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In the modular invariant flavor model of A4, we study the hierarchical structure of lepton/quark flavors at
nearby fixed points of τ ¼ i and τ ¼ ω of the modulus, which are in the fundamental domain of PSLð2;ZÞ.
These fixed points correspond to the residual symmetries ZS

2 ¼ fI; Sg and ZST
3 ¼ fI; ST; ðSTÞ2g of A4,

where S and T are generators of the A4 group. The infinite τ ¼ i∞ also preserves the residual symmetry of
the subgroup ZT

3 ¼ fI; T; T2g of A4. We study typical two-type mass matrices for charged leptons and
quarks in terms of modular forms of weights 2, 4, and 6, while the neutrino mass matrix with the modular
forms of weight 4 through the Weinberg operator. Linear modular forms are obtained approximately by
performing Taylor expansion of modular forms around fixed points. By using them, the flavor structure of
the lepton and quark mass matrices are examined at nearby fixed points. The hierarchical structure of these
mass matrices is clearly shown in the diagonal base of S, T, and ST. The observed Pontecorvo-Maki-
Nakagawa-Sakata and Cabibbo-Kobayashi-Maskawa mixing matrices can be reproduced at nearby fixed
points in some cases of mass matrices. By scanning model parameters numerically at nearby fixed points,
our discussion are confirmed for both the normal hierarchy and the inverted one of neutrino masses.
Predictions are given for the sum of neutrino masses and the CP violating Dirac phase of leptons at each
nearby fixed point.
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I. INTRODUCTION

In spite of the remarkable success of the standard model
(SM), the origin of the flavor of quarks and leptons is still a
challenging issue. Indeed, a lot of works have been
presented by using the discrete groups for flavors to
understand the flavor structures of quarks and leptons. In
the early models of quark masses and mixing angles, the S3
symmetry was used [1,2]. It was also discussed to under-
stand the large mixing angle [3] in the oscillation of
atmospheric neutrinos [4]. For the last twenty years, the
discrete symmetries of flavors have been developed; that is
motivated by the precise observation of flavor mixing
angles of leptons [5–14].
Many models have been proposed by using the non-

Abelian discrete groups S3, A4, S4, A5, and other groups

with larger orders to explain the large neutrino mixing
angles. Among them, the A4 flavor model is an attractive
one because the A4 group is the minimal one, including a
triplet irreducible representation, which allows for a natural
explanation of the existence of three families of leptons
[15–21]. However, a variety of models is so wide that it is
difficult to show clear evidences of the A4 flavor symmetry.
Recently, a new approach to the lepton flavor problem

appeared based on the invariance of the modular group
[22], where the model of the finite modular group Γ3 ≃ A4

has been presented. This work inspired further studies of
the modular invariance to the lepton flavor problem. The
finite groups S3, A4, S4, and A5 are formed as the quotient
groups of the modular group and its principal congruence
subgroups [23]. Therefore, an interesting framework for the
construction of flavor models has been put forward based
on the Γ3 ≃ A4 modular group [22], and further, based on
Γ2 ≃ S3 [24]. The flavor models have been proposed by
using modular symmetries Γ4 ≃ S4 [25] and Γ5 ≃ A5 [26].
Phenomenological discussions of the neutrino flavor mix-
ing have been done based on A4 [27–29], S4 [30–33], and
A5 [34]. A clear prediction of the neutrino mixing angles
and the CP violating phase was presented in the simple
lepton mass matrices with A4 modular symmetry [28].
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The double covering groups T0 [35,36] and S04 [37,38] have
also obtained from the modular symmetry.
The A4 modular symmetry has been also applied to the

leptogenesis [39–41]; on the other hand, it is discussed in
the SU(5) grand unified theory (GUT) of quarks and
leptons [42,43]. The residual symmetry of the A4 modular
symmetry has presented the interesting phenomenology
[44]. Furthermore, modular forms for Δð96Þ and Δð384Þ
were constructed [45], and the extension of the traditional
flavor group is discussed with modular symmetries [46].
The level 7 finite modular group Γ7 ≃ PSLð2;Z7Þ is also
presented for the lepton mixing [47]. Moreover, multiple
modular symmetries are proposed as the origin of flavor
[48]. The modular invariance has been also studied com-
bining with the CP symmetries for theories of flavors
[49,50]. The quark mass matrix has been discussed in the
S3 and A4 modular symmetries as well [51–53]. Besides
mass matrices of quarks and leptons, related topics have
been discussed in the baryon number violation [51], the
dark matter [54,55], and the modular symmetry anomaly
[56]. Further phenomenology has been developed in many
works [57–75], while theoretical investigations are also
proceeded [76–80].
As well known, in non-Abelian discrete symmetries of

flavors, residual symmetries provide interesting phenom-
enology of flavors. They arise whenever the modulus τ
breaks the modular group only partially. In this work,
we study the hierarchical flavor structure of leptons and
quarks in context with the residual symmetry, in which the
modulus τ is at fixed points. We examine the flavor
structure of mass matrices of leptons and quarks at nearby
fixed points of the modulus τ in the framework of the
modular invariant flavor model of A4. It is challenging
to reproduce the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing angles [81,82] and the CP violating
Dirac phase of leptons, which is expected to be observed
at T2K and NOνA experiments [83,84], as well as observed
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements at
nearby fixed points.
We have already discussed numerically both mass

matrices of leptons and quarks in the A4 modular symmetry
[53,85], where modular forms of weights 2, 4, and 6 are
used. In the same framework, we discuss the flavor
structure of the lepton and quark mass matrices focusing
on nearby fixed points. For this purpose, we give linear
forms of Y1ðτÞ, Y2ðτÞ, and Y3ðτÞ approximately by per-
forming Taylor expansion of modular forms around fixed
points of the modulus τ in the A4 modular symmetry.
The paper is organized as follows. In Sec. II, we give a

brief review on the modular symmetry and modular forms
of weights 2, 4, and 6. In Sec. III, we discuss the residual
symmetry of A4 and modular forms at fixed points. In
Sec. IV, we present modular forms at nearby fixed points. In
Secs. V and VI, we discuss flavor mixing angles at nearby
fixed points in lepton mass matrices and quark mass

matrices, respectively. In Sec. VII, the numerical results
and predictions are presented. Section VIII is devoted to a
summary. In Appendix A, the tensor product of the A4

group is presented. In Appendix B, the transformation of
mass matrices are discussed in the arbitrary bases of S and
T. In Appendix C, the modular forms are given at nearby
fixed points. In Appendix D, we present how to obtain
Dirac CP phase, Majorana phases and the effective mass of
the 0νββ decay.

II. MODULAR GROUP AND MODULAR FORMS
OF WEIGHTS 2, 4, 6

The modular group Γ̄ is the group of linear fractional
transformation γ acting on the modulus τ, belonging to the
upper-half complex plane as

τ → γτ ¼ aτ þ b
cτ þ d

; where a; b; c; d ∈ Z and

ad − bc ¼ 1; Im½τ� > 0; ð1Þ

which is isomorphic to PSLð2;ZÞ ¼ SLð2;ZÞ=fI;−Ig
transformation. This modular transformation is generated
by S and T,

S∶τ → −
1

τ
; T∶τ → τ þ 1; ð2Þ

which satisfy the following algebraic relations:

S2 ¼ I; ðSTÞ3 ¼ I: ð3Þ

We introduce the series of groups ΓðNÞ (N ¼ 1; 2; 3;…),
called principal congruence subgroups of SLð2;ZÞ,
defined by

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2;ZÞ;

�
a b

c d

�
¼

�
1 0

0 1

�
ðmod NÞ

�
: ð4Þ

For N ¼ 2, we define Γ̄ð2Þ≡ Γð2Þ=fI;−Ig. Since the
element −I does not belong to ΓðNÞ for N > 2, we have
Γ̄ðNÞ ¼ ΓðNÞ. The quotient groups defined as ΓN ≡
Γ̄=Γ̄ðNÞ are finite modular groups. In these finite groups
ΓN , TN ¼ I is imposed. The groups ΓN with N ¼ 2, 3, 4, 5
are isomorphic to S3, A4, S4, and A5, respectively [23].
Modular forms of level N are holomorphic functions

fðτÞ transforming under the action of ΓðNÞ as

fðγτÞ ¼ ðcτ þ dÞkfðτÞ; γ ∈ ΓðNÞ; ð5Þ

where k is the so-called as the modular weight.
Superstring theory on the torus T2 or orbifold T2=ZN has

the modular symmetry [86–91]. Its low energy effective
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field theory is described in terms of supergravity theory,
and string-derived supergravity theory has also the modular
symmetry. Under the modular transformation of Eq. (1),
chiral superfields ϕðIÞ transform as [92],

ϕðIÞ → ðcτ þ dÞ−kIρðIÞðγÞϕðIÞ; ð6Þ
where −kI is the modular weight and ρðIÞðγÞ denotes an
unitary representation matrix of γ ∈ ΓN .
In this paper, we study global supersymmetric models,

e.g., minimal supersymmetric extensions of the Standard
Model (MSSM). The superpotential, which is built from
matter fields and modular forms, is assumed to be modular
invariant, i.e., to have a vanishing modular weight. For
given modular forms, this can be achieved by assigning
appropriate weights to the matter superfields.
The kinetic terms are derived from a Kähler potential.

The Kähler potential of chiral matter fields ϕðIÞ with the
modular weight −kI is given simply by

Kmatter ¼ 1

½iðτ̄ − τÞ�kI jϕ
ðIÞj2; ð7Þ

where the superfield and its scalar component are denoted
by the same letter, and τ̄ ¼ τ� after taking the vacuum
expectation value (VEV). Therefore, the canonical form of

the kinetic terms is obtained by changing the normalization
of parameters [28]. The general Kähler potential consistent
with the modular symmetry possibly contains additional
terms [93]. However, we consider only the simplest form of
the Kähler potential.
For Γ3 ≃ A4, the dimension of the linear space MkðΓ3Þ

of modular forms of weight k is kþ 1 [94–96]; i.e., there
are three linearly independent modular forms of the lowest
nontrivial weight 2. These forms have been explicitly
obtained [22] in terms of the Dedekind eta-function ηðτÞ,

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ expði2πτÞ; ð8Þ

where ηðτÞ is a so-called modular form of weight 1=2. In
what follows, we will use the following base of the A4

generators S and T in the triplet representation:

S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA; T ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA; ð9Þ

where ω ¼ expði 2
3
πÞ. The modular forms of weight 2,

Yð2Þ
3 ¼ ðY1ðτÞ; Y2ðτÞ; Y3ðτÞÞT transforming as a triplet of

A4, can be written in terms of ηðτÞ and its derivative [22],

Y1ðτÞ ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

Y2ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω2

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
;

Y3ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þ ω

η0ððτ þ 1Þ=3Þ
ηððτ þ 1Þ=3Þ þ ω2

η0ððτ þ 2Þ=3Þ
ηððτ þ 2Þ=3Þ

�
: ð10Þ

The triplet modular forms of weight 2 have the following q expansions:

Yð2Þ
3 ¼

0
B@

Y1ðτÞ
Y2ðτÞ
Y3ðτÞ

1
CA ¼

0
B@

1þ 12qþ 36q2 þ 12q3 þ…

−6q1=3ð1þ 7qþ 8q2 þ…Þ
−18q2=3ð1þ 2qþ 5q2 þ…Þ

1
CA: ð11Þ

They satisfy also the constraint [22],

ðY2ðτÞÞ2 þ 2Y1ðτÞY3ðτÞ ¼ 0: ð12Þ
The modular forms of the higher weight, k, can be obtained by the A4 tensor products of the modular forms with weight

2, Yð2Þ
3 , as given in Appendix A. For k ¼ 4, there are five modular forms by the tensor product of 3 ⊗ 3 as

Yð4Þ
1 ¼ Y2

1 þ 2Y2Y3; Yð4Þ
10 ¼ Y2

3 þ 2Y1Y2; Yð4Þ
100 ¼ Y2

2 þ 2Y1Y3 ¼ 0;

Yð4Þ
3 ¼

0
BB@

Yð4Þ
1

Yð4Þ
2

Yð4Þ
3

1
CCA ¼

0
B@

Y2
1 − Y2Y3

Y2
3 − Y1Y2

Y2
2 − Y1Y3

1
CA; ð13Þ

where Yð4Þ
100 vanishes due to the constraint of Eq. (12). For k ¼ 6, there are seven modular forms by the tensor products

of A4 as
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Yð6Þ
1 ¼ Y3

1 þ Y3
2 þ Y3

3 − 3Y1Y2Y3;

Yð6Þ
3 ≡

0
BB@

Yð6Þ
1

Yð6Þ
2

Yð6Þ
3

1
CCA ¼

0
B@

Y3
1 þ 2Y1Y2Y3

Y2
1Y2 þ 2Y2

2Y3

Y2
1Y3 þ 2Y2

3Y2

1
CA; Yð6Þ

30 ≡

0
BB@

Y 0ð6Þ
1

Y 0ð6Þ
2

Y 0ð6Þ
3

1
CCA ¼

0
B@

Y3
3 þ 2Y1Y2Y3

Y2
3Y1 þ 2Y2

1Y2

Y2
3Y2 þ 2Y2

2Y1

1
CA: ð14Þ

By using these modular forms of weights 2,4,6, we discuss
lepton and quark mass matrices.

III. RESIDUAL SYMMETRY OF A4
AT FIXED POINTS

A. Modular forms at fixed points

Residual symmetries arise whenever the VEV of the
modulus τ breaks the modular group Γ̄ only partially.
Fixed points of modulus are the case. There are only two
inequivalent finite points in the fundamental domain of Γ̄,
namely, τ¼ i and τ ¼ ω ¼ −1=2þ i

ffiffiffi
3

p
=2. The first point is

invariant under the S transformation τ ¼ −1=τ. In the case of
A4 symmetry, the subgroup ZS

2 ¼ fI; Sg is preserved at
τ ¼ i. The second point is the left cusp in the fundamental
domain of the modular group, which is invariant under
the ST transformation τ ¼ −1=ðτ þ 1Þ. Indeed, ZST

3 ¼
fI;ST;ðSTÞ2g is one of subgroups of A4 group. The right
cusp at τ ¼ −ω2 ¼ 1=2þ i

ffiffiffi
3

p
=2 is related to τ ¼ ωby theT

transformation. There is also infinite point τ ¼ i∞, in which
the subgroup ZT

3 ¼ fI; T; T2g of A4 is preserved.
It is possible to calculate the values of the A4 triplet

modular forms of weight 2, 4, and 6 at τ ¼ i, τ ¼ ω, and
τ ¼ i∞. The results are summarized in Table I.
If a residual symmetry of A4 is preserved in mass

matrices of leptons and quarks, we have commutation

relations between the mass matrices and the generator G≡
S; T; ST as

½M†
RLMRL;G� ¼ 0; ½MLL;G� ¼ 0; ð15Þ

whereMRL denotes the mass matrix of charged leptons and
quarks, ME and Mq; on the other hand, MLL denotes the
left-handed Majorana neutrino mass matrix Mν.
Therefore, the mass matrices M†

EME, M
†
qMq, and Mν

could be diagonal in the diagonal base ofG at the fixed points.
The hierarchical structures of flavormixing are easily realized
near those fixed points. However, we should be careful with
the generator S, in which two eigenvalues are degenerate. At
τ ¼ i, one (2 × 2) submatrix of the mass matrix respecting S
are not diagonal in general since two eigenvalues of S are
degenerate such as (−1; 1;−1). Therefore, the S symmetry
provides us an advantage to reproduce the large mixing angle
of neutrinos as discussed in Sec. V.

B. Diagonal base of S and ST

1. Diagonal base of S

The modular forms of Eq. (10) is obtained in the base of
Eq. (9) for S and T. In order to present the mass matrices in
the diagonal base of S, we move to the diagonal base of S as
follows:

VS1SV
†
S1 ¼

0
B@

−1 0 0

0 1 0

0 0 −1

1
CA; VS2SV

†
S2 ¼

0
B@

1 0 0

0 −1 0

0 0 −1

1
CA; VS3SV

†
S3 ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; ð16Þ

where

TABLE I. Modular forms of weight k ¼ 2, k ¼ 4, and k ¼ 6 at fixed points of τ.

k r τ ¼ i τ ¼ ω τ ¼ i∞

2 3 Y0ð1; 1 −
ffiffiffi
3

p
;−2þ ffiffiffi

3
p Þ Y0ð1;ω;− 1

2
ω2Þ Y0ð1; 0; 0Þ

4 3 ð6 − 3
ffiffiffi
3

p ÞY2
0ð1; 1; 1Þ 3

2
Y2
0ð1;− 1

2
ω;ω2Þ Y2

0ð1; 0; 0Þ
f1; 10g Y2

0f6
ffiffiffi
3

p
− 9; 9 − 6

ffiffiffi
3

p g f0; 9
4
Y2
0ωg fY2

0; 0g
6 3 3Y3

0ð−3þ 2
ffiffiffi
3

p
;−9þ 5

ffiffiffi
3

p
; 12 − 7

ffiffiffi
3

p Þ 0 Y3
0ð1; 0; 0Þ

30 3Y3
0ð−12þ 7

ffiffiffi
3

p
; 3 − 2

ffiffiffi
3

p
; 9 − 5

ffiffiffi
3

p Þ 9
8
Y3
0ð−1; 2ω; 2ω2Þ 0

1 0 27
8
Y3
0 Y3

0

Y0 Y1ðiÞ ¼ 1.0225…. Y1ðωÞ ¼ 0.9486… Y1ði∞Þ ¼ 1
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VSi ≡ Pi

0
BBB@

2ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0 − 1ffiffi
2

p 1ffiffi
2

p

1
CCCA; P1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; P2 ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA; P3 ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð17Þ

Then, the generator T is not anymore diagonal.
If there is a residual symmetry of A4 in the Dirac mass

matrix MRL, for example, ZS
2 ¼ fI; Sg, the generator S

commutes with M†
RLMRL,

½M†
RLMRL; S� ¼ 0: ð18Þ

Therefore, the mass matrix is expected to be diagonal in the
diagonal base of S. However, the eigenvalue −1 of S is
degenerated, and so one pair among off diagonal terms of
M†

RLMRL is not necessarily to vanish depending on Vi
of Eq. (17). For diagonal matrices S ¼ ð−1; 1;−1Þ,
ð1;−1;−1Þ, and ð−1;−1; 1Þ, those are

M†
RLMRL ¼

0
B@

× 0 ×

0 × 0

× 0 ×

1
CA;

0
B@

× 0 0

0 × ×

0 × ×

1
CA;

0
B@

× × 0

× × 0

0 0 ×

1
CA;

ð19Þ
respectively, where “×” denotes nonvanishing entry. Thus,
one flavor mixing angle appears even if there exists the
ZS

2 ¼ fI; Sg symmetry.

