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Exotic self-interactions among the Standard Model neutrinos have been proposed as a potential reason
behind the tension in the expansion rate, H0, of the universe inferred from different observations. We
constrain this proposal using electroweak precision observables, rare meson decays, and neutrinoless
double-β decay. In contrast to previous works, we emphasize the importance of carrying out this study in a
framework with full Standard Model gauge invariance. We implement this first by working with a relevant
set of Standard Model effective field theory operators and subsequently by considering a UV completion in
the inverse seesaw model. We find that the scenario in which all flavors of neutrinos self-interact
universally is strongly constrained, disfavoring a potential solution to the H0 problem in this case. The
scenario with self-interactions only among tau neutrinos is the least constrained and can potentially be
consistent with a solution to the H0 problem.
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I. INTRODUCTION

There is a tantalizing discrepancy between the value of
the Hubble constant (H0) extracted from local measure-
ment versus the one extracted from the cosmic microwave
background (CMB) data [1–5].
Towards this end, the authors of Ref. [6] suggested to

give neutrinos a new, extra strong self-coupling in the form
of the dimension-six operator

Leff ∼Gνðν̄MνMÞðν̄MνMÞ: ð1Þ

We focus on the possibility that the Standard Model
(SM) neutrinos are Majorana, i.e., νM are four-component
Majonara fermion fields. The Dirac case is strongly
disfavored by big bang nucleosynthesis (BBN) con-
straints [7]. This effective interaction can be induced
by the presence of a light scalar mediator—a massive

version of the so-called Majoron [8]—with an effective
coupling

Leff Majoron ∼ λϕν̄MνM: ð2Þ
Alternatively, the interaction can also be mediated by a light
vector [9]. We will not consider this case here.
The effect of neutrino self-interactions in cosmological

observables has been investigated in Refs. [10–14]. The
interaction in Eq. (1) can postpone the time at which the
neutrinos begin to free stream and induce a phase shift
towards high-l scale at the CMB TT spectrum. Together
with one additional sterile neutrino, which brings Neff ≃ 4,
this can reduce the tension in H0. The fit of the CMB data
favors two values for Gν, namely, SIν (strongly interacting)
and MIν (moderately interacting)

Gν ¼
� ð4.6ð5Þ MeVÞ−2 ðSIνÞ
ð90þ170

−60 MeVÞ−2 ðMIνÞ : ð3Þ

There have been many studies on the constraints of the
neutrino-Majoron coupling. Experimental results like
supernova [15,16], neutrinoless double-β decay [17,18],
LHC searches [19], meson decays [20–25], and Z-pole
observables [25,26] all give relevant constraints: see
Ref. [7] for a summary of various bounds in the strong
self-coupling scenario. In cases in which the scalar also
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interacts with quarks or charged leptons there are additional
constraints from astrophysics and neutrino experiments, see
Refs. [27,28]. However, most of the studies focus on the
effective neutrino-Majoron coupling in Eq. (2), which
violates electroweak gauge invariance. This is perfectly
fine as long as one focuses on the degrees of freedom well
below the weak scale. On the other hand, we have
established a very accurate description of the physics
around the weak scale, known as the SM. There are
precision measurements that will set relevant constraints
on the scenario of self-interacting neutrinos. Indeed, many
of the studies did implemented such constraints, e.g.,
Z decays. It is now mandatory to go beyond the effective
interaction in Eq. (2) and consider weak-scale UV com-
pletions. While our analysis here is motivated by the
solution to the Hubble tension, the results are general
constraints on the neutrino self-coupling, whether it would
play a role in interpreting the CMB data or not.
In this work, we take two consecutive steps in this

direction.
Firstly, we will remain (mostly) agnostic about the

specifics of new physics and assume that, apart from the
Majoron itself, it is somewhat heavier than the weak scale.
Hence, we will parameterize their effect by dimension-five
and six effective operators in the Standard Model Effective
Field Theory (SMEFT). One such dimension-six operator
contains the Majoron and induces neutrino self-inter-
actions. However, in typical models that modify the
neutrino sector and induce neutrinos masses the aforemen-
tioned operator is accompanied by additional ones, which
do not contain the Majoron, and are typically generated in
any UV completion. We will use experimental data to
constrain the size of their Wilson coefficients.
Secondly, we will consider the possibility of UV

completing this effective theory into renormalizable models
by introducing new degrees of freedom. Neutrinos are
embedded in SUð2Þ doublets, therefore, at the renormaliz-
able level the neutrino-Majoron coupling can only be
induced via the (mass) eigenstate mixing after electroweak
symmetry breaking. There are two paradigms: mixing with
a neutrino sector or with a scalar sector. The former is
realized in the Type-I seesaw model while the latter in Type
II. In both cases, the mixing angle determines the strength
of the neutrino-Majoron coupling. However, we will see
that, for Type I, the mixing is proportional to the neutrino
mass and is thus too suppressed to provide a sufficiently
large mixing. Similarly for Type II, the current bound on
the triplet Yukawa coupling and the vev of the triplet scalar
implies that it cannot provide a sufficiently large mixing
either [29,30]. However, we will show that there exist
extended seesaw models in which there is no direct
connection between the mixing and the neutrino mass.
One of them is the so-called inverse seesaw model, which
we will consider in detail. We will match the model to the
SMEFT operators, and use the constraints derived for them
to set limits on the model parameters.

