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In this paper, we present one- and two-loop results for the renormalization of the gluon and quark gauge-
invariant operators which appear in the definition of the QCD energy-momentum tensor, in dimensional
regularization. To this end, we consider a variety of Green’s functions with different incoming momenta.
We identify the set of twist-2 symmetric traceless and flavor singlet operators which mix among themselves
and we calculate the corresponding mixing coefficients for the nondiagonal components. We also provide
results for some appropriate regularization-independent (RI')-like schemes, which address this mixing, and
we discuss their application to nonperturbative studies via lattice simulations. Finally, we extract the one-
and two-loop expressions of the conversion factors between the proposed RI' and the MS schemes. From

our results regarding the MS-renormalized Green’s functions, one can easily derive conversion factors
relating numerous variants of RI’-like schemes to MS. To make our results easily accessible, we also
provide them in the form of a Mathematica input file and, also as Supplemental Material, an equivalent text

file.
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I. INTRODUCTION

An important open question in Hadronic Physics is the
hadron spin decomposition, i.e., the distribution of hadron
spin among its constituent particles. It is well known, by
recent experiments, that contributions to the hadron spin
arise not only from valence quarks, but also from polarized
gluons, as well as sea quarks. Therefore, it is understood
that the complete picture of the spin content of a hadron
requires taking into account its nonperturbative nature,
including gluon and quark disconnected contributions.
Useful quantities which give important input to the study
of hadron spin structure are the quark and gluon average
momentum fractions [1]. Their nonperturbative determi-
nation in nucleons is currently under investigation by a
number of research groups [2—4], and so far, the outcomes
are very promising for the correct extraction of the nucleon
spin decomposition. However, there are still many chal-
lenges that need to be faced, including the complete
renormalization of these quantities.
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Recent progress in simulating QCD on the lattice has
allowed the first ab initio studies of more demanding
quantities in hadron structure, involving, e.g., gluon and
quark flavor singlet operators; these quantities suffer from
two issues: the increased statistical noise and the presence
of mixing with other operators. Vigorous efforts in address-
ing the former include optimized algorithms and increased
statistics. The latter issue has additional difficulties: the
operators which mix among themselves are typically
defined in perturbation theory and may involve gauge-
variant (GV) terms and ghost fields; thus, their nonpertur-
bative calculation, by compact lattice simulations, is not
feasible. There remains still a number of conceptual
questions to be resolved before a viable nonperturbative
evaluation of mixing effects can be implemented. Studying
the mixing pattern in higher orders of perturbation theory
can give important guidance for the corresponding elimi-
nation of operator mixing nonperturbatively.

In this work, we study the renormalization and mixing of
gluon and quark singlet gauge-invariant operators appear-
ing in the definition of the QCD energy-momentum tensor
(EMT). These operators are employed in the calculation of
the quark and gluon average momentum fractions in
hadrons. In terms of the gluon field Aj and quark field
vy, they are defined as [5]l

'We will refer to O 1w and Oy, as the “gluon” and “quark™
EMT operators, respectively.
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[F4, = 0,A% — 0,A% — gf**°AbAC is the field strength ten-
sor and f4b¢ are the SU(N,) structure constants; BM =
(1/ 2)(5” - f)ﬂ) is the symmetrized covariant derivative,
and 5” = éﬂ +igA,, 5” = 5” — igA, are the left and right
covariant derivatives, respectively. The index f in Eq. (2) is
summed over N, quark flavors, and d is the number of
Euclidean space-time dimensions. Greek indices (i, v, p, 0)
and Latin indices (a, b, c) refer to the Lorentz and SU(N,.)
groups, respectively. A summation over repeated indices is
implied.]

Given that we will consider mass-independent renorm-
alization schemes, a mass term has been omitted from the
definition of O,,,. These operators can mix with GV
operators, which vanish when inserted in matrix elements
between physical states. However, the mixing with GV
operators cannot be neglected: the standard perturbative
procedure for the correct extraction of the mixing coef-
ficients entails calculating bare Green’s functions (GFs) of
GV operators with elementary external fields. The goal of
our study is twofold as follows:

(1) To identify the set of twist-2 symmetric operators
which mix with the gluon and quark EMT opera-
tors, and to provide an appropriate regularization-
independent (RI')-like scheme, which correctly
addresses this mixing.

(2) To compute the conversion factors from the pro-
posed RI'-like schemes to the MS scheme.

We calculate a total of ten one-particle-irreducible (1PI)
amputated Green’s functions with operator insertions up to
two loops in dimensional regularization (DR). In order to
be able to extract the mixing coefficients in an unambigu-
ous way, we consider Green’s functions with different
incoming momenta.

The renormalization factors of gluon and quark EMT
operators can be extracted by studying either the diagonal
or the nondiagonal components of the operators. As the
EMT operators are traceless, it becomes difficult to disen-
tangle the signal of the diagonal part in lattice simulations
from the corresponding pure trace. The mixing pattern of
the nondiagonal components is simpler comparing to the
diagonal ones. For this reason, we choose to consider only
nondiagonal components.

We investigated possible ways of defining an appropriate
RI'-type scheme, which can be applied in the nonpertur-
bative studies on the lattice. Green’s functions of GV

operators are difficult to obtain nonperturbatively on
the lattice due to a number of obstacles: GV operators
[Becchi-Rouet-Stora-Tyutin (BRST) variations and oper-
ators which vanish by the equations of motion (EOM)] are
defined in a perturbative manner, including gauge-fixing
terms, which are not well defined in the Landau gauge (they
contain terms proportional to 1/a, where a is the gauge-
fixing parameter and a = 0 in the Landau gauge) and ghost
fields. Such terms cannot be studied by compact lattice
simulations. In our study, we discuss some possible
approaches to overcome this issue.

A novel aspect of this calculation is the extraction of the
mixing matrix to two-loop order. A number of previous
perturbative and nonperturbative studies of EMT have been
carried out in both continuum and lattice regularizations.
A one-loop calculation of the mixing matrix in the
continuum is presented in Ref. [6]. Earlier studies of flavor
singlet operator renormalization in the continuum can be
found in Refs. [7,8]. Corresponding one-loop calculations
on the lattice are considered in Refs. [9-11]. A conserved
EMT for lattice gauge theories is constructed in Refs. [5,12]
to one-loop level. Recent nonperturbative studies of the
renormalization of gluon and quark EMT operators have
been performed in lattice QCD simulations [2-4,13,14].
A promising investigation for determining a conserved
EMT nonperturbatively on the lattice in a regularization
group invariant (RGI) scheme is given in Refs. [15,16].

The outline of this paper is as follows: in Sec. II, we
provide a theoretical analysis of the renormalization of
gluon and quark EMT operators based on the Joglekar-Lee
theorems and Ward identities (WIs) of BRST-invariant
operators and of conserved quantities. Section III contains
the calculation setup including details on the calculated
Green’s functions, description of the proposed renormal-
ization schemes, and the conversion to the MS scheme. Our
main results are presented in Sec. IV for the MS-renor-
malized Green’s functions, the renormalization functions,
and the conversion factors between the RI' and the MS
schemes. In Sec. V, we discuss the application of the
proposed RI' schemes in the nonperturbative studies on the
lattice, while in Sec. VI we conclude.

