present relevant §,; as

(3V3 = 5)es]p?

e1[(3V3-5)a2 +2(2V3 = 3)B + (9 - 5V3)72]. (62)
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5(33 :\/Lg{
V6

+[(V3=3)ej + (3-2V3)e3]72} = ——€;[(3V3 = 5)@ +2(2 = V3)B? + (1 = V3)72].

2

(0= 5V3)e; + (V3 ~ 12)65Ja2 +[(4V3 = 6)ei + (9 - 5vA)ei

(63)

where €, = 2¢; in Eq. (26) is used in the last approximate equalities. The mixing angle of first and second family as

2|6£’2|

4 9-53 4

tan 2605, =

where the denominator comes from the (2,2) element of
Eq. (59). In the last approximate equality, we take 7, >
&,. ., which is the case in the numerical fits of Sec. VII. We
estimate 65, to be 0.22 at |e;| = [2.05i¢| = 0.1. This magni-
tude of 6, leads to €3 ~0.15 of the PMNS matrix by
cooperating with the neutrino mixing angle 6%, in Eq. (47).
The mixing angle between first and third family 6{, is found

to be much smaller than 65, in the similar calculation.
In conclusion, the charged lepton mass matrix I com-
bined with the neutrino mass matrix of Eq. (33) is expected
|

@22+ T-437

(3+ \/§)|€’f| ~4.46|¢;

N R IEPa L (69

|

to be consistent with the observed three PMNS mixing
angles at nearby 7 = i. Indeed, this case works well for both
NH and IH as seen in numerical results of Sec. VII. The
output of the Dirac CP violating phase and the sum of
neutrino masses will tested in the future experiments.

5. Charged lepton mass matrix Il at t=i

We discuss another charged lepton mass matrix II at
7 = i, which is

a 0 0\ (Y +1" ¥ +g¥i® v +g v}
Mg=v4] 0 B. O Y yi9 v
00 n) Ny yo) o
@ 0 2V3-3+46.(1V3-12) 12=7V3+g.(9-5V3) 5V3-9+g.(3-2V3)
=v,| 0 B. O 1 | X | )
0 0 7 —-2+3 1-v3 )

where @, = 3v2Y3a,, B = (6 —3V/3)v3Y3p, and 7, = v3Yp,.
We move to the diagonal base of S. The mass matrix M'};;M g is transformed by the unitary transformation Vg, as

22
2(0) _ + i3
M = VoMMV, =3 | 0

where

A=7-4V3, B = 26— 153,
Ble - B(ge + g:) =2B Re[ge]’ B

Ai/% + 3(A + Ble =+ |ge|2C)&§
0  —Dyz —3(By. + Ag; + Cy.)a;)

C =97 -56V3,
e — B(l + |ge|2)7

0
_Dyg - 3(B2€ +Age + Cg:)ag) ’ (66)
72 +3(C+ By, + |g.|*A)a2

D =2—/3,

A2=C, D*=A, A+C=4B. (67)

The flavor mixing between the second and third family appears at the 7 = i as well as the charged lepton mass matrix I.

The mass eigenvalues satisfy

mgl = 3/}%’ mﬁzmﬁa =81(97 - 56\/§)&273’

m2y +m2y = 6(2 = V/3)72 + 3(78 — 45V/3)(2 + 2Re[g,] + |g.[*) 2.

(68)

The imaginary part of the matrix in Eq. (66) is factored out by using a phase matrix P, as
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0
—V/[D72 +3(B,, + E,)&)]* + F2a

P, (69)

252 0
3
EPe 0 A?% + 3(A + Ble + |ge|2C)€¥2
0 —/[D72+3(By +E,)&2)]* + F2d}
where
= (A + C)Relg,]. = (A-C)Im[g.], (70)
and
1 0 0
p,=10 1 0 |, (71)
0 0 e
with
F ~2
tan ¢¢ = e (72)

Dy; +3(By + E,)a;

The mixing angle 65, is given as

—/[D72 +3(By + E)&2)]* +
(2\/_ 3)}/6 + 3<45 26\/_)<1 - |ge| ) A
(73)

tan 205, =

Neglecting the imaginary part of g, (9. = Re[g,]), it is
given simply as

+3(7 4vV3)(1 + 4g, + ¢2)&2
3(7-4V3)(1 — g2)a

tan 205, = ——=

74
7 7
We take > < @272 due to the mass hierarchy of the
charged lepton masses. There are two possible choices of
@ < 72 and 7% < @2.

In the case of &2 < 72,

~2

tan 205, > —— | 1+ 6(7 — 4V/3)(1 +2g,) =

1
V3 7el
At the limit of &2/72 = 0, we obtain 64; = —15°.
On the other hand, in the case of a2 > y2, Eq. (74) turns

(75)

to

1 1449, + g2

V3 o1-g

which gives |05;| = 0°-45° by choosing relevant g,. Thus,
the large 65, is obtained easily.

tan 205, ~ ; (76)

72+ 3(C+ By, + |g.*A)a?

6. Charged lepton mass matrix II at nearby t=i

The mass matrix of the charged lepton in Eq. (65), Mg is
corrected due to the deviation from the fixed point of 7 = i.
In the first order approximation of €, the correction /\/1125(1)

to /\/lé(o) of Eq. (66) is given by the following matrix:

5el 5@2 563

MO Z |5 8, 6
E e2 e4 e5 |» (77)

5:3 5:5 586

where 8,; are given in terms of ¢, g,, @2, 2, and 72. By the
first order perturbation of €, we can obtain the mixing angle
05,, which vanishes in the zeroth order of perturbation. In
order to estimate the flavor mixing angles, we present
relevant §,; as

5., :izag(g; —D){[(11V3=19) + (413 =T1)g, ]}
—[(15V3-26) + (56v/3 = 97)g.Je3}
+5RBVE= )6 + (1-4v3)e
~(0.193 +0.052g,)@2(g; — 1)} + 0.24072¢],
523 :\/igaz( — D{[3(71V3 = 123) +3(19v/3 =33)g,]¢;

—[3(97V3 - 168) + (263 —45)g,]e5}
7el(1=V3)et + (V3 -2)e3]

g.—1)e

1
+—

V2

—(0.052+0.138¢,)a@( 1—0.8977z¢;,  (78)

where O(f3?) is neglected, and €, = 2¢, of Eq. (26) is taken
in last approximate equalities.

Let us discuss the mixing angles of 65, and 6, of the
charged lepton flavors, which vanish in the leading terms of
the mass matrix. As seen in Eq. (78), both d,, and 6,3 are of
O(@2,72) x €, for g, = O(1). Suppose 7% < &’ to realize
the hierarchy of charged lepton masses in Eq. (68).% Then,
we have mass eigenvalues from Eq. (68) as

“Indeed, a successful numerical result is obtained for P
in Sec. VIL

015005-12



MODULAR INVARIANT FLAVOR MODEL OF A, AND ...

PHYS. REV. D 103, 015005 (2021)

2 92 - \/§) =2

My, =~ s
2 %2 2Refg] + g,
m2, = 3(78 — 45v/3)(2 + 2Re[g,] + |g.*)2, (79)

2 _ 232
mel _Sﬂe’

which lead to

mgy 7+4V3 7e 20
nt,~C Ry g rE )
e3 9e e o,

The mixing angles between first and second family 65,
and between first and third family 6{, are given approx-
imately as

e 562 e 593
912:‘ mgz , 9131‘ m—e3 , (81)
where
Sz ~(0.193 + 0.0SZgJ&%(g’e‘ - 1)6’1‘,
O3 = —(0.052 + 0.13896)5(5@: — I)ET, (82)

respectively. Substituting mass eigenvalues of Eq. (79) into
mixing angles in Eq. (81), we can estimate magnitudes of
05, and 0. The mixing angle of 6, is given as

. ’ (0.193+0.052g,) (g5 — 1)
12 —

~2

a, |,

(2+2Relg,] + \ge|2)7—2€1
e

9(2-/3)
_[(0.193 +0.052g, ) (g2 — 1)(26 + 15v/3) m?, o
9(2+2Relg.] + |g.[?) m,

1(0.193 4+ 0.052¢,)(g: — 1)
2+2Relg,] + 9.

| 7| x 103, (83)

where the mass ration of Eq. (80) is used to remove the ratio
#2/a2. In the last equality, observed masses of the tauon and
the muon are input. Suppose the magnitude of |e}| to be
0.02 as a typical value. As seen in Eq. (83), 67, depends on
g.- Indeed, 69, vanishes at g, = 1 or —3.62, while it is of
order one if |g,| < 1 or |g,| > 1. On the other hand, 6%, is
suppressed due to the factor of 1/m?; as seen Eq. (81).

In conclusion, the charged lepton mass matrix II com-
bined with the neutrino mass matrix of Eq. (33) is expected
to be consistent with the observed three PMNS mixing
angles at nearby 7 =i as well as charged lepton mass
matrix I. Indeed, this case works well for NH, but it leads to
the sum of neutrino masses larger than 120 meV for IH as
seen in numerical results of Sec. VIIL.

C. Lepton mass matrix at 7=w

1. Neutrino mass matrix at T=w
Let us consider the neutrino mass matrix at 7 = w, where
there exists the residual symmetry of the A, group
Z5T = {1,ST,(ST)?}. By putting the modular forms in
Table I into Eq. (33), the neutrino mass matrix is written as

) ; 2 —w? %a) 9 001
_ Va2 2 Z
MU—AYO 5 0} w 1 —1—40)91,2 010]],
%w -1 2w? 100
(84)

where the g,; term of Eq. (33) disappears because of Y(l4) =

0 at 7 = w. We move to the diagonal base of ST. By using
the unitary transformation of Eq. (22), Vg4 or Vgrs, the
neutrino mass matrix is transformed as

2(0 o
M = Vg MM,V

ST4(5)
N
~Gan) | o m-ap o
0 0 ‘1 - guZ|2

(85)

The neutrino mass matrix is diagonal, and two neutrinos are
degenerated at 7 = @. Three neutrino masses are degener-
ate if g, = —0.5. Then, large flavor mixing angles are
possibly reproduced if small off diagonal elements are
generated by the deviation from 7 = .