2. Diagonal base of ST and T

If there exists the residual symmetries of the A4

group ZST
3 ¼ fI; ST; ðSTÞ2g or ZT

3 ¼ fI; T; T2g, we
have

½M†
RLMRL; ST� ¼ 0; ½M†

RLMRL; T� ¼ 0; ð20Þ

respectively, which lead to the diagonal M†
RLMRL because

ST and T have three different eigenvalues.
The generator T is already diagonal in the original

base of Eq. (9). On the other hand, we can move to the
diagonal base of ST by the unitary transformation VST as
follows:

VSTiSTV
†
STi ¼ Pi

0
B@

ω2 0 0

0 ω 0

0 0 1

1
CAPT

i ; ð21Þ

where

VSTi ¼
1

3
Pi

0
B@

−2ω2 −2ω 1

−ω2 2ω 2

2ω2 −ω 2

1
CA; P4 ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA; P5 ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; ð22Þ

and Pi (i ¼ 1, 2, 3) are given in Eq. (17). The order of
eigenvalues of ST depends on Pi. We have eigenvalues
ðω;ω2; 1Þ for P2, ðω2; 1;ωÞ for P3, ð1;ω;ω2Þ for P4, and
ð1;ω2;ωÞ for P5, respectively.
In the diagonal bases of S and ST, the Dirac mass matrix

M̂RL is given by the unitary transformation as (see
Appendix B)

M̂RL ¼ MRLV
†
Si; M̂RL ¼ MRLV

†
STi; ð23Þ

respectively. On the other hand, the Majorana mass matrix
MLL is given as

M̂LL ¼ VSiMLLV
†
Si; M̂LL ¼ VSTiMLLV

†
STi; ð24Þ

respectively. We will discuss the lepton and quark mass
matrices in the diagonal bases of the generators by using
these transformations.

IV. MODULAR FORMS AT NEARBY
FIXED POINTS

The mass matrices of leptons and quarks have simple
flavor structures due to simplemodular forms at fixed points.
At τ ¼ i, those mass matrices have one flavor mixing angle
because the representation of S for the A4 triplet has two
degenerate eigenvalues. On the other hand, at τ ¼ ω and
τ ¼ i∞, the square of the mass matrix is diagonal one
because ST and T of the A4 triplet have three different
eigenvalues. Therefore, the modulus τ should deviate from
the fixed point to reproduce the observed PMNS and CKM
matrix elements. We present the explicit modular forms by
performing Taylor expansion around fixed points.

A. Modular forms at nearby τ = i

Let us discuss the behavior of modular forms at nearby
τ ¼ i. We consider linear approximation of the modular
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forms Y1ðτÞ, Y2ðτÞ, and Y3ðτÞ by performing Taylor
expansion around τ ¼ i. We parametrize τ as

τ ¼ iþ ϵ; ð25Þ

where jϵj is supposed as jϵj ≪ 1. We obtain the ratios of the
modular forms approximately as

Y2ðτÞ
Y1ðτÞ

≃ ð1þ ϵ1Þð1 −
ffiffiffi
3

p
Þ; Y3ðτÞ

Y1ðτÞ
≃ ð1þ ϵ2Þð−2þ

ffiffiffi
3

p
Þ;

ϵ1 ¼
1

2
ϵ2 ¼ 2.05iϵ: ð26Þ

These approximate forms are agreement with exact numeri-
cal values within 0.1% for jϵj ≤ 0.05. Details are given in

Appendix C.1. The higher weight modular forms YðkÞ
i in

Eqs. (13) and (14) are also given in terms of ϵ1 and ϵ2 in
Appendix C.1.

B. Modular forms at nearby τ =ω

We perform linear approximation of the modular forms
Y1ðτÞ, Y2ðτÞ, and Y3ðτÞ by performing Taylor expansion
around τ ¼ ω. We parametrize τ as

τ ¼ ωþ ϵ ¼ −
1

2
þ

ffiffiffi
3

p

2
iþ ϵ; ð27Þ

where we suppose jϵj ≪ 1. We obtain the ratios of modular
forms approximately as

Y2ðτÞ
Y1ðτÞ

≃ ωð1þ ϵ1Þ;
Y3ðτÞ
Y1ðτÞ

≃ −
1

2
ω2ð1þ ϵ2Þ;

ϵ1 ¼
1

2
ϵ2 ¼ 2.1iϵ: ð28Þ

These approximate forms are agreement with exact numeri-
cal values within 1% for jϵj ≤ 0.05. Details are given in
Appendix C.2.

The higher weight modular forms YðkÞ
i in Eqs. (13) and

(14) are also given in terms of ϵ1 and ϵ2 in Appendix C.2.

C. Modular forms towards τ = i∞
We show the behavior of modular forms at large Imτ,

where the magnitude of q ¼ exp ð2πiτÞ is suppressed.
Taking leading terms of Eq. (11), we can express modular
forms approximately as

Y1ðτÞ ≃ 1þ 12pϵ; Y2ðτÞ ≃ −6p1
3ϵ

1
3;

Y3ðτÞ ≃ −18p2
3ϵ

2
3; p ¼ e2πiReτ; ϵ ¼ e−2πImτ: ð29Þ

Indeed, we obtain ϵ ¼ 3.487 × 10−6 for Imτ ¼ 2. The
leading correction is ϵ

1
3 ¼ 0.0152 in Y2ðτÞ while other

corrections of ϵ
2
3 and ϵ is negligibly small. Then,

jY1ð2iÞj ≃ 1.00004; jY2ð2iÞj ≃ 0.09098;

jY3ð2iÞj ≃ 0.00413; ð30Þ
which agree with exact values within 0.1%. Higher weight

modular forms YðkÞ
i in Eqs. (13) and (14) are also given in

terms of p and ϵ approximately in Appendix C.3.

V. LEPTON MASS MATRICES IN THE A4
MODULAR INVARIANCE

A. Model of lepton mass matrices

Let us discuss models of the lepton mass matrices. There
are freedoms for the assignments of irreducible represen-
tations of A4 and modular weights to charged leptons and
Higgs doublets. The simplest assignment has been given in
the conventional A4 model [17,18], in which three left-
handed leptons are components of the triplet of the A4

group, but three right-handed charged leptons, (ec, μc, τc),
are three different singlets ð1; 100; 10Þ of A4, respectively.
Supposing neutrinos to be Majorana particles, we

present the neutrino mass matrix through the Weinberg
operator. The simple one is given by assigning the A4 triplet
and weight −2 to the lepton doublets,1 where the Higgs
fields are supposed to be A4 singlets with weight 0. On the
other hand, the charged lepton mass matrix depends on the
assignment of weight for the right-handed charged leptons.
If those weights are 0 for all right-handed charged leptons,
the charged lepton mass matrix are given in terms of only
the weight 2 modular forms of Eq. (10). That is the
simplest one.
Alternatively, we also consider weight 4 and 6 modular

forms of Eqs. (13) and (14) in addition to weight 2 modular
forms by taking nonvanishing weights. The assignment is
summarized in Table II.

1. Neutrino mass matrix

Let us begin with discussing the neutrino mass matrix.
The superpotential of the neutrino mass term, wν is given as

wν ¼ −
1

Λ
ðHuHuLLY

ðkÞ
r Þ1; ð31Þ

where L is the left-handed A4 triplet leptons, Hu is the
Higgs doublet, and Λ is a relevant cutoff scale. Since the
left-handed lepton doublet has weight −2, the superpoten-
tial is given in terms of modular forms of weight 4, Yð4Þ

3 ,

Yð4Þ
1 , and Yð4Þ

10 . By putting the VEV of the neutral compo-
nent of Hu, vu, and taking (νe, νμ, ντ) for left-handed
neutrinos of L, we have

1There is a possible assignment of weight −1 to the lepton
doublets of the A4 triplet. The neutrino mass matrix is given in
terms of weight 2 modular forms through the Weinberg operator.
However, this case is too simple to reproduce the lepton mixing
angles as discussed in Ref. [28].
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wν ¼
v2u
Λ

2
64
0
B@

2νeνe − νμντ − ντνμ

2ντντ − νeνμ − νμντ

2νμνμ − ντνe − νeντ

1
CA ⊗ Yð4Þ

3 þðνeνe þ νμντ þ ντνμÞ ⊗ gν1Y
ð4Þ
1 þ ðνeντ þ νμνμ þ ντνeÞ ⊗ gν2Y

ð4Þ
10

3
75

¼ v2u
Λ

h
ð2νeνe − νμντ − ντνμÞYð4Þ

1 þ ð2ντντ − νeνμ − νμνeÞYð4Þ
3 þ ð2νμνμ − ντνe − νeντÞYð4Þ

2

þðνeνe þ νμντ þ ντνμÞgν1Yð4Þ
1 þ ðνeντ þ νμνμ þ ντνeÞgν2Yð4Þ

10

i
; ð32Þ

where Yð4Þ
3 , Yð4Þ

1 , and Yð4Þ
10 are given in Eq. (13), and gν1, gν2 are complex parameters. The neutrino mass matrix is written as

follows:

Mν ¼
v2u
Λ

2
6664

0
BBB@

2Yð4Þ
1 −Yð4Þ

3 −Yð4Þ
2

−Yð4Þ
3 2Yð4Þ

2 −Yð4Þ
1

−Yð4Þ
2 −Yð4Þ

1 2Yð4Þ
3

1
CCCAþ gν1Y

ð4Þ
1

0
B@

1 0 0

0 0 1

0 1 0

1
CAþ gν2Y

ð4Þ
10

0
B@

0 0 1

0 1 0

1 0 0

1
CA
3
7775
LL

: ð33Þ

2. Charged lepton mass matrix

The relevant superpotentials of the charged lepton masses are given for two cases as follows:

I∶ wE ¼ αeecHdY
ð2Þ
3 Lþ βeμ

cHdY
ð2Þ
3 Lþ γeτ

cHdY
ð2Þ
3 L; ð34Þ

II∶ wE ¼ αeecHdY
ð6Þ
3 Lþ α0eecHdY

ð6Þ
30 Lþ βeμ

cHdY
ð4Þ
3 Lþ γeτ

cHdY
ð2Þ
3 L; ð35Þ

where L is the left-handed A4 triplet leptons and Hd is the Higgs doublet.
The charged lepton mass matrices ME are given as

I∶ ME ¼ vd

0
B@

αe 0 0

0 βe 0

0 0 γe

1
CA
2
6664

0
BBB@

Yð2Þ
1 Yð2Þ

3 Yð2Þ
2

Yð2Þ
2 Yð2Þ

1 Yð2Þ
3

Yð2Þ
3 Yð2Þ

2 Yð2Þ
1

1
CCCA

3
7775
RL

; ð36Þ

II∶ ME ¼ vd

0
B@

αe 0 0

0 βe 0

0 0 γe

1
CA
2
6664

0
BBB@

Yð6Þ
1 þ geY

0ð6Þ
1 Yð6Þ

3 þ geY
0ð6Þ
3 Yð6Þ

2 þ geY
0ð6Þ
2

Yð4Þ
2 Yð4Þ

1 Yð4Þ
3

Yð2Þ
3 Yð2Þ

2 Yð2Þ
1

1
CCCA

3
7775
RL

; ð37Þ

respectively, where coefficients αe, βe, and γe are real parameters while ge is complex one, and vd is VEV of the neutral
component of Hd.
Model parameters of leptons are αe, βe, γe, ðgeÞ, gν1, and gν2 in addition to the modulus τ. We examine these mass

matrices around the fixed points.

TABLE II. Assignments of representations and weights −kI for MSSM fields and modular forms.

L ðec; μc; τcÞ Hu Hd Yð6Þ
3 , Yð6Þ

30 Yð4Þ
3 , Yð4Þ

1 , Yð4Þ
10 Yð2Þ

3

SUð2Þ 2 1 2 2 1 1 1
A4 3 (1, 100, 10) 1 1 3 3, 1 10 3
−kI −2 I: (0, 0, 0) 0 0 k ¼ 6 k ¼ 4 k ¼ 2

II: ð−4;−2; 0Þ
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B. Lepton mass matrix at τ = i

1. Neutrino mass matrix at τ = i

We get the neutrino mass matrix at τ ¼ i by putting modular forms in Table I into Eq. (33) as

Mν ¼
v2u
Λ
ð6 − 3

ffiffiffi
3

p
ÞY2

0

2
64
0
B@

2 −1 1

−1 2 −1
−1 −1 2

1
CAþ g1

0
B@

1 0 0

0 0 1

0 1 0

1
CAþ g2

0
B@

0 0 1

0 1 0

1 0 0

1
CA
3
75; ð38Þ

where

g1 ¼
6

ffiffiffi
3

p
− 9

6 − 3
ffiffiffi
3

p gν1 ¼
ffiffiffi
3

p
gν1; g2 ¼

9 − 6
ffiffiffi
3

p

6 − 3
ffiffiffi
3

p gν2 ¼ −
ffiffiffi
3

p
gν2: ð39Þ

We move to the diagonal basis of S. By using the unitary transformation of Eq. (22), VS2, the mass matrix is transformed as

M̂ν ≡ V�
S2MνV

†
S2 ¼

v2u
Λ
Y2
0

0
B@

g1 þ g2 0 0

0 3þ g1 − 1
2
g2

ffiffi
3

p
2
g2

0
ffiffi
3

p
2
g2 3 − g1 þ 1

2
g2

1
CA: ð40Þ

Off diagonal entries of (2,3) and (3,2) are nonzero as discussed in Eq. (19). At the limit of vanishing g1 and g2, the lightest
neutrino mass is zero, and other ones are degenerated.
In order to discuss the flavor mixing angle, we show M̂†

νM̂ν as

M2ð0Þ
ν ≡ M̂†

νM̂ν ¼
�
v2u
Λ
Y2
0

�
2

0
BB@

jg1 þ g2j2 0 0

0 Gν þ 6Re½g1� − 3Re½g2�
ffiffi
3

p
2
ð6Re½g2� þ 2iIm½g�1g2�Þ

0
ffiffi
3

p
2
ð6Re½g2� − 2iIm½g�1g2�Þ Gν − 6Re½g1� þ 3Re½g2�

1
CCA; ð41Þ

where

Gν ¼ 9þ jg1j2 þ jg2j2 − Re½g�1g2�: ð42Þ

The imaginary part of this matrix is factored out by using a phase matrix Pν as

�
v2u
Λ
Y2
0

�
2

Pν

0
BB@

jg1 þ g2j2 0 0

0 Gν þ 6Re½g1� − 3Re½g2�
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRe½g2�Þ2 þ ðIm½g�1g2�Þ2

p
0

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRe½g2�Þ2 þ ðIm½g�1g2�Þ2

p
Gν − 6Re½g1� þ 3Re½g2�

1
CCAP�

ν; ð43Þ

where

Pν ¼

0
B@

1 0 0

0 1 0

0 0 e−iϕ
ν

1
CA; ð44Þ

with

tanϕν ¼ Im½g�1g2�
3Re½g2�

: ð45Þ

On the other hand, mass eigenvalues m2
01, m

2
02, and m2

03 of

M2ð0Þ
ν satisfy

m2
01 ¼ jg1 þ g2j2;

m2
02 þm2

03 ¼ 18þ 2ðjg1j2 þ jg2j2Þ − 2Reðg�1g2Þ;
m2

02m
2
03 ¼ j9 − g21 − g22 þ g1g2j2; ð46Þ

in the unit of ðv2u=ΛÞ2Y4
0. The mixing angle between the

second and third family, θν23, is given as

tan 2θν23 ¼
1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðRe½g2�Þ2 þ ðIm½g�1g2�Þ2

p
Re½g2� − 2Re½g1�

: ð47Þ

If we put Re½g2� ¼ 2Re½g1�, we obtain the maximal mixing
angle θν23 ¼ 45°. Thus, the large mixing angle is easily
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obtained by choosing relevant parameters g1 and g2. It is
also noticed that θν23 vanishes for g2 ¼ 0. Thus, θν23 could be
0°–45° depending on g1 and g2.

2. Neutrino mass matrix at nearby τ = i

As discussed in the previous subsubsection, the large
θν23 is easily reproduced at τ ¼ i. The large flavor mixing
angle between the first and second family, θν12 is also
realized at nearby τ ¼ i. The mass matrix of neutrinos in
Eq. (33), Mν, are corrected due to the deviation from the
fixed point of τ ¼ i. Putting modular forms of Eq. (26) (see
also Appendix C.1) intoMν, the corrections to Eq. (41) are
given by only a small variable ϵ in Eq. (26) in the diagonal

base of S. In the first order approximation of ϵ, the

correction M2ð1Þ
ν is given as

M2ð1Þ
ν ¼

�
v2u
Λ
Y2
0

�
2

0
B@

0 δν2 δν3

δ�ν2 δν4 δν5

δ�ν3 δ�ν5 δν6

1
CA; ð48Þ

where δνi (i ¼ 2–6) are given in terms of ϵ, g1, and g2. Due
to the first order perturbation of ϵ, we can obtain the mixing
angle θν12, which vanishes in the zeroth order of perturba-
tion. In order to estimate the flavor mixing angles, we
present relevant δνi explicitly as

δν2 ¼
−1ffiffiffi
2

p fðg�1 þ g�2Þ½ð1þ
ffiffiffi
3

p
Þϵ1 þ ϵ2� þ ϵ�1½ð3þ g1Þð1þ

ffiffiffi
3

p
Þ − 2g2� þ ϵ�2½ð3þ g1Þ þ ð1 −

ffiffiffi
3

p
Þg2�g

≃ −3.34ðg�1 þ g�2Þϵ1 − ð10.04þ 3.35g1 − 2.45g2Þϵ�1;

δν3 ¼
1ffiffiffi
6

p fðg�1 þ g�2Þ½ð3 −
ffiffiffi
3

p
Þϵ1 þ ð2

ffiffiffi
3

p
− 3Þϵ2� þ ϵ�1½ð3 −

ffiffiffi
3

p
Þð3 − g1Þ − 2

ffiffiffi
3

p
g2�

þ ϵ�2½ð2
ffiffiffi
3

p
− 3Þð3 − g1Þ − ð3 −

ffiffiffi
3

p
Þg2�g ≃ 0.90ðg�1 þ g�2Þϵ1 þ ð2.69 − 0.90g1 − 2.45g2Þϵ�1; ð49Þ

where ϵ1 ¼ 2.05iϵ, and ϵ2 ¼ 2ϵ1 in Eq. (26) is used in last approximate equalities.

Let us estimate the mixing angles, θν12 and θν13 in terms of δν2 and δν3. The eigenvectors of the lowest order in M2ð0Þ
ν

are given,

uð0Þν1 ¼

0
B@

1

0

0

1
CA; uð0Þν2 ¼

0
B@

0

cos θν23
− sin θν23e

−iϕν

1
CA; uð0Þν3 ¼

0
B@

0

sin θν23
cos θν23e

−iϕν

1
CA; ð50Þ

for eigenvalues m2
01, m

2
02, and m

2
03 of Eq. (46), respectively.

