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We study the phase diagram and critical behavior of a two-dimensional lattice SOðNcÞ gauge theory
(Nc ≥ 3) with two scalar flavors, obtained by partially gauging a maximally Oð2NcÞ symmetric scalar
model. The model is invariant under local SOðNcÞ and global O(2) transformations. We show that, for any
Nc ≥ 3, it undergoes finite-temperature Berezinskii-Kosterlitz-Thouless (BKT) transitions, associated with
the global Abelian O(2) symmetry. The transition separates a high-temperature disordered phase from a
low-temperature spin-wave phase where correlations decay algebraically (quasi-long range order). The
critical properties at the finite-temperature BKT transition and in the low-temperature spin-wave phase are
determined by means of a finite-size scaling analysis of Monte Carlo data.
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I. INTRODUCTION

Abelian and non-Abelian gauge symmetries appear in
various physical contexts. For instance, they are relevant for
the theories of fundamental interactions [1–3] and in the
description of some emerging phenomena in condensed
matter physics [2,4,5]. The main features of these theories,
such as the spectrum, the phase diagram, and the critical
behavior at thermal and quantum transitions, crucially
depend on the interplay between global and local gauge
symmetries.
These issues have been recently investigated in several

two-dimensional (2D) lattice gauge models, considering:
(i) the multicomponent lattice Abelian-Higgs model [6],
characterized by a global SUðNfÞ symmetry (Nf ≥ 2) and
a local U(1) gauge symmetry; (ii) the multiflavor lattice
scalar quantum chromodynamics [7], characterized by a
global SUðNfÞ symmetry and a local SUðNcÞ gauge sym-
metry; (iii) lattice SOðNcÞ gauge models with Nf ≥ 3 real
scalar flavors [8], characterized by a non-Abelian OðNfÞ
global symmetry. In agreement with the Mermin-Wagner
theorem [9], all these 2D lattice gauge models do not have
finite-temperature transitions. A critical behavior is only
observed in the zero-temperature limit: for T → 0, the
correlation length increases exponentially, as in the 2D

OðNÞ σ model wih N ≥ 3 and in the 2D CPN−1 model with
N ≥ 2 [2]. The interplay of global non-Abelian symmetries
and local gauge symmetries determines the large-scale
properties of the system in the zero-temperature limit,
and therefore, the field theory realized in the corresponding
continuum limit.
The results for the above-mentioned lattice gauge models

support the following general conjecture, originally put
forward in Ref. [7]. The universality class of the asymptotic
low-temperature behavior of lattice gauge models is the
same as that of the 2D field theories defined on the
symmetric spaces [2,10] that have the same global sym-
metry. According to this conjecture, the zero-temperature
critical behavior of multiflavor Abelian-Higgs models and
lattice scalar chromodynamics with Nf scalar flavors
belongs to the universality class of the 2D CPNf−1 model,
as both models have the same global SUðNfÞ symmetry.
Analogously, lattice SOðNcÞ gauge theories with Nf ≥ 3

real scalar flavors have the same critical behavior as RPNf−1

models [11] with the same global OðNfÞ symmetry. These
predictions have been numerically verified in Refs. [6–8].
We note that all cases considered so far involve systems
with global non-Abelian symmetries, which are not
expected to show finite-temperature transitions in two
dimensions [9].
In this paper, we investigate 2D lattice non-Abelian

gauge models that undergo a finite-temperature transition,
and show that also in this case the conjecture holds. We
consider a 2D lattice SOðNcÞ gauge model with two real
scalar flavors, obtained by partially gauging a maximally
Oð2NcÞ symmetric scalar theory. For Nc ≥ 3, this model
is characterized by a global Abelian O(2) symmetry
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(for Nc ¼ 2 the global symmetry group turns out to be
SU(2) [8], which is non-Abelian, and therefore we only
expect a zero-temperature critical behavior). If the general
conjecture extends to systems with global Abelian sym-
metries, we expect this model to have the same critical
behavior as the O(2)-invariant XY lattice model. Therefore,
forNc ≥ 3, 2D lattice SOðNcÞ gauge models with two scalar
flavors may undergo a finite-temperature Berezinskii-
Kosterlitz-Thouless (BKT) transition [12–20], between the
high-temperature disordered phase and a low-temperature
spin-wave phase characterized by quasi-long range order
(QLRO) with vanishing magnetization. We recall that BKT
transitions are characterized by an exponentially divergent
correlation length ξ at a finite critical temperature. Indeed, ξ
behaves as ξ ∼ expðc= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T − Tc
p Þ approaching the BKT

critical temperature Tc from the high-temperature phase.
To verify the general conjecture for the lattice SO(Nc)

gauge theory with two scalar flavors, we present finite-size
scaling (FSS) analyses of Monte Carlo simulations for
several Nc ≥ 3. We anticipate that the numerical results
confirm the presence of a low-temperature QLRO phase,
separated by a BKT transition from the high-temperature
disordered phase. These results extend the validity of the
conjecture to 2D lattice non-Abelian gauge theories with
global Abelian symmetries.
The paper is organized as follows. In Sec. II, we define the

lattice SOðNcÞ gaugemodel with scalar fields and the gauge-
invariant observables that we consider in our numerical
study.We also describe the FSS analysisweuse to investigate
the phase diagram and to determine the nature of the critical
behavior. Section III reports thenumerical results forNc ¼ 3,
4, 5.We show thatQLROholds in the low-temperature phase
and that the transition between the high-temperature and
the low-temperature QLRO phase is a BKT one, as in the
standard XY model. Finally, in Sec. IV, we summarize and
draw our conclusions.