We will find that within a SM gauge invariant frame-
work, the extent to which neutrino self-interactions may
alleviate the H0 inconsistency depends on the flavor
structure of the self-couplings. The case in which all
flavors interact with the same strength (universal) is too
constrained from electron-sector observables to provide a
solution. However, the case in which only tau-flavor
neutrinos self-interact may still provide a solution due to
the weaker constraints from particle-physics observations.
The rest of this paper is organized as follows: in Sec. II,

we describe the relevant SMEFT framework and match it to
seesaw models. In Sec. III, we present the predictions for
the observables entering the analysis. In Sec. IV, we
combine the observables and contrast them to the CMB
fit and discuss the various regions of the parameter space.
We conclude in Sec. V.

II. THE FRAMEWORK

A. Neutrino self-interactions within the
extended SMEFT

We begin with the assumption that, with the exception of
the Majoron ϕ, new physics is heavier than the electroweak
scale. In this case, all beyond-the-SM effects can be
parametrized by a set of nonrenormalizable operators. In
our case, we are interested in a small subset of operators
that induce neutrino self-interactions and those that typi-
cally accompany them in UV-complete models. More
specifically, the following set suffices to capture the main
phenomenological aspects

LEFT ¼ Cf
ννðQf

νν þ H:c:Þ þ Cf
ϕϕðQf

ϕ þ H:c:Þ
þ Cf

ewðQð1Þ;f
HL −Qð3Þ;f

HL Þ: ð4Þ

f denotes the neutrino flavor with f ¼ e, μ, τ, and

Qf
νν ¼ Lc

fH̃�H̃†Lf;

Qf
ϕ ¼ ϕLc

fH̃�H̃†Lf;

Qð1Þ;f
HL ¼ ðH†iDμ

↔
HÞðL̄fγ

μLfÞ;

Qð3Þ;f
HL ¼ ðH†iDI

μ

↔

HÞðL̄fσ
IγμLfÞ: ð5Þ

Our notation follows closely the ones of Ref. [31]. We
ignore flavor-changing operators and restrict the discussion
to flavor-diagonal operators.
The SM neutrinos live in the weak doublets Lf, thus the

Higgs doublet H must be included to form gauge singlets.
The dimension-five Weinberg operator, Qf

νν, accounts for
neutrino masses. The operator Qf

ϕ is responsible for

generating the self-interaction. The operators Qð1Þ;f
HL and

Qð3Þ;f
HL must also be included, because they are typically also

generated at the tree-level in models that induce Qf
νν.
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In particular, the operators Qð1Þ;f
HL and Qð3Þ;f

HL are typically
generated with a Wilson coefficient of same magnitude but

opposite sign, i.e., Cð1Þ;f
HL ¼ Cf

ew and Cð3Þ;f
HL ¼ −Cf

ew [we
have already implemented this in Eq. (4)]. The reason
behind this tree-level relation is that typical models that
generate the Qf

νν operator by integrating out some heavy
degrees of freedom, also induce the derivative operator
ðL̄fH̃Þi∂ðH̃†LfÞ (two examples of such typical models are
discussed in Sec. II B). This derivative operator is redun-
dant in the Warsaw basis, where it is removed in favor of

the combination Qð1Þ;f
HL −Qð3Þ;f

HL ¼ 4ðL̄fH̃Þi∂ðH̃†LfÞ. The
presence of these operators lead to important phenomeno-
logical consequences, which cannot be captured when one
simply works with the effective coupling in Eq. (2). We
expect this to be generic when integrating out new physics
at tree level. In addition to the examples studied in detail in
this paper, we have also checked that this is the case for the
Type III seesaw model. More generally, the derivative
operator breaks fewer symmetries than the neutrino mass
operator. Hence it is more generic for it to be generated after
integrating out heavy scales.1

To work with dimensionless couplings for the dimension-
six Wilson coefficients we introduce the notation C̄X ¼
CXv2, with v ≃ 246 GeV the electroweak vev.
At scales below the electroweak scale the Qf

νν operators
induce a Majorana mass term for the neutrinos, and the Qf

ϕ

couplings of the neutrinos to ϕ. The resulting Lagrangian
reads

Lν ¼
1

2
ν̄M;fði∂ −mνfÞνM;f þ

1

2
λfϕν̄M;fνM;f; ð6Þ

with νM;f ¼ νL;f þ ðνL;fÞc the four-component Majorana
fermion and where

mνf ¼ −C̄f
νν; λf ¼ C̄f

ϕ: ð7Þ

We note that both the mass and the interaction in Eq. (6) are
flavor diagonal. We emphasize that this is an assumption,
and more general flavor structures are certainly possible.
However, the aim of this work is to extract main lessons
rather than carry out an exhaustive study. Moreover, as we
will see in Sec. III D, the effect of neutrino self-interactions
on the CMB has only been studied under a quite (over)
simplified case. Hence, we will also make simplifying
assumptions for the flavor structure in our study.