II. THEORETICAL ANALYSIS

According to the Joglekar-Lee theorems [17], a gauge-
invariant operator O can mix with three classes of operators
which have the same transformations under global sym-
metries (e.g., Lorentz, or hypercubic on the lattice, global
SU(N,) transformations, etc.) and whose dimension is
lower or equal to that of O:

(1) Class G: Gauge-invariant operators

(2) Class A: BRST variations of some operator

(3) Class B: Operators which vanish by the EOM
Any other operators which respect the same global sym-
metries, but do not belong to the above classes, can at most
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have finite mixing with O [17]. In this respect and given
that gluon and quark EMT operators are two-index traceless
symmetric of dimension 4, the full set of twist-2 operators
which mix among themselves, compatibly with Euclidean
rotational symmetry, is the following [5]:

1
— =8, F4 F4 (3)
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where a summation over repeated indices is implied; ¢ and
¢“ are the ghost and antighost fields, respectively, and S is
the QCD action,

1 _
S = /ddx |:Z anan + l//prpl//

1 ~a a
+5-0,A80,48 = 20, (Dye) | (8)

01, and O,,, are class G operators, O3, and Oy, belong
to class A, and Os,, is a class B operator.

In the absence of quarks, operators O3, Oy4,,, Os,, are
the only operators that can mix with O;,, [5]. Upon
introducing quarks (and, therefore, also O,,,), one must
investigate whether any additional operators can mix. The
answer is negative as follows:

(i) The only other class G operator which is traceless

and symmetric,

Z{% 0. srwy) + 0,(Wprps)l
7
- 2_1615;4116/1(1/_/_}”7//11//]’) } ’ (9)

being odd under charge conjugation, is excluded. By
the same token, operator O,,, with the symmetrized
covariant derivatives replaced by only right or left
covariant derivatives is not considered since it is not
a pure eigenstate of charge conjugation.

(i) There are no operator candidates containing fer-
mions in class A, as any two-index operator with
fermion and antifermion fields will lead, under
BRST transformations, to an operator of dimension
at least 5.

(iii) The only potential class B operator stemming from
the fermion EOM is pure trace, and thus it is
excluded.

On the lattice, where Lorentz symmetry is replaced by
hypercubic symmetry, diagonal (u = v) and nondiagonal
(u #v) components of traceless symmetric operators
belong to different representations of the hypercubic group,
and thus, they renormalize differently. As we are interested
in constructing a renormalization scheme applicable to the
lattice, we must renormalize diagonal and nondiagonal
components separately. However, their corresponding
renormalized Green’s functions will be components of a
common multiplet in the continuum limit, as it happens in
continuum regularizations. In this study, we focus on the
renormalization of the nondiagonal components of the
EMT operators, because they give more accurate results
in lattice simulations when inserted in matrix elements
between physical states [3]. From now on, when we refer to
O (i=1,2,...,5), it is meant that y # v.

Operators O, Oz, ..., Os,, have some interesting
properties which give us an important input in the study
of their renormalization. Let us define the mixing matrix Z
as follows:

5
-0l (-12249. (0

where OX(OY) is the bare (renormalized) operator O, in
the X regularization (Y renormalization) scheme. Here,
to simplify the notation we omit the Lorentz indices yu, v.
The sum OPR + OPR + OPR in dimensional regularization
gives the nondiagonal Belinfante symmetrized EMT [18],
which is a conserved quantity.2 As a consequence, this
combination of operators has zero anomalous dimension
and thus, it is finite. This is also true for the class B operator
OPR. This means that, in the MS scheme, we have

O)S + O + O)S = OPR + OPR + OPR,  (11)

OMS = OPR. (12)

*Note that a possible variant of a symmetrized EMT includes
an admixture of the operator OSDR, which is also a conserved
quantity.
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Replacing Eq. (10) into Egs. (11), (12), the following
relations between the elements of the mixing matrix are
extracted [19]:

Z?.DR + Zﬁ,DR + ZT’DR =1, (13)
Z?,DR + Z?.DR + Z?,DR —1, (14)
ZER P I =0 (15)
ZYSPR 4+ ZySPR 4 7SR — (16)
ZYSPR 4 ZYSPR 4 ZPR g, (17)

MSDR _ -MSDR _ -MSDR __ —-MSDR __
251 = Zsz - Zs3 - Zs4 =0, (18)

ZMSPR — 1. (19)

Furthermore, according to the Joglekar-Lee theorems
[17], the mixing matrix (at least) in DR and the MS scheme
is block triangular, i.e., class A operators cannot mix with
class G operators, and class B operators cannot mix with
class G and class A operators; thus,

MS.DR MS.DR _ -MSDR _ —MSDR __

Z3 =Z3 =Zy =Zy =0, (20)
MS,DR MS,DR MS,DR MS,DR

Zs, =Zs, =Zs3 =Zsy =0. (21)

Additional relations between the elements of the mixing
matrix can be extracted by studying WIs which contain
operators O;. Let us consider the following WI:

SprsT(0,A75(x) OF (v)e"(2)) = 0. (22)

where dgrgt 1 the BRST operator. Because of the BRST
invariance of both action and class G, A, and B operators
(modulo equations of motion), Eq. (22) takes the following
form:

L 19,49(:)0% ()9,48(2)) = 0, (23)

S

L0A00K 0o =0, (24)

1
~(0,A5(x)(0F(y) = 05(¥))DsA5(2)) = 0. (25)
In momentum space, they read

ap/)q6<Az (p)O)l((_p - Q)Ag(Q)>amp =0,V P4,
(26)

ap/)qo'<A;§(p)O§(_p - Q)A(bf(Q)>amp =0,V p.q,a,
(27)

ap,4,(A5(P)(OF(=p = q) = OF(=p = 4))A%(q)) sy = O.
Vp.q.a (28)

By replacing the bare operators with the renormalized ones,
the above relations also hold (at least) in the MS scheme.
This is proved by the following arguments. Let us consider,
e.g., the Green’s function of operator O; in the Y renorm-
alization  scheme:  ap,q,(A5(P)O] (=P = @)AL(4)) yp-
Using Egs. (10), (26), (27), (28), the Green’s function
takes the following form:

Z15(ap,a0 (A (P) OX (=P = D)AL(G)) yp)
+ (21 + 21 (@ a,(AS(P) OF (=P = ©)AL(9)) 4p)-
(29)

Operators O and O, differ by total derivative terms;
this gives rise to different Lorentz structures in the
Green’s function from each operator, when p + g # 0.
Thus, Eq. (29) is finite, when the poles from the O3 and O,
terms vanish separately, i.e., each one of the two summands
in Eq. (29) must be free of poles. However, as Z];* and
720X + 27 have no O(g°) contributions, they must be
zero to all orders in perturbation theory, at least for ¥ = MS
and X = DR. By similar arguments, we extract the

following relations between the renormalization factors
MS,DR,
Z;;>

ZMSPR _ ZMSDR _ (30)
ZYSPR _ ZMSDR _ (31)

Z?.DR + Z?,DR _ Z?,DR + Zl;/I_SS.DR —0. (32)
ZYSPR 4 ZMSDR _ ZMSDR _ ZMSDR _ ) (33)

Combining Egs. (31), (33) with (18), (19), we take
ZWWPR =0, (34)

ZYSPR 4 ZVSPR — 1 (35)

As we see, operators O, O,, O4, and Os do not mix with
O3 in (m, DR). Also, operators O; and O, mix with the
combination O4—0s. However, in a different renormaliza-
tion scheme (e.g., RI’), these conclusions are not
mandatory.
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Further WIs are derived for 1PI Green’s functions with conserved quantities. For example, let us consider the following

relation:
P
E o 55 55 W= O 05 —8DA5%— 9, (Ajj ;fg) +%8y (Ag 5‘2)
) bt B

where diagonal components of OPR are also involved; O

= [y4.7,]/2. The quantity T# is conserved in the limit d — 4.