2. Neutrino mass matrix at nearby t=w

Neutrino mass matrix in Eq. (33), M, is corrected due to
the deviation from the fixed point of 7 = w. After putting
modular forms of Eq. (28) and moving to the diagonal base
of ST by V¢74, the corrections to Eq. (85) are given by only
a small variable ¢ of in Eq. (28). In the first order

approximation of €, the correction /\/l,%(1> to Mf(o) of
Eq. (85) is given by the following matrix:

201 9 1)2 ) 51/1 51/2 5b3
My = <ZXM Y(2)> O, G 65 |, (86)
053 05 O

where §,; are given in terms of €, g,;, and g,,. By the first
order perturbation of €, we can obtain the mixing angle 6%,,
which vanishes in the zeroth order of perturbation. In order
to estimate the flavor mixing angles, we present off
diagonal elements, J,,, 8,3, and 5,5 as
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3 3
O = Z(2+922)€1 +§(1 +6g;)(1 = g,0)€]
9 * 9 * *
o —5(2 + gpr)e —§(5 —6g;1)(1 = g€y,
3 3 )
O3 = g(l +69,1)(2 + g;y)e +Z(1 — Gn)€]
9 9
&~ —§(5 —69,1)(2 + g}s)e —5(1 ~92)
3 * * 3 *
35 =5 (1 =3g5)(1 = gnn)ei =5 (1 = gip)er
9
~ _1(5 +3g;)(1 = g)et +9(1 = g5, ey,

where €; = 2.1ie, and €, = 2¢; of Eq. (28) is used for last
approximate equalities. If we move to the diagonal base of
ST by using Vgr5 instead of V gr4, we obtain the corrections
by exchanging the above results as

(88)

%
5y2 <> 51_/3, 51/5 <> 5!/5'

Indeed, we move to the diagonal base of ST by using V ¢75
for the charged lepton mass matrix II in Sec. V C5.

It is noticed that the off diagonal elements are enhanced
by large coefficients in front of ¢; and €}. For example, |5,5|
could be comparable to diagonal element if |¢;| = 0.1 is
taken. Since the second and third eigenvalues are degen-
erated as seen in Eq. (85), the large (2—-3) mixing angle is
easily obtained due to those corrections. The large (1-2)
mixing angle is also possible by choosing relevant g,; and
g,2. The (1-3) mixing angle is relatively small due to the
fixed mass square difference Am3,. On the other hand, the
sum of neutrino masses may increase if mass eigenvalues
become quasidegenerate. Then, its cosmological upper
bound provides a crucial test for the lepton mass matrices.
Therefore, we should examine the contribution from the
charged lepton sector carefully for both NH and IH of
neutrinos to judge it working well or not. Indeed, we will
see in Sec. VII that the model of the charged lepton mass
matrix I is excluded by the sum of neutrino masses while
the model with the charged lepton mass matrix II is
consistent with it for both NH and IH of neutrino masses.

3. Charged lepton mass matrix I at t=w

We discusses the charged lepton mass matrix [ at the
fixed point 7 = @ by using modular forms in Table I. In the
base of S and T of Eq. (9), the charged lepton mass matrix I
in Eq. (36) is given as

a 0 0 1 -t »
Mg=|0 B, 0 w 1 =le? |,
0 0 7/ \-1lo* o 1

(89)

21 3
- —2+gh)e - 1(4 =3g;)(1 = gnn)e;

8

3 21
7 (4=39,1)2+g)er — 3 (1=gn)e;

3 21
~1 (8+3g;)(1 = gn)es +— (1 =g;,)e

4
(87)

where &, = v,;Yy,, ﬁe =v,Yop,., and 7, = v,Y¢y,.. By
using the unitary transformation of Eq. (22), V¢4, like the
case of the neutrino mass matrix, Mj'EM £ 1s transformed as

a 0 0
9 .
Mi-(O) = VST4MI€MEV:§‘T4 = Z 0 ]/z 0 (90)
0 0 A

It is remarked that it is diagonal one as well as the neutrino
mass matrix in Eq. (85).

4. Charged lepton mass matrix I at nearby t=w

The charged lepton mass matrix in Eq. (89), Mg is
corrected due to the deviation from the fixed point of
7 = w. After putting modular forms of Eq. (28) and moving

to the diagonal base of ST by V gr4, the correction /\/l,%“) to

Mf(o) of Eq. (90) is given in the first order approximation
of € as

661 582 663
MV = 6, b bes |, (91)
6,3 0,5 Oes
where
) 1 1 52 (% * 3 2 ok
O = 100, | € —552 +517e(€1 +€) = 5”@517 (92)
1 i~2 2 x 1 * 3 )
0e3 :Elae(el +e) +if; | € —562 :Elaeelv (93)
.~ 1 1 7 * * 3 I P
Ses = —if? <€1 —§€2> _51ﬂ3<€1 +€5) = _Elﬁgel’
(94)

where ¢, = 2¢; of Eq. (28) is used for last equalities. Due
to f; > 72 > &2, mixing angles 6%, are easily obtained by
using €; = 2.lie as follows:
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2 4.2
9?229§3z§|€1|27|€|7 (95)

which are smaller than 0.1; moreover, 65 is highly sup-
pressed due to the factor &2/42. Thus, the flavor mixing
angles of the charged lepton are very small at nearby the
fixed point 7 = w. The PMNS mixing angles come from
mainly the neutrino sector in this case. Therefore, the
increase of the sum of neutrino masses is unavoidable since
mass eigenvalues become quasidegenerate in order to
reproduce large mixing angles.

5. Charged lepton mass matrix Il at t=w

We discusses the charged lepton mass matrix II at the
fixed point 7 = @ by using modular forms in Table I. The
charged lepton mass matrix II in Eq. (37) is given as

&e 0 0 Ge _szge _nge
Mg=|0 B, 0 -lo 1 o’ |,
0o 0 7, —%a)2 @ 1
(96)
where @, = (9/8)v,Y3as, P = (3/2)v,Y3B,, and

7. = v4Yo7.. By using the unitary transformation of
Eq. (22), Vgrs, which is different from the case of the

charged lepton mass matrix I, M;M g 1s transformed as

Mzzz(o) = VsrsM IEMEVETS
0 0 0
:49_1 0 0 0 . (97)
0 0 4alg.|+ 5 +7

which gives two massless charged leptons.

6. Charged lepton mass matrix II at nearby t=m

The charged lepton mass matrix in Eq. (96), Mg is
corrected due to the deviation from the fixed point of
7 = w. After putting modular forms of Eq. (28) and moving

to the diagonal base of ST by V 475, the correction M,Q,m to
MO of Eq. (97) is given as

0 0 &,
MV =10 0 6], (98)
5:3 525 566

where 8,; are given in terms of ¢, g,, @2, 2, and 72. By the
first order perturbation of ¢, we can obtain the mixing
angles 05, and 6{,, which vanish in the zeroth order of
perturbation. In order to estimate the flavor mixing angles,
we present 9,3 and d,5 as

~ * * * 1~ * *
683 = _20296(2 + ge)(el + €2) + gﬁz(el - 862)

1. * *
+§l}’5(€1 +€3)

~ * 5 3 =21 %
= [-6&%{]@(2 + ge) - Eﬁ% + 5 lyz]el’

~ * * 7 1 * 7 *
S5 = @2|g.|*(—4€] + 2¢3) + B: (551 _8€2>

1 -
R ACE e (99)
where €, = 2¢; of Eq. (28) is used in last approximate

equalities. If % > @2|g,|?, 72, mixing angles 0%, and 6%,
are given,

8 17 10 21
953:§\el|z?|e, 9%:;\6”:;

. (100)

e

where ¢; = 2.1lie in Eq. (28) is taken. Therefore, these
mixing angles are at most 0.1. It is noticed that 65,
vanishes.

On the other hand, if @2|g2| > f2,72, the mixing angle
055 is given,
8411
Sy g—e

¢~ — , 101
13 3 ( )

2’2+g’;€
—€

e e

where |g,| is supposed to be much smaller than 1 in the last
equality. Therefore, 6, is enhanced by taking |g,| ~0.1. It
could be of order 1 if |e| = 0.05. Thus, the flavor mixing
angle 0f, contributes significantly to the PMNS mixing
angle 05.

Indeed, we obtain the allowed region of |e| ~ 0.1 with
|ge| =2 0.2 for NH of neutrinos by performing numerical
scan in Sec. VIL. However, for [H of neutrinos, |¢| ~0.15 is
obtained with large |g,| = 5-10.

