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The SUð3Þ pure gauge theory exhibits a first-order thermal deconfinement transition due to
spontaneous breaking of its global Z3 center symmetry. When heavy dynamical quarks are added, this
symmetry is broken explicitly and the transition weakens with decreasing quark mass until it disappears at
a critical point. We compute the critical hopping parameter and the associated pion mass for lattice QCD
with Nf ¼ 2 degenerate standard Wilson fermions on Nτ ∈ f6; 8; 10g lattices, corresponding to lattice
spacings a ¼ 0.12 fm, a ¼ 0.09 fm, a ¼ 0.07 fm, respectively. Significant cutoff effects are observed,
with the first-order region growing as the lattice gets finer. While current lattices are still too coarse
for a continuum extrapolation, we estimate mc

π ≈ 4 GeV with a remaining systematic error of ∼20%.
Our results allow us to assess the accuracy of the leading-order and next-to-leading-order hopping
expanded fermion determinant used in the literature for various purposes. We also provide a detailed
investigation of the statistics required for this type of calculation, which is useful for similar investigations
of the chiral transition.
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I. INTRODUCTION

For physical quark mass values, the thermal QCD
transition is known to be an analytic crossover [1]. Its
continuation to small baryochemical potentials has been
studied in detail by means of Taylor expansion or analytic
continuation from imaginary chemical potential, with so far
no hints of a nonanalytic phase transition [2]. Since a severe
sign problem precludes lattice QCD simulations at finite
baryon density, one way to constrain the phase diagram is
to study the thermal transition with the QCD parameters
varied away from their physical values. Nonanalytic phase
transitions related to the spontaneous breaking of the global
center and chiral symmetries, respectively, are explicitly
seen in simulations employing unimproved fermion dis-
cretizations on coarse lattices, in the heavy and light quark
mass regime, as indicated in Fig. 1. One can then study how
these critical structures evolve when a chemical potential is
switched on; for an overview see Ref. [3].

In this work we focus on the heavy mass corner, whose
thermodynamics can be addressed also at finite baryon
chemical potentials, either by means of effective lattice
theories obtained from hopping expansions [4–6], or by
effective Polyakov loop theories in the continuum [7,8]. In
order to assess the accuracy of these approaches and their
possible extensions to light quarks, reliable benchmarks are
warranted. Moreover, the phase transitions in this param-
eter regime are interesting in their own right. In the infinite
quark mass limit, the theory reduces to SU(3) pure gauge
theory with its first-order transition [9], which is caused by
the spontaneous breaking of the Z3 center symmetry.
Recently, the latent heat associated with this transition
has also been determined [10]. When dynamical quarks are
added to the theory, the center symmetry is broken
explicitly and the phase transition weakens; i.e., the latent
heat decreases until it vanishes at a critical quark mass. The
value of the critical quark mass and the latent heat are thus
intimately related by the dynamics of the deconfinement
transition, so that valuable nonperturbative insights are
possible in this parameter region.
An early lattice investigation for Nf ¼ 1 Wilson fer-

mions was restricted to Nτ ¼ 4 and, for large volumes,
required mapping to an auxiliary model [11]. The first
systematic studies in the standard Wilson discretization
[12,13] on Nτ ∈ f4; 6; 8g lattices are based on an
effective potential for the order parameter determined
by a histogram method [5], which is reweighted with
a hopping expanded quark determinant from quenched
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configurations. This allows for a flexible investigation and
interpolation between the Nf ∈ f1; 2; 3g cases. In this
work we focus on Nf ¼ 2 only, but simulate the full
fermion determinant with no approximation beyond the
lattice discretization. Preliminary results for Nτ ∈ f6; 8g
have been reported in Refs. [14,15]. Here we significantly
increase statistics and add a third lattice spacing with a set
of simulations on Nτ ¼ 10 lattices. In agreement with
earlier work, a shift of the deconfinement critical point
toward smaller bare quark masses is observed as the lattice
is made finer; Fig. 1 (right). On the other hand, on the finer
lattices we observe a quantitative deviation regarding the
location of the critical point with respect to the hopping
expanded results [13]. It is interesting to observe that the
direction of the cutoff effect in the bare parameter space is
the same for the critical deconfinement boundary in
the heavy quark mass regime as for the critical chiral
boundary in the light quark mass regime with both Wilson
[16–18] and staggered [19–23] discretizations (in some
other studies employing improved staggered fermion
discretizations [24,25], no chiral critical line is seen, thus
bounding a potential chiral first-order region). The shift of
the chiral Z2 boundary implies an increase in the simu-
lation cost while the continuum is approached, which is
particularly drastic in the chiral transition region. This
further motivates us to attempt a continuum limit in the
heavy quark mass regime first, where it should be more
feasible.
After devoting Sec. II to the description of our lattice

setup and of the relevant symmetry at work in the infinite
mass limit, we discuss our finite size scaling analysis in
Sec. III. Details on the simulations and the analysis strategy
are provided in Sec. IV, followed by a critical appraisal of
the growing statistics requirement for decreasing lattice
spacings in Sec. V. Finally, our results for the deconfine-
ment critical point are reported in Sec. VI and conclusions
are drawn in Sec. VII.