B. Seesaw models

1. Type-I seesaw model

To illustrate how the EFToperators presented in Sec. II A
are induced in concrete UV models we start with the
simplest Type-I seesaw model. The SM Lagrangian is
augmented with an extra heavy right-handed neutrino

L ⊃ NRi∂NR −
MR

2
ðNc

RNR þ NRNc
RÞ

þ
�
−yRL̄ H̃ NR þ 1

2
λϕNc

RNR þ H:c:

�
: ð8Þ

with NR a four-component chiral field. After electroweak
symmetry breaking, the mixed Dirac mass is generated
mD ¼ yRv=

ffiffiffi
2

p
. The neutrino mass matrix then reads

M ¼
�

0 mD

mD MR

�
: ð9Þ

After diagonalization, the masses of the light mass eigen-
states in the limit mD ≪ MR are

mν ¼
m2

D

MR
; ð10Þ

and the mixing angle between light and heavy eigenstates is

sin θ ∼
mD

MR
: ð11Þ

Hence, the coupling between the Majoron and light
eigenstates reads

gϕνν ¼ λ

�
mD

MR

�
2

¼ λ
mν

MR
: ð12Þ

We see that in this model the coupling to the Majoron is
suppressed by the neutrino mass and thus cannot produce
strong self-interactions for perturbative values of λ.
To match to the effective Lagrangian in Eq. (4), we

integrate out NR at the tree level and find the Wilson
coefficients

Cf
νν ¼−

y2R
2

1

MR
; Cf

ϕ¼
λ

2

y2R
M2

R
; Cf

ew¼ 1

4

y2R
M2

R
: ð13Þ

Again, we see that Cf
νν, which generates the neutrino

mass, is correlated to Cf
ϕ. Hence, the neutrino-Majoron

interaction, proportional to Cf
ϕ, is suppressed by the

neutrino mass.

1Nevertheless, we note that this is certainly not a no-go
theorem. More contrived scenarios where the derivative operator
is additionally suppressed may be possible.
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2. Inverse seesaw model

In order to break the correlation between Cf
νν and Cf

ϕ we
consider an inverse seesaw model [32–38] augmented with
an additional real scalar, ϕ, that couples to one species of
the heavy neutrinos:

Linv-seesaw¼ iF̄∂F −MF̄F

−
�
δR
2
F c

RFRþ
δL
2
F c

LFLþyR;fL̄fH̃FRþH:c:

�

þ λ

2
ϕðF c

LFLþH:c:Þ; ð14Þ
with F ¼ FL þ FR. The fermion fields FL and FR above
are four-component chiral fields; i.e., only two components
are nonzero. By choosing to couple the Majoron only toFL
and not to FR we break the correlation between neutrino
mass and Majoron coupling. The subscript f stands for the
flavor. For simplicity we consider the heavy-neutrino
setting for each flavor separately and do not consider their
mixing.
We match to the effective Lagrangian in Eq. (4) by

integrating out the heavy fields FR and FL at the tree level.
For the case δL; δR ≪ M and up to dimension-six the
Wilson coefficients we obtain are

Cf
νν ¼−

y2R;f
2

δL
M2

; Cf
ϕ ¼

λ

2

y2R;f
M2

; Cf
ew¼ 1

4

y2R;f
M2

: ð15Þ
Contrary to the Type-I model, we see that the neutrino mass
and the neutrino-Majoron coupling are controlled by
independent parameters, δL and λ, respectively.
It is thus possible to induce a sizable neutrino-Majoron

coupling without it being suppressed by the neutrino mass.
At the same time, we see that Cf

ϕ and Cf
ew are correlated to

some extent, which has important phenomenological con-
sequences.
To include constraints from electroweak-precision

observables, we also compute the Wilson coefficient of
the operator that contributes to the T parameter at tree level.
In the Warsaw basis this operator isQHD ≡ jH†DμHj2. The
one-loop matching at a scale μ ≃M gives

L ⊃ CHDQHD with CHDðMÞ ¼ −
1

16π2
y4R;f
2M2

; ð16Þ

where we only kept terms of Oðy4R;fÞ. We include the
leading terms of Oðy2R;fg21; y2R;fy2eÞ by solving the renorm-
alization group (RG) within SMEFT (see Sec. III B).

III. OBSERVABLES

In this section we discuss the most relevant observables
in our analysis and their predictions within the SMEFT
framework. We choose as the numerical input for the
electroweak parameters GF, α, and mZ. As extensively
discussed in the literature, e.g., Ref. [39] and references

within, the presence of dimension-six operators affects the
determination of the electroweak-parameter input. In the
case at hand, only the operators in Eq. (5) are induced at
the tree-level and in fact out of them only the operators

Qð3Þ;e
HL and Qð3Þ;μ

HL affect the extraction of GF. The remaining
electroweak input remains unchanged. The GF shift affects
all electroweak observables. To take it into account, one
substitutes, e.g., Ref. [39],

GF → GFð1 − C̄ð3Þ;e
HL − C̄ð3Þ;μ

HL Þ
¼ GFð1þ C̄e

ew þ C̄μ
ewÞ; ð17Þ

where GF is still the experimental input value. Notice that
while an anomalous coupling in the e and μ sector affects
the GF determination, a corresponding one in the τ sector
does not. This is one reason why particle-physics con-
straints are less stringent for the τ case that for the e and
μ cases.