D. Lepton mass matrix at 7=ico

1. Neutrino mass matrix at T=ico
Let us consider the neutrino mass matrix at 7 = oo,
where there exists the residual symmetries of the A, group
Z¥ = {1,T,T*}. By putting the modular forms in Table I
into Eq. (33), the neutrino mass matrix is written as

i 2 0 0 1 0 0
My:%Y% 0 0 —1]|+g.l0 0 1]],
0 -1 0 01 0

(102)

where the g,, term of Eq. (33) disappears because of
Y;‘,‘) = 0at7 = ioco. Since 7T is already in the diagonal base
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as seen in Eq. (9), we can write down MM, straightfor-
ward as follows:

MO = pim,
2\ 24 g 0 0
= (XMY5> 0 11— g, 0 :
0 0 11— gul?
(103)

which is a diagonal matrix as well as the neutrino mass
matrix at 7 = o in Eq. (85). Three neutrino masses are
degenerate if g,; = —0.5. Then, large flavor mixing angles
|

0
2(1) U% 2 2 *
My~ XYO _5(1_gy1)(1+2gu2)
5 (2 + g1)(1 +2g;,)

If we take Imz = 1.6, we get |5| ~ 0.21, which is derived in
Eq. (104). Thus, the large (2-3) mixing angle is easily
obtained since second and third eigenvalues are degenerated
as seen in Eq. (103). The large (1-2) mixing angle is also
possible by choosing relevant g,; and g,,. The (1-3) mixing
angle is expected relatively small due to the fixed mass square
difference Am3,. Then, the cosmological upper bound of the
sum of neutrino masses is a crucial criterion to test neutrino
mass matrices. In Sec. VII, we will see that both charged
lepton mass matrix [ and II satisfy the sum of neutrino masses
less than the cosmological upper bound 120 meV for NH of
neutrinos, but they do not satisfy it for IH.

3. Charged lepton mass matrix I and II at T=ico

The charged lepton mass matrices of I and II in Egs. (36)
and (37) are simple at 7 = ioo since the modular forms of
weight 2, 4, and 6 are given in the T diagonal base. Putting
them of Table I into the charged lepton mass matrices in
Egs. (36) and (37), we obtain

a& 0 0
Mg=|0 p, 0], (106)
0 0 7

where &, = v,Yoa,, B, = v,Yof,, and 7, = v,¥,y, for the
caseland &, = v,Y3a,, B = v4Y3p,, and 7, = v,Y oy, for
the case II. The mass matrix MM is given as

@ 0 0
MZ(O) — MTM _ 2
g =EMMg=10 p; 0 (107)
0 7

are possibly reproduced if small off diagonal elements are
generated due to finite effect of 7.

2. Neutrino mass matrix towards T =ioco

Neutrino mass matrix in Eq. (33), M, is given from the
finite correction of 7 = ico. Taking account of modular
forms of Eq. (29), the corrections to Eq. (103) are given by
only a small variable € of in Eq. (29). In the first order

approximation of €, the correction Mf(l) to ME(O) of
Eq. (103) is given in terms of

5= _6e%ﬂiRC‘re—%ﬂImT‘ (104)
It is given by the following matrix:
=6 (1= g,)(1+2g5,)  6(2+g;,)(1 4 29.2)
0 25"(1 = g,1)(1 = g5) (105)
25(1 = g;)(1 = 9,2) 0

The flavor mixing appears through the finite effect
of Im]z].

4. Charged lepton mass matrix 1
and II towards t=ico

The charged lepton mass matrices of I and II in Egs. (36)
and (37) are given from the finite correction of 7 = ico. By
using modular forms of Eq. (29), the corrections to
Eq. (107) are given by only a small variable e of
Eq. (29). In the first order approximation of e, the
correction Mé(l) to MIZE(O) of Eq. (107) is given in terms
of 6 of Eq. (104) as

0 5B s

2(1 ~ -
MU= e 0 a7 |,

saz &2 0

(108)

for the charged lepton mass matrix I. On the other hand, for
the charged lepton mass matrix II, it is

0 -85 (14 2g,)da2
—5p: 0 572
(1+2g;)6a; 672 0
(109)

In both charged lepton mass matrices I and II, (1-2) and
(2-3) families mixing angles 05;, 09,, are given as

5|5z & |72
~2ez|5|’ 953: ~2€

0, ~
12 7 7

= [é],  (110)
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respectively, where 72 > 2 > a2. If we take Imz = 1.6,
the magnitude of 6, ~ |5 ~ 0. 21. This magnitude of 65,
contributes significantly to the PMNS mixing angle 6;5. On
the other hand, the mixing angle 61, between first and third
family is highly suppressed due to the factor &2/72.

It is remarked that the mass matrix of Eq. (109) is
agreement with Eq. (108) in the case of |g,| < 1, apart
from the minus sign in front of (1,2) and (2,1) entries.
However, this minus sign of the charged lepton mass matrix
IT spoils the reproduction of large mixing angles of the
PMNS matrix, 6, and 6,53 together although the charged
lepton mass matrix I is successful to reproduce the
observed PMNS mixing angles.

Alternatively, the observed PMNS mixing angles can be
reproduced in the charged lepton mass matrix II if a large
m1x1ng angle for 6, is obtained by taking |g,| > 1 with

@2 > 2,72 This case is shown numerically in Sec. VIL

VI. QUARK MASS MATRICES IN THE A4
MODULAR INVARIANCE

If flavors of quarks and leptons are originated from a
same two-dimensional compact space, the leptons and
quarks have same flavor symmetry and the same value
of the modulus 7. Therefore, the modular symmetry
provides a new approach towards the unification of quark
and lepton flavors. In order to investigate the possibility of
the quark/lepton unification, we discuss a A, modular
invariant flavor model for quarks together with the lepton
sector.

A. Model of quark mass matrices

We take the assignments of A, irreducible representa-
tions and modular weights for quarks like the charged
|

leptons. That is, three left-handed quarks are components of
the triplet of the A4 group, but three right-handed quarks,
(u¢, ¢ t°) and (d°, s, b°) are three different singlets
(1,1”,1') of Ay, respectively. Quark mass matrices depend
on modular weights of the left-handed and the right-handed
quarks since the sum of their weight including modular
forms should vanish. Let us fix the weights of left-handed
quarks to be —2 like the left-handed charged leptons. If the
weight is O for all right-handed quarks like right-handed
charged leptons, both up-type and down-type mass matri-
ces are given in terms of only the weight 2 modular forms
of Eq. (10). However, this case is inconsistent with the
observed CKM matrix as well known [53]. In order to
overcome this failure, we introduce weight 4 and 6 modular
forms of Egs. (13) and (14) in addition to weight 2 modular
forms [53]. We consider one simple model in the case I,
where the up-type right-handed quarks have different
weights from the weight 0 of the right-handed down-type
quarks. The assignment is presented in Table III, in which
the weight of right-handed up-type quarks is —4. Therefore,
the up-type quark mass matrix is given in terms of the
weight 6 modular forms, in which two different triplet
modular forms are available. This model has already
discussed in Ref. [53] numerically. We reexamine the
flavor structure of these quark mass matrices at nearby
fixed point explicitly, and then we can understand why this
model works well.

Alternatively, another quark mass matrix is also consid-
ered as the case II. In this case, weights of the right-handed
up-type quarks and the down-type ones are same ones,
which are also discussed numerically in Ref. [85]. The
modular forms of weight 6 join only in the first family.

The relevant superpotentials of the quark sector are given
for two cases as follows:

I w, = a,uH,Yy Q+aWHﬂgQ+mLHY ?0 + flcH, Yy Q

+ yut°H, Y Q +yut°H, Y
= aud°H YY) Q + BusH Y Q + yabe HYY 0.

Ir: w, = a,qiH

where g = u, d, and the argument 7 in the modular forms Y;(z) is omitted. Couplings a,, a,.3,,

adjusted to the observed quark masses.

Y0+ dy g H XYY O + B,q5H, Y5 0 + 7,45H, Y5 0,

0.
(111)

(112)

/ /
@ Yo and Yq can be

TABLE III. Assignments of representations and weights —k; for MSSM fields and modular forms.
¢ .C o gC C € JC (6) (6) (4) (2)
0 (u,C,t),(d,S,b) H Y3’Y3’ 3 Y3
SU(2) 2 1 2 1 1 1
Ay 3 a, 1m, 1) 1 3 3 3
—k; -2 I: (—4,-4,-4), (0,0,0) 0 k=6 k=4 k=2

I :(=4,-2.0), (—4,-2.0)
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The quark mass matrices are written as

a 0 O\ Y§6) Yg6) Y§6) g1 0 0 Y’1(6) Y’3(6) Y/2(6)
LM, =0, 0 B O v v yO |+ 0 g 0 || YO y© y© 7
0 0 v, Yoyl yl 0 0 g5/ \y© p© p©

- 3 2 3 2 1 RL

(27} 0 0 Yl Y3 Y2
Md: Vg 0 ﬁd 0 Y2 Yl Y3 ’ (113)
0 0 74 Ys Y, Y/

0 0\ (Y +g,Y@ v 4gv® v gyl

[¢1
q

m:M,=v,| 0 B, O Yg4) Y§4) Yg4> , (114)
0 0 v, y? y® y?

RL

where g, = a,/a,, 9.0 = Pu/Pu> Guz = Vul7u> and g, = a,/a,. The VEV of the Higgs field H, is denoted by v,
Parameters a,, f,, v, can be taken to be real; on the other hand, g,1, 9,2, 9.3, 9u» and g, are complex parameters.

These mass matrices turn to the simple ones at the fixed points, 7 = i, t = w, and 7 = ico. We discuss them in the
diagonal bases of S, ST, and T, respectively.