II. LATTICE ACTION AND
CENTER SYMMETRY

We work with the standard Wilson gauge action

Sg ¼
β

3

X
n

X
μ≤ν

RefTr½1 − PμνðnÞ�g; ð1Þ

with the lattice coupling β ¼ 2Nc=g2, the plaquette PμνðnÞ
and n labeling the lattice sites. The standard Wilson
fermion action for Nf mass-degenerate quarks is defined as

Sf ¼ a4
XNf

f¼1

X
n1;n2

ψ̄fðn1ÞDðn1jn2Þψfðn2Þ ð2Þ

with the fermion matrix

Dðn1jn2Þ ¼ δn1;n2 − κ
X�4

μ¼�1

½ð1 − γμÞUμðn1Þδjþμ̂;n2 �; ð3Þ

where γ−μ ≡ −γμ. The bare fermion mass m is adjusted via
the hopping parameter

κ ¼ 1

2ðamþ 4Þ : ð4Þ

The lattice coupling β controls the lattice spacing aðβÞ, and
temperature is defined as

T ¼ 1

aðβÞNτ
: ð5Þ

We do not use any improvements on the Wilson discre-
tization to make sure the phase structure does not get
modified by any unknown effects of improvement terms.
E.g., the twisted mass formulation introduces additional

FIG. 1. Left: Columbia plot for Wilson fermions on coarse lattices. The red circle in the heavy mass region at Nf ¼ 2 indicates the
critical point which we determine on Nτ ∈ f6; 8; 10g lattices. Right: qualitative behavior of the second-order boundary point with
increasing Nτ, i.e., decreasing lattice spacing.
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unphysical phases, which then require care to be avoided
[26]. Quite generally, approaching the continuum limit in
the right way requires knowledge of the lattice phase
diagram in the bare parameter space, for which we stick
to the simplest action.
The Polyakov loop LðnÞ is defined by the product of

all temporal links at space point n, closing through the
periodic boundary,

LðnÞ ¼ 1

3
TrC

�YNτ−1

n0¼0

U0ðn0;nÞ
�
: ð6Þ

Physically, it describes the (Euclidean) time evolution of a
static quark.
At finite temperature, the periodic boundary in the

temporal direction permits topologically nontrivial gauge
transformations, which are twisted by a global center
element of the group when crossing the boundary,

gðτþNτ;nÞ¼ zgðτ;nÞ; g∈ SUð3Þ; z¼ ei
2πk
3 1; ð7Þ

with k ∈ f0; 1; 2g. The pure gauge action is invariant under
such transformations, SG½Ug� ¼ SG½U�, while the Polyakov
loop picks up the twist factor,

LgðnÞ ¼ z−1LðnÞ: ð8Þ

In the pure gauge theory and in the thermodynamic limit,
the expectation value hLi is therefore an order parameter
for center symmetry breaking, with nonzero values signal-
ing deconfinement [27]. In the presence of dynamical
quarks, SF½Ug� ≠ SF½U� and the center symmetry is explic-
itly broken, i.e., hLi ≠ 0 always, with 1=m playing the role
of the symmetry-breaking field. Nevertheless, a rapid
change accompanied by large fluctuations of hLi still
signals the deconfinement transition, which weakens with
decreasing quark mass until a critical point is reached.
Being the end point of a first-order transition, this critical

point will be in the same universality class as 3D liquid-gas
transitions, i.e., the 3D-Ising model. This is fully confirmed
by our data. In the effective 3D-Ising Hamiltonian gov-
erning the vicinity of the critical point, the Polyakov loop
will then be the dominant contribution to the magnet-
izationlike variable, coupling to the symmetry-breaking
magnetic field 1=m. It is interesting to contrast this
situation with the chiral transition in the light quark regime,
where the Polyakov loop contributes to the energylike
variable in the corresponding effective Hamiltonian, since it
is invariant under chiral transformations [28].