A. Z decays

After electroweak-symmetry breaking the operator
combination Qð1Þ;f

HL −Qð3Þ;f
HL does not (directly) affect the

charged lepton sector, but it does induce an anomalous Z
coupling to the neutrino species f, i.e.,

Lanom-Z ¼ −
e

2swcw
2C̄f

ewν̄
f
L=Zν

f
L: ð18Þ

Together with the shift in GF this modifies the partial width
to the neutrinos

ΓðZ → ν̄fνfÞ ¼
GFm3

Z

12
ffiffiffi
2

p
π
ð1þ C̄e

ew þ C̄μ
ew − 4C̄f

ewÞ: ð19Þ

We also include the three-body partial width Z → ν̄fνfϕ,
which is, however, formally higher order in the EFT; i.e., it
is proportional to ðC̄f

ϕÞ2. For the region of interest
mϕ ≪ mZ, we find for a neutrino species coupled to ϕ

via the operator Qf
ϕ the width

ΓðZ→ ν̄fνfϕÞ¼
GFm3

Z

12
ffiffiffi
2

p
π

ðC̄f
ϕÞ2

192π2

�
12log

�
m2

Z

m2
ϕ

�
−23

�
: ð20Þ

Notice that this rate diverges for mϕ → 0. For small mϕ it is
thus necessary to resum the logarithms. However, for the
masses that we are considering this is not necessary. Also
due to the double EFT suppression this rate is numeri-
cally small.
Similarly we evaluate the effect of the shift in GF in the

partial width to charged leptons and to hadrons. In the SM
the partial width to a fermion f with charge Qf is

ΓðZ→ f̄fÞSM¼ nfc
αmZ

24s2wc2w
ð1−4s2wjQfjþ8s4wjQfj2Þ: ð21Þ

After shifting GF we find that
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ΓðZ → lþl−Þ ¼ ΓðZ → lþl−ÞSM
�
1þ ðC̄e

ew þ C̄μ
ewÞ 1 − 2s2w − 4s4w

ð1 − 2s2wÞð1 − 4s2w þ 8s4wÞ
�
; ð22Þ

ΓðZ → hadronsÞ ¼ ΓðZ → hadronsÞSM
�
1þ ðC̄e

ew þ C̄μ
ewÞ 45 − 90s2w − 4s4w

ð1 − 2s2wÞð45 − 84s2w þ 88s4wÞ
�
: ð23Þ

B. T parameter

Heavy sterile neutrinos can affect electroweak-precision
observables, i.e., the T parameter. Within the SMEFT
framework the new-physics contributions to the T param-
eter are controlled by the Wilson coefficient of the QHD
operator evaluated at the electroweak scale, μew ∼mZ, via
αT ¼ T̂ ¼ − v2

2
CHDðμewÞ [40]. In our setup we integrate

out the heavy degrees of freedom at a scale M ≫ μew and
obtain CHDðμewÞ via the RG evolution to μew (see
Refs. [41,42] for the corresponding anomalous dimen-
sions). Operators that have been induced at the tree level at
M can mix intoQHD. In our case we find that at leading-log
accuracy

CHDðmZÞ¼CHDðMÞ

−
e2

16π2

�
8

3c2w
þ 4

s2wc2w

m2
f

m2
Z

�
Cð1Þ;f
HL log

mZ

M
: ð24Þ

The singlet operators Qð1Þ;f
HL mix into QHD, introducing the

dependence on Cð1Þ;f
HL ¼ Cf

ew.

C. Leptonic meson decays

Nonstandard neutrino interactions affect the decays of
pseudoscalar mesons. The most stringent constraints origi-
nate from the semileptonic decays of charged pseudosca-
lars. The modification with respect to the SM originates
both from the shift in GF and the anomalous coupling

Wlfνf proportional to effiffi
2

p
sw
C̄ð3Þ;f
HL . The two-body partial

width of a pseudoscalar, P, to a neutrino and a charged
lepton then reads

ΓðP → lfνfÞ ¼
G2

F

8π
f2Pm

2
lf
mP

�
1 −

m2
lf

m2
P

�
VCKM

× ð1þ 2ðC̄e
ew þ C̄μ

ew − C̄f
ewÞÞ; ð25Þ

with fP the decay constant of the meson and VCKM ¼
jVuidj j2 the corresponding Cabibbo–Kobayashi–Maskawa
(CKM) matrix elements. As in the SM the two-body widths
are helicity suppressed and thus proportional to the charged
lepton mass.
The helicity suppression is lifted in the three-body decay