We can calculate corrections of eigenvectors in the first
order of ϵ. In order to estimate the nonvanishing mixing
angle between the first and second family, we calculate the

eigenvector of first order, uð1Þν2 , which is given,

uð1Þν2 ¼ Cν
21u

ð0Þ
ν1 þ Cν

23u
ð0Þ
ν3 ; ð51Þ

where

Cν
ji ¼

huð0Þνj jM2ð1Þ
ν juð0Þνi i

m2
0j −m2

0i
: ð52Þ

Therefore, the nonvanishing (1–2) mixing appears at the

first component of uð1Þν2 as

uð1Þν2 ½1; 1� ¼ Cν
21 ¼

δ�ν2 cos θ
ν
23 − δ�ν3 sin θ

ν
23e

iϕν

m2
02 −m2

01

: ð53Þ

Here, we take 2g1 ¼ g2, which leads to the maximal mixing
θν23 ¼ 45° as seen in Eq. (47). Then, the mass squares are
given from Eq. (46) as

m2
01 ¼ 9jg21j; m2

02 ¼ 3ð3þ jg21j − 2
ffiffiffi
3

p
jReg1jÞ;

m2
03 ¼ 3ð3þ jg21j þ 2

ffiffiffi
3

p
jReg1jÞ; ð54Þ

in the unit of ðv2u=ΛÞ2Y4
0. Supposing NH of neutrino

masses, we take the observed ratio of Δm2
atm=Δm2

sol ¼
34.2, which leads to g1 ¼ 0.61 by neglecting the imaginary
part of g1. Then, δ�ν2 and δ

�
ν3 are given in terms of ϵ by using

ϵ1 ¼ 2.05iϵ in Eq. (26) as follows:

δ�ν2 ¼ −18.6iϵ − 12.6iϵ�; δ�ν3 ¼ −1.76iϵ − 0.52iϵ�:

ð55Þ
Neglecting δν3 because of jδ�ν2j ≫ jδ�ν3j, we have

uð1Þν2 ½1; 1� ≃
δ�ν2 cos θ

ν
23

m2
02 −m2

01

¼ −i
18.6ϵþ 12.6ϵ�

0.383
ffiffiffi
2

p ; ð56Þ
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where θν23 ¼ 45° is put. We obtain uð1Þν2 ½1; 1� ≃ 0.55
(θν12 ≃ 35°) by putting ϵ ¼ 0.05i. Thus, the large (1–2)
mixing angle could be reproduced by the correction terms
in the neutrino mass matrix due to the small deviation from
τ ¼ i. It is remarked that the sum of three neutrino masses
is around 110 meV taking 2g1 ¼ g2 ¼ 1.22.
On the other hand, the nonvanishing (1–3) mixing is

derived as

uð1Þν3 ½1; 1� ¼ Cν
31 ¼

δ�ν2 sin θ
ν
23 þ δ�ν3 cos θ

ν
23e

iϕν

m2
03 −m2

01

: ð57Þ

Since ðm2
03 −m2

01Þ is 30 times larger than ðm2
02 −m2

01Þ,
uð1Þν3 ½1; 1� is suppressed compared with uð1Þν2 ½1; 1�. Indeed,
the (1–3) mixing angle is Oð0.01Þ. Therefore, the observed
θ13 ∼ 0.15 of the PMNS matrix should be derived from the
charged lepton sector. It is noted that the correction to the

(2–3) mixing is also Oð0.01Þ because uð1Þν3 ½2; 1� is sup-
pressed due to the large ðm2

03 −m2
01Þ.

We can also discuss the case of IH of the neutrino masses
by taking Δm2

atm=Δm2
sol ¼ −34.2. The large mixing angles

θν23 and θ
ν
12 are obtained if we take g1 ¼ g2=2 ¼ −2.45. The

sum of three neutrino masses is around 90 meV.
Thus, our neutrino mass matrix is an attractive one at

nearby τ ¼ i. Therefore, we should examine the contribu-
tion from the charged lepton sector carefully for both NH
and IH of neutrinos.

3. Charged lepton mass matrix I at τ = i

The charged lepton mass matrix I is the simplest one,
which is given by using only weight 2 modular forms. It is
given at fixed points of τ ¼ i in the base of S of Eq. (9) as
follows:

ME ¼ vd

0
B@

αe 0 0

0 βe 0

0 0 γe

1
CA
0
B@

Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

1
CA ¼

0
B@

α̃e 0 0

0 β̃e 0

0 0 γ̃e

1
CA
0
B@

1 −2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p

1 −
ffiffiffi
3

p
1 −2þ ffiffiffi

3
p

−2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p
1

1
CA; ð58Þ

where α̃e ¼ vdY0αe, β̃e ¼ vdY0βe, and γ̃e ¼ vdY0γe. We move to the diagonal base of S. By using the unitary
transformation of Eq. (17), the mass matrix is transformed as presented in Eq. (23). Then, we have

M2ð0Þ
E ≡ VS2M

†
EMEV

†
S2 ¼

3

2

0
B@

0 0 0

0 α̃2e þ 2ð2 − ffiffiffi
3

p Þβ̃2e þ ð7 − 4
ffiffiffi
3

p Þγ̃2e −ð2 − ffiffiffi
3

p Þð̃α2e − 2β̃2e þ γ̃2eÞ
0 −ð2 − ffiffiffi

3
p Þð̃α2e − 2β̃2e þ γ̃2eÞ ð7 − 4

ffiffiffi
3

p Þα̃2e þ 2ð2 − ffiffiffi
3

p Þβ̃2e þ γ̃2e

1
CA; ð59Þ

which is a real matrix with rank 2.
Since the lightest charged lepton is massless at τ ¼ i, the

small deviation from τ ¼ i is required to obtain the electron
mass. It is remarked that the flavor mixing between second
and third family appears at the fixed point τ ¼ i as seen in
Eq. (59). It is given as

tan 2θe23 ¼ −2
ð2 − ffiffiffi

3
p Þðα̃2e − 2β̃2e þ γ̃2eÞ

2ð2 ffiffiffi
3

p
− 3Þðγ̃2e − α̃2eÞ

¼ −
1ffiffiffi
3

p α̃2e − 2β̃2e þ γ̃2e
γ̃2e − α̃2e

; ð60Þ

which leads to θe23 ≃ 15° for α̃e ≫ β̃e; γ̃e, θe23 ≃ −15° for
γ̃e ≫ β̃e; α̃e, θe23 ≃ 45° for β̃e ≫ α̃e ≫ γ̃e, and θe23 ≃ −45°
for β̃e ≫ γ̃e ≫ α̃e, respectively. This mixing angle leads to

θ23 of the PMNS matrix by cooperating with the neutrino
mixing angle θν23 in Eq. (47).

4. Charged lepton mass matrix I at nearby τ = i

In order to obtain the electron mass, τ should be deviated
a little bit from the fixed point τ ¼ i. By using modular
forms at nearby τ ¼ i in Eq. (26), we obtain the additional

contribution M2ð1Þ
E to M2ð0Þ

E in Eq. (59) of order ϵ as

M2ð1Þ
E ≃

0
B@

0 δe2 δe3

δ�e2 δe4 δe5

δ�e3 δ�e5 δe6

1
CA; ð61Þ

where δei are given in terms of ϵ, α̃2e, β̃
2
e, and γ̃2e. In order to

estimate the flavor mixing angles, we present relevant δei as

δe2 ¼
1ffiffiffi
2

p f½ð
ffiffiffi
3

p
− 1Þϵ�1 þ ð

ffiffiffi
3

p
− 2Þϵ�2�α̃2e þ ½ð4 − 2

ffiffiffi
3

p
Þϵ�1 þ ð3

ffiffiffi
3

p
− 5Þϵ�2�β̃2e

þ ½ð3
ffiffiffi
3

p
− 5Þϵ�1 þ ð7 − 4

ffiffiffi
3

p
Þϵ�2�γ̃2eg ≃

1ffiffiffi
2

p ϵ�1½ð3
ffiffiffi
3

p
− 5Þα̃2e þ 2ð2

ffiffiffi
3

p
− 3Þβ̃2e þ ð9 − 5

ffiffiffi
3

p
Þγ̃2e�; ð62Þ
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δe3 ¼
1ffiffiffi
6

p f½ð9 − 5
ffiffiffi
3

p
Þϵ�1 þ ð7

ffiffiffi
3

p
− 12Þϵ�2�α̃2e þ ½ð4

ffiffiffi
3

p
− 6Þϵ�1 þ ð9 − 5

ffiffiffi
3

p
Þϵ�2�β̃2e

þ½ð
ffiffiffi
3

p
− 3Þϵ�1 þ ð3 − 2

ffiffiffi
3

p
Þϵ�2�γ̃2eg ≃

ffiffiffi
6

p

2
ϵ�1½ð3

ffiffiffi
3

p
− 5Þα̃2e þ 2ð2 −

ffiffiffi
3

p
Þβ̃2e þ ð1 −

ffiffiffi
3

p
Þγ̃2e�; ð63Þ

where ϵ2 ¼ 2ϵ1 in Eq. (26) is used in the last approximate equalities. The mixing angle of first and second family as

tan 2θe12 ¼
2jδe2j

3
2
½α̃2e þ 2ð2 − ffiffiffi

3
p Þβ̃2e þ ð7 − 4

ffiffiffi
3

p Þγ̃2e�
≃

4

3
ffiffiffi
2

p 9 − 5
ffiffiffi
3

p

7 − 4
ffiffiffi
3

p jϵ�1j ≃
4

3
ffiffiffi
2

p ð3þ
ffiffiffi
3

p
Þjϵ�1j ≃ 4.46jϵ�1j; ð64Þ

where the denominator comes from the (2,2) element of
Eq. (59). In the last approximate equality, we take γ̃e ≫
α̃e; β̃e, which is the case in the numerical fits of Sec. VII. We
estimate θe12 to be 0.22 at jϵ1j ¼ j2.05iϵj ¼ 0.1. This magni-
tude of θe12 leads to θ13 ≃ 0.15 of the PMNS matrix by
cooperating with the neutrino mixing angle θν23 in Eq. (47).
The mixing angle between first and third family θe13 is found
to be much smaller than θe12 in the similar calculation.
In conclusion, the charged lepton mass matrix I com-

bined with the neutrino mass matrix of Eq. (33) is expected

to be consistent with the observed three PMNS mixing
angles at nearby τ ¼ i. Indeed, this case works well for both
NH and IH as seen in numerical results of Sec. VII. The
output of the Dirac CP violating phase and the sum of
neutrino masses will tested in the future experiments.

5. Charged lepton mass matrix II at τ = i

We discuss another charged lepton mass matrix II at
τ ¼ i, which is

ME ¼ vd

0
B@

αe 0 0

0 βe 0

0 0 γe

1
CA
0
B@

Yð6Þ
1 þ geY

0ð6Þ
1 Yð6Þ

3 þ geY
0ð6Þ
3 Yð6Þ

2 þ geY
0ð6Þ
2

Yð4Þ
2 Yð4Þ

1 Yð4Þ
3

Yð2Þ
3 Yð2Þ

2 Yð2Þ
1

1
CA

¼ vq

0
B@

α̃e 0 0

0 β̃e 0

0 0 γ̃e

1
CA
0
B@

2
ffiffiffi
3

p
− 3þ geð7

ffiffiffi
3

p
− 12Þ 12 − 7

ffiffiffi
3

p þ geð9 − 5
ffiffiffi
3

p Þ 5
ffiffiffi
3

p
− 9þ geð3 − 2

ffiffiffi
3

p Þ
1 1 1

−2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p
1

1
CA; ð65Þ

where α̃e ¼ 3v2dY
3
0αe, β̃e ¼ ð6 − 3

ffiffiffi
3

p Þv2dY2
0βe and γ̃e ¼ v2dY0γe.

We move to the diagonal base of S. The mass matrix M†
EME is transformed by the unitary transformation VS2 as

M2ð0Þ
E ≡ VS2M

†
EMEV

†
S2 ¼

3

2

0
B@

2β̃2e 0 0

0 Aγ̃2e þ 3ðAþ B1e þ jgej2CÞα̃2e −Dγ̃2e − 3ðB2e þ Age þ Cg�eÞα̃2eÞ
0 −Dγ̃2e − 3ðB2e þ Ag�e þ CgeÞα̃2eÞ γ̃2e þ 3ðCþ B1e þ jgej2AÞα̃2e

1
CA; ð66Þ

where

A ¼ 7 − 4
ffiffiffi
3

p
; B ¼ 26 − 15

ffiffiffi
3

p
; C ¼ 97 − 56

ffiffiffi
3

p
; D ¼ 2 −

ffiffiffi
3

p
;

B1e ¼ Bðge þ g�eÞ ¼ 2BRe½ge�; B2e ¼ Bð1þ jgej2Þ; A2 ¼ C; D2 ¼ A; Aþ C ¼ 4B: ð67Þ

The flavor mixing between the second and third family appears at the τ ¼ i as well as the charged lepton mass matrix I.
The mass eigenvalues satisfy

m2
e1 ¼ 3β̃2e; m2

e2m
2
e3 ¼ 81ð97 − 56

ffiffiffi
3

p
Þα̃2eγ̃2e;

m2
e2 þm2

e3 ¼ 6ð2 −
ffiffiffi
3

p
Þγ̃2e þ 3ð78 − 45

ffiffiffi
3

p
Þð2þ 2Re½ge� þ jgej2Þα̃2e: ð68Þ

The imaginary part of the matrix in Eq. (66) is factored out by using a phase matrix Pe as
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3

2
Pe

0
B@

2β̃2e 0 0

0 Aγ̃2e þ 3ðAþ B1e þ jgej2CÞα̃2e −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dγ̃2e þ 3ðB2e þ EeÞα̃2eÞ�2 þ F2

eα̃
4
e

p
0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dγ̃2e þ 3ðB2e þ EeÞα̃2eÞ�2 þ F2

eα̃
4
e

p
γ̃2e þ 3ðCþ B1e þ jgej2AÞα̃2e

1
CAP�

e; ð69Þ

where

Ee ¼ ðAþ CÞRe½ge�; Fe ¼ ðA − CÞIm½ge�; ð70Þ

and

Pe ¼

0
B@

1 0 0

0 1 0

0 0 e−iϕ
e

1
CA; ð71Þ

with

tanϕe ¼ Feα̃
2
e

Dγ̃2e þ 3ðB4 þ EeÞα̃2e
: ð72Þ

The mixing angle θe23 is given as

tan 2θe23 ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dγ̃2e þ 3ðB2e þ EeÞα̃2eÞ�2 þ F2

eα̃
4
e

p
ð2 ffiffiffi

3
p

− 3Þγ̃2e þ 3ð45 − 26
ffiffiffi
3

p Þð1 − jgej2Þα̃2e
:

ð73Þ

Neglecting the imaginary part of ge (ge ¼ Re½ge�), it is
given simply as

tan 2θe23 ¼ −
1ffiffiffi
3

p γ̃2e þ 3ð7 − 4
ffiffiffi
3

p Þð1þ 4ge þ g2eÞα̃2e
γ̃2e − 3ð7 − 4

ffiffiffi
3

p Þð1 − g2eÞα̃2e
: ð74Þ

We take β̃2e ≪ α̃2e; γ̃2e due to the mass hierarchy of the
charged lepton masses. There are two possible choices of
α̃2e ≪ γ̃2e and γ̃2e ≪ α̃2e.
In the case of α̃2e ≪ γ̃2e,

tan 2θe23 ≃ −
1ffiffiffi
3

p
�
1þ 6ð7 − 4

ffiffiffi
3

p
Þð1þ 2geÞ

α̃2e
γ̃2e

�
: ð75Þ

At the limit of α̃2e=γ̃2e ¼ 0, we obtain θe23 ¼ −15°.
On the other hand, in the case of α2e ≫ γ2e, Eq. (74) turns

to

tan 2θe23 ≃
1ffiffiffi
3

p 1þ 4ge þ g2e
1 − g2e

; ð76Þ

which gives jθe23j ¼ 0°–45° by choosing relevant ge. Thus,
the large θe23 is obtained easily.

6. Charged lepton mass matrix II at nearby τ = i

The mass matrix of the charged lepton in Eq. (65),ME is
corrected due to the deviation from the fixed point of τ ¼ i.

In the first order approximation of ϵ, the correction M2ð1Þ
E

to M2ð0Þ
E of Eq. (66) is given by the following matrix:

M2ð1Þ
E ¼

0
B@

δe1 δe2 δe3

δ�e2 δe4 δe5

δ�e3 δ�e5 δe6

1
CA; ð77Þ

where δei are given in terms of ϵ, ge, α̃2e, β̃
2
e, and γ̃2e. By the

first order perturbation of ϵ, we can obtain the mixing angle
θe12, which vanishes in the zeroth order of perturbation. In
order to estimate the flavor mixing angles, we present
relevant δei as

δe2 ¼
3ffiffiffi
2

p α̃2eðg�e −1Þf½ð11
ffiffiffi
3

p
− 19Þþ ð41

ffiffiffi
3

p
− 71Þge�ϵ�1

− ½ð15
ffiffiffi
3

p
− 26Þþ ð56

ffiffiffi
3

p
− 97Þge�ϵ�2g

þ 1ffiffiffi
2

p γ̃2e½ð3
ffiffiffi
3

p
− 5Þϵ�1þð7− 4

ffiffiffi
3

p
Þϵ�2�

≃ ð0.193þ 0.052geÞα̃2eðg�e − 1Þϵ�1þ 0.240γ̃2eϵ�1;

δe3 ¼
1ffiffiffi
6

p α̃2eðg�e −1Þf½3ð71
ffiffiffi
3

p
− 123Þþ 3ð19

ffiffiffi
3

p
− 33Þge�ϵ�1

− ½3ð97
ffiffiffi
3

p
− 168Þþ ð26

ffiffiffi
3

p
− 45Þge�ϵ�2g

þ 1ffiffiffi
2

p γ̃2e½ð1−
ffiffiffi
3

p
Þϵ�1þð

ffiffiffi
3

p
− 2Þϵ�2�

≃−ð0.052þ 0.138geÞα̃2eðg�e − 1Þϵ�1− 0.897γ̃2eϵ�1; ð78Þ

whereOðβ̃2eÞ is neglected, and ϵ2 ¼ 2ϵ1 of Eq. (26) is taken
in last approximate equalities.
Let us discuss the mixing angles of θe12 and θe13 of the

charged lepton flavors, which vanish in the leading terms of
the mass matrix. As seen in Eq. (78), both δe2 and δe3 are of
Oðα̃2e; γ̃2eÞ × ϵ1 for ge ¼ Oð1Þ. Suppose γ̃2e ≪ α̃2e to realize
the hierarchy of charged lepton masses in Eq. (68).2 Then,
we have mass eigenvalues from Eq. (68) as

2Indeed, a successful numerical result is obtained for γ̃2e ≪ α̃2e
in Sec. VII.
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m2
e1 ¼ 3β̃2e; m2

e2 ≃
9ð2 − ffiffiffi

3
p Þ

2þ 2Re½ge� þ jgej2
γ̃2e;

m2
e3 ≃ 3ð78 − 45

ffiffiffi
3

p
Þð2þ 2Re½ge� þ jgej2Þα̃2e; ð79Þ

which lead to

m2
e2

m2
e3
≃

7þ 4
ffiffiffi
3

p

ð2þ 2Re½ge� þ jgej2Þ2
γ̃2e
α̃2e

: ð80Þ

The mixing angles between first and second family θe12
and between first and third family θe13 are given approx-
imately as

θe12≃
				 δe2m2

e2

				; θe13≃
				 δe3m2

e3

				; ð81Þ

where

δe2 ≃ ð0.193þ 0.052geÞα̃2eðg�e − 1Þϵ�1;
δe3 ≃ −ð0.052þ 0.138geÞα̃2eðg�e − 1Þϵ�1; ð82Þ

respectively. Substituting mass eigenvalues of Eq. (79) into
mixing angles in Eq. (81), we can estimate magnitudes of
θe12 and θe13. The mixing angle of θe12 is given as

θe12≃
				ð0.193þ 0.052geÞðg�e − 1Þ

9ð2− ffiffiffi
3

p Þ ð2þ 2Re½ge�þ jgej2Þ
α̃2e
γ̃2e

ϵ�1

				
¼
				ð0.193þ 0.052geÞðg�e − 1Þð26þ 15

ffiffiffi
3

p Þ
9ð2þ 2Re½ge�þ jgej2Þ

m2
e3

m2
e2
ϵ�1

				
≃ 1.7

jð0.193þ 0.052geÞðg�e − 1Þj
2þ 2Re½ge�þ jgej2

jϵ�1j× 103; ð83Þ

where the mass ration of Eq. (80) is used to remove the ratio
γ̃2e=α̃2e. In the last equality, observed masses of the tauon and
the muon are input. Suppose the magnitude of jϵ�1j to be
0.02 as a typical value. As seen in Eq. (83), θe12 depends on
ge. Indeed, θe12 vanishes at ge ¼ 1 or −3.62, while it is of
order one if jgej ≪ 1 or jgej ≫ 1. On the other hand, θe13 is
suppressed due to the factor of 1=m2

e3 as seen Eq. (81).
In conclusion, the charged lepton mass matrix II com-

bined with the neutrino mass matrix of Eq. (33) is expected
to be consistent with the observed three PMNS mixing
angles at nearby τ ¼ i as well as charged lepton mass
matrix I. Indeed, this case works well for NH, but it leads to
the sum of neutrino masses larger than 120 meV for IH as
seen in numerical results of Sec. VII.