III. FINITE SIZE SCALING ANALYSIS

To determine the order of the phase transition as a
function of the quark mass, we compute standardized
moments of X ≡ jLj, the absolute value of the Polyakov
loop,

BnðX; α1;α2;…Þ ¼ hðX − hXiÞni
hðX − hXiÞ2in2 ; ð9Þ

and study their behavior as a function of the physical
volume. Here n ∈ f3; 4g and fαng is a set of relevant
physical parameters, in our case β; κ; Nτ; Ns. (In the
following, the dependence of Bn on X will be understood).
The phase boundary at a pseudocritical coupling βc is

defined by the vanishing of the skewness B3ðβcÞ ¼ 0. We
use finite size scaling of the fourth moment, the kurtosis B4,
trivially linked to the Binder cumulant [29], to locate the
critical point κZ2

. For V → ∞, B4 evaluated on the phase
boundary takes the form of a step function, assuming
values that are characteristic for the respective nature of the
phase transition (cf. Table I). On finite volumes, B4 is an
analytic curve that gradually approaches the step function
with increasing volume. In the vicinity of the critical point
κZ2

, universality implies it to be a function of the scaling

variable x≡ ðκ − κZ2
ÞN1=ν

s only, which can be expanded
around κ ¼ κZ2

in a Taylor series. For sufficiently large
volumes, the series can be truncated after the linear term,

B4ðβc; κ; NsÞ ¼ B4ðβc; κZ2
;∞Þ þ a1xþOðx2Þ; ð10Þ

and fitted to extract the critical parameters.
This simple picture holds for asymptotically large

volumes, and previous studies show that these can be
prohibitively expensive to attain; cf. [31,32]. Moreover, we
find the required aspect ratios in the heavy mass region to
be even significantly larger than those in our light quark
studies. The reason cannot be related to the lightest state in
the spectrum, the glueball in this case, whose correlation
length is shorter than that associated with the pion in the
light quark mass regime. Instead, a possible explanation is
that regular (nondivergent) contributions to the fluctuations
grow toward the heavy mass region, so that it takes larger
volumes for the diverging terms to dominate.
It is therefore expedient to also consider the leading finite

volume corrections to Eq. (10). Since for finite quark
masses the center symmetry is explicitly broken, the
Polyakov loop is no longer a true order parameter, but a
mixture of the magnetization- and energylike observables
entering the effective 3D-Ising Hamiltonian which governs
the vicinity of the critical point. Magnetization- and
energylike observables scale with different exponents,

TABLE I. Values of the kurtosis at the transition and of the
relevant critical exponents [30].

Crossover First order Second order Z2

B4 3 1 1.604
ν � � � 1=3 0.6301(4)
γ � � � 1 1.2372(5)
α � � � � � � 0.110(1)
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and only for asymptotically large volumes the larger of
them dominates to produce the simple expression Eq. (10).
With the leading mixing correction taken into account, the
kurtosis takes instead the form

B4ðβc; κ; NsÞ ¼ ½B4ðβc; κZ2
;∞Þ þ a1xþOðx2Þ�

× ½1þ BNðα−γÞ=2ν
s �; ð11Þ

where B is another nonuniversal parameter to be extracted
from a fit. For a detailed derivation and explanation in the
context of the light quark mass regime, see [17]. As a
consequence of this correction, the B4 curves are no longer
fitted by straight lines, and different volumes intersect at
different points, with the pairwise intersection approaching
the universal value with growing volumes. This is shown
schematically in Fig. 2.

IV. SIMULATION AND ANALYSIS DETAILS

We study cutoff effects by simulating three different
temporal lattice extents Nτ ∈ f6; 8; 10g, corresponding to
different lattice spacings at the respective critical couplings.
For every value of Nτ, the critical κZ2

in the heavy quark
mass region was determined (i.e., the position of red circle
in Fig. 1) for five to six values of κ. At each value of κ up to
four spatial volumes have been simulated, corresponding to
aspect ratios of Ns=Nτ ∈ ½4; 7�. For Nτ ¼ 8, also simula-
tions at Ns ¼ 80 have been done to give better insights
into the position of κZ2

. The deconfinement transition
has been located simulating at two to four different values
of β around the pseudocritical coupling. Configurations
have been produced using a standard Hybrid Monte Carlo
algorithm [33] with unit trajectories and the acceptance
rate tuned to stay between 75% and 85%. At least 5000

thermalization trajectories have always been discarded.
Observables (the plaquette and the Polyakov loop) have
then been measured on the fly for all Monte Carlo steps. At
each value of β, between 56k and 800k trajectories have
been accumulated, making sure to always have over ≈50
independent events per β. In total 28 × 106, 39.5 × 106 and
21.8 × 106 trajectories have been produced for Nτ ¼ 6,
Nτ ¼ 8 andNτ ¼ 10, respectively. Details about simulation
parameters and statistics are listed in Tables IV–VI.
All the finite temperature simulations, except from those