P → lfνfϕ. Expanding in the mass of the charged lepton
we find

ΓðP → lfνfϕÞ

¼ f2PG
2
FVCKMm3

P

768π3
ðC̄f

ϕÞ2

× ð1þ 9xϕ − 9x2ϕ − x3ϕ þ 6ðxϕ þ 1Þxϕ log xϕÞ; ð26Þ

where xϕ ¼ m2
ϕ=m

2
P.

D. Neutrino self-scattering (Gν)

The presence of new, neutrino self-interactions can
modify the neutrino standard free-streaming behavior
during the radiation-dominated era. 2 → 2 scattering
among neutrinos modifies the momentum dependence of
the neutrino distribution functions and can thus affect
cosmological observables such as the CMB. The cosmo-
logical fit of Ref. [6] is performed for the case in which the
ϕ mass is much larger than the typical energy scale of the
scattering event. In this case we can to an excellent
approximation integrate out ϕ and describe the neutrino
self-interactions via four-fermion contact interactions.
Starting from the (per assumption) flavor-diagonal

Lagrangian for the four-component Majorana fermions
νM;i in Eq. (6) we use the EOM of the real scalar
[ð□þm2

ϕÞϕ ¼ 1
2

P
i C̄

i
ϕν̄M;iνM;i] to obtain the effective

Lagrangian

Lν;eff ¼
1

8m2
ϕ

X
i;j

C̄i
ϕC̄

j
ϕðν̄M;iνM;iÞðν̄M;jνM;jÞ;

¼ 1

8

X
i¼1;2;3

Ci
ννðν̄M;iνM;iÞðν̄M;iνM;iÞ

þ 1

4

X
i;j¼1;2;3

i<j

Cij
ννðν̄M;iνM;iÞðν̄M;jνM;jÞ; ð27Þ

with

Ci
νν ¼

ðC̄i
ϕÞ2

m2
ϕ

; Cij
νν ¼

C̄i
ϕC̄

j
ϕ

m2
ϕ

with i < j: ð28Þ

Here, the indices i; j ¼ 1; 2; 3 indicate the flavors e, μ, τ,
respectively. Note that when ϕ couples flavor diagonally to
more that one flavor a mixed four-fermion operator is
necessarily generated.
In order to make contact with the results of the CMB fit

of Ref. [6] we present here the corresponding collision

SELF-INTERACTING NEUTRINOS: SOLUTION TO HUBBLE … PHYS. REV. D 103, 015004 (2021)

015004-5



terms for neutrino scattering. In the general, flavor-diagonal
case there are three independent processes: the self-scattering
of one species (νi þ νi → νi þ νi), s-channel annihilation
(νi þ νi → νj þ νj with i ≠ j), and t-channel scattering
(νi þ νj → νi þ νj with i ≠ j). Their respective squared
matrix elements summedover initial- and final-state spins are

jMi
s;t;uj2 ≡

X
spins

jMνiνi→νiνi j2;

¼ 2ðCi
ννÞ2ðs2 þ t2 þ u2Þ;

¼ 2
ðC̄i

ϕÞ4
m4

ϕ

ðs2 þ t2 þ u2Þ; ð29Þ

jMij
s j2 ≡

X
spins

jMνiνi→νjνj j2 ¼ 4ðCij
ννÞs2;

¼ 4
ðC̄i

ϕÞ2ðC̄j
ϕÞ2

m4
ϕ

�
s2 with i < j; ð30Þ

jMij
t j2 ≡

X
spins

jMνiνj→νiνj j2 ¼ 4ðCij
ννÞ2t2;

¼ 4
ðC̄i

ϕÞ2ðC̄j
ϕÞ2

m4
ϕ

�
t2 with i < j; ð31Þ

with s, t, u the usual Mandelstam variables. No symmetry
factors for identical particles have been included above.
What enters the evolution of the neutrino distributions

are the collision integrals for each process. Adapting the
generic expression from Ref. [43] we find that for a specific
neutrino species i and j ≠ i the collision integrals for the
three processes above are

Cνiðp1Þνiðp2Þ↔νiðp3Þνiðp4Þ ¼
1

2g

Z
dΠ2dΠ3dΠ4ð2πÞ4

× F½νiðp1Þ; νiðp2Þ; νiðp3Þ; νiðp4Þ�
× δðp1 þ p2 − p3 − p4ÞjMi

s;t;uj2;
ð32Þ

Cνiðp1Þνiðp2Þ↔νjðp3Þνjðp4Þ ¼
1

2g

Z
dΠ2dΠ3dΠ4ð2πÞ4

× F½νiðp1Þ; νiðp2Þ; νjðp3Þ; νjðp4Þ�

× δðp1 þ p2 − p3 − p4Þ
1

2
jMij

s j2;
ð33Þ

Cνiðp1Þνjðp2Þ↔νiðp3Þνjðp4Þ ¼
1

2g

Z
dΠ2dΠ3dΠ4ð2πÞ4

×F½νiðp1Þ;νjðp2Þ;νiðp3Þ;νjðp4Þ�
×δðp1þp2−p3−p4ÞjMij

t j2;
ð34Þ

where dΠi ¼ d3pi
ð2πÞ32Ei

and F½…� defined as in Ref. [6]. The

factor 1=g, with g ¼ 2 as the spin degrees of freedom, has
been omitted in Ref. [6]. No additional symmetry factors
for identical particles in initial and final state need to be
included in Eq. (32) (see Ref. [44]). The factor 1=2 in
Eq. (33) is due to the identical particles j ≠ i in the final or
initial state.
We see that the collision integrals in Eqs. (33) and (34)

couple the evolution of the distribution function of the three
species. This cross talk has been neglected in Ref. [6].
Instead each neutrino flavor was assumed to self-interact
independently with the same strength and the fit to the
CMB provided the best-fit value for the parameter Gν

defined via the collision integral for each species [6]