Inserting the above equation under the functional integral of the effective action I', a master equation is extracted which is

suitable for generating WIs,

izt _ o0 TS oT T ST\ 1 oT
™ Al — — Al ~0,| A4
%:8 5y O O~ A BAG 0 ( ” 5A“) * 2a”< 2 5A;;>
5T T5 1 oT r5
8 —+— -0, \po,,——— . 37
+3 (w 57 oy w) 1 (wa,w 57 sy %w) (37)
After some operations, two useful WIs are produced for zero momentum transfer which are as follows™:
< ( )[Oll)R;w( ) 012)R;w(0) 04DR;4D(O) O?R”D(O)]A(b;(—q»amp
1 1 0 0
= =3 D7) 40,0 @)+ 3,07 )+ 0,07 @)+ 5 (0 + 0 ) (D7 e (38)
DR DR - ! 9 9\ o1
< ( )[01 /,ux(o) 02 /,w(o) + 04 /w(o) 05 yy(o)]W(Q)>amp = E Qﬂ% + QDW S (q)’ (39)
v H

where (D™!(q))% and S~'(g) are the inverse gluon and
quark propagators, respectively. Note that in Egs. (38),
(39), indices yu and v are taken to be different. The above
relations can be useful for the construction of the non-

diagonal elements of EMT on the lattice.

III. CALCULATION SETUP

In this section, we briefly introduce the setup of our
calculation. We provide details on the calculated Green’s
functions, on the renormalization prescriptions that we use
in the presence of operator mixing, and on the conversion
factors.

A. Green’s functions

In order to study the renormalization of the five operators
defined in Egs. (3)—(7), we must consider a variety of GFs
with different external elementary fields and different
incoming momenta. We consider a total of five GFs with

3For more details about the derivation of these WIs, we refer
o [12].

[

external gluon fields for two different choices of incoming
momenta and five GFs with external fermion fields for one
choice of incoming momenta. Based on the different
Lorentz and Dirac structures of the pole terms appearing
in each GF, this is the minimum number of GFs, which
enable us to extract 25 renormalization conditions for the
full determination of the mixing matrix. In particular, the
GFs that we consider are as follows™:

(1) Amputated GFs with two external gluon fields and

zero-momentum operator insertion,

Gyi(q.—q) = (A3(q) 04, (0)AZ(—q

(i=1,...5).

)>amp ’
(40)

(2) Amputated GFs with two external gluon fields and
nonzero-momentum operator insertion. For simplic-
ity, we may set to zero the momentum of one of the
two external gluons,

*For simplicity of notation, we drop Lorentz and color indices
from the GFs; we will reinsert them where needed in the sequel.

014515-5
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Ggi(qv 0) = <A/‘; (Q)Oimx(_q)Atbr(o»amp’
(i=1,...5). (41)

These GFs are needed to disentangle operator O;
from O, as they only differ by a total derivative.

(3) Amputated GFs with a pair of external quark and
antiquark fields and zero-momentum operator in-
sertion,

Gi(q.9) = W (9) 0y (0057 (4)) aanp-
(i=1.....5). (42)

where ag, by are color indices in the fundamental
representation. These GFs are needed to disentangle
the fermion operator O, from the remaining gluon
operators.
Clearly, the above choices of GFs are not unique; e.g., one
can choose to consider GFs with external ghost fields.
However, such a choice is not optimal for studying these
operators in compact lattice simulations.

As we are interested in calculating GFs with external
gluon and quark fields, we also need to compute the
renormalization functions of the external fields. To this
end, the gluon and quark propagators must also be
calculated up to two loops,

Gy(q) = (A5(9)A%(=q)), (43)

G,(q) = (w (q)w" (q)). (44)

Explicit results for these GFs can be found in the literature
up to four loops [22]. Also, five-loop results for the
renormalization functions of the gluon and quark fields
are presented in Ref. [23]. For completeness, we calculate
|

Exiiile!

1

FIG. 1. One-loop Feynman diagram contributing to the quark
propagator G,(q). The straight (wavy) lines represent fermions
(gluons).

these GFs up to two loops and we make the crosscheck. A
difference between these studies and our work is that we
present the conversion factors of the gluon and quark fields
between RI' and MS schemes using independent momen-
tum scales.

There are 1 one-loop and 7 two-loop Feynman diagrams
contributing to G,(q), shown in Figs. 1, 2, and 4 one-loop
and 23 two-loop Feynman diagrams contributing to G,(g),
shown in Figs. 3 and 4. The diagrams contributing to
G,i(q. q) can be produced by inserting the operator O; in
the vertices or in the propagators of the diagrams of Figs. 1
and 2. Similarly, the diagrams of G (g, —¢) and G(q.0)
can be produced from the diagrams of Figs. 3 and 4 using
the same procedure. There is a total of 132, 382, 421
diagrams contributing to G,;(q. q), G,i(q.—q), G,(q.0),
respectively. Note that a number of duplicate diagrams may
arise and must not be double-counted. As is standard
practice, we apply the integration by parts method to
reduce two-loop integrals into nested one-loop master
integrals, which are evaluated by a well-known one-loop
formula (see Ref. [24]). The most difficult part of this
calculation regards the nonscalar integrands stemming from
the “diamond”-type diagrams (2-3 of Fig. 2 and 5-11 of
Fig. 4); we apply an extension of the scalar recursion
formula of Ref. [24], including tensor structures,

n
(d+n—a —a—2a3)l,(ar, 0, a3, 04, a5) — an—l.i(ahaz,a&amas)

i=1

+o[L(a; + Loy, a3,a5 — Las) = L,(a; + 1,00, a5 — 1, a4, 5)]

+ o[l (.00 + 1 az,ap,05 = 1) = L(a1, 00 + 1, a3 = 1, a4, 05)] = 0,

(se€Zta,€Ztas€Z,nezZt),

where

(45)

o d’p d'k Jk)py,---py,
In(al,az,a3,a4,a5) = / (Zﬂ)d/ (27[)(1 p2a] (P _ q)Zaz(p _ k>2a3k2a4(k _ q)2a5 ’ (46)
f(k>py] <Py, " (k[li/pﬂ,-) (47)

, [ d'p [ d%
n-vi(an, @, a3, a4, 05) = 2m)? p? (p — )% (p — k)25 k2% (k — q)2s

(27)

5See, however, Refs. [20,21] and references therein for an attempt to address such GFs in lattice simulations.
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FIG.2. Two-loop Feynman diagrams contributing to the quark propagator G,(g). The straight (wavy, dashed) lines represent fermions
(gluons, ghosts).

FIG.3. One-loop Feynman diagrams contributing to the gluon propagator G,(g). The straight (wavy, dashed) lines represent fermions
(gluons, ghosts).

f (k) is a function of k, and ¢ is an external momentum d-vector. For n = 0, Eq. (45) reduces to the following scalar formula:

(d_al — ) = 2(13)10((11»0527053,0545055)
+ay[lo(ay + 1,0, 05,05 = 1, as) = Ip(ay + 1, ap. a5 — 1, a4, 05)]

+ay[lo(a, ar + 1oz ag, a5 — 1) = Iy(ay, ap + 1,05 = 1, a4, a5)] = 0,

(a3 (S Z*,a4 (S Z+,a5 (S Z+), (48)
where
_ [ adp d’k f(k)
Io(al,az,a3,a4,a5) = / (Zﬂ)d/ (Zﬂ_)dPZal (p _ q)2a2<p _ k)2a3k2a4(k _ q)2a5 : (49)

Another possibility is to express all integrals in terms of
scalar functions of the external momentum by multiplying
each integral with the appropriate projectors.

B. Renormalization schemes and conversion factors

In our study, we adopt two different renormalization
schemes: the MS scheme, which is typically used in
phenomenology for the analysis of experimental data,
and a RI' scheme, which is more immediate for a lattice
regularized theory. The latter scheme is appropriate for
renormalizing nonperturbative data taken by lattice simu-
lations. Given that MS is defined in a perturbative manner,
the best theoretical approach for taking nonperturbative
results in MS is to make use of an intermediate scheme,
which is applicable in both perturbative and nonperturba-
tive regularizations, and to match the nonperturbative

results from this scheme to MS; RI' is an example of such
an intermediate scheme. RI'-renormalized quantities, calcu-
lated on the lattice nonperturbatively, can be converted to the
MS counterparts through perturbative “conversion” factors
between RI' and MS schemes; the conversion factors are
regularization independent and thus, calculable in DR.