on the 8 × 803 lattices, have been performed using v1.0 of
our publicly available [34] OpenCL-based CL2QCD code
[35], which is optimized to run on GPUs. The L-CSC
supercomputer [36] at GSI in Darmstadt has been used for
this set of runs. The few simulations on aspect ratio 10
lattices have been performed with openQCD-FASTSUM [37],
a highly message passing interface-optimized software that
has been run on the Goethe-HLR supercomputer. In all
cases, monitoring and handling of thousands of jobs has
been efficiently automatized using the software package
BaHaMAS [38,39], whose new version v0.3.1 can also be
used in conjunction with the openQCD-FASTSUM code.
In order to faster accumulate statistics and to gain better

control over statistical errors, for each parameter set we
simulated four different Markov chains, except at the
outermost β values for aspect ratio 10 where only three
Markov chains were run. In this way a criterion to decide
when the gathered statistics is large enough can be estab-
lished: All replicas included in the final analysis were run
untilB3 was compatiblewithin atmost 3 standard deviations
between all of them.An example of one dataset can be found
in Fig. 3 (left). At the beginning of the simulations, for very
low statistics, this criterion can be trivially fulfilled due to
very large statistical errors. Therefore, to ensure a proper

FIG. 2. Qualitative behavior of the kurtosis B4 for spatial volumes too small to be described by Eq. (10). The effect of the leading finite
size correction Eq. (11) is to shift B4 at κZ2

(i.e., for x ¼ 0) to larger values and approach the universal value with growing volumes. The
enlargement shows that different volumes do not cross in one point. Pairwise intersections converge to B4ðβc; κZ2

;∞Þ in the
thermodynamic limit.
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bracketing of βc and to avoid stopping the simulations too
early, it has been almost always demanded that B3 is
incompatiblewith zero at 1 standard deviation at the smallest
and largest β on every chain. Once both these guidelines are
satisfied, the chains were merged to the raw data points
shown in Fig. 3 (right).
In order to have precision on βc, the multihistogram

method [40], also known as reweigthing, was used to
interpolate between our measurements. This interpolation
is repeated for the B4 data, thus pinning down B4ðβcÞ.
Carrying out the same procedure for each simulated value
of κ, the resulting B4ðβc; κ; NsÞ data points can be plotted as
a function of κ and fitted according to Eqs. (10) and (11), as
it will be discussed in Sec. VI.
Finally, to set the physical scale for our simulation points

we use the Wilson flow parameter ω0=a, which we
determined and converted using the publicly available
software described in Ref. [41]. To this end, we produced
800 independent zero-temperature configurations on 32 ×
163 lattices for each κ at the value of the critical coupling
βc. As a physical quantity to parametrize the determined
critical point κZ2

, we then computed the pseudoscalar
meson mass mπ corresponding to those bare parameter
values. Note that for all lattice spacings considered here,
amπ > 1 at and around κZ2

. Therefore, our pion mass
estimates are afflicted by large cutoff effects. This problem
naturally reduces as Nτ is increased. All critical couplings
βc, the corresponding lattice spacings a, mπ and critical
temperatures Tc are summarized in Table III for each value
of κ and Nτ.

V. STATISTICS REQUIREMENTS TOWARD
THE CONTINUUM

A crucial parameter to judge the statistical quality of the
analyzed ensembles is the integrated autocorrelation time
τint of the observables. Qualitatively speaking, τint para-
metrizes the memory that the simulated system has of its
dynamics, which in our case strongly depends on the order
of the phase transition. Consider a first-order transition to
start with and let us briefly summarize what happens to the
behavior of the order parameter. In a finite volume, far
away from the phase transition, the system stays in a given
phase. The order parameter will fluctuate around its mean
value and its probability distribution will be approximately
Gaussian, with some associated τint. As soon as β gets
sufficiently close to βc, the system will explore both phases
and the order parameter will jump from time to time from
fluctuating around its mean value in one phase to fluctuat-
ing around its mean value in the other one. These fluctua-
tions between the phases are slower than the fluctuations
within one phase, since tunneling between different phases
is exponentially suppressed by a potential barrier growing
with volume [42]. As a result, the system has a much
longer-term memory since its dynamics now occurs on a
larger timescale. τint is related to the average tunneling rate
between the two phases and thus increases significantly.
This in turn implies that sufficiently many tunneling events
in a simulation are needed to reliably estimate τint. At a
crossover transition, instead, the distribution of the order
parameter does not show a two-peak structure for any β
value, even around βc, where only its variance slightly