CRef: ½6�νiðp1Þνiðp2Þ↔νiðp3Þνiðp4Þ

¼ 1

2

Z
dΠ2dΠ3dΠ4ð2πÞ4

× F½νiðp1Þ; νiðp2Þ; νiðp3Þ; νiðp4Þ�
× δðp1 þ p2 − p3 − p4Þ2G2

νðs2 þ t2 þ u2Þ; ð35Þ

We emphasize again that this is an oversimplifying
assumption that does not follow from flavor universality.
Nevertheless, we will use it since it provides a direct
comparison between the explicit fit performed in Ref. [6]
and the constraints obtained in this paper. Under this
simplifying assumption, i.e., neglecting cross talk, we find
by comparing Eqs. (32) and (35) that for the “universal
case” (C1

νν ¼ C2
νν ¼ C3

νν ¼ C12
νν ¼ C13

νν ¼ C23
νν ≡ Cνν)

Cνν ↔
ffiffiffi
2

p
Gν: ð36Þ

Additionally to the “universal” case, we also consider
“flavor specific” cases (one Ci

νν ≠ 0 and all other couplings
zero) in which the self-interactions take place only among a
single species instead of among all three. These cases are
governed by the evolution of the thermal bath of one
neutrino with the collision integral in Eq. (32). The fit of
Ref. [6] does not cover these cases, a dedicated reanalysis is
required, which is beyond the scope of the present work.
Roughly, the total strength of self-interactions are weaker if
a single species self-interacts than in the “universal case.”
To at least partially take this into account we interpret the fit
of Ref. [6] for the “flavor specific” case via the rescaling

Ci
νν ↔

ffiffiffi
6

p
Gν: ð37Þ

The results of a future CMB fit for these cases could then be
obtained by a simple rescaling of Eq. (37). We caution that
while we expect this scaling to partially take into account
the difference between the effective coupling strength, the
factor of

ffiffiffi
6

p
is just an educated guess. More complete

numerical study is needed to obtain the precise factor.
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For the cases we consider, the two best-fit regions from
Ref. [6] in Eq. (3) then translate into:

v2jCϕj ¼
mϕ

MeV
×

� ð4.6ð5ÞÞ−1 ðSIνÞ
ð90þ170

−60 Þ−1 ðMIνÞ

�

×

�
2
1
4 ð“flavor-specific” caseÞ
6
1
4 ð“universal” caseÞ

�
: ð38Þ

IV. NUMERICAL ANALYSIS

As we have discussed above, we focus on two distinct
limits in both of which the self-interactions via ϕ are
assumed to be aligned to the neutrino mass eigenstates.
(1) “Flavor-specific” cases: Self-interactions are present

only for one, the fth species of neutrinos with f ¼ e,
μ, τ. In this case C̄f

ϕ; C̄
f
ew ≠ 0 while C̄f0

ϕ ¼ C̄f0
ew ¼ 0

for f0 ≠ f.
(2) “Universal” case: All three neutrinos species inter-

act with equal strength such that C̄ϕ ≡ C̄e
ϕ ¼ C̄μ

ϕ ¼
C̄τ
ϕ and C̄ew ≡ C̄e

ew ¼ C̄μ
ew ¼ C̄τ

ew.

A. Experimental input/constraints

To illustrate the relative importance of various particle-
physics and cosmological observables in the “flavor-
specific” and “universal” cases we perform χ2 fits combining
information from multiple observables. Below we summa-
rize the experimental input relevant for the fits. Any addi-
tional, unspecified numerical input is taken from Ref. [45].
(1) Z decays: We implement the constraints from the

partial width measurements of the Z boson by center-
ing the corresponding χ2s around the SM predictions
and using the experimental uncertainties [45]

ΔΓlþl− ¼ 0.086 MeV;

ΔΓhad ¼ 2.0 MeV;

ΔΓinv ¼ 1.5 MeV:

(2) T parameter: When discussing the inverse seesaw
model we also include the constraint from the T
parameter as it can be affected by the presence of
heavy neutrinos. We use the current best fit value of
T ¼ 0.06� 0.06 [45].