Below, we provide our conventions for the definition of
the renormalization functions, which relate bare to renor-
malized fields and parameters of the theory,

AY = (Z) %) 2AX, (50)
vy =(2,")"yf, (51)
9" =uPI2(zg5N) N gx, (52)
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\/\/\/\A[Cg:)]uvw S A5
Ly P
5 6 7 8

23 24

27

25 26

FIG. 4. Two-loop Feynman diagrams contributing to the gluon propagator G,(g). The straight (wavy, dashed) lines represent fermions

(gluons, ghosts).

af = Z};’X(ZX'X)_I(JX, (53)

where A, is the gluon field, y/ is the quark field of flavor f,
g is the coupling constant, « is the gauge-fixing parameter
(o = 0 in the Landau gauge), and p is a momentum scale.
The index X denotes bare quantities in the X regularization,
and the index Y denotes renormalized quantities in the Y
renormalization scheme. The MS renormalization scale /i is
defined in terms of y,

_ 4\ /2
ﬂ=ﬂ(ﬁ> : (54)

where y is Euler’s gamma. The renormalization functions
for the operators under study have been already defined in

Eq. (10) in a 5 x 5 matrix form. The renormalized Green’s
functions of operators and fields, which are defined in the
previous subsection, are given by

GY = (z}*)'GY, (55)

Gy = (z,%)'G}, (56)
g9i»

5
Gl =27 716X (i=1,...5), (57)
j=1

5
Ggi:zg-XZij’XGgi, (i=1,....5). (58)
j=1
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In the MS scheme, the renormalization condition is
defined (in DR) by imposing that the renormalized Green’s
functions are finite, when the renormalization functions
include only negative powers of e = (4 —d)/2. In a RI’-
like scheme, there is, a priori, wide flexibility in defining
normalization conditions in Green’s functions, especially
when operator mixing is present. The possible variants
differ only by finite terms. Therefore, it is natural to adopt a
minimal prescription, which involves the smallest possible
set of operators which can mix; this is usually the mixing
set found in MS. Of course, the conditions must be
regularization independent and thus, they must also include
any possible additional finite or power-divergent mixing,
which is present, e.g., in the lattice regularization.
Examples of operators with additional mixing on the lattice
are the scalar glueball operator, the scalar quark-antiquark
operator, as well as the nonlocal quark bilinears [25-27]
studied in a chiral-symmetry breaking action. In the present
case, such admixtures on the lattice are excluded by
hypercubic invariance.

A choice of definition for a RT'-like scheme, compatibly
with MS, is to consider a 5x 5 mixing matrix. The
elements of the mixing matrix are obtained by imposing
5 x5 =25 conditions on Green’s functions. This can be
done by isolating different Lorentz and Dirac structures of
each Green’s function. Given that the operators under study
are two-index (u,v) symmetric, the possible structures for
the Green’s functions under study with external gluon fields

|

A,(q), A,(=q) [or A,(q).A,(0), cf. Egs. (40), (41)] are
(for p # v),

0

o0y 4 (80u0o + 6p00)s (4,000, + 4p0u55),

(59)

(96940 + 400p)>  4u909,95/9°-  (60)
Similarly, the possible structures for the fermionic Green’s
functions under study are (for y # v) as follows:

rude +10a0). 49,9,/ 9 (61)
We isolate some of these structures, including those with
poles, by selecting specific values for the external momen-
tum and/or the Lorentz components of the external fields;
for these specific values, we impose that

Tt[G,] = Tr[G%*], (62)

and similarly
Tr[G,; - 4 = Tr[Gg - 4] (63)

The proposed renormalization conditions for this variant of
RY, dubbed RI, are [cf. Egs. (40)—(42)]

R _ TrlGg(g.~9)] _ (24,4, i=1 (64)
N_1 |p=o. N -1 |p=o, 0, i=2,3,4,5,
p# (u.v), p# (u.v),
9, =0, 4, =0,
4: =4, VT #p 4e =G VTFp
RY, a2 —
TGy (4. =) _ TG4, =) I8 T e
N—1 |P=# - NEI-1 PR 2 i—s
o=V, o=V, q-, 1=,
4, =4, =0, 4, =4, =0,
quqT’VT¢(p7d) qT:éT’ VT#(p’G)
RI _qulm i=1
Tr(G,;' (9. ~q)] _ Tr[Gg*(q.—q)] _Jo, , i=2 (66)
N—1 |p#* W), N—1 |p# ), ) 9,/ i=34
c=u, c=vu, 2,d,(1/a®" = 1), i=35,
4 = 0, 4ds = 0,
qTZQT’ VT¢6 QTZQT’ VT?EO-
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Tr(G,' (9. 0) Tr[G™ (¢, 0)] 0. i=1.23
N1 =g ={ 4,4,/a" i=4 (67)
NZ—1 |P# W) N—1 |p# W), Al .
c=1v, c=v, qﬂql,(l/a —]), i=235,
4 = 07 4ds = 0,
C]T:q.[,VTséG QTZQ‘L“VT?&G
1 RY 0 i=1,3,4,5
v G,i'(q.q) - 4] = 1[Gy (q. 9) - 4] - { G, i=2 (68)
4N, q . =g.. vVt 4N a 4. =g, V1 iG,q,, =2,

where the trace in Eqs. (64)—(67) is taken over color space
(in the adjoint representation), and the trace in Eq. (68) is
taken over Dirac and color spaces (in the fundamental
representation); the four-vector g is the RI' renormalization
scale.

The above prescription is not a minimal one. From our
two-loop results, one can observe that the mixing pattern
in the MS scheme reduces to a set of three operators:
|

RI
Tr[G,;*(q, —q)]‘
p=o,

N2 -1 N2 -1
p# (u.v),
9, =0,
4: =G VT #p
Rl/z tree
Tr[Ggi (q’ _q)] . Tr[Ggi (q’
N2 -1 P = H - N2-1
c=v,
9, =4, =0,

4: =4z VT # (p.0)

Tr(Gh (9. 9) - ]

4N, T 4N,

‘qr_‘_]f?vr

This scheme has the advantage of not involving GFs with
nonzero momentum operator insertions.

A third choice for defining a RI'-like scheme is to impose
that the EMT, which is constructed by Oy, O,, Oy, and/or
Os, is still a conserved quantity after its renormalization in
RI’ scheme. In DR, the conservation gives OR' 4 OX!' +
O = OPR + OPR + OFR and Egs. (13)~(17) will also
hold to this version of RI’. As we insert five new conditions,
we must exclude five conditions from the previous defi-
nition of RI scheme. For example, we exclude the operator
O, from each condition [Egs. (64)—(68)]. Similarly, we can
define the “conserved” version of the RI, scheme. On the

_ TrlGg(g.~4)]

THG™ (g, q) - m\

l
{01,0,,05 = 04 — O5}. This was expected from the
theoretical analysis presented in Sec. II. Thus, a second
choice of definition for a RT-like scheme is to consider a
3 x 3 mixing matrix. Now, we only need nine conditions to
identify the renormalization factors. The first two and
the last condition of the RI| scheme (Egs. (64), (65),
(68) taken for the three operators {O}, O,, O¢} can be also
the conditions for the RI, scheme,

24,5, i=1
‘p—o', _{0, i =26, (69)
p# (u.v),
g, =0,
4e =G VT #p
_2 .
_ q-, i=1
a —Jo. =2 (70)
P =, 2 i
c=1r, —2q°, i
4, =4, =0,
QTZQT’VT¢(p’6)
:{‘.)_’_ e (71)
g =g Vo U 152

lattice, the construction of a conserved EMT is more
complex due to the presence of discretization effects,
which violate translational invariance. A discussion about
the possible ways of applying the conservation properties
of EMT on the lattice is given in Sec. V.