B. Quark mass matrix at the fixed point of 7=i

1. Quark mass matrix I at t=i

The quark matrix I is given by using modular forms in Table I at fixed point 7 = i in the base of S of Eq. (9) as follows:

a, 0 0 2V3-3+g4(7V3-12) 12-7V3+9,(9-5V3) 5V3-9+g,(3-2V3)
M,=|0 B, 0 5v3-949003-2V3) 2vV3-3+g,(7V3-12) 12-7V3+g,(9-5V3) |.
0 0 7 12-7V3 4 9,39-5vV3) 5V3-9+g,503-2V3) 2v3-34g,(7V3-12)
a O 1 24+V3 1-3
My=|0 B, 0O 1-v3 1 2+3 |. (115)
0 0 7y, 243 1-3 1

where au = 3vuY8au’ Bu = 3vuY8ﬂu’ Yu= 3UuY8yw &d = (6 - 3ﬁ)de%ad’ le = (6 - 3\/§)de%:6¢1

and 7, = (6 - 3v/3)0,Y374.
We move the quark mass matrix to the diagonal base of S. By using the unitary transformation of Eq. (17), Vs,, the mass
matrix M EM . 1s transformed as

0 0 0
9 - ~ 5 - ~ N
MO = VSZM:]MI,{V;‘Q =3 0 andl+ bppi+ cpis  andl + byfs + cnis |. (116)

* =2 x 02 * ~2 ~2 2 ~2
0 a530, + D530, + ¢33¥u andy + bysfy + c337a
Each coefficient is given as

azy = A+ 2BRe[g,] + Clgul* by = 2B + 2(A - B)Re[g,n] + Algial*,

¢ = C+2(C — B)Re[g,s] + 2B|g.3]%, ay; = =B —Agu1 — Cgy = Blgu |,

bys = 2B+ (C = B)guz + (A = B)g;, — Blgwal*, ¢33 = =B+ (C = B)g,3 + (A = B)g;3 + 2Blg.s)*,

ass = C + 2BRe[g,1] + Algu [*, b33 = 2B +2(C — B)Re[g,o] + Clgial*,

¢33 = A +2(A - B)Re[g,3] + 2B|g,5]° (117)

El
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where A, B, and C are given in Eq. (67). On the other hand, the mass matrix M;M 4 1s transformed as

0
2(0 T 3
Md( ) = VSZMdeV§2 = E 0

&% + 2DP% + A7
0 =D} =25 +7)

0 0
—D(a? - 2% +72)
A& + 2D + 73

(118)

It is remarked that the lightest quarks are massless for both up-type and down-type quarks at ¢ = i. Therefore, the small
deviation from 7 = i is required to avoid the massless quark. There exists a nonvanishing flavor mixing angle 8%, at 7 = i as

discussed in Eq. (19). Supposing 7, > ﬁq, @, the mixing angle 65, is given from Eq. (116) as

tan 204, ~ 2

| - B+ (C—B)g,s + (A—B)gi; + 2B|g,s ||

(A= C)(1 + 2Re[g,3])

=2

where A + C = 4B is used and the imaginary part of g, is
neglected in the last equation (g,3 = Re[g,3]). In this case,
tan 2604, vanishes at g,3 = (=1 £ 1/3)/2, while 04, = 15°
at 9uz = 0.

On the other hand, the mixing angle 9‘2’3 is simply given
from Eq. (118) as

D 1
1-A /3’

which leads to 64, = 15°. Since the observed small CKM

tan 209, ~2 120
23

\/[_B + 2BRe[gu3] + 2B|gu3|2]2 + [(C B A)Imgu3]2 ~ 1’ 2933 + 29u3 - 1‘
2\/§B(1 + 2Re[9u3D ,

(119)

_\/§ 1+2gu3

|
2. Quark mass matrix I at nearby t=1i

By using the approximate modular forms of weight 2 and
6 in Egs. (C4) and (C6) of Appendix C.1, we present the

deviations from Mi(o) and Mf,(o) in Egs. (116) and (118).

Then, the additional contribution M2V to MZ? of
Eq. (116) of order € is given in terms of A, B, and C in
Eq. (67) as follows:

0 cs142 5143

mixing angle 95¥M (around 2°) is given by the difference MM = [ 5 S b | (121)
(04, — 64;), the magnitude of g,3 should be small in order 8y 8is bue
to realize the enough cancellation between 64, and 64,.
Indeed, |g,3| is in [0,02,0.07] in our numerical result of
Sec. VIL. where
3 ~ «
b2 = 5 Al(A=B + (B = Clgu)ei + (B + Con)esl(g = Dag + (=28 + (B = A)gu)€}
+(C = B=Byg)es) (g, — V)P + (C = B+ 2Bg,3)e; + (=C + (B = C)gua)e3) (g1 — i}
3 ) -
= Se{{(A+B)+ (B+ C)gllsly = V% + 2(C - 28) = (4 + Bl gz ~ D
+ [=(B+C) +2(2B = C)gus) (915 = D7} (122)
3 * * * ~2
63 = —={[(C— B — (A= B)gu)e = (C+ Bgu)e;)(g,, — D
V2
+ (_28 + (B - C)QMZ)GT + (C -B- Cgu2)€;] (922 - l)ﬁi
+ (A =B +2Bg,)e; + (B+ (B - C)gs)esl(g,s — D7}
3 ) -
=SS G{(C+ B) + (A + Blaal(siy — D + R(C=28) + (B-+ Cla)lgis ~ Vi
+[A+B+202B - C)gusl(g.s — D7} (123)
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In the approximate equalities, €, = 2¢; in Eq. (26) is put. In order to estimate the Cabibbo angle, we calculate the mixing

angle of the first and second family as

2|5u2|

4 B+C

tan 20Y, = ~ = -
2 (anad + byfi + €273

~3v5 C

€3] ~ (3 +V3)|e}| = 4.46|€1, (124)

4
3v2

where the denominator comes from the (2, 2) element of Eq. (116). In the second approximate equality, 7, > @,. 5, and

lg.3] < 1 are put, while ¢,, is given in Eq. (117).
The additional contribution Mj(l) to Mf,(o)

of Eq. (118) of order € is

5112 6d3

MV = | 6 Su Bus | (125)
043 Oas  Oas
where
%—%{M—l)emﬁ 2)es]ad + [(4 - 2V3)ef + (3V3 = S)es)B?
+[(3V3 = 5)et 4 (7 - 4V3)e3]73 ) =~ 7 €[(3V3 = 5)a@ + 2(2V3 = 3)% + (9 - 5V3)72), (126)
b == [9 = SVA)ei + (1V3 - 120 + (45 - )¢ + (9 - SVE)ef
+[(V3=3)ej + (3 -2V3)es] —£ ((3vV3=5)a2 +2(2-V3)Bi+ (1 - V3)72. (127)

In the last approximate equalities, e, = 2¢; in Eq. (26) is put. The mixing angle of the first- and second family as

2[6.|

4 9-5\3 4

d
tan 205, =

(@ +2DF, + A7) 32

where the denominator comes from the (2, 2) element of
Eq. (118). In the second approximate equality, 7, > @ . B4
is taken. Since the magnitudes of 6, and Hfz in Egs. (124)
and (128) are almost same, the phase of ¢; is important to
reproduce the Cabibbo angle. If we take |e;| = 0.1 [see
t=i+e and e =205ic in Eq. (26)], both '\ are
approximately 0.22. Thus, the magnitude of Cabibbo angle
is easily reproduced by taking the relevant phase of e.
Indeed, the observed CKM elements are reproduced at 7 ~
|

& 0 0
M,=10 B, 0 1
0 0 7, -2++3

5 — 30 B —
where a, = 3v,Yja,, f, =

€}

—— (34 V3)|e}| = 4.46]¢t], (128)

i +(0.05-0.09)¢’® with relevant ¢ as numerically dis-
cussed in Sec. VIL

3. Quark mass matrix Il at =i

Let us discuss the quark mass matrix II in Eq. (114) at
fixed points of z by using modular forms in Table I. At
7 = i, both up-type and down-type quark mass matrices are
given in the base of S of Eq. (9) as

2V3-3+4g,(1V3-12) 12-7V3+g,(9-5V3) 5V3-9+g,(3-2V3)

1 1 )

1-3 1

(129)

(6= 3v3)0,Y3p,, and 7, = v, ¥or, (¢ = u.d).

Let us move them to the diagonal base of S. By using the unitary transformation of Eq. (17), Vg3, the matrix M 2M q 18

transformed as (M,V;)"M, V3. Then, we have
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2(0 T
Mq< ) = V53M2Mqu3

A7 +3(A+ By, + |g9,/*C)a3

—[Dy; + 3(By, + Ag, + Cgj)az)] 0

a
3 - . . - _
=5 | D75+ 3(Boy + Ay + Ca)@)] 75+ 3(C+ Big +19,PA)% o |. (130)
0 0 27
with
A=7-4V3, B=26-15V/3, C=97-56V3, D=2-3,

By, = B(g, + g;) = 2BRelg,]. By, = B(1+g,*). A’ =C, D? = A, A+C=4B, (131)

where A, B, C, and D in Eq. (67) are again presented for convenience. The mass eigenvalues satisfy
m2,m2, = 81Ca%72, m2, +mZ, = 6Dy} + 9B(2 + 2Relg,] + |9, 2. m2s = 3. (132)

The mixing angle between first and second family, 67,, is
given as

VID72 +3(By + E)&@) + 934

fan 2012 = (2V3 = 3)75 +3(45 = 26v/3)(1 = |g, ")
(133)

where

E, = (A+ C)Re[gq} = (104 - 60\/§)Re[gq],

F, = (A= C)Im[g,] = (52v/3 = 90)Im]g,]. (134)

Neglecting the imaginary part of g, (g9, = Re[g,]), it is
simply given as

tanz%:_L72+3<7—4\/§)(1+4gq+9§)&§

V3 7 =30 -4v3)(1 - g5

(135)

where |g, | is supposed to be O(1). We take &2, 73 < 7 due
to the mass hierarchy of quark masses. There are two
possible choices of & < 72 and 72 < &2.

In the case of & < 72,

|
which gives 67, = —15° at the limit of a2 /72 = 0. This is
common for both up-quark and down-quark mass matri-
ces because it is independent of g,. Then, the flavor
mixing (CKM) between first and second family vanishes
due to the cancellation between up-quarks and down-
quarks.

On the other hand, in the case of 72 < a7, we
obtain

2
an 267, ~ 1T 49+ 9

AT (137)

where the imaginary part of g, and terms of }731 are
neglected. The Cabibbo angle could be reproduced by
choosing relevant values of g; and g, of order one.
However, the CKM matrix elements V., and V,;, vanish
at ¢ = i. In order to obtain desirable CKM matrix, 7 should
be deviated from i a little bit.