FIG. 3. Example of the data analysis for B3, B4 at κ ¼ 0.1100 on a 6 × 363 lattice. In the left plots different Markov chains are
displayed, with data points slightly shifted horizontally for better visibility. The label nσ denotes by how many standard deviations the
maximally incompatible pair is apart. On the right, the merged raw and reweighted data for B3 (top) and B4 (bottom) are shown. The
determination of βc and B4ðβcÞ is depicted in red.
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increases. Therefore, τint is expected to be relatively small
in this case. Finally, at a second-order phase transition the
critical slowing-down phenomenon will play an important
role and the diverging correlation length of the system will
be reflected in an increase of τint, too. In a finite volume this
effect will be only partially felt, though, because the
correlation length cannot literally diverge.
We estimate τint for both B3 and B4 using a PYTHON

implementation of the Γ-method [43], and distribute our
data in bins of size 2τint to remove autocorrelations.
Tables V and VI give an overview of τint for the skewness
and the kurtosis (averaged over the simulated β values) and
the number of statistically independent events obtained
from the binning procedure. The qualitative expectation
outlined above is completely met in Fig. 4, where for each

ðκ; NsÞ pair, τint is displayed at the simulated β closest to βc.
In Fig. 4(a) the autocorrelation time is shown as a function
of κ and spatial volume for Nτ ¼ 8. For each volume, a
maximum is seen around κZ2

, showing critical slowing-
down near a second-order transition (that maximum would
be sharper if τint had been evaluated exactly at βc). The
more drastic effect, however, is the increase of τint with
increasing volume. In Fig. 4(b) we compare different Nτ

values at fixed aspect ratio. As expected when approaching
the continuum limit, we observe another increase of τint
around the critical as well as the first-order region. The
statistics for Nτ ¼ 10 is effectively smaller compared to
Nτ ∈ f6; 8g, which explains the larger error bars and
possibly an overestimate in the first-order region.
Note also, that the observed rise in the autocorrelation

time feeds back into the practical organization of the
simulation. The choice of β values to be simulated is an
optimization of having a sufficiently narrow spacing
needed for reweighting, and covering a large enough
interval to bracket βc, with as few values as possible.
This requires monitoring and frequently analyzing running
simulations in order to optimally adjust the parameters.
Since a given statistics, which turned out to be sufficient on
a coarser lattice, will have to be increased on a finer one,
even this process of parameter tuning requires more and
more trajectories as the lattices get finer. Altogether, our
study of the autocorrelation time illustrates the crucial
importance and formidable difficulties of obtaining suffi-
cient statistics for a reliable determination of the order of
the phase transition as the continuum is approached.

VI. RESULTS AND DISCUSSION

We are now ready to extract our desired results from fits
of our data to Eqs. (10) and (11), measuring the fit quality
by the reduced chi-square χ2d:o:f and the Q parameter. The
latter amounts to the probability of getting a value of chi-
square larger than χ2d:o:f , assuming that the data have
Gaussian noise, and gives a measure of the quality of
the fit (its optimal value is 50%). In the ideal situation of
negligible finite size effects, we expect to obtain a good fit
to Eq. (10) and, simultaneously, a good fit to Eq. (11) with a
consistent κZ2

and B compatible with zero. The general
strategy then is to compare the fits performed with and
without the correction term described in Eq. (11), with the
goal to isolate the leading terms. For this purpose, it is in
principle enough to successively exclude points from the
smallest volumes in the fit to Eq. (11), until the coefficient
B is compatible with zero and check for consistency of the
fit parameters. However, we generally observe that the
inclusion of all volumes corresponding to the smallest κ
values, i.e., the ones deepest in the first-order region,
significantly deteriorates the fit quality, irrespective of
the ansatz. Because tunneling between the phases is
exponentially suppressed by volume in the first-order
region, these points are increasingly difficult to determine

(a)

(b)

FIG. 4. The integrated autocorrelation time τint of the skewness
of the order parameter is shown for the simulated β closest to βc
for different values of κ. In (a) Nτ is kept fixed and the spatial
volume is varied (κZ2

is marked by the dashed line). In (b) τint is
plotted against κ − κZ2

for different Nτ at fixed aspect ratio.
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accurately, as discussed in the previous section. Moreover,
the entire B4 curve is asymmetric about its inflection point,
because its two asymptotes are not symmetrically displaced
with respect to B4ðβc; κZ2