(3) Meson decays: Analogously to Z decays also for
meson decays, we assume that the experimental
measurements of their branching ratios and their
lifetimes are centered around their SM predictions
and add the corresponding experimental uncertain-
ties in their χ2. We neglect subleading theory
uncertainties associated to form factors. We consider
constraints from branchings fractions of two-body
leptonic decays of πþ, Kþ, Dþ

s , as well as their
lifetimes [45]:

ΔBRðπþ → eþν; μþνÞ ¼ 4 × 10−7; 4 × 10−7

ΔBRðKþ → eþν; μþνÞ ¼ 7 × 10−8; 1.1 × 10−3;

ΔBRðDþ
s → μþν; τþνÞ ¼ 2.3 × 10−4; 2.3 × 10−3;

Δτπþ ¼ 5 × 10−12 sec;

ΔτKþ ¼ 2 × 10−11 sec;

ΔτDþ
s
¼ 4 × 10−15 sec :

Note that often the measurement of ratios of branch-
ing fractions are more constraining than those from
the branching ratios above. However, using such
ratios can leave certain directions unconstrained
when more than one neutrino species self-interact,
i.e., in the “universal” case. The combination of
constraints are, however, similar when folded with
the lifetimes measurements and Z decays. Therefore,
to enable a better comparison between different
cases we do not include ratios of branching ratios
in the fits.

(4) Neutrinoless double β-decay: As discussed in
Ref. [46], current neutrinoless double β-decay ex-
periments like NEMO-3 [47] and KamLAND-Zen
[17] can stringently constrain light e-flavor Major-
ons. This will be illustrated by mapping the results of
Fig. 4 of Ref. [46] into our corresponding exclu-
sion plots.

(5) BBN: Strong constraints are imposed on light
species remaining in thermal equilibrium with neu-
trinos as extra relativistic degrees of freedom during
the BBN period, as they affect the effective number
of neutrinos, ΔNeff . Here, we follow the analysis of
Ref. [7] and consider the mass of the real scalar to be
above 1 MeV. For studies on the case of scalar mass
lower than 1 MeV, see Refs. [14,48].

B. SMEFT fit

We first investigate the constraints on the SMEFT
Wilson coefficients for the four different cases (e, μ, τ,
universal) without specifying a UV model. In each case

there are three independent parameters C̄ðiÞ
ew, C̄

ðiÞ
ϕ , and mϕ.

In Fig. 1, we consider the four cases and show the
allowed 68.27% and 95.45% C.L. regions for the two
Wilson coefficients. The purple and green regions are the
allowed regions from Z and mesons decays, respectively,
for the case mϕ ¼ 10 MeV. The black and gray regions are
the combined allowed regions. The dashed lines enclose the
allowed region for mϕ ¼ 1 MeV and the dotted ones the
region for mϕ ¼ 100 MeV. We also show the best-fit
regions for the strength of neutrino self-interactions from
Ref. [6], cf., Eq. (38) when they lie within the plot ranges.
Inspecting Fig. 1 we observe the following:
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(1) The constraints from Z decays (blue) and meson
decays (green) are often complementary, e.g., in the
νe case.

(2) The main difference between the three “flavor-
specific” cases are the constraints from meson
decays. They are strongest for the νe case (top-left
plot) and rather weak for the ντ case (bottom-left
plot). The reason is the different helicity suppression
of the two-body meson decays, phase-space, and the
fact that the ντ case is only constrained by
Dþ

s → τþν. In contrast, the νe and νμ cases receive
strong constraints from πþ and Kþ decays to eþνe
and μþνμ.

(3) The “universal” case (bottom-right plot) is to a large
extent controlled by the its νe component and is thus
similarly stringently constrained as the νe case.

(4) The particle physics constraints on the νe and
“universal” cases cannot be accommodated in

neither the SIν nor the MIν best-fit regions of
Ref. [6] for mϕ > 1 MeV.

(5) The MIν best-fit regions (red) are compatible with
particle-physics constraints for the νμ and ντ cases.
Note, however, that the corresponding values for C̄ϕ

areOð1Þ thus close to the validity region of the EFT.

C. Inverse seesaw model

In the previous section we considered the particle-
physics constraints in conjunction with the preferred region
from the CMB fit within the mostly model-independent
framework of SMEFT. In concrete models, the SMEFT
Wilson coefficients can be correlated, reducing the number
of free parameters and leading to correlated signals. To
illustrate this, we now study the phenomenology of the
inverse-seesaw model from Sec. II B 2. Similarly to before
we consider separately the three “flavor-specific” cases and

FIG. 1. Preferred 68.27% and 95.45% C.L. regions for the Wilson coefficients C̄ðiÞ
ew and C̄ðiÞ

ϕ . Each panel corresponds to one of the four
cases (νe, νμ, ντ, and universal). In purple and green the constraints from Z and leptonic meson decays, respectively. In black (gray) the
combined allowed 68.27% (95.45%) C.L. region. The red regions in the second and third plot correspond to the 1σ preferred region for
MIν in Ref. [6], cf., Eq. (38). The best-fit regions for the SIν case and the MIν case not appearing in the first and last plot lie outside the
ranges. All colored regions correspond to mϕ ¼ 10 MeV. For the combined constraints we show the allowed region for mϕ ¼ 1 MeV
and mϕ ¼ 100 MeV in dashed and dotted lines, respectively.
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FIG. 2. Exclusion regions for various cases of the inverse seesaw model in the C̄ðfÞ
ϕ −mϕ plane. First-, second-, and third-row plots