C. Lepton mass matrix at τ =ω

1. Neutrino mass matrix at τ =ω

Let us consider the neutrino mass matrix at τ ¼ ω, where
there exists the residual symmetry of the A4 group
ZST

3 ¼ fI; ST; ðSTÞ2g. By putting the modular forms in
Table I into Eq. (33), the neutrino mass matrix is written as

Mν ¼
v2u
Λ
Y2
0

2
66432

0
B@

2 −ω2 1
2
ω

−ω2 −ω −1
1
2
ω −1 2ω2

1
CAþ9

4
ωgν2

0
B@
0 0 1

0 1 0

1 0 0

1
CA
3
75;

ð84Þ

where the gν1 term of Eq. (33) disappears because ofYð4Þ
1 ¼

0 at τ ¼ ω. We move to the diagonal base of ST. By using
the unitary transformation of Eq. (22), VST4 or VST5, the
neutrino mass matrix is transformed as

M2ð0Þ
ν ≡VST4ð5ÞM̂†

νM̂νV
†
ST4ð5Þ

¼
�
9

4

v2u
Λ
Y2
0

�
2

0
B@

j2þ gν2j2 0 0

0 j1− gν2j2 0

0 0 j1− gν2j2

1
CA:

ð85Þ

The neutrino mass matrix is diagonal, and two neutrinos are
degenerated at τ ¼ ω. Three neutrino masses are degener-
ate if gν2 ¼ −0.5. Then, large flavor mixing angles are
possibly reproduced if small off diagonal elements are
generated by the deviation from τ ¼ ω.

2. Neutrino mass matrix at nearby τ =ω

Neutrino mass matrix in Eq. (33),Mν is corrected due to
the deviation from the fixed point of τ ¼ ω. After putting
modular forms of Eq. (28) and moving to the diagonal base
of ST by VST4, the corrections to Eq. (85) are given by only
a small variable ϵ of in Eq. (28). In the first order

approximation of ϵ, the correction M2ð1Þ
ν to M2ð0Þ

ν of
Eq. (85) is given by the following matrix:

M2ð1Þ
ν ¼

�
9

4

v2u
Λ
Y2
0

�
2

0
B@

δν1 δν2 δν3

δ�ν2 δν4 δν5

δ�ν3 δ�ν5 δν6

1
CA; ð86Þ

where δνi are given in terms of ϵ, gν1, and gν2. By the first
order perturbation of ϵ, we can obtain the mixing angle θν12,
which vanishes in the zeroth order of perturbation. In order
to estimate the flavor mixing angles, we present off
diagonal elements, δν2, δν3, and δν5 as
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δν2 ¼
3

4
ð2þ g�ν2Þϵ1 þ

3

8
ð1þ 6g�ν1Þð1 − gν2Þϵ�1 −

21

8
ð2þ g�ν2Þϵ2 −

3

4
ð4 − 3g�ν1Þð1 − gν2Þϵ�2

≃ −
9

2
ð2þ g�ν2Þϵ1 −

9

8
ð5 − 6g�ν1Þð1 − gν2Þϵ�1;

δν3 ¼
3

8
ð1þ 6gν1Þð2þ g�ν2Þϵ1 þ

3

4
ð1 − gν2Þϵ�1 −

3

4
ð4 − 3gν1Þð2þ g�ν2Þϵ2 −

21

8
ð1 − gν2Þϵ�2

≃ −
9

8
ð5 − 6gν1Þð2þ g�ν2Þϵ1 −

9

2
ð1 − gν2Þϵ�1;

δν5 ¼
3

4
ð1 − 3g�ν1Þð1 − gν2Þϵ�1 −

3

2
ð1 − g�ν2Þϵ1 −

3

4
ð8þ 3g�ν1Þð1 − gν2Þϵ�2 þ

21

4
ð1 − g�ν2Þϵ2

≃ −
9

4
ð5þ 3g�ν1Þð1 − gν2Þϵ�1 þ 9ð1 − g�ν2Þϵ1; ð87Þ

where ϵ1 ¼ 2.1iϵ, and ϵ2 ¼ 2ϵ1 of Eq. (28) is used for last
approximate equalities. If we move to the diagonal base of
ST by using VST5 instead of VST4, we obtain the corrections
by exchanging the above results as

δν2 ↔ δν3; δν5 ↔ δ�ν5: ð88Þ
Indeed, we move to the diagonal base of ST by using VST5
for the charged lepton mass matrix II in Sec. V C 5.
It is noticed that the off diagonal elements are enhanced

by large coefficients in front of ϵ1 and ϵ�1. For example, jδν5j
could be comparable to diagonal element if jϵ1j ¼ 0.1 is
taken. Since the second and third eigenvalues are degen-
erated as seen in Eq. (85), the large (2–3) mixing angle is
easily obtained due to those corrections. The large (1–2)
mixing angle is also possible by choosing relevant gν1 and
gν2. The (1–3) mixing angle is relatively small due to the
fixed mass square difference Δm2

31. On the other hand, the
sum of neutrino masses may increase if mass eigenvalues
become quasidegenerate. Then, its cosmological upper
bound provides a crucial test for the lepton mass matrices.
Therefore, we should examine the contribution from the
charged lepton sector carefully for both NH and IH of
neutrinos to judge it working well or not. Indeed, we will
see in Sec. VII that the model of the charged lepton mass
matrix I is excluded by the sum of neutrino masses while
the model with the charged lepton mass matrix II is
consistent with it for both NH and IH of neutrino masses.

3. Charged lepton mass matrix I at τ =ω

We discusses the charged lepton mass matrix I at the
fixed point τ ¼ ω by using modular forms in Table I. In the
base of S and T of Eq. (9), the charged lepton mass matrix I
in Eq. (36) is given as

ME ¼

0
B@

α̃e 0 0

0 β̃e 0

0 0 γ̃e

1
CA
0
B@

1 − 1
2
ω2 ω

ω 1 − 1
2
ω2

− 1
2
ω2 ω 1

1
CA;

ð89Þ

where α̃e ¼ vdY0αe, β̃e ¼ vdY0βe, and γ̃e ¼ vdY0γe. By
using the unitary transformation of Eq. (22), VST4, like the
case of the neutrino mass matrix, M†

EME is transformed as

M2ð0Þ
E ≡ VST4M

†
EMEV

†
ST4 ¼

9

4

0
B@

α̃2e 0 0

0 γ̃2e 0

0 0 β̃2e

1
CA: ð90Þ

It is remarked that it is diagonal one as well as the neutrino
mass matrix in Eq. (85).

4. Charged lepton mass matrix I at nearby τ =ω

The charged lepton mass matrix in Eq. (89), ME is
corrected due to the deviation from the fixed point of
τ ¼ ω. After putting modular forms of Eq. (28) and moving

to the diagonal base of ST by VST4, the correctionM
2ð1Þ
ν to

M2ð0Þ
ν of Eq. (90) is given in the first order approximation

of ϵ as

M2ð1Þ
E ¼

0
B@

δe1 δe2 δe3

δ�e2 δe4 δe5

δ�e3 δ�e5 δe6

1
CA; ð91Þ

where

δe2 ¼ iα̃2e

�
ϵ1 −

1

2
ϵ2

�
þ 1

2
iγ̃2eðϵ�1 þ ϵ�2Þ ¼

3

2
iγ̃2eϵ�1; ð92Þ

δe3 ¼
1

2
iα̃2eðϵ1 þ ϵ2Þ þ iβ̃2e

�
ϵ�1 −

1

2
ϵ�2

�
¼ 3

2
iα̃2eϵ1; ð93Þ

δe5 ¼ −iγ̃2e
�
ϵ1 −

1

2
ϵ2

�
−
1

2
iβ̃2eðϵ�1 þ ϵ�2Þ ¼ −

3

2
iβ̃2eϵ�1;

ð94Þ

where ϵ2 ¼ 2ϵ1 of Eq. (28) is used for last equalities. Due
to β̃2e ≫ γ̃2e ≫ α̃2e, mixing angles θeij are easily obtained by
using ϵ1 ¼ 2.1iϵ as follows:
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θe12 ≃ θe23 ≃
2

3
jϵ1j ≃

4.2
3

jϵj; ð95Þ

which are smaller than 0.1; moreover, θe13 is highly sup-
pressed due to the factor α̃2e=β̃

2
e. Thus, the flavor mixing

angles of the charged lepton are very small at nearby the
fixed point τ ¼ ω. The PMNS mixing angles come from
mainly the neutrino sector in this case. Therefore, the
increase of the sum of neutrino masses is unavoidable since
mass eigenvalues become quasidegenerate in order to
reproduce large mixing angles.

5. Charged lepton mass matrix II at τ =ω

We discusses the charged lepton mass matrix II at the
fixed point τ ¼ ω by using modular forms in Table I. The
charged lepton mass matrix II in Eq. (37) is given as

ME ¼

0
B@

α̃e 0 0

0 β̃e 0

0 0 γ̃e

1
CA
0
B@

ge −2ω2ge −2ωge
− 1

2
ω 1 ω2

− 1
2
ω2 ω 1

1
CA;

ð96Þ

where α̃e ¼ ð9=8ÞvdY3
0αd, β̃e ¼ ð3=2ÞvdY2

0βq, and
γ̃e ¼ vdY0γe. By using the unitary transformation of
Eq. (22), VST5, which is different from the case of the
charged lepton mass matrix I, M†

EME is transformed as

M2ð0Þ
E ≡ VST5M

†
EMEV

†
ST5

¼ 9

4

0
B@

0 0 0

0 0 0

0 0 4α̃2ejgej2 þ β̃2e þ γ̃2e

1
CA; ð97Þ

which gives two massless charged leptons.

6. Charged lepton mass matrix II at nearby τ =ω

The charged lepton mass matrix in Eq. (96), ME is
corrected due to the deviation from the fixed point of
τ ¼ ω. After putting modular forms of Eq. (28) and moving

to the diagonal base of ST by VST5, the correctionM
2ð1Þ
ν to

M2ð0Þ
ν of Eq. (97) is given as

M2ð1Þ
E ¼

0
B@

0 0 δe3

0 0 δe5

δ�e3 δ�e5 δe6

1
CA; ð98Þ

where δei are given in terms of ϵ, ge, α̃2e, β̃
2
e, and γ̃2e. By the

first order perturbation of ϵ, we can obtain the mixing
angles θe23 and θe13, which vanish in the zeroth order of
perturbation. In order to estimate the flavor mixing angles,
we present δe3 and δe5 as

δe3 ¼ −2α̃2egeð2þ g�eÞðϵ�1 þ ϵ�2Þ þ
1

6
β̃2eðϵ�1 − 8ϵ�2Þ

þ 1

2
iγ̃2eðϵ�1 þ ϵ�2Þ

≃ ½−6α̃2egeð2þ g�eÞ −
5

2
β̃2e þ

3

2
iγ̃2e�ϵ�1;

δe5 ¼ α̃2ejgej2ð−4ϵ�1 þ 2ϵ�2Þ þ β̃2e

�
1

3
ϵ�1 −

7

6
ϵ�2

�

þ iγ̃2e

�
ϵ�1 −

1

2
ϵ�2

�
≃ −2β̃2eϵ�1; ð99Þ

where ϵ2 ¼ 2ϵ1 of Eq. (28) is used in last approximate
equalities. If β̃2e ≫ α̃2ejgej2; γ̃2e, mixing angles θe23 and θe13
are given,

θe23 ≃
8

9
jϵ1j ≃

17

9
jϵj; θe13 ≃

10

9
jϵ1j ≃

21

9
jϵj; ð100Þ

where ϵ1 ¼ 2.1iϵ in Eq. (28) is taken. Therefore, these
mixing angles are at most 0.1. It is noticed that θe12
vanishes.
On the other hand, if α̃2ejg2ej ≫ β̃2e; γ̃2e, the mixing angle

θe13 is given,

θe13 ≃
2

3

				 2þ g�e
ge

ϵ1

				 ≃ 8.4
3

				 1ge ϵ
				; ð101Þ

where jgej is supposed to be much smaller than 1 in the last
equality. Therefore, θe13 is enhanced by taking jgej ≃ 0.1. It
could be of order 1 if jϵj ¼ 0.05. Thus, the flavor mixing
angle θe13 contributes significantly to the PMNS mixing
angle θ13.
Indeed, we obtain the allowed region of jϵj ≃ 0.1 with

jgej ≃ 0.2 for NH of neutrinos by performing numerical
scan in Sec. VII. However, for IH of neutrinos, jϵj ≃ 0.15 is
obtained with large jgej ¼ 5–10.

D. Lepton mass matrix at τ = i∞

1. Neutrino mass matrix at τ = i∞
Let us consider the neutrino mass matrix at τ ¼ i∞,

where there exists the residual symmetries of the A4 group
ZT

3 ¼ fI; T; T2g. By putting the modular forms in Table I
into Eq. (33), the neutrino mass matrix is written as

Mν ¼
v2u
Λ
Y2
0

2
64
0
B@

2 0 0

0 0 −1
0 −1 0

1
CAþ gν1

0
B@

1 0 0

0 0 1

0 1 0

1
CA
3
75;

ð102Þ

where the gν2 term of Eq. (33) disappears because of

Yð4Þ
10 ¼ 0 at τ ¼ i∞. Since T is already in the diagonal base
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as seen in Eq. (9), we can write down M†
νMν straightfor-

ward as follows:

M2ð0Þ
ν ≡M†

νMν

¼
�
v2u
Λ
Y2
0

�
2

0
B@

j2þ gν1j2 0 0

0 j1 − gν1j2 0

0 0 j1 − gν1j2

1
CA;

ð103Þ

which is a diagonal matrix as well as the neutrino mass
matrix at τ ¼ ω in Eq. (85). Three neutrino masses are
degenerate if gν1 ¼ −0.5. Then, large flavor mixing angles

are possibly reproduced if small off diagonal elements are
generated due to finite effect of τ.

2. Neutrino mass matrix towards τ = i∞
Neutrino mass matrix in Eq. (33), Mν is given from the

finite correction of τ ¼ i∞. Taking account of modular
forms of Eq. (29), the corrections to Eq. (103) are given by
only a small variable ϵ of in Eq. (29). In the first order

approximation of ϵ, the correction M2ð1Þ
ν to M2ð0Þ

ν of
Eq. (103) is given in terms of

δ ¼ −6e2
3
πiReτe−

2
3
π Imτ: ð104Þ

It is given by the following matrix:

M2ð1Þ
ν ≃

�
v2u
Λ
Y2
0

�
2

0
B@

0 −δ�ð1 − gν1Þð1þ 2g�ν2Þ δð2þ g�ν1Þð1þ 2gν2Þ
−δð1 − g�ν1Þð1þ 2gν2Þ 0 2δ�ð1 − gν1Þð1 − g�ν2Þ
δ�ð2þ gν1Þð1þ 2g�ν2Þ 2δð1 − g�ν1Þð1 − gν2Þ 0

1
CA: ð105Þ

If we take Imτ ¼ 1.6, we get jδj ≃ 0.21, which is derived in
Eq. (104). Thus, the large (2–3) mixing angle is easily
obtained since second and third eigenvalues are degenerated
as seen in Eq. (103). The large (1–2) mixing angle is also
possible by choosing relevant gν1 and gν2. The (1–3) mixing
angle is expected relatively small due to the fixedmass square
differenceΔm2

31. Then, the cosmological upper bound of the
sum of neutrino masses is a crucial criterion to test neutrino
mass matrices. In Sec. VII, we will see that both charged
leptonmassmatrix I and II satisfy the sumof neutrinomasses
less than the cosmological upper bound 120 meV for NH of
neutrinos, but they do not satisfy it for IH.

3. Charged lepton mass matrix I and II at τ = i∞
The charged lepton mass matrices of I and II in Eqs. (36)

and (37) are simple at τ ¼ i∞ since the modular forms of
weight 2, 4, and 6 are given in the T diagonal base. Putting
them of Table I into the charged lepton mass matrices in
Eqs. (36) and (37), we obtain

ME ¼

0
B@

α̃e 0 0

0 β̃e 0

0 0 γ̃e

1
CA; ð106Þ

where α̃e ¼ vdY0αe, β̃e ¼ vdY0βe, and γ̃e ¼ vdY0γe for the
case I and α̃e ¼ vdY3

0αe, β̃e ¼ vdY2
0βe, and γ̃e ¼ vdY0γe for

the case II. The mass matrix M†
EME is given as

M2ð0Þ
E ≡M†

EME ¼

0
B@

α̃2e 0 0

0 β̃2e 0

0 0 γ̃2e

1
CA: ð107Þ

The flavor mixing appears through the finite effect
of Im½τ�.