The above variants of RI' involve operator Green’s
functions of exceptional momentum configurations in the
sense of having one out of three external momenta set to
zero and, thus, it is important to make sure that no infrared
(IR) divergences arise as a consequence; at the perturbative
level, we have verified in all our two-loop calculations that
no such divergence is present in any diagram. Nevertheless,
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such Green’s functions have IR issues on the lattice in the
chiral (massless) limit. Thus, it is a challenge to choose
a range of low momenta in the nonperturbative studies,
which leads to reliable results in that limit. IR issues
attached to the chiral limit are under better control when
studying Green’s functions with nonexceptional momen-
tum configurations (see, e.g., [28]). A potential variant of
RI', including nonexceptional momenta, is the RI/SMOM
scheme (regularization-independent symmetric momen-
tum-subtraction scheme; for an application, see, e.g.,
[29]). The computation of conversion factors between this
scheme and MS proceeds in an analogous fashion to what is
presented in Sec. IV C, but it is beyond the scope of
this work.

To complete the renormalization prescription, we also
provide the conditions for the RI' renormalization factors of
gluon and fermion fields,

ﬁﬂ SOTH(GR (9)),, - (P850 = ap 00l = 1.
(72)
G5 (q) - (i)l o=z = 1. (73)

4N,

where the trace in Eq. (72) is taken over color space (in the
adjoint representation), and the trace in Eq. (73) is
taken over Dirac and color spaces (in the fundamental
representation).

Finally, the passage to the MS scheme can be achieved
by using the conversion factors between the different
versions of RI' and the MS scheme, defined as

ZZMS LR[(ZRI’ LR) 1]kj

B0 i CLLUR RS

!
CMS JRI

CIIL\‘K,RI’ = ZW,LR /ZRI’,LR _ Z/l}ﬁ,DR / Z[I:I’,DR’ (75)

MSRI' _ MS,LR ;RI' LR MS.DR ;RI', DR
Cy =Zy /Zl// =27y /Zw (76)

for the set of mixing operators, the gluon and the quark
field, respectively. Note that in Eq. (74), i, j, k = 1, 2, 3, 4,
5 forRly, and i, j, k = 1, 2, 6 for Rl,; also, the superscript
LR means Lattice regularization.

IV. RESULTS

In this section, we present our one- and two-loop results
for the MS-renormalized Green’s functions of the operators
under study, the renormalization factors, and the conversion
factors between the different RI' versions and the MS
scheme, which are all described in the previous section.
To facilitate the use of all these results, we provide them

also as Supplemental Material [30], in the form of two
equivalent files: a Mathematica input file: “Greens_
Functions_and_Conversion_Factors.m” and a text version
of the same file: “Greens_Functions_and_Conversion_
Factors.txt”.

A. MS-renormalized Green’s functions

Here, we provide our resulting expressions for the
MS-renormalized Green’s functions of operators O;,
(i=1,2,...,5) in terms of the following combinations
of Lorentz and Dirac structures’:

G, = Gtree( q, (’I> = 5ab<2('IuLIb5pa =+ qz(apﬂ(sm/ + 5/21/50/4)
- (Qpréou + ql)quéa/l) - (QUQﬂ(Spu + qo‘luépﬂ))’
(77)
G, =Gg%(q.—q) = Gi*(q. —q)
= 5 —((4p4uou + 4p49,521)
MS
+ (469,000 + 459.5p4))- (78)
G; = Gtree( q, _q) = & <2q (6/)#5 + 6/)1/5 )
1
+ P 1 ((q/)cbzéap + qp%/&aﬂ)
OIS
+ (95946, + qaqyépﬂ))) (79)
Gs=6q,4,4,4,/9*. (80)

1
Gs = Gtree( ’0) — 5abat<qpqﬂ($m/ + q/,qutsg,,), (81)

MS

Ge = Gtgrsee(q’ 0) = & <q2 (8puon + 6 00y)

1
+ o 1 (q/)qll50'l/ + q/)qlléﬂﬂ) ’ (82)
NS
— sab 1
G7 = 5 at (qo-qﬂépy + qaqvﬁpﬂ)’ (83)
MS
Gg = tree(‘] q) = 89" _(7qu +704u): (84)
Gy = 5afbfi@. (85)

In what follows, Cp = (N?-1)/(2N.) is the Casimir
operator in the fundamental representation and {(n) is
the Riemann zeta function.

®For notation, see Sec. III.
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The expressions for the Green’s functions with two external gluon fields and zero-momentum operator insertion

(Gg/,!_s(q, —q)) are as follows:

_ g 41 1 13 1 7
Glfls(q,—q)ZGl{lerMsN[ 18—2aMs‘§“fds+<g—§%s) 1“(;)}

Giis [..[ 46987 2347 L1703, 5
A\ - - g a— -
(1672)2 |\ 1440 ~ 1440 MS T 720 “MS g

119 149 5 3 (e 13 _17 Lo Vi (L
Tt taows ) ) T s s )0\
99 3 1, N/ 311 2 (¢*\ 4 (¢
o S s (L) e (L
+<10 5%ws 5aMS>C(3)>+NC< 324+9n<ﬁ2 9"\ 2
735, 53 1, e\, 7 (4 6
+NfNC<§—§am+<—l—8+§am>ln</? +ei () - 60 +0(gM_S)

2

gNTS 5 1 1 ) 1 q2
+G2{16H2Nv<6‘a“m‘5“m‘51“ pa
gr 29 1733 859 3 1
MS 2 p, —— + - +—a
(16z2)2 | °\30 720 "MS " 1440 % 5 % 4 %

+<—§—ﬂa—+1 >ln<q2>+< ! la )ln2<q—2>

18 24°MS "2 s 2 24 4 MS 2

+ <;—g+%am+i—ga§78—%aiﬂ—s>§(3)) +%<_§_§QMS+ ( g gam) m(g))
+NfNC<—%+%am+<l’#l+§am> ln<g—§>+(—2—2aMs ﬂ gm }
+G3{%N€( o+ 3n(() ) + oty ¥ (55 e s e %

23 5 5 7 7 1 e
+ <E+gam—§a§/l—s> 1I‘I<P_7> + <ﬂ—zam>ln2<i7

157 11 (¢ .
+ NN, <108—9ln (/42> + 2(:(3))} + (’)(gm>
P 4 ng 611, 1183 74
+G4{16 N( §+20’MS) 120 T 360 V5 T 5% s
75 e 99 19 1
+ <2+20‘Ms —2a >ln<ﬂ2) + < 10~ 10%%s +5aMS>C(3)>

G o (T () )] ot

+
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e f8n(i-(§) B () () )
+ NN, G;g ii“m‘ﬁaia—ﬁ( 191+190 MS+; >ln<Z§)
+ <—§+%am)ln2(g—§> +25—SC(3)>} +O( )} —&-Gz{lgg[ssz( ;—%am)
o ()

457 133 5, [
+Nch — — + -2

520 60 Vs T 1g%s T g Avs

(b ) o(Z) ) (3 S ol
- i (5-30(3)

(bt (B o(§) () -] -1
o (5-0(2)