4. Quark mass matrix Il at nearby t=1i

By using modular forms of weight 2, 4, and 6 in

~2
tan 267, ~ L 1+6(7—4V3)(1 +2gq)% ~ —L, Appendix C.1, we obtain the deviation from MZ” in
V3 Yq V3 Eq. (130). Then, the additional contribution /\/lé(]) to
(136) Mé(l) of Eq. (130) of order ¢ is
|
w2
O(a2.73.€1.€,) 02,72, . €1, €) \ﬁ/—% (V3= 1)l + (2 —V3)e]

O(agp }757 €1, 62)

O(&év j;é’ €l ) 62)

BIW3=Der+ @=VAer] B3+ VE)er +3el]

%3+ v3)e; +V3e3] . (138)

Pil4Re(e1) +2(2 = v/3)Re(er)]
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where O(@7.7;.€;.€,) terms are highly suppressed com-
pared with elements (1,3), (3,1), (2,3),(3,2), (3.3) due to
~2 ~ ~ . . « e
p; > o, 72. Therefore, the second and third family mixing
angle 0%, is given as

7Pl G+ Vel + V3| 343
3= le7] = 2.23]e7,
355 Q
(139)
and the first and third family mixing angle 67, is
. HEIVE-Dei+ 2= VI
13 g
3p2
3
f|el|~0613|€*|, (140)
373

where 3ﬁfl in the denominators is the (3,3) element of
Eq. (130), and €, = 2¢; = 4.10ie of Eq. (26) is used. The
ratio 07, /63, ~ 0.27 is rather large compared with observed
CKM ratio |V ,;,/V ;| 2~ 0.08. This rather large 67, spoils to
reproduce observed CKM elements V., and V,, at the
nearby fixed point 7 = i.

C. Quark mass matrix at the fixed point of 7=w®

1. Quark mass matrix I at T=®

In the quark mass matrix I of Eq. (113), the up-type and
down-type mass matrices are given at 7 = @ by using
modular forms in Table I,

—9.0, 0 0 1 20 2w
M, = 0 -gp, O 20 1 =20 |,
0 0  -g.7, 20’ 20 1
a; 0 0 1 —%w2 0]
My=|0 B, 0 w 1 —ia* |, (141)
0 0 7, —%a)2 0]

where @, = (9/8)v,Y3a,, B, = (9/8)v,Y3p,, and 7, =
(9/8)v, Y}y, for up-type quarks, and &, = v,Yoay,
Ba=v,YoPs and 7, =v,Yy, for down-type quarks,
respectively. By using the unitary transformation of
Eq. (22), Vs, the mass matrix MZMM is transformed as

2(0 +
Mu( ) = VST4M2MqVST4
|gu2|2ﬁ124 0 0
=91 0 gala; 0 (142)
0 0 |gu3|2}73

The mass matrix M;M 4 1s transformed as

9 a 0 0
Mfi(()) = VST4MZ,’M dV§T4 4 0 77%1 0 (143)
0 0 p

It is remarked that both are diagonal ones.

2. Quark mass matrix I at nearby t=w

Quark mass matrix I in Eq. (141) is corrected due to the
deviation from the fixed point of 7 = @. By using modular
forms of weight 2, 4, and 6 in Appendix C.2, we obtain the

deviations from /\/lf,(o) and Mfl(()) in Egs. (142) and (143).
In the diagonal base of ST, the corrections are given by
only a small variable € as seen in Eq. (27). In the first order

perturbation of €, the corrections MY and Mfim
given as

0w Ou2 O3 Sa1 Oa2 Oa3
M = Oun Oua Ous |, Mfg(l)z Op Oas O4s |

Ouz= 045 Ous Oaz Ogs Ode

(144)

where off diagonal elements 6,5, 6,3 and J,5 are

=202 (2+ g1)gui (€] + €3)
(145)

5u2 = 2ﬁ3|.9u2|2(2€1 - 62)
= —6(2 + g;)9u1 €100,

5u3 = 233(2 + gu2)922<€1 =+ €2) + 27/u|gu3| ( 2€T + €§)
= 6(2+ gi2)gin€rpr (146)

8us = 2722+ g3)9us (€] + €5) + 28] . [ (—2¢; + €2)
= 6(2+ gi3)9u3€ 7a- (147)

» 1 1. 3
Sp = 05 <€1 —§€2> +51731(€1 +€;) = —1617’(1’ (148)

1 ~ 1 3
043 = zifﬁ(el +e) + i (ef - §€§> = Eiq&é, (149)
1 D2 % * ) 1
Sg5 = _Elﬁd(el +€}) —iy;| €1 —562 = —lelﬂd
(150)

In last equalities, e, = 2¢; of Eq. (28) is used.

Taking account of 72 > &2 > /> and ,Bd > 72 7> ad as
seen in Eqs. (142) and (143), mixing angles 67, and 63, are
given as
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2
0t =312+ gin)gueil,
u 2 * * d d 2 *
623 25 (2+gu3)gu3€1 P 8122923 2§|€l s (151)
respectively, while both 67;(¢q =u,d) are highly
suppressed.

Since up-type quark mixing angles depend on the
magnitudes of g,; and g,3, the magnitudes of CKM matrix
elements V,, and V., could be reproduced by choosing
relevant g,; and g,;. For example, we can take 6, ~ 4 and
045 ~ 0%, ~ 04, ~ 2%, where 1~0.2 is put to reproduce
observed |V |, |Ve|, and |V,;|. However, this scheme
leads to |V,;| ~A* which is much smaller than the
observed one. Indeed, the observed |V ;| is not reproduced
at nearby 7 = w in Sec. VIL

3. Quark mass matrix Il at t=w

We discuss the quark mass matrix II at the fixed point
7 = by using modular forms in Table I. In the base of S
and T of Eq. (9), it is given at the fixed point 7 = w,

9,0, O 1 20 2w
Mq = O Bq () - % (0] 1 (02 5
0 0 74 —%co2 w 1
(152)

where @, = (9/8)v,Y3a,. B, =3v,YB, and
¥g = v4Yor,- By using the unitary transformation of

Eq. (22), V¢rs, the mass matrix Mf,Mq7 is transformed as

00 0
i 9
MO = VMM Vi ==1 0 0 0 ,
4 ~2 2 ~2
0 0 4g2a2+P2+72

(153)

which gives two massless quarks. Therefore, it seems very
difficult to reproduce observed quark masses and CKM
elements even if we shift ¢ from 7 = w a little bit and
choose relevant g,,.

4. Quark mass matrix Il at nearby t=w®

Quark mass matrix I in Eq. (152) is corrected due to the
deviation from the fixed point of 7 = w. By using modular
forms of weight 2, 4, and 6 in Appendix C.2, we obtain the

deviation from M§<O) in Eq. (153). In the diagonal base of
ST, the correction is given by only a small variable € as
seen in Eq. (27). In the first order approximation of ¢;, the

. 201) . .
correction /\/lq< Vs given as

0 0 4,
M3,<1>: 0 0 45|,

523 5:;5 546

(154)

where 8, are given in terms of ¢, g, @2, f2, and 72. In order to
estimate the flavor mixing annals, we present relevant §,; as

~ * * * 1- * *
5q3 = _zaczggq(z + gq)(el + €2) + 8ﬂ3<€l - 862)

L. * *
+ 3 i72(e + €3)

~ *) ok 5 * 3 =2k
= —6(1%]‘9,](2 + gq>€l - 5/}561 + E l)/(21€1 ’

~ * * . 1 * 7 *
8ys = aglg[*(—4ei + 2¢3) + 5 (361 _6€2>

1 -
+ iy’ (e’f - 563) ~ =2p%¢t, (155)
where e, = 2¢; of Eq. (28) is used in last approximate
equalities. By using Egs. (153) and (154), we obtain
Det[/\/le(0> +M2Q(])} = 0. Therefore, it is impossible to
reproduce observed quark masses at nearby 7 = @ in the
first order perturbation of €. Indeed, this model cannot

reproduce the observed CKM elements at nearby 7 = o in
Sec. VIL

D. Quark mass matrix at 7=ico

1. Quark mass matrix I and II at T=icc

The mass matrices of I and II in Egs. (114) and (113) are
simply given by using modular forms in Table I at 7 = ico
since the modular forms of weight 2, 4, and 6 are same.
Those are both diagonal ones as follows:

@& 0 O
My=|o B ol (156)
0 0 7,
where @&, = v,Y{a,. /;7u:UuY(3)ﬂw O

ag = vqYog, fa=va¥oPs and yq = v4Yors for quark
: 5~ 3., B o P
mass matrix I, and a, = v,Y3a,, f, = v,Y}p,, and 7, =
v,Y 7, for quark mass matrix II.
In the diagonal base of T of Eq. (9), the mass matrix
MEMq is given as

a 0 0
q

MO =mim, =0 B o | (157)
0 7s

Mixing angles appear through the finite effect of Im][z].
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2. Quark mass matrix I towards t=ico

Quark mass matrix I in Eq. (156) is corrected due to the
finite effect of 7 =ioco. By using modular forms of
Egs. (C13),(C14),(C15) in Appendix C.3, we obtain the

deviation from M?](O) in Eq. (157) for the quark mass
matrix I. We present the first order corrections M?,(l) for

up-type quarks and down-type quarks to M?,(O) of
Eq. (157), respectively,

0 (1420525 (142g,1)a25
MU= (142g00F8 0 (142g)70 |,
(1+2g5)a28" (142g,3)728 0
0 pis° a%s
MU= s 0 725 | (138)

azs* 736 0
where 6 is given in Eq. (104). We obtain mixing angles as

01, = [(1+2g;,)5"|,

‘9[112 = ‘933 ~ |6,

055 ~ [(1 + 2g;3)5"|,
(159)

respectively. The first- and third-family mixing angle 67, is
suppressed due to the factor & /72 for both up- and down-
type quarks. Since 6%, and 8%, depend on the magnitudes of
g.» and g,3, the CKM matrix elements V,; and V., could
be reproduced by choosing relevant g,, and g,3. For
example, we can take 6%, ~1 and 0% ~ 09, ~ 09, ~ 2,
where 4 ~ 0.2 to reproduce observed |V |, |V |, and |V, |.
However, this scheme leads to |V 4| ~ A%, which is much
smaller than the observed one. Indeed, the successful CKM
matrix elements are not reproduced at large Imz in the
numerical results of Sec. VII.