;∞Þ. As the entries in Table III
illustrate, the masses associated with the smaller κ values
rise very quickly and are thus quite far from the critical
quark mass in which we are interested. Including these
smallest κ values would therefore require higher-order
terms in the Taylor expansion of the kurtosis, in both
brackets of Eq. (11), in order to account for the larger
distance from the critical point as well as for the larger finite
size corrections. This would increase the number of fit
parameters and weaken the conclusions from the fits, so we
excluded these points. On the other hand, linear fits over
ranges in κ that only cover the crossover region can result in

biased estimates for κZ2
(cf. the shift in κZ2

comparing the
two e:8:# and i:8:# fits at Nτ ¼ 8 represented in Table II).
Consequently, we made sure that for each Nτ we have
included at least one κ in the fits, which reliably belongs to
the first-order region.
Distinctive features for κ values in the first-order region

are the reversed Ns ordering of the corresponding kurtosis
(central) values with respect to what happens in the
crossover region (the value of the kurtosis decreases with
Ns in the first-order region), as well as a more pronounced
two-peak structure in the distribution of the order param-
eter, which we explicitly checked in every case. In fact, all
data points with κ < κZ2

fulfill these criteria, including the
ones omitted from our final fits. For Nτ ¼ 8 and κ ¼ 0.115,
a parameter set in doubt, we simulated aspect ratio 10

TABLE II. An overview of the outcome of the final fit analysis is presented here. For each value of Nτ the effect of excluding some
data points is shown. The fits are labeled by x.y.z, where x refers to the fit ansatz, y is the value of Nτ and z simply a counter. For x ¼ e
the fit has been done according to Eq. (10) (excluding the correction term, B ¼ “ − ”), while for x ¼ i Eq. (11) has been used and the
correction term has been included. z ¼ 1 always represents the fit with the least excluded data points; for z > 1, more and more data
points get excluded. The rows with bold fonts contain the best fit as a compromise between all parameters. Subtables in the second
column show which κ (columns) have been included (✓) or excluded (✗) for which Ns (rows).

Fit label Included/excluded κ per Ns κZ2
a1 B χ2d:o:f: NDF Q (%)

0.075 0.085 0.09 0.1 0.11
e:6.1 30 ✗ ✗ ✓ ✓ ✓ 0.0877(9) 0.100(7) � � � 0.87 9 55
i:6.1 36 ✗ ✓ ✓ ✓ ✓ 0.0878(21) 0.099(9) 0.1(9) 0.98 8 45

42 ✗ ✓ ✓ ✓ ✓

0.075 0.085 0.09 0.1 0.11
e:6.2 30 ✗ ✗ ✓ ✓ ✓ 0.0895(11) 0.112(10) � � � 0.49 7 85
i:6.2 36 ✗ ✗ ✓ ✓ ✓ 0.0902(22) 0.110(11) 0.3(9) 0.54 6 78

42 ✗ ✗ ✓ ✓ ✓

0.11 0.115 0.12 0.125 0.13 0.135
32 ✗ ✗ ✓ ✓ ✓ ✓

e:8.1 40 ✗ ✓ ✓ ✓ ✓ ✓ 0.1135(8) 0.140(9) � � � 1.05 13 39
i:8.1 48 ✗ ✓ ✓ ✓ ✓ 0.1135(11) 0.140(14) 0.0(9) 1.14 12 32

56 ✓
80 ✓

0.11 0.115 0.12 0.125 0.13 0.135
32 ✗ ✗ ✗ ✓ ✓ ✓

e:8.2 40 ✗ ✗ ✓ ✓ ✓ ✓ 0.1163(11) 0.170(15) � � � 0.88 8 53
i:8.2 48 ✗ ✗ ✓ ✓ ✓ 0.1160(14) 0.174(21) −0.3ð1.1Þ 0.99 7 43

56 ✗
80 ✗

0.115 0.12 0.125 0.13 0.135 0.14
e:10.1 40 ✗ ✗ ✓ ✓ 0.1214(12) 0.109(14) � � � 1.36 9 20
i:10.1 50 ✓ ✓ ✓ ✓ ✓ 0.1237(21) 0.091(17) 3.0(2.1) 1.25 8 26

60 ✓ ✓ ✓ ✓

0.115 0.12 0.125 0.13 0.135 0.14
e:10.2 40 ✗ ✗ ✓ ✓ 0.1244(11) 0.147(19) � � � 0.59 7 77
i:10.2 50 ✗ ✓ ✓ ✓ ✓ 0.1260(17) 0.127(23) 2.7(2.2) 0.41 6 87

60 ✗ ✓ ✓ ✓
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specifically to check these features. As can be seen
in Fig. 5(b), no hints for a first-order phase transition
were found which is consistent with the fit indicating
κZ2

< 0.115. In our general strategy it is important that the
fit gives a κZ2

larger than the smallest simulated κ value, and
that the κZ2

extracted from the fit is cross-checked against
evidence for a first-order phase transition for all simu-
lated κ < κZ2

.
Some representative fits are shown in Table II, where the

best ones chosen as our final result are highlighted. Note
that for Nτ ¼ 6, 8 we are able to find good fits with B ¼ 0,
as well as several consistent ones including additional data
points and B ≠ 0. This indicates that all simulation data are
indeed described by Eq. (11) and the coefficient B is fully
controlled. Our data for B4 together with the best fits
highlighted in the table are also shown graphically in Fig. 5.
Our final results for the critical hopping parameter κZ2

as a
function of lattice spacing are collected in Fig. 6 (top).