419 4 2 2 q° 48

+ G3

tiee
{

G¥S(g,—q) = GMS(q.—q)

i 1 1 1 2
_ MS q
G2{1 sy, <4+aMS+4 +21n<ﬂ ))

ris [ (569 5713 269 , 77 5 1,

T Hen)? 16

120 T 720 45 T 1440 % T 1205 T 164

25 5 1, 1, 7 7 1 (4
+<—ﬁ—gam—g“—Ms‘z“M—s>ln<,? g g0 I\ 72
47 123 17 (03
+ (=35 20 % ~39%s * 25°%s )0
17 49 2, (2 1 1, e\ _1 (4
*NfN“<‘@‘E“m‘§“M—s+(5‘6‘%‘8%)1“(;7 “6" @

2
2 2 g 7 I
+ <—§—§aM—S>C( )>:| +O< )}+G {lgA;ZNC(Z—i_aM_S—’_ZaIz\/I_S)
4
g 866 2071 779 , 5 4 1,
+ [N (45 720 “¥S T 360 %M 16 %M g Vs

707 1, 3, 7 69 7 1
+<‘Z+WM—s—g“M—s‘§“M—s> “’(;7 +~70 5% F5%5 )<O)

599 1 5 2 L, s 6
+Nch< o0 3w + 5ok + <—§aM—S—§aM_S> ln(/?) +§§(3)>] +0(dfs)
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2
gM_S 1 1 1 q2
# o (=g e = (5

9 [l 569 BB 109, L
“\7 120 1440°MS " 240 MS T 16" MS

+ <3—;—%am +§a1%/1_s> ln<g—j> + (—%+£am>ln2<g—j)

<j—g+§am—%aid_s>é’(3)> + NN, <ég ;aMS + < ;—l—éaMS) ln(g—i>
+éln2 (Z—i) +§§(3)>} + (’)(gf\/l—s)}
+G4{iM_;NC(—3—am)+%§)2[N%<—%—% MS+16309 ﬁsﬂl; e
+ <3+%am+a§4—s> 1n<Z—§ + <%+1—(9)am—%aiﬁ>§(3)>

52 8 2 2 8
(3 () 0] ).

N—"

Gy (g.—q) = G3{1 + O(¢%)}
Pors 97 1 1 13 1 ¢
+<G2—G3>{% |:N (36+2aMs+Za12\E+<_€+§am>ln</?))
10 2. (¢ i 2381 463 95 1 1
Y MS__ | A2 I 2 43 14
+Nf( 9 73 n(pﬂ)ﬂ +(16n2)2{ < 96 288V T 142 s T 16 T 16
137 13 1, 3, e 13 17 1,0\, (P
+< T 36 Ms""ﬁam_gam)ln()? + §+ﬂam—zam In /?
(34 2000003) ) + 2 (3 (D) —ac3)
_3 4 g N (2 _ _
MS N 12 2
287 5 5 31 2 1, e
+NfNC< o4 +9aMS+9 MS+<Z+§0{MS_§QMS) ln(/?

()] i}

The expressions for the Green’s functions with two external gluon fields and nonzero-momentum operator insertion

(Gg/}_s(q, 0)) are as follows:

Tas 1 i (137 161 1,
— — e
1672 <2 " (1622)% | ©\720 ' 480 ™5 ~ g “wis

(1S ) (%) + (B s )o)) v (e 2 (£))] + 0 i)

2 4
P (1 1 [ e 1037 11 1
Gs—G MS N (z==In( %5 MS_ |N? — O — = A
+(Gs 6){16712 C(z 2n(ﬁ2>>+(16ﬂ2)2 \ 220 " 160" T g
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+<_f_3_%aM5+éaMs>ln</§_§>+( 274+iaMs>ln2<Z—j>

(B ) ()] -]

o]t g + S (o =) ()

(s + oy )0)) + Ot} + G B (8 Mt (L) m(£)

+ (210 - ;OaM—s> ¢(3)) + O(g;—g}, (90)

4

GMS(¢4,0) =G sy (AL a —1§(3) +O(&)

2 =T (Ten2y? 90 T3 \2) TS s
4

g 683 7 (¢
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Gie 3 5
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15 | 7
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- 13 1 7
MS 2 S 2
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The expressions for the Green’s functions with a pair of external quark and antiquark fields and zero-momentum operator

381463 95 , 1, 1,

5
9
)] + O(g&—s)}. (94)

insertion (Gﬁ(q, q)) are as follows:
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GMS(q.9) =0.

(98)

B. Renormalization factors in the MS scheme

Here, we provide our results for the renormalization factors of operators O;, (i = 1,2, ...,

series in e = (4 —d)/2,

2
9Nis

5) in (DR, MS), as a Laurent

4
gMS

MS.DR _ MS.DR MS.DR gMS MS.DR 6
Zij =0y + 212 LJ 167r2.9+[z2"2 ]UW+[ 2.1 ]:/W+O(Qﬁs)’ (99)
where
ap bl 0 ¢, —C
—a; -b; O 0 0
lev,lfiDR = 0 0 —c | (100)
0 0 —Cq Cq
0 0 0 0
a, b2 0 Cr —C as b3 0 c3 —C3
—ay —b2 0 d2 —d2 —das —b3 0 d3 —d3
lev,lﬁzDR 0 0 e —e |, lev,lﬁiDR = 0 00 e —es |, (101)
O 0 62 —62 0 O 0 €3 —€3
0 0 O 0 0 0 0 O 0
and
2N, 8C N,
f F c
_='f - _2=F =__¢< 102
a 3 . b] 3 ) Cq 2 ) ( 0 )
Ny (4 4Cp [ 4
az__?<N_c+7Nc_4Nf>’ bz—T(N—C+7Nc_4Nf>a (103)
N:N. N,
e =25 (1IN =8N)).  dy="1=5 ey = =22 (19N, —4N)), (104)
Ny (37 4CF 7
=—-——|—=72N, |, by = — 440N, — 13N, |, 105
BTy (NC ) 3T 7 (NC - ! ) (105)
N, NN,
3 = = 14q 150 Fayg)Ne = 56N, dy = -2 f9 (106)
N,

48

As was expected, the mixing matrix is block triangular.
Also, there is no mixing between O; (i # 3) and Oxs;
the third column has zero elements except from the
diagonal element (i =3) which equals one. Further-
more, operators O, O,, O3 mix with the linear com-
bination O4—05 and not with O, and Os separately. This
becomes apparent when one replaces, e.g., O4 with
04—05 in constructing the mixing matrix [see Eq. (10)].

Moreover, Eqgs. (13)—(21) are automatically fulfilled. In
conclusion, our results agree with the theoretical analy-
sis given in Sec. IL

C. Conversion factors
Here, we present our results for the conversion factors

C%[S’RY between the different versions of RI'’ and MS
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scheme. For the sake of brevity, we provide only our
resulting expressions for the RI, scheme and its “con-
served” version, RI’ZCO“S, while the conversion factors for
RI} can be extracted from Egs. (86)—(98). Our results
depend on two renormalization scales: the RI' scale g and
the MS scale i1; we have chosen to keep these two scales

14483
2160
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(167°) { <
n 173 7 7 11 n 1
72 " 4¢ 24 MS 4

69 7
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NN (= + 2 ae
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100 40 [\ 4
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1019 5 181
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(= () S (2) 2

914 56<
— + =1

()5 ()] ke

gMS

distinct, for wider applicability. Note that, whereas the

matrix ZMSPR is necessarily block triangular, no such
condition applies to the matrix CMSRI',

. . MS.RI,

The expressions for the conversion factors Cll\; ?