3. Quark mass matrix Il towards t=ioco

Quark mass matrix I in Eq. (156) is corrected due to the
finite effect of 7 =ioco. By using modular forms of
Egs. (C13),(C14),(C15) in Appendix C.3, we obtain the

deviation from /\/lé(o) in Eq. (157) for the quark mass

matrix II. The first order correction /\/ltz](l) to M?I(O) of
Eq. (157) is given as

0 -5'B;  (1+2g,)5
(1+2g;)6a2 672 0

(160)

where &2 < f2 < 72. Therefore, the mixing angles 67, and

04,, are given as

15°163 g 1017
- =~ |5* ) 623 =~ ) - |5*|,

ﬂ q yf]

respectively. On the other hand, first- and third-family
mixing angle 67, is highly suppressed due to the factor
a, /2. Since 67, and 0%, are the same magnitude for both
up-type and down-type quarks, it is impossible to repro-
duce observed CKM mixing angles.

In conclusion of Sec. VI, it is found that the only quark
mass matrix [ works well at nearby 7 = i.

9~
0], ~

(161)

VII. NUMERICAL RESULTS AT NEARBY
FIXED POINTS

We have presented analytical discussions of lepton and
quark mass matrices at nearby fixed points of modulus. In
this section, we show numerical results at the nearby fixed
points of 7=1i, 7t=® and 7 = ioco to confirm above
discussions and give predictions.

A. Frameworks of numerical calculations

In order to calculate the left-handed flavor mixing of
leptons numerically, we generate a random number for
model parameters. The modulus 7 is scanned around fixed
points 7 =i and 7 =w. It is also scanned Imz > 1.2
towards 7 = ico. We keep the parameter sets, in which
the neutrino experimental data and charged lepton masses
are reproduced, within 3¢ interval of error bars. We
continue this procedure to obtain enough points for plotting
allowed region.

As the input of the neutrino data, we take three mixing
angles of the PMNS matrix and the observed neutrino mass
ratio Am?2,,/ Am2,,, with 36, which are given by NuFit4.1 in
Table IV [97]. Since there are two possible spectrum of
neutrinos masses m;, which are the normal hierarchy (NH),

TABLE IV. The 30 ranges of neutrino parameters from NuFIT 4.1 for NH and IH [97].

Observable 30 range for NH 36 range for IH
AmZ, (2.436-2.618) x 1073 eV? —(2.419-2.601) x 1073 eV?
Am? (6.79-8.01) x 1073 eV? (6.79 — 8.01) x 1075 eV?
sin® 6,3 0.433-0.609 0.436-0.610

sin® @, 0.275-0.350 0.275-0.350

sin’ 5 0.02044-0.02435 0.02064-0.02457
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TABLE V. The successful cases for the mass matrix I and II at nearby fixed points are denoted by O. On the other hand, x denotes a
failure to reproduce observed mixing angles, and ® denotes the case in which observed mixing angles are reproduced, but

> m; > 120 meV.

Modulus nearby 7 =i nearby 7 = towards 7 = ico
Lepton /quark Lepton quark Lepton quark Lepton quark
Neutrino mass hierarchy NH IH NH IH NH IH

mass matrix I for My and M, O O O ® X X O X X
mass matrix II for My and M, O ® X O O X O ® X

ms > my > my, and the inverted hierarchy (IH), m, >
my > ms, we investigate both cases. We also take account
of the sum of three neutrino masses »_ m; since it is
constrained by the recent cosmological data [98—100].
We impose the constraint of the upper bound ) m; <
120 meV.

Since the modulus 7 obtains the expectation value by the
breaking of the modular invariance at the high mass scale,
the observed masses and lepton mixing angles should be
taken at the GUT scale by the renormalization group
equations (RGEs). However, we have not included the
RGE effects in the lepton mixing angles and neutrino
mass ratio Am2,/Am2, in our numerical calculations. We
suppose that those corrections are very small between the
electroweak and GUT scales. This assumption is confirmed
well in the case of tanf <5 unless neutrino masses are
almost degenerate [27]. Since we impose the sum of
|

yg = (4.81 £1.06) x 107°,
v = (2.92+1.81) x 107°,

ys = (9.52 4+ 1.03) x 1073,
Ve = (1.43 £+ 0.100) x 1073,

neutrino masses to be smaller than 120 meV, this criterion
is satisfied in our analyses.

On the other hand, we also take the charged lepton
masses at the GUT scale 2 x 10'® GeV with tanf8 = 5 in
the framework of the minimal SUSY breaking scenarios
[101,102],

Ve = (1.97£0.024) x 1076, y, = (4.16 4 0.050) x 107,
y: = (7.07£0.073) x 1073, (162)

where lepton masses are given by m, = y,vy Wwith
vy = 174 GeV.

For the quark sector, we also adopt numerical values
of Yukawa couplings of quarks at the GUT scale 2 x
10'® GeV with tan # = 5 in the framework of the minimal
SUSY breaking scenarios [101,102],

yp = (6.95+£0.175) x 1073,

y, = 0.534 £ 0.0341, (163)

which give quark masses as m, = y,vy with vy =174 GeV.
We also use the following CKM mixing angles at the GUT scale 2 x 10'® GeV with tan8 = 5 [101,102]:

OKM — 13.027° + 0.0814°,

Here, HSKM is given in the Particle Data Group (PDG)
notation of the CKM matrix Vg [100]. In addition, we
impose the recent data of LHCb [100],

= 0.079 £ 0.006,

‘ Vo (165)

cb

where V;;’s are CKM matrix elements. This ratio is stable

against radiative corrections. The observed CP violating
phase is given at the GUT scale as
SEEM = 69.21° £ 6.19°, (166)

which is also in the PDG notation. The error intervals in
Egs. (163)—(166) represent lo interval.

OSKM — 2.054° + 0.384°,

OSKM — 0.1802° + 0.0281°. (164)

B. Allowed regions of 7 at nearby fixed points

We have examined eighteen cases of leptons and quarks
in above framework numerically as shown in Table V. In
this table, the successful cases for the mass matrix I and II at
nearby fixed points are denoted by O. On the other hand, x
denotes a failure to reproduce observed mixing angles, and
® denotes the case in which observed PMNS mixing
angles are reproduced, but > m; > 120 meV.

Among eighteen cases, seven cases of leptons and one
case of quarks are consistent with recent observed data. It is
emphasized that the all cases of the mass matrix [ work well
at nearby 7 =i These results confirm our previous
discussions.

We show allowed regions of 7 at nearby 7 = i, 7 = @ and
towards 7 = ico for eleven cases in Figs. 1-3, respectively.
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FIG. 1.

charged lepton Il, NH for neutrinos
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quark mass matrix Il

No allowed region around T = i

Allowed regions of 7 at nearby 7 = i are shown by green points for charged lepton mass matrices I and IT with NH and IH of

neutrinos, and quark mass matrices I, respectively. Blue points denote regions in which the sum of neutrino masses »  m; is larger than

120 meV.

In these figures, green points denote allowed ones by
inputting masses and mixing angles with the constraint
> m; <120 meV for leptons, but blue points denote the
regions in which the sum of neutrino masses » _ m; is larger
than 120 meV. It is noted that blue points are hidden under
green points in the case of the charged lepton II (NH) of
Fig. 2 and the charged lepton I (NH) of Fig. 3. Green points
for quarks denote allowed region of = by inputting masses,
mixing angles and CP violating phase §&5M.

As seen in Fig. 1, the constraint ) m; < 120 meV

excludes the charged lepton II with IH of neutrinos.

The allowed regions of 7 (green points) deviate from the
fixed point 7 = i in magnitude of 5%—10%, which confirm
the discussions in Sec. V. It is reasonable that the allowed
points appear frequently at nearby z = i since one flavor
mixing angle is generated even at the fixed point 7 = i as
discussed in Sec. V. B. In the quark sector, the mass matrix I
works well, but the matrix II does not because the mixing
angles are canceled out each other in the same type mass
matrices of up-type and down-type quarks. It is emphasized
that there is the common region of z between charged
lepton I (NH) and quark I. Indeed, the region around
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FIG.2. Allowed regions of 7 at nearby 7 = w are shown by green points for the charged lepton mass matrix I and II with NH and IH of
neutrinos, respectively. Blue points denote regions in which the sum of neutrino masses  _ m; is larger than 120 meV.

7 = £0.04 + 1.057 is common in quarks and leptons. This
common region has already discussed in context with the
quark-lepton unification in Ref. [53].

As seen in Fig. 2, at nearby 7 = o, the charged lepton
mass matrix I with NH is excluded by the constraint of
> m; <120 meV. In the charged lepton mass matrix I with
IH, the PMNS mixing angles are not reproduced. On the
other hand, the allowed regions are marginal in the charged
lepton II. Indeed, the green points are 0.1 for NH and 0.15
for IH away from 7 = w, respectively. The perturbative
discussion of this IH case is possibly broken. Moreover, we
cannot find allowed region of quarks at nearby 7 = w. That
is expected in the discussion in Sec. VI. C.