4. Charged lepton mass matrix I
and II towards τ = i∞

The charged lepton mass matrices of I and II in Eqs. (36)
and (37) are given from the finite correction of τ ¼ i∞. By
using modular forms of Eq. (29), the corrections to
Eq. (107) are given by only a small variable ϵ of
Eq. (29). In the first order approximation of ϵ, the

correction M2ð1Þ
E to M2ð0Þ

E of Eq. (107) is given in terms
of δ of Eq. (104) as

M2ð1Þ
E ≃

0
B@

0 δ�β̃2e δα̃2e

δβ̃2e 0 δ�γ̃2e
δ�α̃2e δγ̃2e 0

1
CA; ð108Þ

for the charged lepton mass matrix I. On the other hand, for
the charged lepton mass matrix II, it is

M2ð1Þ
E ≃

0
B@

0 −δ�β̃2e ð1þ 2geÞδα̃2e
−δβ̃2e 0 δ�γ̃2e

ð1þ 2g�eÞδα̃2e δγ̃2e 0

1
CA:

ð109Þ

In both charged lepton mass matrices I and II, (1–2) and
(2–3) families mixing angles θe23, θ

e
12, are given as

θe12 ≃
jδ�jβ̃2e
β̃2e

≃ jδj; θe23 ≃
jδ�jγ̃2e
γ̃2e

¼ jδj; ð110Þ
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respectively, where γ̃2e ≫ β̃2e ≫ α̃2e. If we take Imτ ¼ 1.6,
the magnitude of θe12 ≃ jδj ≃ 0.21. This magnitude of θe12
contributes significantly to the PMNSmixing angle θ13. On
the other hand, the mixing angle θe13 between first and third
family is highly suppressed due to the factor α̃2e=γ̃2e.
It is remarked that the mass matrix of Eq. (109) is

agreement with Eq. (108) in the case of jgej ≪ 1, apart
from the minus sign in front of (1,2) and (2,1) entries.
However, this minus sign of the charged lepton mass matrix
II spoils the reproduction of large mixing angles of the
PMNS matrix, θ12 and θ23 together although the charged
lepton mass matrix I is successful to reproduce the
observed PMNS mixing angles.
Alternatively, the observed PMNS mixing angles can be

reproduced in the charged lepton mass matrix II if a large
mixing angle for θe13 is obtained by taking jgej ≫ 1 with
α̃2e ≫ β̃2e; γ̃2e. This case is shown numerically in Sec. VII.

VI. QUARK MASS MATRICES IN THE A4
MODULAR INVARIANCE

If flavors of quarks and leptons are originated from a
same two-dimensional compact space, the leptons and
quarks have same flavor symmetry and the same value
of the modulus τ. Therefore, the modular symmetry
provides a new approach towards the unification of quark
and lepton flavors. In order to investigate the possibility of
the quark/lepton unification, we discuss a A4 modular
invariant flavor model for quarks together with the lepton
sector.

A. Model of quark mass matrices

We take the assignments of A4 irreducible representa-
tions and modular weights for quarks like the charged

leptons. That is, three left-handed quarks are components of
the triplet of the A4 group, but three right-handed quarks,
(uc, cc, tc) and (dc, sc, bc) are three different singlets
ð1; 100; 10Þ of A4, respectively. Quark mass matrices depend
on modular weights of the left-handed and the right-handed
quarks since the sum of their weight including modular
forms should vanish. Let us fix the weights of left-handed
quarks to be −2 like the left-handed charged leptons. If the
weight is 0 for all right-handed quarks like right-handed
charged leptons, both up-type and down-type mass matri-
ces are given in terms of only the weight 2 modular forms
of Eq. (10). However, this case is inconsistent with the
observed CKM matrix as well known [53]. In order to
overcome this failure, we introduce weight 4 and 6 modular
forms of Eqs. (13) and (14) in addition to weight 2 modular
forms [53]. We consider one simple model in the case I,
where the up-type right-handed quarks have different
weights from the weight 0 of the right-handed down-type
quarks. The assignment is presented in Table III, in which
the weight of right-handed up-type quarks is −4. Therefore,
the up-type quark mass matrix is given in terms of the
weight 6 modular forms, in which two different triplet
modular forms are available. This model has already
discussed in Ref. [53] numerically. We reexamine the
flavor structure of these quark mass matrices at nearby
fixed point explicitly, and then we can understand why this
model works well.
Alternatively, another quark mass matrix is also consid-

ered as the case II. In this case, weights of the right-handed
up-type quarks and the down-type ones are same ones,
which are also discussed numerically in Ref. [85]. The
modular forms of weight 6 join only in the first family.
The relevant superpotentials of the quark sector are given

for two cases as follows:

I∶ wu ¼ αuucHuY
ð6Þ
3 Qþ α0uucHuY

ð6Þ
30 Qþ βuccHuY

ð6Þ
3 Qþ β0uccHuY

ð6Þ
30 Q

þ γutcHuY
ð6Þ
3 Qþ γ0utcHqY

ð6Þ
30 Q;

wd ¼ αddcHdY
ð2Þ
3 Qþ βdscHdY

ð2Þ
3 Qþ γdbcHdY

ð2Þ
3 Q; ð111Þ

II∶ wq ¼ αqqc1HqY
ð6Þ
3 Qþ α0qqc1HqY

ð6Þ
30 Qþ βqqc2HqY

ð4Þ
3 Qþ γqqc3HqY

ð2Þ
3 Q; ð112Þ

where q ¼ u, d, and the argument τ in the modular forms YiðτÞ is omitted. Couplings αq, α0q,βq, β0q, γq, and γ0q can be
adjusted to the observed quark masses.

TABLE III. Assignments of representations and weights −kI for MSSM fields and modular forms.

Q ðuc; cc; tcÞ, ðdc; sc; bcÞ Hq Yð6Þ
3 , Yð6Þ

30 Yð4Þ
3 Yð2Þ

3

SUð2Þ 2 1 2 1 1 1
A4 3 (1, 100, 10) 1 3 3 3
−kI −2 I : ð−4;−4;−4Þ, (0,0,0) 0 k ¼ 6 k ¼ 4 k ¼ 2

II :ð−4;−2; 0Þ, ð−4;−2; 0Þ
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The quark mass matrices are written as

I∶ Mu ¼ vu

0
B@

αu 0 0

0 βu 0

0 0 γu

1
CA
2
64
0
B@

Yð6Þ
1 Yð6Þ

3 Yð6Þ
2

Yð6Þ
2 Yð6Þ

1 Yð6Þ
3

Yð6Þ
3 Yð6Þ

2 Yð6Þ
1

1
CAþ

0
B@

gu1 0 0

0 gu2 0

0 0 gu3

1
CA
0
B@

Y 0ð6Þ
1 Y 0ð6Þ

3 Y 0ð6Þ
2

Y 0ð6Þ
2 Y 0ð6Þ

1 Y 0ð6Þ
3

Y 0ð6Þ
3 Y 0ð6Þ

2 Y 0ð6Þ
1

1
CA
3
75
RL

;

Md ¼ vd

0
B@

αd 0 0

0 βd 0

0 0 γd

1
CA
0
B@

Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

1
CA

RL

; ð113Þ

II∶ Mq ¼ vq

0
B@

αq 0 0

0 βq 0

0 0 γq

1
CA
0
BB@

Yð6Þ
1 þ gqY

0ð6Þ
1 Yð6Þ

3 þ gqY
0ð6Þ
3 Yð6Þ

2 þ gqY
0ð6Þ
2

Yð4Þ
2 Yð4Þ

1 Yð4Þ
3

Yð2Þ
3 Yð2Þ

2 Yð2Þ
1

1
CCA

RL

; ð114Þ

where gu1 ¼ α0u=αu, gu2 ¼ β0u=βu, gu3 ¼ γ0u=γu, and gq ≡ α0q=αq. The VEV of the Higgs field Hq is denoted by vq.
Parameters αq, βq, γq can be taken to be real; on the other hand, gu1, gu2, gu3, gu, and gd are complex parameters.
These mass matrices turn to the simple ones at the fixed points, τ ¼ i, τ ¼ ω, and τ ¼ i∞. We discuss them in the

diagonal bases of S, ST, and T, respectively.

B. Quark mass matrix at the fixed point of τ = i

1. Quark mass matrix I at τ = i

The quark matrix I is given by using modular forms in Table I at fixed point τ ¼ i in the base of S of Eq. (9) as follows:

Mu ¼

0
B@

α̃u 0 0

0 β̃u 0

0 0 γ̃u

1
CA
0
B@

2
ffiffiffi
3

p
− 3þ gu1ð7

ffiffiffi
3

p
− 12Þ 12 − 7

ffiffiffi
3

p þ gu1ð9 − 5
ffiffiffi
3

p Þ 5
ffiffiffi
3

p
− 9þ gu1ð3 − 2

ffiffiffi
3

p Þ
5

ffiffiffi
3

p
− 9þ gu2ð3 − 2

ffiffiffi
3

p Þ 2
ffiffiffi
3

p
− 3þ gu2ð7

ffiffiffi
3

p
− 12Þ 12 − 7

ffiffiffi
3

p þ gu2ð9 − 5
ffiffiffi
3

p Þ
12 − 7

ffiffiffi
3

p þ gu3ð9 − 5
ffiffiffi
3

p Þ 5
ffiffiffi
3

p
− 9þ gu3ð3 − 2

ffiffiffi
3

p Þ 2
ffiffiffi
3

p
− 3þ gu3ð7

ffiffiffi
3

p
− 12Þ

1
CA;

Md ¼

0
B@

α̃d 0 0

0 β̃d 0

0 0 γ̃d

1
CA
0
B@

1 −2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p

1 −
ffiffiffi
3

p
1 −2þ ffiffiffi

3
p

−2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p
1

1
CA; ð115Þ

where α̃u ¼ 3vuY3
0αu, β̃u ¼ 3vuY3

0βu, γ̃u ¼ 3vuY3
0γu, α̃d ¼ ð6 − 3

ffiffiffi
3

p ÞvdY2
0αd, β̃d ¼ ð6 − 3

ffiffiffi
3

p ÞvdY2
0βd

and γ̃q ¼ ð6 − 3
ffiffiffi
3

p ÞvdY2
0γd.

We move the quark mass matrix to the diagonal base of S. By using the unitary transformation of Eq. (17), VS2, the mass
matrix M†

uMu is transformed as

M2ð0Þ
u ≡ VS2M

†
qMuV

†
S2 ¼

9

2

0
B@

0 0 0

0 a22α̃2u þ b22β̃
2
u þ c22γ̃2u a23α̃2u þ b23β̃

2
u þ c23γ̃2u

0 a�23α̃
2
u þ b�23β̃

2
u þ c�23γ̃

2
u a33α̃2u þ b33β̃

2
u þ c33γ̃2u

1
CA: ð116Þ

Each coefficient is given as

a22 ¼ Aþ 2BRe½gu1� þ Cjgu1j2; b22 ¼ 2Bþ 2ðA − BÞRe½gu2� þ Ajgu2j2;
c22 ¼ Cþ 2ðC − BÞRe½gu3� þ 2Bjgu3j2; a23 ¼ −B − Agu1 − Cg�u1 − Bjgu1j2;
b23 ¼ 2Bþ ðC − BÞgu2 þ ðA − BÞg�u2 − Bjgu2j2; c23 ¼ −Bþ ðC − BÞgu3 þ ðA − BÞg�u3 þ 2Bjgu3j2;
a33 ¼ Cþ 2BRe½gu1� þ Ajgu1j2; b33 ¼ 2Bþ 2ðC − BÞRe½gu2� þ Cjgu2j2;
c33 ¼ Aþ 2ðA − BÞRe½gu3� þ 2Bjgu3j2; ð117Þ
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where A, B, and C are given in Eq. (67). On the other hand, the mass matrix M†
dMd is transformed as

M2ð0Þ
d ≡ VS2M

†
dMdV

†
S2 ¼

3

2

0
B@

0 0 0

0 α̃2d þ 2Dβ̃2d þ Aγ̃2d −Dð̃α2d − 2β̃2d þ γ̃2dÞ
0 −Dð̃α2d − 2β̃2d þ γ̃2dÞ Aα̃2d þ 2Dβ̃2d þ γ̃2d

1
CA: ð118Þ

It is remarked that the lightest quarks are massless for both up-type and down-type quarks at τ ¼ i. Therefore, the small
deviation from τ ¼ i is required to avoid the massless quark. There exists a nonvanishing flavor mixing angle θu23 at τ ¼ i as

discussed in Eq. (19). Supposing γ̃q ≫ β̃q; α̃q, the mixing angle θu23 is given from Eq. (116) as

tan 2θu23 ≃ 2
j − Bþ ðC − BÞgu3 þ ðA − BÞg�u3 þ 2Bjgu3j2j

ðA − CÞð1þ 2Re½gu3�Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½−Bþ 2BRe½gu3� þ 2Bjgu3j2�2 þ ½ðC − AÞImgu3�2

p
2

ffiffiffi
3

p
Bð1þ 2Re½gu3�Þ

≃
1ffiffiffi
3

p
				 2g

2
u3 þ 2gu3 − 1

1þ 2gu3

				; ð119Þ

where Aþ C ¼ 4B is used and the imaginary part of gq is
neglected in the last equation (gu3 ¼ Re½gu3�). In this case,
tan 2θu23 vanishes at gu3 ¼ ð−1� ffiffiffi

3
p Þ=2, while θu23 ¼ 15°

at gu3 ¼ 0.
On the other hand, the mixing angle θd23 is simply given

from Eq. (118) as

tan 2θd23 ≃ 2
D

1 − A
¼ 1ffiffiffi

3
p ; ð120Þ

which leads to θd23 ¼ 15°. Since the observed small CKM
mixing angle θCKM23 (around 2°) is given by the difference
ðθd23 − θu23Þ, the magnitude of gu3 should be small in order
to realize the enough cancellation between θd23 and θu23.
Indeed, jgu3j is in ½0; 02; 0.07� in our numerical result of
Sec. VII.

2. Quark mass matrix I at nearby τ = i

By using the approximate modular forms of weight 2 and
6 in Eqs. (C4) and (C6) of Appendix C.1, we present the

deviations from M2ð0Þ
u and M2ð0Þ

d in Eqs. (116) and (118).

Then, the additional contribution M2ð1Þ
u to M2ð0Þ

u of
Eq. (116) of order ϵ is given in terms of A, B, and C in
Eq. (67) as follows:

M2ð1Þ
u ≃

0
B@

0 δu2 δu3

δ�u2 δu4 δu5

δ�u3 δ�u5 δu6

1
CA; ð121Þ

where

δu2 ¼
3ffiffiffi
2

p f½ðA − Bþ ðB − CÞgu1Þϵ�1 þ ðBþ Cgu1Þϵ�2�ðg�u1 − 1Þα̃2u þ ð−2Bþ ðB − AÞgu2Þϵ�1
þ ðC − B − Bgu2Þϵ�2�ðg�u2 − 1Þβ̃2u þ ðC − Bþ 2Bgu3Þϵ�1 þ ð−Cþ ðB − CÞgu3Þϵ�2�ðg�u3 − 1Þγ̃2ug

≃
3ffiffiffi
2

p ϵ�1f½ðAþ BÞ þ ðBþ CÞgu1�ðg�u1 − 1Þα̃2u þ ½2ðC − 2BÞ − ðAþ BÞgu2�ðg�u2 − 1Þβ̃2u
þ ½−ðBþ CÞ þ 2ð2B − CÞgu3�ðg�u3 − 1Þγ̃2ug; ð122Þ

δu3 ¼
3ffiffiffi
2

p f½ðC − B − ðA − BÞgu1Þϵ�1 − ðCþ Bgu1Þϵ�2�ðg�u1 − 1Þα̃2u
þ ð−2Bþ ðB − CÞgu2Þϵ�1 þ ðC − B − Cgu2Þϵ�2�ðg�u2 − 1Þβ̃2u
þ ðA − Bþ 2Bgu3Þϵ�1 þ ðBþ ðB − CÞgu3Þϵ�2�ðg�u3 − 1Þγ̃2ug

≃
3ffiffiffi
2

p ϵ�1f−½ðCþ BÞ þ ðAþ BÞgu1�ðg�u1 − 1Þα̃2u þ ½2ðC − 2BÞ þ ðBþ CÞgu2�ðg�u2 − 1Þβ̃2u
þ ½Aþ Bþ 2ð2B − CÞgu3�ðg�u3 − 1Þγ̃2ug: ð123Þ
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In the approximate equalities, ϵ2 ¼ 2ϵ1 in Eq. (26) is put. In order to estimate the Cabibbo angle, we calculate the mixing
angle of the first and second family as

tan 2θu12 ¼
2jδu2j

9
2
ða22α̃2u þ b22β̃

2
u þ c22γ̃2uÞ

≃
4

3
ffiffiffi
2

p Bþ C
C

jϵ�1j ≃
4

3
ffiffiffi
2

p ð3þ
ffiffiffi
3

p
Þjϵ�1j ≃ 4.46jϵ�1j; ð124Þ

where the denominator comes from the (2, 2) element of Eq. (116). In the second approximate equality, γ̃u ≫ α̃u; β̃u and
jgu3j ≪ 1 are put, while c22 is given in Eq. (117).

The additional contribution M2ð1Þ
d to M2ð0Þ

d of Eq. (118) of order ϵ is

M2ð1Þ
d ≃

0
B@

0 δd2 δd3

δ�d2 δd4 δd5

δ�d3 δ�d5 δd6

1
CA; ð125Þ

where

δd2 ¼
1ffiffiffi
2

p f½ð
ffiffiffi
3

p
− 1Þϵ�1 þ ð

ffiffiffi
3

p
− 2Þϵ�2�α̃2d þ ½ð4 − 2

ffiffiffi
3

p
Þϵ�1 þ ð3

ffiffiffi
3

p
− 5Þϵ�2�β̃2d

þ ½ð3
ffiffiffi
3

p
− 5Þϵ�1 þ ð7 − 4

ffiffiffi
3

p
Þϵ�2�γ̃2dg ≃

1ffiffiffi
2

p ϵ�1½ð3
ffiffiffi
3

p
− 5Þα̃2d þ 2ð2

ffiffiffi
3

p
− 3Þβ̃2d þ ð9 − 5

ffiffiffi
3

p
Þγ̃2d�; ð126Þ

δd3 ¼
1ffiffiffi
6

p f½ð9 − 5
ffiffiffi
3

p
Þϵ�1 þ ð7

ffiffiffi
3

p
− 12Þϵ�2�α̃2d þ ½ð4

ffiffiffi
3

p
− 6Þϵ�1 þ ð9 − 5

ffiffiffi
3

p
Þϵ�2�β̃2d

þ ½ð
ffiffiffi
3

p
− 3Þϵ�1 þ ð3 − 2

ffiffiffi
3

p
Þϵ�2�γ̃2dg ≃

ffiffiffi
6

p

2
ϵ�1½ð3

ffiffiffi
3

p
− 5Þα̃2d þ 2ð2 −

ffiffiffi
3

p
Þβ̃2d þ ð1 −

ffiffiffi
3

p
Þγ̃2d�: ð127Þ

In the last approximate equalities, ϵ2 ¼ 2ϵ1 in Eq. (26) is put. The mixing angle of the first- and second family as

tan 2θd12 ¼
2jδd2j

3
2
ðα̃2d þ 2Dβ̃2d þ Aγ̃2dÞ

≃
4

3
ffiffiffi
2

p 9 − 5
ffiffiffi
3

p

A
jϵ�1j ≃

4

3
ffiffiffi
2

p ð3þ
ffiffiffi
3

p
Þjϵ�1j ≃ 4.46jϵ�1j; ð128Þ

where the denominator comes from the (2, 2) element of
Eq. (118). In the second approximate equality, γ̃d ≫ α̃d; β̃d
is taken. Since the magnitudes of θu12 and θd12 in Eqs. (124)
and (128) are almost same, the phase of ϵ1 is important to
reproduce the Cabibbo angle. If we take jϵ1j ¼ 0.1 [see

τ ¼ iþ ϵ and ϵ1 ¼ 2.05iϵ in Eq. (26)], both θuðdÞ12 are
approximately 0.22. Thus, the magnitude of Cabibbo angle
is easily reproduced by taking the relevant phase of ϵ.
Indeed, the observed CKM elements are reproduced at τ ≃

iþ ð0.05–0.09Þeiϕ with relevant ϕ as numerically dis-
cussed in Sec. VII.