correspond to the flavor-specific e, μ, and τ case, respectively. Fourth-row plots correspond to the “universal” case. Each column shows
the case of different values of λ ¼ 0.1, 1, 10. The colored regions are excluded at 90% C.L.: in purple the combined constraints from Z
decays, in green the combined constraints from meson decays, and in grey the constraints from neutrinoless double-β decay [46].
Dashed lines indicated in the legend show the constraints from each meson sector separately. The red-dotted regions are the preferred 1σ
regions of the CMB fit. The horizontal, dashed lines show the constraint from the T parameter when the heavy-neutrino scale is
M ¼ 500 GeV and M ¼ 1 TeV.
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the “universal” one. In each case, we vary the ϕ mass and

the effective Majoron coupling to neutrinos, C̄ðfÞ
ϕ , while

keeping the UV coupling λ fixed. As representative values
for λ we take λ ¼ 0.1, 1, 10. We consider the case
mϕ > 1 MeV. Smaller values of mϕ are constrained by
BBN [7,49].
In Fig. 2, we show the resulting constraints in the C̄ðfÞ

ϕ −
mϕ plane. First-, second-, and third-row plots correspond to
the flavor-specific e, μ, and τ case, respectively. Plots of the
fourth row correspond to the “universal” case. Plots of each
column present the case of different values of λ. The
colored regions are excluded at 90% C.L.. The constraints
from Z decays, meson decays, and neutrinoless double-β
decay [46] are shown separately with the color coding
defined in the caption. The dashed lines (see legend) show
the constraints from each meson sector separately, i.e., from
πþ, Kþ, and Dþ

s decays, while the red-dotted regions
are the preferred 1σ regions of the CMB fit. The con-
straints from the T parameter for a heavy-neutrino scale of
M ¼ 500 GeV and M ¼ 1 TeV are the horizontal lines
with the corresponding labels.
By inspecting Fig. 2 we recover some of the conclusions

from the SMEFT analysis of the previous section.
(1) The best-fit regions of the CMB fit cannot

be accommodated in the “flavor-specific” νe and
“universal” cases.

(2) While the SIν scenario is strongly disfavored, the
particle-physics constraints are compatible with the
MIν scenario in the “flavor-specific” νμ and ντ cases,
but only for masses mϕ ≲ 10 MeV and large values
of λ, i.e., λ≳ 1, close to its perturbativity limit. This
in turn implies that this scenario must have a cutoff
close to the mass scale of exotic fermions.

(3) The nontrivial structure of the πþ (dashed-dotted
lines) and Kþ (dashed lines) constraints in the νe and
“universal” case is due to the interplay between the
two-body decays, which suppresses the branching
ratio BRðM → lνðϕÞÞ, and the three-body decay,
which enhances it.

(4) The scenario is being further tested at colliders by
searches for the heavy neutrinos. The analyses, for
example Refs. [50,51], typically search for the
heavy-neutrino decays to Ws and either electrons
or muons, thus placing limits on the mass of the
heavy neutrino for the flavor specific e and μ cases,
and not the τ case. In both e and μ case, the present
limits are rather weak, i.e., M ≳ 100 GeV [50,51]
for a mixing of the order 10−2 − 10−3 between light
and heavy neutrinos.

Qualitatively the results of this section are similar to [7,49],
but there are important differences. In particular, the
constraints from Z decays, which are dictated by gauge
invariance, provide powerful constraints. They restrict the
allowed parameter space of the ντ “flavor-specific” case

more than meson decays. The allowed region corresponds
to large couplings, close to their perturbativity bound.

V. CONCLUSIONS

Motivated by the approach of using neutrino self-
interactions to address the tension in the H0 measurement,
we investigated the experimental constraints on this sce-
nario. In contrast to previous studies on this setup, we
began with an effective-field-theory framework that
respects the full Standard Model gauge symmetry. This
is important as many of the constraints are from experi-
ments performed around the electroweak scale, where the
effect of electroweak symmetry is essential. In addition to
the SMEFT framework, we have also considered a UV
completion within an inverse-seesaw type model. We
performed an careful derivation of the constraints from
Z decay, T parameter, and meson decays. We also took into
account the limits from the search of neutrinoless double-β
decay and BBN. The constraints depends on the flavor
structure of the couplings. To illustrate this, we considered
two scenarios. In one of them, the self-interaction act in a
“flavor universal” way to all flavors of neutrinos. In the
other one, there is only interaction between one specific
flavor species.
We showed that, in the “flavor universal” case, the

neutrino self-interaction as a solution to the H0 problem is
strongly disfavored. Only the “flavor-specific” νμ and ντ
cases in the MIν scenario may be provide a solution.
However, the scalar mass must be low and the scalar-
neutrino couplings large, close to their perturbativity limits.
The SIν scenario is strongly disfavored.
Future experimental searches are promising in further

testing these scenarios. The experimental measurements
considered in this paper will be improved significantly at
on-going and future facilities. The scenarios under con-
sideration also point to new particles, for example the new
heavy neutrinos, not far away from the weak scale. They
can be searched for directly in the upcoming LHC runs and
at potential higher-energy colliders.
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