As seen in Fig. 3, towards 7 = ioco, both charged lepton
mass matrix I and II reproduce the observed PMNS mixing
angles for NH of neutrinos. In the charged lepton mass
matrix [ with IH, the PMNS mixing angles are not
reproduced. Although the charged lepton mass matrix II
with IH reproduces three PMNS mixing angles, it is
excluded by the constraint of Y m; < 120 meV. We cannot
find allowed region for quarks. These results are also
consistent with discussions of Secs. V.D and VI. D.

C. Predictions of CP violation and masses of neutrinos

We predict the leptonic CP violating phase 6‘&,, the sum of
neutrino masses »  m;, and the effective mass for the Ovf
decay |(m,,)| for each case of leptons since we input four
observed quantities of neutrinos (three mixing angles of
leptons and observed neutrino mass ratio Am?2,,/ Am2,,) and
three charged lepton masses. For the quark sector, there is no
prediction because ten observed quantities (quark masses
and CKM elements) are put to obtain the region of the
modulus 7.

In Table VI, the predicted ranges of the effective mass
for the Ovpp decay, (m,,) are presented for each case. We
also summarize magnitudes of parameters g,;, g,», g, for
leptons and g,,1, 9.2, 9.3 for quarks. Their phases are broad.
We add hierarchies of &2, 52,72 and &2, p2. 72.

We present numerical predictions on Y mi—ééP
and &p—sin?@,; planes for successful seven cases in
Figs. 4-10. In Fig. 4, we show them at nearby 7 = i for
the charged lepton mass matrix I with NH of neutrinos.
The predicted range of the sum of neutrino masses is
> m; =86-120 meV. The predicted 5’&, depends on
> m;. A crucial test will be presented in the near future
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FIG. 3. Allowed regions of 7 towards 7 = ioco are shown by green points for charged lepton mass matrices I and II with NH and IH of
neutrinos, respectively. Blue points denote regions in which the sum of neutrino masses _ m; is larger than 120 meV.

by cosmological observations. The correlation between
sin 6,3 and &% is also helpful to test this case.

In Fig. 5, we show them at nearby z = i for the charged
lepton mass matrix I with IH of neutrinos. The predicted
range of the sum of neutrino masses is » _ m; =90-120 meV.

TABLE VI

The prediction of 6%, is clearly given versus Y m;. On
the other hand, sin’6,; is predicted to be smaller than
0.52. Crucial test will be available by cosmological obser-
vations and neutrino oscillation experiments in the near
future.

Magnitudes of parameters g,,, g, g, for leptons and g,, 9,2, 9,3 for quarks are shown. Predicted ranges of the effective

mass for the OyBf decay, (m,,) are also given. In addition, hierarchies of &2, 2. 7% and 5{2, ﬁé, ;75 are presented.

<mee> |gul | |gu2| ‘gel @g, Nz, ]7%
NH, charged lepton I,z ~ i 15-31 0.02-18 0.63-19 72> @ >
IH, charged lepton I, 7~ i 17-31 0.56-3.9 1.6-4.9 e 72> al > ﬁg
NH, charged lepton II, 7 ~ i 1.4-27 0.53-7.0 0.56-6.9 0.63-8.9 az > 72>
NH, charged lepton II, 7 ~ w 2.4-3.0 0.03-0.05 0.53-0.65 0.22-0.28 > P>
IH, charged lepton II, 7 ~ @ 16-25 1.2-1.8 1.1-1.5 5.5-9.8 > P>
NH, charged lepton I, 7~ ico 16-18 0.25-0.53 1.0-1.2 e 72> f}f > @2
NH, charged lepton II, 7 ~ ico 8.8-14 0.13-0.33 0.76-0.87 3.1-5.6 > 7> P
|gul| |guZ| |gu?| 6%7 ~27 775
quark mass matrices I, 7~ i 0.01-0.86 0.14-1.29 0.02-0.07 2> P> al

7>k B
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interval.
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FIG. 5. Allowed regions on Y m;—8%, and 5%,—sin? 0,3 planes at nearby 7 = i for the charged lepton mass matrix I with IH of
neutrinos.

In Fig. 6, we show them at nearby 7 =i for the Let us give our predictions on Y m;—6%, and
charged lepton mass matrix I with NH of neutrinos. The  §Z,—sin® 6,3 planes at nearby 7 = @. In Fig. 7, we show
predicted range of the sum of neutrino masses is > m; =  them for the charged lepton mass matrix I with NH of

58-83 meV, while &7, is allowed in [—r, #]. There is no  neutrinos. The predicted range of the sum of neutrino
correlation between sin? 6,3 and 5%p. The rather small value ~ masses is )  m; = 65-71 meV. The ranges of 8%.p is clearly
of the sum of neutrino masses is a characteristic prediction in given in [110°,180°] and [—180°,—160°]. On the other hand,

this case. sin® @5 is predicted in both first and second octant.

charged lepton Il, NH for neutrinos charged lepton Il, NH for neutrinos
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ImleV] sin6,3

FIG. 6. Allowed regions on Y mi—éép and 6@,— sin® 8,3 planes at nearby 7 = i for the charged lepton mass matrix II with NH of
neutrinos.
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FIG. 7. Allowed regions on > m;—6%, and 8fp—sin® 6,3 planes at nearby 7 = @ for the charged lepton mass matrix II with NH of

neutrinos.
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FIG. 8. Allowed regions on Y m;—5%p, and &-p—sin® 63 planes at nearby 7 = w for the charged lepton mass matrix II with IH of

neutrinos.

InFig. 8, we show them for the charged lepton mass matrix
II with IH of neutrinos at nearby © = w. The predicted range
of the sum of neutrino masses is »_ m; = 112-120 meV,
which may be excluded in the near future due to the
cosmological observations. The predicted CP violating
phase is 8%, = [~180°,—60° and [110° 180°). There is
no clear correlation between sin’ 6,3 and 5’{}[,.
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It is noticed that the predicted CP violating phase 5{} p 1S
asymmetric for plus and minus signs in both Figs. 7 and 8.
That is due to excluding the 7 region at nearby 7 = @
outside the fundamental domain of PSL(2, Z). Indeed, the
excluded region corresponds to the other region inside at
nearby the fixed point z = —?, where we obtain 6%, with
the reversed sign of Figs. 7 and 8.
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FIG. 9. Allowed regions on Y mi—éép and 66[,— sin? 6,3 planes towards 7 = ico for the charged lepton mass matrix I with NH of

neutrinos.
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FIG. 10. Allowed regions on Y m;~5p and 8%p—sin® 6,3 planes towards 7 = ico for the charged lepton mass matrix II with NH of

neutrinos.

Finally, we show predictions on ) m,-—5éP and
5’2[,— sin® 0,3 planes towards 7 = ico. In Fig. 9, we show
them for the charged lepton mass matrix I with NH of
neutrinos. The predicted range of the sum of neutrino
masses is in the narrow range of > m; = 94-120 meV.
The predicted 6%, is close to /2. On the other hand,
sin? @3 is predicted to be smaller than 0.45. The predicted
CP violation is favored by the T2K experiment [83];
however, the predicted sin®6,; may be excluded in the
near future since it is far from the best fit value.

In Fig. 10, we show them for the charged lepton mass
matrix I with NH of neutrinos. The predicted range of
the sum of neutrino masses is in > m; = 105-120 meV.
The predicted 6% is is clearly given in £(100°-180°). On
the other hand, sin? 8,5 is allowed in full range of 35 error
bar. Crucial test will be available by cosmological obser-
vations and CP violation experiments of neutrinos in the
future.

Thus, lepton mass matrices at nearby fixed points
provide characteristic predictions for > m; and §%,. On
the other hand, there is no prediction for the quark sector.

VIII. SUMMARY

In the modular invariant flavor model of A,, we have
studied the hierarchical structure of lepton/quark flavors
at the nearby fixed points of the modulus. There are only
two inequivalent fixed points in the fundamental domain
of PSL(2,Z), r = i and 7 = w. These fixed points corre-
spond to the residual symmetries Z5 = {I, S} and 73! =
{I,ST, (ST)*} of A,, respectively. There is also infinite
point 7 = ico, in which the subgroup Z% = {I,T,T?} of
Ay is preserved. We have examined typical two-type mass
matrices for charged leptons and quarks by using modular
forms of weights 2, 4, and 6, while the neutrino mass matrix
with the modular forms of weight 4 through the Weinberg
operator. By performing Taylor expansion of modular
forms around fixed points, we have obtained linear modular
forms in good approximations. By using those explicit

modular forms, we have found the hierarchical structure of
these mass matrices in the diagonal base of S, T, and ST, in
which the flavor mixing angles are easily estimated. The
observed PMNS mixing angles are reproduced at the
nearby fixed point in ten cases of lepton mass matrices.
Among them, seven cases satisfy the cosmological bound
> m; <120 meV. On the other hand, only one case of
quark mass matrices is consistent with the observed CKM
matrix. Our results have been confirmed by scanning model
parameters numerically as seen in 7 regions of Figs. 1-3.

We have also presented predictions for Y m; and 8%, for
seven cases. Some cases will be tested in the near future.
Although there is no prediction for the quark sector, the
obtained 7 provides an interesting subject, the possibility of
the common 7 between quarks and leptons. Indeed, there
exists the common region around 7 = 4+0.04 4 1.05i for
the charged lepton mass matrix I with NH of neutrinos as
seen in Fig. 1.