Strong cutoff effects are apparent. To compare with other
approaches and get a feeling for the physical scales involved,
Fig. 6 (bottom) shows the critical couplings converted to
pseudoscalar mesonmasses. As already indicated in Sec. IV,
these numbers have to be taken with care because amπ > 1
in all cases. This problemcould in principle be circumvented
by heavy quark effective theorymethods [44]. However, it is
apparent that at least two finer lattice spacings are needed
before a continuum extrapolation can be attempted. For
these themass in lattice units might well be small enough, so
we postpone this issue until such data are available.
Nevertheless, the shift in the critical pion mass is signifi-
cantly reduced betweenNτ ¼ 8, 10 compared toNτ ¼ 6, 8.
A linear extrapolation using the last two points [unimproved
Wilson fermions have OðaÞ effects] would then predict
mπ ≈ 4 GeV, where twice the shift to the extrapolated value
should amount to a conservative estimate of the remaining
systematic error of ∼20%.

(a) (b)

(c)

FIG. 5. Final B4 fits for (a) Nτ ¼ 6, (b) Nτ ¼ 8 and (c) Nτ ¼ 10. These refer to the bold-faced lines in Table II. Shaded points have not
been included in the fits.
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It is now interesting to compare our results with those of
[13], where the critical points for Nf ∈ f1; 2; 3g Wilson
fermions were determined on Nτ ∈ f4; 6g by means of
reweighting with a next-to-leading-order (NLO) hopping
expanded fermion determinant and a histogram technique
instead of the cumulant analysis. For Nf ¼ 2 on Nτ ¼ 6,
Ns ¼ 24, Ref. [13] reports κZ2

¼ 0.1202ð19Þ at NLO
hopping expansion, which translates to mc

π=Tc ≈ 11.2.
Compared with our κZ2

¼ 0.0877ð9Þ or mc
π=Tc ≈ 18.1

(which is obtained from our scale setting summarized in
Table III), one observes a large discrepancy of ≈50% in the
critical pion mass. Note that, since the same lattice action is
employed, this discrepancy is not related to the cutoff error
on the determination of mc

π. As discussed in [13], the
histogram method is applied at a fixed spatial volume and
does not include an extrapolation to the thermodynamic
limit. Indeed, the authors report a reduction of κZ2

by ≈6%
when increasing volume to Ns ¼ 32 and by ≈13% on

Ns ¼ 24 when going from LO to NLO in the hopping
expansion; i.e., both truncations have a systematic error in
the same direction. The comparison to our result highlights
the necessity for either refined approximations or a full
calculation in order to achieve a reliable continuum
limit.

VII. CONCLUSIONS

While qualitatively well understood, the heavy mass (top
right) corner of the Columbia plot in Fig. 1 (left) still lacks a
quantitative determination, in the continuum limit, of the
location of the deconfinement critical boundary. In this
work we focused our attention on the Nf ¼ 2 deconfine-
ment critical point and studied its location on progressively
finer lattices simulating at Nτ ∈ f6; 8; 10g. Our results
showed that the continuum limit is not yet within reach
given the extent of the observed cutoff effects. It is, indeed,
apparent that for a continuum extrapolation to become
feasible at least two finer lattice spacings will be needed.
Nevertheless, this work documented the progress that has
been made both in refining the fitting strategy for the finite
size scaling analysis and in appraising the growing statistics
requirements toward the continuum limit. Concerning the
former, we showed how a correction term can be used as a
probe for finite size effects, which allowed us to isolate the
leading terms in the linear kurtosis expansion around κZ2

and identify the required aspect ratios for the linear regime.
With regards to the latter, our detailed analysis of the
integrated autocorrelation times of the relevant observable
illustrated the alarming prospects in terms of the statistics
needed to reliably establish, as the continuum limit is
approached, the order of the phase transition and the
location of κZ2

. Furthermore, our results allowed for
quantitative comparisons with those obtained using
hopping expansions and thus to assess their systematic
error.
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APPENDIX: TABLES WITH SCALE SETTING, STATISTICS AND INTEGRATED
AUTOCORRELATION TIME

TABLE III. Outcome of the pion mass and the scale setting simulations performed on 32 × 163 lattices,
accumulating 800 independent configurations. The values of βc and the critical temperature Tc of the deconfinment
phase transition are also included to provide a more complete overview. a andmπ have also been measured at the κZ2

values obtained from the fits and are reported with bold fonts. The value of βc at κZ2
, at which the scale is set and the

pion mass is measured, has been obtained via interpolation of βc values at simulated κ nearby.