3. Quark mass matrix II at τ = i

Let us discuss the quark mass matrix II in Eq. (114) at
fixed points of τ by using modular forms in Table I. At
τ ¼ i, both up-type and down-type quark mass matrices are
given in the base of S of Eq. (9) as

Mq ¼

0
B@

α̃q 0 0

0 β̃q 0

0 0 γ̃q

1
CA
0
B@

2
ffiffiffi
3

p
− 3þ gqð7

ffiffiffi
3

p
− 12Þ 12 − 7

ffiffiffi
3

p þ gqð9 − 5
ffiffiffi
3

p Þ 5
ffiffiffi
3

p
− 9þ gqð3 − 2

ffiffiffi
3

p Þ
1 1 1

−2þ ffiffiffi
3

p
1 −

ffiffiffi
3

p
1

1
CA; ð129Þ

where α̃q ¼ 3vqY3
0αq, β̃q ¼ ð6 − 3

ffiffiffi
3

p ÞvqY2
0βq, and γ̃q ¼ vqY0γq (q ¼ u; d).

Let us move them to the diagonal base of S. By using the unitary transformation of Eq. (17), VS3, the matrix M†
qMq is

transformed as ðMqVS3Þ†MqVS3. Then, we have
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M2ð0Þ
q ≡ VS3M

†
qMqV

†
S3

¼ 3

2

0
B@

Aγ̃2q þ 3ðAþ B1q þ jgqj2CÞα̃2q −½Dγ̃2q þ 3ðB2q þ Agq þ Cg�qÞα̃2qÞ� 0

−½Dγ̃2q þ 3ðB2q þ Ag�q þ CgqÞα̃2qÞ� γ̃2q þ 3ðCþ B1q þ jgqj2AÞα̃2q 0

0 0 2β̃2

1
CA; ð130Þ

with

A ¼ 7 − 4
ffiffiffi
3

p
; B ¼ 26 − 15

ffiffiffi
3

p
; C ¼ 97 − 56

ffiffiffi
3

p
; D ¼ 2 −

ffiffiffi
3

p
;

B1q ¼ Bðgq þ g�qÞ ¼ 2BRe½gq�; B2q ¼ Bð1þ jgqj2Þ; A2 ¼ C; D2 ¼ A; Aþ C ¼ 4B; ð131Þ

where A, B, C, and D in Eq. (67) are again presented for convenience. The mass eigenvalues satisfy

m2
q1m

2
q2 ¼ 81Cα̃2qγ̃2q; m2

q1 þm2
q2 ¼ 6Dγ̃2q þ 9Bð2þ 2Re½gq� þ jgqj2Þα̃2q; m2

q3 ¼ 3β̃2q: ð132Þ

The mixing angle between first and second family, θq12, is
given as

tan 2θq12 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Dγ̃2q þ 3ðB2 þ EqÞα̃2qÞ�2 þ 9F2

qα̃
4
q

q
ð2 ffiffiffi

3
p

− 3Þγ̃2q þ 3ð45 − 26
ffiffiffi
3

p Þð1 − jgqj2Þα̃2q
;

ð133Þ
where

Eq ¼ ðAþ CÞRe½gq� ¼ ð104 − 60
ffiffiffi
3

p
ÞRe½gq�;

Fq ¼ ðA − CÞIm½gq� ¼ ð52
ffiffiffi
3

p
− 90ÞIm½gq�: ð134Þ

Neglecting the imaginary part of gq (gq ¼ Re½gq�), it is
simply given as

tan 2θq12 ¼ −
1ffiffiffi
3

p γ̃2q þ 3ð7 − 4
ffiffiffi
3

p Þð1þ 4gq þ g2qÞα̃2q
γ̃2q − 3ð7 − 4

ffiffiffi
3

p Þð1 − g2qÞα̃2q
;

ð135Þ
where jgqj is supposed to beOð1Þ. We take α̃2q; γ̃2q ≪ β̃2q due
to the mass hierarchy of quark masses. There are two
possible choices of α̃2q ≪ γ̃2q and γ̃2q ≪ α̃2q.
In the case of α̃2q ≪ γ̃2q,

tan 2θq12 ≃ −
1ffiffiffi
3

p
�
1þ 6ð7 − 4

ffiffiffi
3

p
Þð1þ 2gqÞ

α̃2q
γ̃2q

�
≃ −

1ffiffiffi
3

p ;

ð136Þ

which gives θq12 ¼ −15° at the limit of α̃2q=γ̃2q ¼ 0. This is
common for both up-quark and down-quark mass matri-
ces because it is independent of gq. Then, the flavor
mixing (CKM) between first and second family vanishes
due to the cancellation between up-quarks and down-
quarks.
On the other hand, in the case of γ̃2q ≪ α̃2q, we

obtain

tan 2θq12 ≃
1ffiffiffi
3

p 1þ 4gq þ g2q
1 − g2q

; ð137Þ

where the imaginary part of gq and terms of γ̃2q are
neglected. The Cabibbo angle could be reproduced by
choosing relevant values of gd and gu of order one.
However, the CKM matrix elements Vcb and Vub vanish
at τ ¼ i. In order to obtain desirable CKM matrix, τ should
be deviated from i a little bit.

4. Quark mass matrix II at nearby τ = i

By using modular forms of weight 2, 4, and 6 in

Appendix C.1, we obtain the deviation from M2ð0Þ
q in

Eq. (130). Then, the additional contribution M2ð1Þ
q to

M2ð1Þ
q of Eq. (130) of order ϵ is

M2ð1Þ
q ≃

0
BBBBB@

Oðα̃2q; γ̃2q; ϵ1; ϵ2Þ Oðα̃2q; γ̃2q; ; ϵ1; ϵ2Þ β̃2qffiffi
2

p ½ð ffiffiffi
3

p
− 1Þϵ�1 þ ð2 − ffiffiffi

3
p Þϵ�2�

Oðα̃2q; γ̃2q; ϵ1; ϵ2Þ Oðα̃2q; γ̃2q; ϵ1; ϵ2Þ β̃2qffiffi
6

p ½ð3þ ffiffiffi
3

p Þϵ�1 þ
ffiffiffi
3

p
ϵ�2�

β̃2qffiffi
2

p ½ð ffiffiffi
3

p
− 1Þϵ1 þ ð2 − ffiffiffi

3
p Þϵ2� β̃2qffiffi

6
p ½ð3þ ffiffiffi

3
p Þϵ1 þ

ffiffiffi
3

p
ϵ2� β̃2q½4Reðϵ1Þ þ 2ð2 − ffiffiffi

3
p ÞReðϵ2Þ�

1
CCCCCA
; ð138Þ
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where Oðα̃2q; γ̃2q; ϵ1; ϵ2Þ terms are highly suppressed com-
pared with elements (1,3), (3,1), (2,3), (3,2), (3.3) due to
β̃2q ≫ α̃2q; γ̃2q. Therefore, the second and third family mixing
angle θq23 is given as

θq23 ≃
1ffiffi
6

p β̃2qjð3þ
ffiffiffi
3

p Þϵ�1 þ
ffiffiffi
3

p
ϵ�2j

3β̃2q
¼ 3þ ffiffiffi

3
p
ffiffiffi
6

p jϵ�1j ≃ 2.23jϵ�j;

ð139Þ

and the first and third family mixing angle θq13 is

θq13 ≃
1ffiffi
2

p β̃2qjð
ffiffiffi
3

p
− 1Þϵ�1 þ ð2 − ffiffiffi

3
p Þϵ�2j

3β̃2q

¼ 3 −
ffiffiffi
3

p

3
ffiffiffi
2

p jϵ�1j ≃ 0.613jϵ�j; ð140Þ

where 3β̃2q in the denominators is the (3, 3) element of
Eq. (130), and ϵ2 ¼ 2ϵ1 ¼ 4.10iϵ of Eq. (26) is used. The
ratio θq13=θ

q
23 ≃ 0.27 is rather large compared with observed

CKM ratio jVub=Vcbj ≃ 0.08. This rather large θq13 spoils to
reproduce observed CKM elements Vcb and Vub at the
nearby fixed point τ ¼ i.

C. Quark mass matrix at the fixed point of τ =ω

1. Quark mass matrix I at τ =ω

In the quark mass matrix I of Eq. (113), the up-type and
down-type mass matrices are given at τ ¼ ω by using
modular forms in Table I,

Mu ¼

0
B@
−guα̃q 0 0

0 −guβ̃q 0

0 0 −guγ̃q

1
CA
0
B@

1 −2ω2 −2ω
−2ω 1 −2ω2

−2ω2 −2ω 1

1
CA;

Md ¼

0
B@
α̃d 0 0

0 β̃d 0

0 0 γ̃d

1
CA
0
B@

1 −1
2
ω2 ω

ω 1 −1
2
ω2

−1
2
ω2 ω 1

1
CA; ð141Þ

where α̃u ¼ ð9=8ÞvuY3
0αq, β̃u ¼ ð9=8ÞvuY3

0βq, and γ̃u ¼
ð9=8ÞvuY3

0γq for up-type quarks, and α̃d ¼ vdY0αd,
β̃d ¼ vdY0βd, and γ̃d ¼ vdY0γd for down-type quarks,
respectively. By using the unitary transformation of
Eq. (22), VST4, the mass matrix M†

uMu is transformed as

M2ð0Þ
u ≡ VST4M

†
qMqV

†
ST4

¼ 9

0
B@

jgu2j2β̃2u 0 0

0 jgu1j2α̃2u 0

0 0 jgu3j2γ̃2u

1
CA: ð142Þ

The mass matrix M†
dMd is transformed as

M2ð0Þ
d ≡ VST4M

†
dMdV

†
ST4 ¼

9

4

0
B@

α̃2d 0 0

0 γ̃2d 0

0 0 β̃2d

1
CA: ð143Þ

It is remarked that both are diagonal ones.

2. Quark mass matrix I at nearby τ =ω

Quark mass matrix I in Eq. (141) is corrected due to the
deviation from the fixed point of τ ¼ ω. By using modular
forms of weight 2, 4, and 6 in Appendix C.2, we obtain the

deviations from M2ð0Þ
u and M2ð0Þ

d in Eqs. (142) and (143).
In the diagonal base of ST, the corrections are given by
only a small variable ϵ as seen in Eq. (27). In the first order

perturbation of ϵ1, the corrections M2ð1Þ
u and M2ð1Þ

d are
given as

M2ð1Þ
u ¼

0
B@

δu1 δu2 δu3

δ�u2 δu4 δu5

δu3� δ�u5 δu6

1
CA; M2ð1Þ

d ¼

0
B@

δd1 δd2 δd3

δ�d2 δd4 δd5

δd3� δ�d5 δd6

1
CA;

ð144Þ

where off diagonal elements δq2, δq3 and δq5 are

δu2 ¼ 2β̃2ujgu2j2ð2ϵ1 − ϵ2Þ − 2α̃2uð2þ g�u1Þgu1ðϵ�1 þ ϵ�2Þ
¼ −6ð2þ g�u1Þgu1ϵ�1α̃2u; ð145Þ

δu3 ¼ 2β̃2uð2þ gu2Þg�u2ðϵ1 þ ϵ2Þ þ 2γ̃2ujgu3j2ð−2ϵ�1 þ ϵ�2Þ
¼ 6ð2þ gu2Þg�u2ϵ1β̃2u; ð146Þ

δu5 ¼ 2γ̃3uð2þ g�u3Þgu3ðϵ�1 þ ϵ�2Þ þ 2α̃2ujgu1j2ð−2ϵ1 þ ϵ2Þ
¼ 6ð2þ g�u3Þgu3ϵ�1γ̃2u; ð147Þ

δd2 ¼ iα̃2d

�
ϵ1 −

1

2
ϵ2

�
þ 1

2
iγ̃2dðϵ�1 þ ϵ�2Þ ¼

3

2
iϵ�1γ̃

2
d; ð148Þ

δd3 ¼
1

2
iα̃2dðϵ1 þ ϵ2Þ þ iβ̃2d

�
ϵ�1 −

1

2
ϵ�2

�
¼ 3

2
iϵ1α̃2d; ð149Þ

δd5 ¼ −
1

2
iβ̃2dðϵ�1 þ ϵ�2Þ − iγ̃2d

�
ϵ1 −

1

2
ϵ2

�
¼ −

3

2
iϵ�1β̃

2
d:

ð150Þ

In last equalities, ϵ2 ¼ 2ϵ1 of Eq. (28) is used.
Taking account of γ̃2u ≫ α̃2u ≫ β̃2u and β̃2d ≫ γ̃2d ≫ α̃2d as

seen in Eqs. (142) and (143), mixing angles θq12 and θ
q
23 are

given as

HIROSHI OKADA and MORIMITSU TANIMOTO PHYS. REV. D 103, 015005 (2021)

015005-22



θu12 ≃
2

3
jð2þ g�u1Þgu1ϵ�1j;

θu23 ≃
2

3
jð2þ g�u3Þgu3ϵ�1j; θd12 ≃ θd23 ≃

2

3
jϵ�1j; ð151Þ

respectively, while both θq13ðq ¼ u; dÞ are highly
suppressed.
Since up-type quark mixing angles depend on the

magnitudes of gu1 and gu3, the magnitudes of CKM matrix
elements Vus and Vcb could be reproduced by choosing
relevant gu1 and gu3. For example, we can take θu12 ∼ λ and
θu23 ∼ θd12 ∼ θd23 ∼ λ2, where λ ≃ 0.2 is put to reproduce
observed jVusj, jVcbj, and jVubj. However, this scheme
leads to jVtdj ∼ λ4, which is much smaller than the
observed one. Indeed, the observed jVtdj is not reproduced
at nearby τ ¼ ω in Sec. VII.

3. Quark mass matrix II at τ =ω

We discuss the quark mass matrix II at the fixed point
τ ¼ ω by using modular forms in Table I. In the base of S
and T of Eq. (9), it is given at the fixed point τ ¼ ω,

Mq ¼

0
B@

−gqα̃q 0 0

0 β̃q 0

0 0 γ̃q

1
CA
0
B@

1 −2ω2 −2ω
− 1

2
ω 1 ω2

− 1
2
ω2 ω 1

1
CA;

ð152Þ

where α̃q ¼ ð9=8ÞvqY3
0αq, β̃q ¼ 3

2
vqY2

0βq and
γ̃q ¼ vqY0γq. By using the unitary transformation of

Eq. (22), VST5, the mass matrix M†
qMq is transformed as

M2ð0Þ
q ≡VST5M

†
qMqV

†
ST5 ¼

9

4

0
B@
0 0 0

0 0 0

0 0 4g2qα̃2qþ β̃2qþ γ̃2q

1
CA;

ð153Þ

which gives two massless quarks. Therefore, it seems very
difficult to reproduce observed quark masses and CKM
elements even if we shift τ from τ ¼ ω a little bit and
choose relevant gq.

4. Quark mass matrix II at nearby τ =ω

Quark mass matrix II in Eq. (152) is corrected due to the
deviation from the fixed point of τ ¼ ω. By using modular
forms of weight 2, 4, and 6 in Appendix C.2, we obtain the

deviation from M2ð0Þ
q in Eq. (153). In the diagonal base of

ST, the correction is given by only a small variable ϵ as
seen in Eq. (27). In the first order approximation of ϵi, the

correction M2ð1Þ
q is given as

M2ð1Þ
q ¼

0
B@

0 0 δq3

0 0 δq5

δ�q3 δ�q5 δq6

1
CA; ð154Þ

where δqi are given in terms of ϵ, gq, α̃2q, β̃
2
q, and γ̃2q. In order to

estimate the flavor mixing annals, we present relevant δqi as

δq3 ¼ −2α̃2qgqð2þ g�qÞðϵ�1 þ ϵ�2Þ þ
1

6
β̃2qðϵ�1 − 8ϵ�2Þ

þ 1

2
iγ̃2qðϵ�1 þ ϵ�2Þ

≃ −6α̃2qgqð2þ g�qÞϵ�1 −
5

2
β̃2qϵ

�
1 þ

3

2
iγ̃2qϵ�1;

δq5 ¼ α̃2qjgqj2ð−4ϵ�1 þ 2ϵ�2Þ þ β̃2q

�
1

3
ϵ�1 −

7

6
ϵ�2

�

þ iγ̃2q

�
ϵ�1 −

1

2
ϵ�2

�
≃ −2β̃2qϵ�1; ð155Þ

where ϵ2 ¼ 2ϵ1 of Eq. (28) is used in last approximate
equalities. By using Eqs. (153) and (154), we obtain

Det½M2ð0Þ
Q þM2ð1Þ

Q � ¼ 0. Therefore, it is impossible to
reproduce observed quark masses at nearby τ ¼ ω in the
first order perturbation of ϵ. Indeed, this model cannot
reproduce the observed CKM elements at nearby τ ¼ ω in
Sec. VII.

D. Quark mass matrix at τ = i∞

1. Quark mass matrix I and II at τ = i∞
The mass matrices of I and II in Eqs. (114) and (113) are

simply given by using modular forms in Table I at τ ¼ i∞
since the modular forms of weight 2, 4, and 6 are same.
Those are both diagonal ones as follows:

Mq ¼

0
B@

α̃q 0 0

0 β̃q 0

0 0 γ̃q

1
CA; ð156Þ

where α̃u ¼ vuY3
0αq, β̃u ¼ vuY3

0βu, γ̃u ¼ vuY3
0γu,

α̃d ¼ vdY0αd, β̃d ¼ vdY0βd, and γ̃d ¼ vdY0γd for quark
mass matrix I, and α̃q ¼ vqY3

0αq, β̃q ¼ vqY2
0βq, and γ̃q ¼

vqY0γq for quark mass matrix II.
In the diagonal base of T of Eq. (9), the mass matrix

M†
qMq is given as

M2ð0Þ
q ≡M†

qMq ¼

0
B@

α̃2q 0 0

0 β̃2q 0

0 0 γ̃2q

1
CA: ð157Þ

Mixing angles appear through the finite effect of Im½τ�.
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2. Quark mass matrix I towards τ = i∞
Quark mass matrix I in Eq. (156) is corrected due to the

finite effect of τ ¼ i∞. By using modular forms of
Eqs. (C13),(C14),(C15) in Appendix C.3, we obtain the

deviation from M2ð0Þ
q in Eq. (157) for the quark mass

matrix I. We present the first order corrections M2ð1Þ
q for

up-type quarks and down-type quarks to M2ð0Þ
q of

Eq. (157), respectively,

M2ð1Þ
u ≃

0
B@

0 ð1þ2g�u2Þβ̃2uδ� ð1þ2gu1Þα̃2uδ
ð1þ2gu2Þβ̃2uδ 0 ð1þ2g�u3Þγ̃2uδ�
ð1þ2g�u1Þα̃2uδ� ð1þ2gu3Þγ̃2uδ 0

1
CA;

M2ð1Þ
d ≃

0
B@

0 β̃2dδ
� α̃2dδ

β̃2dδ 0 γ̃2dδ
�

α̃2dδ
� γ̃2dδ 0

1
CA; ð158Þ

where δ is given in Eq. (104). We obtain mixing angles as

θu12 ≃ jð1þ 2g�u2Þδ�j; θu23 ≃ jð1þ 2g�u3Þδ�j;
θd12 ≃ θd23 ≃ jδ�j; ð159Þ

respectively. The first- and third-family mixing angle θq13 is
suppressed due to the factor α̃2q=γ̃2q for both up- and down-
type quarks. Since θu12 and θ

u
23 depend on the magnitudes of

gu2 and gu3, the CKM matrix elements Vus and Vcb could
be reproduced by choosing relevant gu2 and gu3. For
example, we can take θu12 ∼ λ and θu23 ∼ θd12 ∼ θd23 ∼ λ2,
where λ ≃ 0.2 to reproduce observed jVusj, jVcbj, and jVubj.
However, this scheme leads to jVtdj ∼ λ4, which is much
smaller than the observed one. Indeed, the successful CKM
matrix elements are not reproduced at large Imτ in the
numerical results of Sec. VII.