(i,j =1,2,6) between RI, and MS are as follows:

) (-5 50 (5))]
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360 MS

i) ()
) <N (0 T(L) - dwe (L) )
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QI
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720 240 W T 360 % T 165 169V
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MS R,
N2
Ces =1+

162 4 4

9 11 1 (3
e )

RV . LU TR P CU S S U S
(16222 <[\ 720 T 480"Ws T15%s T \24 T 24 M Tg%ws ) M\ 2
19 g’ 47 3 1
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24 ( )*( 20 5“MS+20“MS>§( >>
101 1 1 g’ L, g° 2 p
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The expression for the conversion factors C MS RIS (i,j =1,2,6) between RIf*™ and MS is as follows:
CZ-IS'RIIZM Ci\;s RRI, L 5c,,
where
4 _
Y 65 3 I, 13 1 g’
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For completeness, we also provide the conversion factors of the gluon and fermion fields, in terms of arbitrary RI' and MS
scales. These factors are in agreement with the well-known (in the literature) results for the case g = i (see, e.g., [31]).

NS R IS 97 1 1
MS RI MS — _ 2
C 1+162{N< 36 2O T 1%

2381 463 95

s 2
N -y
+(167r2)2{ < 96 288V

_|_

n 137 13 11 3 In q
— = Oy — o
12 36 M5 24 MS & MS

+(3- 2am)§(3)> LN <—55+1 (

13 1 7? 10 2. (3
o= ) n((5)) (s =5

1 1

o 2 _ 4
144 s~ *

2 13 17 1 g

)+ (5 =ik ()
;) +ac)

,u

16 MS

N.\ 12
287 5 5, 31 2 1, g
+NfNC ﬁ—§am—§aM—s —F—gam—l—3aMs In =
11 g*
2 5 4
’ S q IS 41 13 9
MS RI S S
P = 14885 (s s (7)) + restyer Ve (g + 3 s + i
25 7 3 q 3 1 g*
+ <_I_§am_1aia_s> ln</? + (Zam—i—zaf\/l—s)lnz(/?
7 7>
+ (—3 - 3aM_S>Z-:(3) + Nf —1+ In /?
+C —§+ > 2 ) 7 +l 2_In? 7 +(9<6 ) (126)
FUs 7 %s) ™M) 2% @2 Ins )

V. NONPERTURBATIVE RENORMALIZATION

The construction of a complete nonperturbative renorm-
alization program, which can eliminate operator-mixing
effects, is a difficult task; some well-known complications
involve power-divergent mixing of lower-dimensional
operators, as well as additional, finite mixing contributions
associated with the reduction of rotational to hypercubic
invariance.

Additional complications arise when gauge-variant oper-
ators (BRST variations and EOM operators) are included in
the set of operators which mix. Such operators, typically,
contain ghost fields and/or gauge-fixing terms, which are
defined in perturbation theory, and their study is not
obvious in a nonperturbative context.

There are various approaches, used in the literature, for
the study of operator mixing on the lattice. The first one is
the perturbative approach, where the renormalization fac-
tors are extracted by lattice perturbation theory (see, e.g.,
[9,10] for previous application to the EMT operators and
[32] for a general setup). In this approach, an intermediate
scheme between lattice and MS is not needed; the deriva-
tion of the renormalization factors can be obtained directly

in the MS scheme by comparing the lattice bare Green’s

functions with the corresponding MS-renormalized Green’s
functions calculated in DR. This approach can give reliable
results only when higher-loop terms are negligible. The
technical complexity of this approach effectively limits the
applicability to one-loop order in most cases. A second
approach regards the nonperturbative calculation of the
mixing matrix by neglecting gauge-variant operators.
These operators do not contribute to the calculation of
physical quantities. However, they contribute to the correct
extraction of operator renormalization factors from Green’s
functions with elementary external fields. This approach
can give reliable results only when mixing effects by
gauge-variant operators are small enough. A third approach
is the combination of approaches 1 and 2 (e.g., [3,33]),
where some elements of the mixing matrix are calculated
nonperturbatively (e.g., the diagonal elements, or those
related to lower-dimensional operators) while the remain-
ing elements are calculated in perturbation theory. The
mixing with gauge-variant operators is also omitted.

In order to address the effects of gauge-variant operators,
we propose an extension of the above approaches, includ-
ing a semi-nonperturbative determination of the gauge-
variant operators’ contributions to the renormalization
factors: The gluonic and fermionic parts of the gauge-
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variant operators can be calculated by lattice simulations,
while the ghost part and/or the gauge-fixing terms can be
obtained by lattice perturbation theory.

Our proposed method can be applied in the present study
of EMT operators and the nonperturbative calculation of
their mixing matrix. The RI| scheme, defined in Egs. (64)—
(68), is not the optimal one, as it contains three operators
with ghost and gauge-fixing terms and it entails the
nonperturbative calculation of GFs with nonzero momen-
tum transfer. Such calculation requires the use of two

|

distinct momentum scales for the two external fields and
the extrapolation of one momentum to zero, before calcu-
lating any renormalization factor. On the contrary, the RI,
scheme, defined in Eqs. (69)—(71), is suitable for applying
the proposed method. It entails calculating GFs of only
three operators at zero momentum transfer. The first two
operators O, O, are gauge invariant and, thus, their GFs
are calculable by lattice simulations. The remaining oper-
ator Oy does not involve any gauge-fixing term; however, a
ghost term is present. Writing, explicitly, Og,

2
Oéﬂu = O4m/ - OSW/ = l:AZ(D/)F/w) +Aa(D F ) —6uA; (D F{f/)) :|

Pt pu d e

2 _
|:Aal//nyal// + Avl//yﬂTaW - E%uAglltha‘l/}

2
+ {@,E“@ca +0,840,c" - déﬂ,ﬁpé“(?pc“} ,

(where T are the generators of the su(N,.) algebra), the
first two terms can be investigated nonperturbatively by
lattice simulations, while for the last term we content
ourselves with its perturbative study.

We note that the conditions of the RI), scheme make use
of amputated GFs. This may cause worry for the calculation
of the gluonic GFs, where the inverse gluon propagator is
needed in the process of the amputation; the lattice
simulations commonly employ the Landau gauge, in which
the gluon propagator is not invertible. However, setting to
zero those components of the renormalization scale, which
are parallel to the directions of the two external gluons, the
amputation can be performed without inverting the whole
gluon propagator.

To explain in more detail the previous argument about
the amputation of gluonic GFs in the Landau gauge, we
consider the following amputated Green’s function of the
generic operator O,,,:

(A,(9)0,,A (—q)>dmp
—Z (D7) (A(@)0,uA (=) (D). (128)
where
Dyo = (A,()As(~q)) = % (am _ ng) I (q?)
+a(q;2q)(;HL(‘]2) (129)

is the gluon propagator in a general gauge [I1(q?), 1, (¢?)
are scalar functions of ¢?]. In the Landau gauge (a = 0), the

(127)

|

propagator is not invertible; however, if two components of
the momentum q are zero, e.g., ¢; = q, = 0, then the first
and second rows and columns of the propagator matrix take
the values: DIK =Dy = (1/4*)6a117(¢*), Dy = Dyo =
(1/¢*)8117(g?), respectively (x = 1, 2, 3, 4). Of course,
this is not true for the remaining rows and columns. Thus,
the propagator takes a block-diagonal form

7 (q*)/¢? 0 0 0
0 7(¢*)/q*> 0O 0 (130)
0 0 D33 D3y
0 0 Dy3 Dy

The propagator is still not invertible. However, the upper
block is invertible and can be inverted separately from the
lower block. The latter can be inverted only in a general
gauge a # 0.