We have worked by using two-type specific mass
matrices for charged leptons and quarks while one
Majorana neutrino mass matrix in order to clarify the
behavior at nearby fixed points. More studies including
other mass matrices are necessary to understand the
phenomenology of fixed points completely. The modular
symmetry provides a good outlook for the flavor structure
of leptons and quarks at nearby fixed points. We also
should pay attention to the recent theoretical work: the
spontaneous CP violation in type IIB string theory is
possibly realized at nearby fixed points, where the moduli
stabilization is performed in a controlled way [103,104].
Thus, the modular symmetry at nearby fixed points gives us
an attractive approach to flavors.
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APPENDIX A: TENSOR PRODUCT OF A, GROUP

We take the generators of A, group for the triplet as
follows:

| -1 2 2 1 0 0
5:3 2 -1 2|, T=]0 @w 0 |, (Al
2 -1 0 0 ?

where @ = ¢i" for a triplet. In this base, the multiplication
rule is

aj b
ay | @ | by | = (a1by + aybs + azby); @ (azbs + arby + axby)y
as / 3 by /5
@ (ayby + aybs + asby)
2a;by — ayb; — azb, a,by — asb,
GB% 2a3b5 — ayby — ayb, EBE aiby —aby |,
2a3by — aybs — a3by / 5 asby —aybs / 5
1®1=1, 1 =1, "®1 =1, 1 =1, (A2)
[
where Let us rewrite the Dirac mass matrix My, in the new base
(S, T) of the triplet left-handed fields. Denoting L and L to
) =, T(1") = o, (A3) be triplets of the left-handed fields in the bases of S and S,

More details are shown in the review [6,7].

APPENDIX B: MASS MATRIX IN ARBITRARY
BASE OF S AND T

Define the new basis of generators, Sand T by a unirary
transformation as
S=usut, T =UTU', (B1)
where S‘, S, T, T, and U are 3 x 3 matrices. Since the Ay
triplet transforms under the S (7) transformation as

a ay ay
a | -S| a | =USTU| ay (B2)
as J 3 as / 3 as / 3
Thus, in the new base, the A, triplet transforms as
a a,
a | =81 a | . (B3)
as / 3 as ) ;3
where
a ay
C,l\2 = U ar (B4)

respectively, and R to be right-handed singlets, the Dirac
mass matrix is written as

RMRLL = RMRLU—‘.Z:? (BS)

where

L=UL. (B6)

Then, the Dirac mass matrix My, in the new base is given
as

MRL:MRLUT~ (B7)

On the other hand, the Majorana mass matrix M, ; in the
new base (S‘, T) is written as

L°M;;L =L°UM,;, U'L. (B8)

Therefore, the Majorana mass matrix M;; is given as

M;, =UM,;, U". (B9)

APPENDIX C: MODULAR FORMS AT NEARBY
FIXED POINTS

1. Modular forms at nearby z=1i

Let us present the behavior of modular forms at nearby
7 = i. We obtain approximate linear forms of Y (z), Y, (),
and Y;(z) by performing Taylor expansion of modular
forms around 7 = i. We parametrize 7 as
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t=i+e, with €=e¢g+ic, (C1)

where |e] is supposed to be enough small |¢| < 1. For the case of the pure imaginary number of ¢, that is ¢ = ie; (¢, is real),
we obtain the linear fit of € by

h<
h<

~—
~—

3(7
Yi(z

2(7
1z

~ (1-2.05¢,)(1 = V3), ~(1-4.1¢)(-2+ V3), (C2)

h<

~—
~—

where coefficients are obtained by numerical fittings. These ratios decrease linearly for ¢; > 0.
On the other hand, for the case of the real number of ¢, that is € = €y, (e is real), we obtain as

Y,(7) Ys(7)
Re Y’f(r) ~(1-19¢)(1-v3), Re Y?(T) =~ (1= 8ex)(=2 + V3).
Y2(0) L o5en(1 2O e
ImYl(r)_z'OS r(1—/3), I Yl(r)_4'1 r(=2+V/3), (C3)

where the liner terms of e disappear in the real parts. Finally, after neglecting O(e%), we obtain approximately,

(), (1+e)(1=3), ?8 ~(146)(-2+V3),e = %62 = 2.05ie. (C4)

These approximate forms are agreement with exact numerical values within 0.1% for |e| < 0.05.
(k)

We have also higher weight modular forms Y;" in Eqgs. (13) and (14) in terms of €, and e,. For weight 4, they are

Y9 () Y(e)
YIZ(T) ~6—3V3+(5-3V3)(e; + &), ;Z(T) ~6—-3V3+ (V3 - 1)e; + (14 — 8v3)es,
)

v¥ () ~6-3V3+ (8 —4V3)e, + (2 — V3)e,,

4
Y\ (2)

Yi(7)

~—9 +6V3+ (6V3-10)(e; +¢,), ~9—6V3+(2-2V3)e; + (14-8V3)e,.  (C5)

For weight 6, they are

R TN

=0 (5o (-3
=2 (3 (5

S 13- (=5 (1655

S =220+ (=)o (53 )e

S 0-o (7)o (G-

;;:?)Z; =~ (15 - 9v3)e; + (123 = 21)ey. o
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2. Modular forms at nearby 7=w

Let us present the behavior of modular forms at nearby

7 = w. We perform linear approximation of the modular

forms Y,(z), Y,(z), and Y5(r) by performing Taylor
expansion around 7 = @w. We parametrize 7 as

t=w+e, with e=ep+ie, (C7)

where we suppose |¢| < 1. For the case of € = i¢;, which is

a pure imaginary number, we obtain the linear fit of € as

Y Y 1
2(T)zco(l —2.1¢;), Y3§T):——a)2(l —4.2¢;),
17

~—
[\S)

(C8)

where coefficients are obtained by numerical fittings. These
ratios decrease linearly for ¢; > 0. On the other hand, for
the case of € = €g, which is a real number, we obtain as

~
—_

3(7

R ~w(l —3€3 R ~ ——@?(1 - 11€3).
e Y, () o(1 - 3eg), e Y\ (o) 5@ ( €x)
Y,(7) Yi(zr) 1,
1 ~w(2.1€ep), 1 ~—— 4.2¢p),
mY1 @ w(2.1eg) mY1 B 3 (4.2¢R)

(©9)

where the linear terms of ¢ disappear in the real parts. After
neglecting O(e%), we obtain, approximately,

YZ(T) Y3<T> 1 2
~w(l ~—— 1
Y, (7) o(l+e), Y.(o)o 2% (I+e2),
€1 :E€2:2.1i€, (ClO)

where |e¢| < 1. These approximate forms are agreement
with exact numerical values within 1% for |e| < 0.05.
We have also higher weight modular forms ng) in

Egs. (13) and (14) in terms of ¢; and €,. For weight 4,

@ (4)
Y\W() 3 YW 3 /1 2 1
~2(1 clo|=4Ze +-
v S tate) payeme(ztiatee).
@ 3 (42
Yi(z) 2 3
@ 4)
YV (z) i@ 9 2
~— , ~— 1+4+—= — .
Y%(T) (€1+€2) Y%(T) 460 +9€1+9€2
(C11)

For weight 6, they are

1;5?((;;) ~—(e; + €),

=i

i (e

i = 5)

i (5 5e),

=T (i) e

3. Modular forms towards z=ico

We show the behavior of modular forms at large Imz,
where ¢ = exp (2zit) is suppressed. Taking leading terms of
Eq. (11), we can express modular forms approximately as

Ya(z) = —6ptel,

— eZmReT’ 6—27[11117."

Y5(7) = —18pies, p €=

(C13)

Higher weight modular forms Y% in Egs. (14) and (14)

i
are obtained in terms of p and e approximately. For weight
4, they are
Y<]4) () ~1 - 84pe, Y§4)(r) ~ 6pies, Yg4)(r) ~ 54 pies,

Y\ (2) =1+ 240pe, ¥\ (1)~ —
Weight 6 modular forms are given,

Y§6> (7)~1+252pe, Yéé) (1) ~—6pes,
(

Y 6) (7)~216pe, le(6> (1) =—12p3es, Y/3<6> (z)~T2pies,

Y;6) (7)~1-504pe.

APPENDIX D: MAJORANA AND DIRAC
PHASES AND (m,,) IN 0y DECAY

Supposing neutrinos to be Majorana particles, the PMNS
matrix Upyns [81,82] is parametrized in terms of the three
mixing angles 6;; (i,j = 1,2,3;i < j), one CP violating
Dirac phase 5@,, and two Majorana phases a,;, a3, as
follows:
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C12€13
U = — —_ i(s?P
PMNS §12€23 — €12523513€°°C

- i
$12823 = C12€23813€

where ¢;; and s;; denote cos 6;; and sin 0;;, respectively.

C C —_ igg'P
12623 — §12823513€

- - i3y
C12823 = 812€23513€°7°¢

—ist
S12C13 S13€ 0cp 1 0 0
2L
523C13 0 e= 0 |, (D1)
3L
€23€13 0 0 o7

The rephasing invariant CP violating measure of leptons [105,106] is defined by the PMNS matrix elements U,;. It is
written in terms of the mixing angles and the CP violating phase as

_ * * ] 2 o 4
JCP = Im[Uel UM2U62U/41] = S23C23S12C12S13C13 SlnéCP, (D2)

where U,; denotes the each component of the PMNS matrix.

There are also other invariants /; and /, associated with Majorana phases,

[20)]
2

. . . (@
I = Im[U}, U] = cips15¢is Sm<—>’ I, =1Im[U}, U 3] = cjp513¢13 sin (% - 5213)- (D3)

We can calculate 563, ay; and a3, with these relations by taking account of

2_ 2 2 2.2 2
_ |Ua1]” = 57553 = 1265357

cos 8, =
cp 2¢12812€23523513
* X . a3
Re[U, U,y = cips12¢i3 c0s (7) Re[U;, U3 = cips13¢13 cos <7— 56»)- (D4)

In terms of these parameters, the effective mass for the Ovff decay is given as follows:

(me,) = |mlc%20%3 + mQS%ZCl

. . st
3el(121 _|_ m3s%3el(a3l 25(‘1’)" (DS)
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