3. Quark mass matrix II towards τ = i∞
Quark mass matrix II in Eq. (156) is corrected due to the

finite effect of τ ¼ i∞. By using modular forms of
Eqs. (C13),(C14),(C15) in Appendix C.3, we obtain the

deviation from M2ð0Þ
q in Eq. (157) for the quark mass

matrix II. The first order correction M2ð1Þ
q to M2ð0Þ

q of
Eq. (157) is given as

M2ð1Þ
q ≃

0
B@

0 −δ�β̃2q ð1þ 2gqÞδ�α̃2q
−δβ̃2q 0 δ�γ̃2q

ð1þ 2g�qÞδα̃2q δγ̃2q 0

1
CA;

ð160Þ

where α̃2q ≪ β̃2q ≪ γ̃2q. Therefore, the mixing angles θq12 and
θq23, are given as

θq12 ≃
jδ�jβ̃2q
β̃2q

≃ jδ�j; θq23 ≃
jδ�jγ̃2q
γ̃2q

¼ jδ�j; ð161Þ

respectively. On the other hand, first- and third-family
mixing angle θq13 is highly suppressed due to the factor
α̃2q=γ̃2q. Since θ

q
12 and θq23 are the same magnitude for both

up-type and down-type quarks, it is impossible to repro-
duce observed CKM mixing angles.
In conclusion of Sec. VI, it is found that the only quark

mass matrix I works well at nearby τ ¼ i.

VII. NUMERICAL RESULTS AT NEARBY
FIXED POINTS

We have presented analytical discussions of lepton and
quark mass matrices at nearby fixed points of modulus. In
this section, we show numerical results at the nearby fixed
points of τ ¼ i, τ ¼ ω and τ ¼ i∞ to confirm above
discussions and give predictions.

A. Frameworks of numerical calculations

In order to calculate the left-handed flavor mixing of
leptons numerically, we generate a random number for
model parameters. The modulus τ is scanned around fixed
points τ ¼ i and τ ¼ ω. It is also scanned Imτ ≥ 1.2
towards τ ¼ i∞. We keep the parameter sets, in which
the neutrino experimental data and charged lepton masses
are reproduced, within 3σ interval of error bars. We
continue this procedure to obtain enough points for plotting
allowed region.
As the input of the neutrino data, we take three mixing

angles of the PMNS matrix and the observed neutrino mass
ratioΔm2

sol=Δm2
atm with 3σ, which are given by NuFit 4.1 in

Table IV [97]. Since there are two possible spectrum of
neutrinos masses mi, which are the normal hierarchy (NH),

TABLE IV. The 3σ ranges of neutrino parameters from NuFIT 4.1 for NH and IH [97].

Observable 3σ range for NH 3σ range for IH

Δm2
atm ð2.436–2.618Þ × 10−3 eV2 −ð2.419–2.601Þ × 10−3 eV2

Δm2
sol ð6.79–8.01Þ × 10−5 eV2 ð6.79 − 8.01Þ × 10−5 eV2

sin2 θ23 0.433–0.609 0.436–0.610
sin2 θ12 0.275–0.350 0.275–0.350
sin2 θ13 0.02044–0.02435 0.02064–0.02457
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m3 > m2 > m1, and the inverted hierarchy (IH), m2 >
m1 > m3, we investigate both cases. We also take account
of the sum of three neutrino masses

P
mi since it is

constrained by the recent cosmological data [98–100].
We impose the constraint of the upper bound

P
mi ≤

120 meV.
Since the modulus τ obtains the expectation value by the

breaking of the modular invariance at the high mass scale,
the observed masses and lepton mixing angles should be
taken at the GUT scale by the renormalization group
equations (RGEs). However, we have not included the
RGE effects in the lepton mixing angles and neutrino
mass ratio Δm2

sol=Δm2
atm in our numerical calculations. We

suppose that those corrections are very small between the
electroweak and GUT scales. This assumption is confirmed
well in the case of tan β ≤ 5 unless neutrino masses are
almost degenerate [27]. Since we impose the sum of

neutrino masses to be smaller than 120 meV, this criterion
is satisfied in our analyses.
On the other hand, we also take the charged lepton

masses at the GUT scale 2 × 1016 GeV with tan β ¼ 5 in
the framework of the minimal SUSY breaking scenarios
[101,102],

ye ¼ ð1.97� 0.024Þ× 10−6; yμ ¼ ð4.16� 0.050Þ× 10−4;

yτ ¼ ð7.07� 0.073Þ× 10−3; ð162Þ

where lepton masses are given by ml ¼ ylvH with
vH ¼ 174 GeV.
For the quark sector, we also adopt numerical values

of Yukawa couplings of quarks at the GUT scale 2 ×
1016 GeV with tan β ¼ 5 in the framework of the minimal
SUSY breaking scenarios [101,102],

yd ¼ ð4.81� 1.06Þ × 10−6; ys ¼ ð9.52� 1.03Þ × 10−5; yb ¼ ð6.95� 0.175Þ × 10−3;

yu ¼ ð2.92� 1.81Þ × 10−6; yc ¼ ð1.43� 0.100Þ × 10−3; yt ¼ 0.534� 0.0341; ð163Þ

which give quark masses as mq ¼ yqvH with vH ¼ 174 GeV.
We also use the following CKM mixing angles at the GUT scale 2 × 1016 GeV with tan β ¼ 5 [101,102]:

θCKM12 ¼ 13.027°� 0.0814°; θCKM23 ¼ 2.054°� 0.384°; θCKM13 ¼ 0.1802°� 0.0281°: ð164Þ

Here, θCKMij is given in the Particle Data Group (PDG)
notation of the CKM matrix VCKM [100]. In addition, we
impose the recent data of LHCb [100],

				Vub

Vcb

				 ¼ 0.079� 0.006; ð165Þ

where Vij’s are CKM matrix elements. This ratio is stable
against radiative corrections. The observed CP violating
phase is given at the GUT scale as

δCKMCP ¼ 69.21°� 6.19°; ð166Þ

which is also in the PDG notation. The error intervals in
Eqs. (163)–(166) represent 1σ interval.

B. Allowed regions of τ at nearby fixed points

We have examined eighteen cases of leptons and quarks
in above framework numerically as shown in Table V. In
this table, the successful cases for the mass matrix I and II at
nearby fixed points are denoted by○. On the other hand, ×
denotes a failure to reproduce observed mixing angles, and
⊗ denotes the case in which observed PMNS mixing
angles are reproduced, but

P
mi ≥ 120 meV.

Among eighteen cases, seven cases of leptons and one
case of quarks are consistent with recent observed data. It is
emphasized that the all cases of the mass matrix I work well
at nearby τ ¼ i. These results confirm our previous
discussions.
We show allowed regions of τ at nearby τ ¼ i, τ ¼ ω and

towards τ ¼ i∞ for eleven cases in Figs. 1–3, respectively.

TABLE V. The successful cases for the mass matrix I and II at nearby fixed points are denoted by ○. On the other hand, × denotes a
failure to reproduce observed mixing angles, and ⊗ denotes the case in which observed mixing angles are reproduced, butP

mi ≥ 120 meV.

Modulus nearby τ ¼ i nearby τ ¼ ω towards τ ¼ i∞

Lepton =quark Lepton quark Lepton quark Lepton quark
Neutrino mass hierarchy NH IH NH IH NH IH

mass matrix I for ME and Mq ○ ○ ○ ⊗ × × ○ × ×
mass matrix II for ME and Mq ○ ⊗ × ○ ○ × ○ ⊗ ×
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In these figures, green points denote allowed ones by
inputting masses and mixing angles with the constraintP

mi ≤ 120 meV for leptons, but blue points denote the
regions in which the sum of neutrino masses

P
mi is larger

than 120 meV. It is noted that blue points are hidden under
green points in the case of the charged lepton II (NH) of
Fig. 2 and the charged lepton I (NH) of Fig. 3. Green points
for quarks denote allowed region of τ by inputting masses,
mixing angles and CP violating phase δCKMCP .
As seen in Fig. 1, the constraint

P
mi ≤ 120 meV

excludes the charged lepton II with IH of neutrinos.

The allowed regions of τ (green points) deviate from the
fixed point τ ¼ i in magnitude of 5%–10%, which confirm
the discussions in Sec. V. It is reasonable that the allowed
points appear frequently at nearby τ ¼ i since one flavor
mixing angle is generated even at the fixed point τ ¼ i as
discussed in Sec. V. B. In the quark sector, the mass matrix I
works well, but the matrix II does not because the mixing
angles are canceled out each other in the same type mass
matrices of up-type and down-type quarks. It is emphasized
that there is the common region of τ between charged
lepton I (NH) and quark I. Indeed, the region around

FIG. 1. Allowed regions of τ at nearby τ ¼ i are shown by green points for charged lepton mass matrices I and II with NH and IH of
neutrinos, and quark mass matrices I, respectively. Blue points denote regions in which the sum of neutrino masses

P
mi is larger than

120 meV.
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τ ¼ �0.04þ 1.05i is common in quarks and leptons. This
common region has already discussed in context with the
quark-lepton unification in Ref. [53].
As seen in Fig. 2, at nearby τ ¼ ω, the charged lepton

mass matrix I with NH is excluded by the constraint ofP
mi ≤ 120 meV. In the charged lepton mass matrix I with

IH, the PMNS mixing angles are not reproduced. On the
other hand, the allowed regions are marginal in the charged
lepton II. Indeed, the green points are 0.1 for NH and 0.15
for IH away from τ ¼ ω, respectively. The perturbative
discussion of this IH case is possibly broken. Moreover, we
cannot find allowed region of quarks at nearby τ ¼ ω. That
is expected in the discussion in Sec. VI. C.
As seen in Fig. 3, towards τ ¼ i∞, both charged lepton

mass matrix I and II reproduce the observed PMNS mixing
angles for NH of neutrinos. In the charged lepton mass
matrix I with IH, the PMNS mixing angles are not
reproduced. Although the charged lepton mass matrix II
with IH reproduces three PMNS mixing angles, it is
excluded by the constraint of

P
mi ≤ 120 meV.We cannot

find allowed region for quarks. These results are also
consistent with discussions of Secs. V. D and VI. D.

C. Predictions of CP violation and masses of neutrinos

Wepredict the leptonicCP violating phase δlCP, the sumof
neutrino masses

P
mi, and the effective mass for the 0νββ

decay jhmeeij for each case of leptons since we input four
observed quantities of neutrinos (three mixing angles of
leptons and observed neutrino mass ratioΔm2

sol=Δm2
atm) and

three charged lepton masses. For the quark sector, there is no
prediction because ten observed quantities (quark masses
and CKM elements) are put to obtain the region of the
modulus τ.
In Table VI, the predicted ranges of the effective mass

for the 0νββ decay, hmeei are presented for each case. We
also summarize magnitudes of parameters gν1, gν2, ge for
leptons and gu1, gu2, gu3 for quarks. Their phases are broad.
We add hierarchies of α̃2e; β̃

2
e; γ̃2e and α̃2q; β̃

2
q; γ̃2q.

We present numerical predictions on
P

mi–δ
l
CP

and δlCP– sin
2 θ23 planes for successful seven cases in

Figs. 4–10. In Fig. 4, we show them at nearby τ ¼ i for
the charged lepton mass matrix I with NH of neutrinos.
The predicted range of the sum of neutrino masses isP

mi ¼ 86–120 meV. The predicted δlCP depends onP
mi. A crucial test will be presented in the near future

FIG. 2. Allowed regions of τ at nearby τ ¼ ω are shown by green points for the charged lepton mass matrix I and II with NH and IH of
neutrinos, respectively. Blue points denote regions in which the sum of neutrino masses

P
mi is larger than 120 meV.
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by cosmological observations. The correlation between
sin2 θ23 and δlCP is also helpful to test this case.
In Fig. 5, we show them at nearby τ ¼ i for the charged

lepton mass matrix I with IH of neutrinos. The predicted
range of the sum of neutrinomasses is

P
mi¼90–120meV.

The prediction of δlCP is clearly given versus
P

mi. On
the other hand, sin2 θ23 is predicted to be smaller than
0.52. Crucial test will be available by cosmological obser-
vations and neutrino oscillation experiments in the near
future.

FIG. 3. Allowed regions of τ towards τ ¼ i∞ are shown by green points for charged lepton mass matrices I and II with NH and IH of
neutrinos, respectively. Blue points denote regions in which the sum of neutrino masses

P
mi is larger than 120 meV.

TABLE VI. Magnitudes of parameters gν1, gν2, ge for leptons and gu1, gu2, gu3 for quarks are shown. Predicted ranges of the effective
mass for the 0νββ decay, hmeei are also given. In addition, hierarchies of α̃2e; β̃

2
e; γ̃2e and α̃2q; β̃

2
q; γ̃2q are presented.

hmeei jgν1j jgν2j jgej α̃2e; β̃
2
e; γ̃2e

NH, charged lepton I,τ ≃ i 15–31 0.02–18 0.63–19 � � � γ̃2e ≫ α̃2e ≫ β̃2e
IH, charged lepton I, τ ≃ i 17–31 0.56–3.9 1.6–4.9 � � � γ̃2e ≫ α̃2e ≫ β̃2e
NH, charged lepton II, τ ≃ i 1.4–27 0.53–7.0 0.56–6.9 0.63–8.9 α̃2e ≫ γ̃2e ≫ β̃2e
NH, charged lepton II, τ ≃ ω 2.4–3.0 0.03–0.05 0.53–0.65 0.22–0.28 α̃2e ≫ β̃2e ≫ γ̃2e
IH, charged lepton II, τ ≃ ω 16–25 1.2–1.8 1.1–1.5 5.5–9.8 α̃2e ≫ β̃2e ≫ γ̃2e
NH, charged lepton I, τ ≃ i∞ 16–18 0.25–0.53 1.0–1.2 � � � γ̃2e ≫ β̃2e ≫ α̃2e
NH, charged lepton II, τ ≃ i∞ 8.8–14 0.13–0.33 0.76–0.87 3.1–5.6 α̃2e ≫ γ̃2e ≫ β̃2e

jgu1j jgu2j jgu3j α̃2q; β̃
2
q; γ̃2q

quark mass matrices I, τ ≃ i � � � 0.01–0.86 0.14–1.29 0.02–0.07 γ̃2u ≫ β̃2u ≫ α̃2u
γ̃2d ≫ α̃2d ≫ β̃2d
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In Fig. 6, we show them at nearby τ ¼ i for the
charged lepton mass matrix II with NH of neutrinos. The
predicted range of the sum of neutrino masses is

P
mi ¼

58–83 meV, while δlCP is allowed in ½−π; π�. There is no
correlation between sin2 θ23 and δlCP. The rather small value
of the sum of neutrinomasses is a characteristic prediction in
this case.

Let us give our predictions on
P

mi–δ
l
CP and

δlCP– sin
2 θ23 planes at nearby τ ¼ ω. In Fig. 7, we show

them for the charged lepton mass matrix II with NH of
neutrinos. The predicted range of the sum of neutrino
masses is

P
mi ¼ 65–71 meV. The ranges of δlCP is clearly

given in [110°,180°] and [−180°,−160°]. On the other hand,
sin2 θ23 is predicted in both first and second octant.

FIG. 4. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes at nearby τ ¼ i for the charged lepton mass matrix I with NH of
neutrinos. The solid black line denotes observed best-fit value of sin2 θ23, and red dashed-lines denote its upper(lower) bound of 3σ
interval.

FIG. 5. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes at nearby τ ¼ i for the charged lepton mass matrix I with IH of
neutrinos.

FIG. 6. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes at nearby τ ¼ i for the charged lepton mass matrix II with NH of
neutrinos.
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In Fig. 8,we show them for the charged leptonmassmatrix
II with IH of neutrinos at nearby τ ¼ ω. The predicted range
of the sum of neutrino masses is

P
mi ¼ 112–120 meV,

which may be excluded in the near future due to the
cosmological observations. The predicted CP violating
phase is δlCP ¼ ½−180°;−60°� and ½110°; 180°�. There is
no clear correlation between sin2 θ23 and δlCP.

It is noticed that the predicted CP violating phase δlCP is
asymmetric for plus and minus signs in both Figs. 7 and 8.
That is due to excluding the τ region at nearby τ ¼ ω
outside the fundamental domain of PSLð2;ZÞ. Indeed, the
excluded region corresponds to the other region inside at
nearby the fixed point τ ¼ −ω2, where we obtain δlCP with
the reversed sign of Figs. 7 and 8.

FIG. 7. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes at nearby τ ¼ ω for the charged lepton mass matrix II with NH of
neutrinos.

FIG. 8. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes at nearby τ ¼ ω for the charged lepton mass matrix II with IH of
neutrinos.

FIG. 9. Allowed regions on
P

mi–δ
l
CP and δlCP– sin

2 θ23 planes towards τ ¼ i∞ for the charged lepton mass matrix I with NH of
neutrinos.
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Finally, we show predictions on
P

mi–δ
l
CP and

δlCP– sin
2 θ23 planes towards τ ¼ i∞. In Fig. 9, we show

them for the charged lepton mass matrix I with NH of
neutrinos. The predicted range of the sum of neutrino
masses is in the narrow range of

P
mi ¼ 94–120 meV.

The predicted δlCP is close to �π=2. On the other hand,
sin2 θ23 is predicted to be smaller than 0.45. The predicted
CP violation is favored by the T2K experiment [83];
however, the predicted sin2 θ23 may be excluded in the
near future since it is far from the best fit value.
In Fig. 10, we show them for the charged lepton mass

matrix II with NH of neutrinos. The predicted range of
the sum of neutrino masses is in

P
mi ¼ 105–120 meV.

The predicted δlCP is is clearly given in �ð100°–180°Þ. On
the other hand, sin2 θ23 is allowed in full range of 3σ error
bar. Crucial test will be available by cosmological obser-
vations and CP violation experiments of neutrinos in the
future.
Thus, lepton mass matrices at nearby fixed points

provide characteristic predictions for
P

mi and δlCP. On
the other hand, there is no prediction for the quark sector.