Now, going back to Eq. (128) we observe that we do not
need to calculate all the matrix elements of the inverse
gluon propagator but only the pth row [for the calculation
of (D‘l)/m, k=1, 2, 3, 4] and the oth column [for the
calculation of (D7!), , A =1, 2, 3, 4]. Thus, we do not
need to invert the whole propagator matrix, but only the
block containing p, ¢ components if the propagator
matrix is block diagonal. Choosing ¢, =g, =0, the
propagator is indeed block diagonal, and thus, the ampu-
tation can be done successfully without inverting the whole
gluon propagator. It follows that the Green’s function
(A,(9)0,,A;(=q))|,—; in @ momentum scale g with two
vanishing components, e.g., g, = g, = 0, cannot be gen-
erally amputated in the Landau gauge; it can be amputated
only inthe case of (p =l orp=2)and (6 =1 or o = 2).
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Similarly, (A,(¢)0,,A;(=q))|,—; With only one vanishing
component, e.g., g; = 0 can be amputated in the Landau
gauge only when (p =0 =1). Also, a “democratic”
momentum renormalization scale cannot be applied in this
case as the amputation cannot be implemented in the
Landau gauge for this specific choice.

An alternative choice, “RI},” is to consider nonampu-

tated instead of amputated Green’s functions,

A

Ggi(Qﬂ _Q) = <Az(q)Oiuv(O)Ag(_Q»nonamp’ (l = 1,2,6),
(131)

(i=1.2,6).
(132)

qu(Q7 Q)E <W(Q) Oim/(O)l/_/(Q»nonamp’

Then the conditions of Egs. (69)—(71) are replaced by

AR, A
Tr[GgiB(q’ _q)] o Tr[G;?e(q7 —61)} _ 25”6_],//(‘_]2)2, i=1 (133)
N:-1 |P=0. N2—1 p=o, o i=2,6,
p# (u.v), p# (u.v),
q, =0, q, =0,
9= qe, YTFp 49 =G4, VT Fp
~RI Atree g° =
Tr(Gy (.~) _ TGy (g.~q) D R S
NZ1 |p=H NZ-1  |P=p 2 i—6
c=1v, oc=v, =2/q, i ’
4 =45 =0, 4 =45 =0,
4z = 4. VT # (p.0) 4: = 4. VT # (p.0)
1 AR, A 0 i=1,6
—Tr[G, (g, q) - = Tr[G"*(q. q) - = o 3 ’ 135
R CHICRIRY IS o IR VS b SN (E
The second condition Eq. (134) can be alternatively replaced by
AR Aitree —4.9, q* 27 i=1
TGy (9. ~q) TrG(g. ~a) IR T e
N—1 |p# ), N—1 |p# ), (i_a NG g
o=, 6=, RV (@) ’
9, =0, 9, =0,

Qr:E]T’VT?EG

where the renormalization four-vector scale has one (in-
stead of two) zero component. The third condition
Eq. (135) employing fermionic GFs could also involve
amputated GFs, as they have no issues in the amputation
process. The conversion factors from R to the MS scheme
coincide with those from RI, to the MS scheme. For
any other variant of RI' scheme [e.g., Eq. (136)], the
conversion factors can be easily extracted from our ex-
pressions of the MS-renormalized amputated GFs given in
Eqgs. (86)—(98).

Another possibility is to modify the RI, renormalization
scheme in a way that the sum O; + O, + Oy is a conserved
quantity. In DR, the sum of the bare operators is conserved.
However, this is not true on the lattice, where discretization

qr:éT’VT?éa

|

effects violate translational invariance. A proper definition
of the RI' renormalization scheme can lead to a conserved
sum of the renormalized operators even on the lattice. In the
continuum, this is simple, as we explained in previous
section; it requires the sum of RI'-renormalized operators to
be equal to the sum of the bare operators. The correspond-
ing lattice condition can be obtained by considering the
WIs given in Egs. (38), (39). These WIs are extracted in
DR; however, we can impose their validity also to the RI'-
renormalized operators on the lattice. To avoid any issues
regarding Landau-gauge fixing, these relations will give us
three conditions by studying the specific choices of Lorentz
and Dirac structures, obtained by the conditions of
Egs. (69)—(71), i.e.,
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RI/cons

0 d - a
T[> 126G (4,—9)] - Trl3 (g, aq, T v ()_qﬂ)(D 1(61)),;,!:] (137)
N1 p=o, - N1 p# (u.v),
p# (u,v), q, =0,
Q[IZO’ QT:ZIT’VT#:O
4:=q,, VT #p
RI,/,CO"S _ a _ a
Tr[> 126Gy (4,—9)] _ Tr[=5((D7'(q))sy + (D7'(9))e2) (138)
N2 -1 P =M. - N2 -1 4 =4, =0,
O =1V, QrZQ‘UVT?é(p’G).
4, =4, =0,
q: = 4, A& * (,0,6)
RI/COHS l 1 a a
Tr{ G, (q. —q)-%H ——Tr{é-—<q —+%—)S"(61)] (139)
4NC i:l.2,6 ! q‘[ = 917 V T 4NC 2 ! aqy aqﬂ Q’[ = QT’ VT'

In these conditions, the nonperturbative calculation of the
discretized derivatives of gluon and quark propagators with
respect to external momentum is needed. As we insert three
new conditions, we must exclude three conditions from the
previous definition of RI, scheme. For example, we
exclude the operator Og from each condition [Egs. (69)—
(71)]. In this version of RI’, an operator with ghost fields is
still involved and thus, a combination of perturbative and
nonperturbative results is also needed.

The proposed approach does not completely overcome
the mixing effects stemming from gauge-variant opera-
tors. There are, in the literature, alternative methods for
addressing this mixing. One method entails nonperturba-
tive studies of BRST transformations and GFs with ghost
fields implemented in the lattice simulations (see
Refs. [20,21] and references therein). Another method
investigates the nonperturbative renormalization of EMT
on the lattice in a gauge-invariant way (Ref. [16]); in this
method, WIs stemming from the conserved properties of
the EMT are used in the framework of thermal QCD with a
nonzero imaginary chemical potential. Finally, a gauge-
invariant renormalization scheme, such as the X-space
scheme [34], which considers gauge-invariant GFs in
coordinate space, can be applied without the need of
involving any gauge-variant operator. This scheme has not
been applied before in the calculation of the mixing matrix
of EMT operators. At the perturbative level, there is a
work in progress by our group [35] in this direction. In this
case, the gauge-invariant GFs are constructed using only
the gluon and quark EMT operators O; and O,.
Complications arise in this method. In order to calculate
the 2 x 2 mixing matrix for the renormalization of O, and
0,, we need a total of four conditions. Three conditions
can be obtained by studying two-point GFs between the
two mixing operators (between themselves and between

|

each other). However, a complete solution needs a fourth
condition which cannot be obtained by any other two-
point function. More details can be found in our forth-
coming paper [35].

VI. SUMMARY

In this paper, we study the two-loop renormalization and
mixing of the gluon and quark EMT operators in dimen-
sional regularization. To this end, we compute a set of two-
point Green’s functions, renormalized in MS; from our
results, one may directly deduce the conversion factors
between MS and a large variety of RI'-like schemes which
are appropriate for a nonperturbative extraction of renorm-
alization functions through lattice simulations. We provide
the conversion factors relating a number of specific

versions of the RI' scheme to MS.

We discuss in detail the application of our proposed
schemes on the lattice and the construction of a non-
perturbative renormalization program for the elimination of
the operator-mixing effects. In particular, we propose a
semi-nonperturbative approach, where perturbative and
nonperturbative results are combined; the gluonic and
fermionic contributions of gauge-variant operators, which
mix with the gauge-invariant EMT operators, can be
calculated nonperturbatively, while contributions from
the ghost parts can be evaluated by lattice perturbation
theory. Also, a different version of RI' scheme is proposed,
which leads to the determination of a conserved RI'-
renormalized EMT on the lattice. Our approach, along
with the results produced in this paper, can be applied in
lattice simulations with the expectation of giving more
reliable estimates. A complete elimination of mixing effects
is currently under investigation by our group using the
X-space renormalization scheme.
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