Nτ κ βc amπ aðfmÞ mπðGeVÞ TcðMeVÞ
6 0.075 5.8893 3.4722(2) 0.1181(12) 5.80(6) 279(3)

0.085 5.8845 3.1073(2) 0.1185(12) 5.17(5) 277(3)
0.0877 5.8821 3.0111(2) 0.1186(13) 5.01(5) 277(3)
0.09 5.8798 2.9306(2) 0.1191(13) 4.86(5) 276(3)
0.1 5.8676 2.5810(2) 0.1203(13) 4.24(4) 273(3)
0.11 5.8462 2.2383(2) 0.1232(14) 3.58(4) 267(3)

8 0.11 6.0306 2.1298(2) 0.0872(9) 4.82(5) 283(3)
0.1135 6.0222 2.0017(2) 0.0876(9) 4.51(5) 282(3)
0.115 6.0180 1.9471(2) 0.0887(9) 4.33(5) 278(3)
0.12 6.0009 1.7645(2) 0.0893(10) 3.90(4) 276(3)
0.125 5.9776 1.5814(2) 0.0906(10) 3.44(4) 272(3)
0.13 5.9464 1.3996(3) 0.0926(10) 2.98(3) 266(3)
0.135 5.9026 1.2212(3) 0.0953(10) 2.53(3) 259(3)

10 0.115 6.1682 1.8724(2) 0.0680(8) 5.43(6) 290(3)
0.12 6.1543 1.6802(2) 0.0688(8) 4.82(5) 287(3)
0.1237 6.1414 1.5361(2) 0.0691(8) 4.39(5) 286(3)
0.125 6.1356 1.4858(2) 0.0694(8) 4.23(5) 284(3)
0.13 6.1027 1.2930(2) 0.0712(8) 3.58(4) 277(3)
0.135 6.0576 1.0999(4) 0.0720(8) 3.01(3) 274(3)
0.14 5.9902 0.9143(4) 0.0761(8) 2.37(3) 259(3)

TABLE IV. Statistics overview of Nτ ∈ f6; 8; 10g. For Nτ ¼ 8, Ns ¼ 80 we simulated at three different β values, βc ¼ 6.01708, and
have an overall statistics of 2.0M.

Nτ κ

βc jTotal statistics perNs jNumber of simulated β values

Aspect ratio 4 Aspect ratio 5 Aspect ratio 6 Aspect ratio 7

6 0.075 � � � 5.88884 j 1.6M j 2 5.88895 j 1.6M j 2 5.88933 j 1.6M j 2
0.085 � � � 5.88407 j 1.6M j 2 5.88448 j 1.6M j 2 5.88452 j 1.6M j 2
0.09 � � � 5.88097 j 2.4M j 3 5.88104 j 2.4M j 3 5.87985 j 2.4M j 3
0.1 � � � 5.86865 j 1.6M j 2 5.86762 j 1.6M j 2 5.86758 j 1.6M j 2
0.11 � � � 5.84677 j 1.6M j 2 5.84624 j 2.4M j 3 5.84623 j 2.4M j 3

8 0.11 6.03018 j 2.4M j 3 6.03085 j 2.4M j 3 6.03064 j 2.4M j 3 6.03139 j 1.0M j 3
0.115 6.01892 j 2.4M j 3 6.01891 j 2.4M j 3 6.01801 j 2.4M j 3 � � �
0.12 6.00366 j 1.6M j 2 6.00208 j 2.4M j 3 6.00093 j 0.9M j 2 � � �
0.125 5.98070 j 2.4M j 3 5.97888 j 2.2M j 3 5.97757 j 1.4M j 3 � � �
0.13 5.94928 j 2.4M j 3 5.94705 j 2.4M j 3 5.94642 j 1.6M j 2 � � �
0.135 5.90492 j 2.4M j 3 5.90257 j 2.4M j 3 � � � � � �

10 0.115 6.16818 j 1.8M j 3 � � � � � � � � �
0.12 6.15297 j 1.8M j 3 6.15408 j 1.8M j 3 6.15434 j 1.6M j 3 � � �
0.125 � � � 6.13558 j 1.8M j 3 6.13558 j 1.2M j 2 � � �
0.13 6.10685 j 1.8M j 3 6.10524 j 1.8M j 3 6.10269 j 1.2M j 2 � � �
0.135 � � � 6.05851 j 1.8M j 3 6.05758 j 1.6M j 4 � � �
0.14 5.99361 j 1.8M j 3 5.99022 j 1.8M j 3 � � � � � �
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