VIII. SUMMARY

In the modular invariant flavor model of A4, we have
studied the hierarchical structure of lepton/quark flavors
at the nearby fixed points of the modulus. There are only
two inequivalent fixed points in the fundamental domain
of PSLð2;ZÞ, τ ¼ i and τ ¼ ω. These fixed points corre-
spond to the residual symmetries ZS

2 ¼ fI; Sg and ZST
3 ¼

fI; ST; ðSTÞ2g of A4, respectively. There is also infinite
point τ ¼ i∞, in which the subgroup ZT

3 ¼ fI; T; T2g of
A4 is preserved. We have examined typical two-type mass
matrices for charged leptons and quarks by using modular
forms of weights 2, 4, and 6, while the neutrino mass matrix
with the modular forms of weight 4 through the Weinberg
operator. By performing Taylor expansion of modular
forms around fixed points, we have obtained linear modular
forms in good approximations. By using those explicit

modular forms, we have found the hierarchical structure of
these mass matrices in the diagonal base of S, T, and ST, in
which the flavor mixing angles are easily estimated. The
observed PMNS mixing angles are reproduced at the
nearby fixed point in ten cases of lepton mass matrices.
Among them, seven cases satisfy the cosmological boundP

mi ≤ 120 meV. On the other hand, only one case of
quark mass matrices is consistent with the observed CKM
matrix. Our results have been confirmed by scanning model
parameters numerically as seen in τ regions of Figs. 1–3.
We have also presented predictions for

P
mi and δlCP for

seven cases. Some cases will be tested in the near future.
Although there is no prediction for the quark sector, the
obtained τ provides an interesting subject, the possibility of
the common τ between quarks and leptons. Indeed, there
exists the common region around τ ¼ �0.04þ 1.05i for
the charged lepton mass matrix I with NH of neutrinos as
seen in Fig. 1.
We have worked by using two-type specific mass

matrices for charged leptons and quarks while one
Majorana neutrino mass matrix in order to clarify the
behavior at nearby fixed points. More studies including
other mass matrices are necessary to understand the
phenomenology of fixed points completely. The modular
symmetry provides a good outlook for the flavor structure
of leptons and quarks at nearby fixed points. We also
should pay attention to the recent theoretical work: the
spontaneous CP violation in type IIB string theory is
possibly realized at nearby fixed points, where the moduli
stabilization is performed in a controlled way [103,104].
Thus, the modular symmetry at nearby fixed points gives us
an attractive approach to flavors.
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APPENDIX A: TENSOR PRODUCT OF A4 GROUP

We take the generators of A4 group for the triplet as
follows:

S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA; T ¼

0
B@

1 0 0

0 ω 0

0 0 ω2

1
CA; ðA1Þ

where ω ¼ ei
2
3
π for a triplet. In this base, the multiplication

rule is

0
B@

a1
a2
a3

1
CA

3

⊗

0
B@

b1
b2
b3

1
CA

3

¼ ða1b1 þ a2b3 þ a3b2Þ1 ⊕ ða3b3 þ a1b2 þ a2b1Þ10

⊕ ða2b2 þ a1b3 þ a3b1Þ100

⊕
1

3

0
B@

2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

1
CA

3

⊕
1

2

0
B@

a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

1
CA

3

;

1 ⊗ 1 ¼ 1; 10 ⊗ 10 ¼ 100; 100 ⊗ 100 ¼ 10; 10 ⊗ 100 ¼ 1; ðA2Þ

where

Tð10Þ ¼ ω; Tð100Þ ¼ ω2: ðA3Þ

More details are shown in the review [6,7].

APPENDIX B: MASS MATRIX IN ARBITRARY
BASE OF S AND T

Define the new basis of generators, Ŝ and T̂ by a unirary
transformation as

Ŝ ¼ USU†; T̂ ¼ UTU†; ðB1Þ

where Ŝ, S, T̂, T, and U are 3 × 3 matrices. Since the A4

triplet transforms under the S (T) transformation as

0
B@

a1
a2
a3

1
CA

3

→ SðTÞ

0
B@

a1
a2
a3

1
CA

3

¼ U†ŜðT̂ÞU

0
B@

a1
a2
a3

1
CA

3

: ðB2Þ

Thus, in the new base, the A4 triplet transforms as

0
B@

â1
â2
â3

1
CA

3

→ ŜðT̂Þ

0
B@

â1
â2
â3

1
CA

3

; ðB3Þ

where

0
B@

â1
â2
â3

1
CA

3

¼ U

0
B@

a1
a2
a3

1
CA

3

: ðB4Þ

Let us rewrite the Dirac mass matrixMRL in the new base
(Ŝ, T̂) of the triplet left-handed fields. Denoting L and L̂ to
be triplets of the left-handed fields in the bases of S and Ŝ,
respectively, and R to be right-handed singlets, the Dirac
mass matrix is written as

R̄MRLL ¼ R̄MRLU†L̂; ðB5Þ

where

L̂ ¼ UL: ðB6Þ

Then, the Dirac mass matrix M̂RL in the new base is given
as

M̂RL ¼ MRLU†: ðB7Þ

On the other hand, the Majorana mass matrixMLL in the
new base (Ŝ, T̂) is written as

LcMLLL ¼ L̂cUMLLU†L: ðB8Þ

Therefore, the Majorana mass matrix M̂LL is given as

M̂LL ¼ UMLLU†: ðB9Þ

APPENDIX C: MODULAR FORMS AT NEARBY
FIXED POINTS

1. Modular forms at nearby τ = i

Let us present the behavior of modular forms at nearby
τ ¼ i. We obtain approximate linear forms of Y1ðτÞ, Y2ðτÞ,
and Y3ðτÞ by performing Taylor expansion of modular
forms around τ ¼ i. We parametrize τ as
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τ ¼ iþ ϵ; with ϵ ¼ ϵR þ iϵI; ðC1Þ

where jϵj is supposed to be enough small jϵj ≪ 1. For the case of the pure imaginary number of ϵ, that is ϵ ¼ iϵI (ϵI is real),
we obtain the linear fit of ϵ by

Y2ðτÞ
Y1ðτÞ

≃ ð1 − 2.05ϵIÞð1 −
ffiffiffi
3

p
Þ; Y3ðτÞ

Y1ðτÞ
≃ ð1 − 4.1ϵIÞð−2þ

ffiffiffi
3

p
Þ; ðC2Þ

where coefficients are obtained by numerical fittings. These ratios decrease linearly for ϵI ≥ 0.
On the other hand, for the case of the real number of ϵ, that is ϵ ¼ ϵR, (ϵR is real), we obtain as

Re
Y2ðτÞ
Y1ðτÞ

≃ ð1 − 1.9ϵ2RÞð1 −
ffiffiffi
3

p
Þ; Re

Y3ðτÞ
Y1ðτÞ

≃ ð1 − 8ϵ2RÞð−2þ
ffiffiffi
3

p
Þ;

Im
Y2ðτÞ
Y1ðτÞ

≃ 2.05ϵRð1 −
ffiffiffi
3

p
Þ; Im

Y3ðτÞ
Y1ðτÞ

≃ 4.1ϵRð−2þ
ffiffiffi
3

p
Þ; ðC3Þ

where the liner terms of ϵ disappear in the real parts. Finally, after neglecting Oðϵ2RÞ, we obtain approximately,

Y2ðτÞ
Y1ðτÞ

≃ ð1þ ϵ1Þð1 −
ffiffiffi
3

p
Þ; Y3ðτÞ
Y1ðτÞ

≃ ð1þ ϵ2Þð−2þ
ffiffiffi
3

p
Þ; ϵ1 ¼

1

2
ϵ2 ¼ 2.05iϵ: ðC4Þ

These approximate forms are agreement with exact numerical values within 0.1% for jϵj ≤ 0.05.

We have also higher weight modular forms YðkÞ
i in Eqs. (13) and (14) in terms of ϵ1 and ϵ2. For weight 4, they are

Yð4Þ
1 ðτÞ
Y2
1ðτÞ

≃ 6 − 3
ffiffiffi
3

p
þ ð5 − 3

ffiffiffi
3

p
Þðϵ1 þ ϵ2Þ;

Yð4Þ
2 ðτÞ
Y2
1ðτÞ

≃ 6 − 3
ffiffiffi
3

p
þ ð

ffiffiffi
3

p
− 1Þϵ1 þ ð14 − 8

ffiffiffi
3

p
Þϵ2;

Yð4Þ
3 ðτÞ
Y2
1ðτÞ

≃ 6 − 3
ffiffiffi
3

p
þ ð8 − 4

ffiffiffi
3

p
Þϵ1 þ ð2 −

ffiffiffi
3

p
Þϵ2;

Yð4Þ
1 ðτÞ
Y2
1ðτÞ

≃ −9þ 6
ffiffiffi
3

p
þ ð6

ffiffiffi
3

p
− 10Þðϵ1 þ ϵ2Þ;

Yð4Þ
10 ðτÞ
Y2
1ðτÞ

≃ 9 − 6
ffiffiffi
3

p
þ ð2 − 2

ffiffiffi
3

p
Þϵ1 þ ð14 − 8

ffiffiffi
3

p
Þϵ2: ðC5Þ

For weight 6, they are

Yð6Þ
1 ðτÞ

3Y3
1ðτÞ

≃ 2
ffiffiffi
3

p
− 3þ

�
2

ffiffiffi
3

p
−
10

3

�
ðϵ1 þ ϵ2Þ;

Yð6Þ
2 ðτÞ

3Y3
1ðτÞ

≃ 5
ffiffiffi
3

p
− 9þ

�
31ffiffiffi
3

p −
55

3

�
ϵ1 þ

�
16ffiffiffi
3

p −
28

3

�
ϵ2;

Yð6Þ
3 ðτÞ

3Y3
1ðτÞ

≃ 12 − 7
ffiffiffi
3

p
þ
�
38

3
−

22ffiffiffi
3

p
�
ϵ1 þ

�
74

3
−

43ffiffiffi
3

p
�
ϵ2;

Y 0ð6Þ
1 ðτÞ

3Y3
1ðτÞ

≃ 7
ffiffiffi
3

p
− 12þ

�
2

ffiffiffi
3

p
−
10

3

�
ϵ1 þ

�
17

ffiffiffi
3

p
−
88

3

�
ϵ2;

Y 0ð6Þ
2 ðτÞ

3Y3
1ðτÞ

≃ 3 − 2
ffiffiffi
3

p
þ
�
2

3
−

2ffiffiffi
3

p
�
ϵ1 þ

�
14

3
−

8ffiffiffi
3

p −
�
ϵ2;

Y 0ð6Þ
3 ðτÞ

3Y3
1ðτÞ

≃ 9 − 5
ffiffiffi
3

p
þ
�
35

3
−

19ffiffiffi
3

p
�
ϵ1 þ

�
38

3
−

22ffiffiffi
3

p
�
ϵ2;

Yð6Þ
1 ðτÞ

3Y3
1ðτÞ

≃ ð15 − 9
ffiffiffi
3

p
Þϵ1 þ ð12

ffiffiffi
3

p
− 21Þϵ2: ðC6Þ

MODULAR INVARIANT FLAVOR MODEL OF A4 AND … PHYS. REV. D 103, 015005 (2021)

015005-33



2. Modular forms at nearby τ =ω

Let us present the behavior of modular forms at nearby
τ ¼ ω. We perform linear approximation of the modular
forms Y1ðτÞ, Y2ðτÞ, and Y3ðτÞ by performing Taylor
expansion around τ ¼ ω. We parametrize τ as

τ ¼ ωþ ϵ; with ϵ ¼ ϵR þ iϵI; ðC7Þ

where we suppose jϵj ≪ 1. For the case of ϵ ¼ iϵI , which is
a pure imaginary number, we obtain the linear fit of ϵ as

Y2ðτÞ
Y1ðτÞ

≃ ωð1 − 2.1ϵIÞ;
Y3ðτÞ
Y1ðτÞ

≃ −
1

2
ω2ð1 − 4.2ϵIÞ;

ðC8Þ

where coefficients are obtained by numerical fittings. These
ratios decrease linearly for ϵI ≥ 0. On the other hand, for
the case of ϵ ¼ ϵR, which is a real number, we obtain as

Re
Y2ðτÞ
Y1ðτÞ

≃ ωð1 − 3ϵ2RÞ; Re
Y3ðτÞ
Y1ðτÞ

≃ −
1

2
ω2ð1 − 11ϵ2RÞ:

Im
Y2ðτÞ
Y1ðτÞ

≃ ωð2.1ϵRÞ; Im
Y3ðτÞ
Y1ðτÞ

≃ −
1

2
ω2ð4.2ϵRÞ;

ðC9Þ

where the linear terms of ϵ disappear in the real parts. After
neglecting Oðϵ2RÞ, we obtain, approximately,

Y2ðτÞ
Y1ðτÞ

≃ ωð1þ ϵ1Þ;
Y3ðτÞ
Y1ðτÞ

≃ −
1

2
ω2ð1þ ϵ2Þ;

ϵ1 ¼
1

2
ϵ2 ¼ 2.1iϵ; ðC10Þ

where jϵj ≪ 1. These approximate forms are agreement
with exact numerical values within 1% for jϵj ≤ 0.05.

We have also higher weight modular forms YðkÞ
i in

Eqs. (13) and (14) in terms of ϵ1 and ϵ2. For weight 4,
they are

Yð4Þ
1 ðτÞ
Y2
1ðτÞ

≃
3

2
ð1þ ϵ1þ ϵ2Þ;

Yð4Þ
2 ðτÞ
Y2
1ðτÞ

≃−
3

2
ω

�
1

2
þ 2

3
ϵ1þ

1

6
ϵ2

�
;

Yð4Þ
3 ðτÞ
Y2
1ðτÞ

≃
3

2
ω2

�
1−

4

3
ϵ1−

2

3
ϵ2

�
;

Yð4Þ
1 ðτÞ
Y2
1ðτÞ

≃−ðϵ1þ ϵ2Þ;
Yð4Þ
10 ðτÞ
Y2
1ðτÞ

≃
9

4
ω

�
1þ 8

9
ϵ1þ

2

9
ϵ2

�
:

ðC11Þ

For weight 6, they are

Yð6Þ
1 ðτÞ
Y3
1ðτÞ

≃ −ðϵ1 þ ϵ2Þ;

Yð6Þ
2 ðτÞ
Y3
1ðτÞ

≃ −ωðϵ1 þ ϵ2Þ;

Yð6Þ
3 ðτÞ
Y3
1ðτÞ

≃
1

2
ω2ðϵ1 þ ϵ2Þ;

Y 0ð6Þ
1 ðτÞ
Y3
1ðτÞ

≃ −
9

8

�
1þ 8

9
ϵ1 þ

11

9
ϵ2

�
;

Y 0ð6Þ
2 ðτÞ
Y3
1ðτÞ

≃
9

4
ω

�
1þ 8

9
ϵ1 þ

2

9
ϵ2

�
;

Y 0ð6Þ
3 ðτÞ
Y3
1ðτÞ

≃
9

4
ω2

�
1þ 17

9
ϵ1 þ

2

9
ϵ2

�
;

Yð6Þ
1 ðτÞ
Y3
1ðτÞ

≃
27

8

�
1þ 4

3
ϵ1 þ

1

3
ϵ2

�
: ðC12Þ

3. Modular forms towards τ = i∞
We show the behavior of modular forms at large Imτ,

whereq ¼ exp ð2πiτÞ is suppressed. Taking leading terms of
Eq. (11), we can express modular forms approximately as

Y1ðτÞ ≃ 1þ 12pϵ; Y2ðτÞ ≃ −6p1
3ϵ

1
3;

Y3ðτÞ ≃ −18p2
3ϵ

2
3; p ¼ e2πiReτ; ϵ ¼ e−2πImτ:

ðC13Þ

Higher weight modular forms YðkÞ
i in Eqs. (14) and (14)

are obtained in terms of p and ϵ approximately. For weight
4, they are

Yð4Þ
1 ðτÞ ≃ 1 − 84pϵ; Yð4Þ

2 ðτÞ ≃ 6p
1
3ϵ

1
3; Yð4Þ

3 ðτÞ ≃ 54p
2
3ϵ

2
3;

Yð4Þ
1 ðτÞ ≃ 1þ 240pϵ; Yð4Þ

10 ðτÞ ≃ −12p1
3ϵ

1
3: ðC14Þ

Weight 6 modular forms are given,

Yð6Þ
1 ðτÞ≃1þ252pϵ; Yð6Þ

2 ðτÞ≃−6p1
3ϵ

1
3; Yð6Þ

3 ðτÞ≃−18p2
3ϵ

2
3;

Y 0ð6Þ
1 ðτÞ≃216pϵ; Y 0ð6Þ

2 ðτÞ≃−12p1
3ϵ

1
3; Y 0ð6Þ

3 ðτÞ≃72p
2
3ϵ

2
3;

Yð6Þ
1 ðτÞ≃1−504pϵ: ðC15Þ

APPENDIX D: MAJORANA AND DIRAC
PHASES AND hmeei IN 0νββ DECAY

Supposing neutrinos to be Majorana particles, the PMNS
matrix UPMNS [81,82] is parametrized in terms of the three
mixing angles θij ði; j ¼ 1; 2; 3; i < jÞ, one CP violating
Dirac phase δlCP, and two Majorana phases α21, α31 as
follows:
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UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ
l
CP

−s12c23 − c12s23s13eiδ
l
CP c12c23 − s12s23s13eiδ

l
CP s23c13

s12s23 − c12c23s13eiδ
l
CP −c12s23 − s12c23s13eiδ

l
CP c23c13

1
CA
0
B@

1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

1
CA; ðD1Þ

where cij and sij denote cos θij and sin θij, respectively.

The rephasing invariant CP violating measure of leptons [105,106] is defined by the PMNS matrix elements Uαi. It is
written in terms of the mixing angles and the CP violating phase as

JCP ¼ Im½Ue1Uμ2U�
e2U

�
μ1� ¼ s23c23s12c12s13c213 sin δ

l
CP; ðD2Þ

where Uαi denotes the each component of the PMNS matrix.
There are also other invariants I1 and I2 associated with Majorana phases,

I1 ¼ Im½U�
e1Ue2� ¼ c12s12c213 sin

�
α21
2

�
; I2 ¼ Im½U�

e1Ue3� ¼ c12s13c13 sin

�
α31
2

− δlCP

�
: ðD3Þ

We can calculate δlCP, α21 and α31 with these relations by taking account of

cos δlCP ¼ jUτ1j2 − s212s
2
23 − c212c

2
23s

2
13

2c12s12c23s23s13
;

Re½U�
e1Ue2� ¼ c12s12c213 cos

�
α21
2

�
; Re½U�

e1Ue3� ¼ c12s13c13 cos

�
α31
2

− δlCP

�
: ðD4Þ

In terms of these parameters, the effective mass for the 0νββ decay is given as follows:

hmeei ¼ jm1c212c
2
13 þm2s212c

2
13e

iα21 þm3s213e
iðα31−2δlCPÞj: ðD5Þ
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