II. 2D LATTICE SOðNcÞ GAUGE MODELS

We consider a multiflavor lattice SOðNcÞ gauge model
defined on square lattices of linear size L with periodic
boundary conditions. It is obtained [21] by partially gauging
a maximally OðMÞ symmetric model with M ¼ NfNc,

defined in terms of real unit-length matrix variables ϕaf
x ,

with a ¼ 1;…; Nc and f ¼ 1;…; Nf (we will refer to these
two indices as color and flavor indices, respectively), such
that Trϕt

xϕx ¼ 1. Using the Wilson approach [1], we
introduce gauge variables associated with each link of the
lattice. The Hamiltonian reads [21]

H ¼ −Nf

X

x;μ

Trϕt
xVx;μϕxþμ̂ −

γ

Nc

X

x

TrΠx; ð1Þ

where Vx;μ ∈ SOðNcÞ and Πx is the plaquette operator,

Πx ¼ Vx;1Vxþ1̂;2V
t
xþ2̂;1

Vt
x;2: ð2Þ

We set the lattice spacing equal to 1, so that all lengths are
measured in units of the lattice spacing. The plaquette
parameter γ plays the role of inverse gauge coupling. The
partition function reads

Z ¼
X

fϕ;Vg
e−βH; β≡ 1=T: ð3Þ

Note that, for γ → ∞, the link variables Vx become equal
to the identity modulo gauge transformations. Thus, one
recovers the OðMÞ-symmetric nearest-neighbor M-vector
model, which does not have a finite-temperature transi-
tion and becomes critical only in the zero-temperature
limit [2,22].
For Nc ≥ 3, the global symmetry group of model (1) is

OðNfÞ. For Nc ¼ 2, the global symmetry is actually larger
[21], since the model can be exactly mapped onto the two-
component lattice Abelian-Higgs model, which is invariant
under local U(1) and global SUðNfÞ transformations.
Therefore, for Nf ¼ Nc ¼ 2, the model has a zero-temper-
ature critical behavior belonging to the universality class of
the CP1 field theory [6], which is equivalent to that of the
nonlinear O(3) σ model. In the following, we consider only
the case Nc ≥ 3.
For Nf ¼ 2 and Nc ≥ 3, the theory is characterized by a

global Abelian O(2) symmetry. The conjecture we have
discussed in the Introduction suggests therefore that the
two-flavor gauge model has a finite-temperature transition
analogous to that occurring in 2D O(2)-invariant spin
models, which undergo aBKT transition from the disordered
phase to a low-temperatureQLROphase [2]. Aswe shall see,
this conjecture is supported by the numerical results.
To determine the nature of the transitions, we will

perform a FSS analysis [22–25] of the numerical data.
We focus on the correlations of the gauge-invariant bilinear
operator,

Qfg
x ¼

X

a

ϕaf
x ϕag

x −
1

2
δfg: ð4Þ

Note that, for Nf ¼ 2, Qx has only two independent real
components. We consider the two-point function

Gðx − yÞ ¼ hTrQxQyi; ð5Þ

where the translation invariance of the system has been
taken into account. We define the susceptibility χ ¼
P

x GðxÞ and the correlation length

ξ2 ¼ 1

4sin2ðπ=LÞ
G̃ð0Þ − G̃ðpmÞ

G̃ðpmÞ
; ð6Þ

where G̃ðpÞ ¼ P

x e
ip·xGðxÞ is the Fourier transform of

GðxÞ and pm ¼ ð2π=L; 0Þ. We also consider universal RG
invariant quantities, such as the Binder parameter U,
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U ¼ hμ22i
hμ2i2

; μ2 ¼
1

V2

X

x;y

TrQxQy; ð7Þ

where V ¼ L2 (note that χ ¼ Vhμ2i), and the ratio

Rξ ≡ ξ=L: ð8Þ

In the FSS limit, we have (see, e.g., Ref. [6])

Uðβ; LÞ ≈ FUðRξÞ; ð9Þ

where FUðxÞ is a universal scaling function that completely
characterizes the universality class of the transition. In
particular, universality is expected at BKT transitions and
in the whole low-temperature spin-wave phase, see, e.g.,
Refs. [16,17,20,26–28].
Because of the universality of relation (9), we use the

plots of U versus Rξ to identify the models that have the
same universal behavior. If the estimates of U for two
different systems fall onto the same curve when plotted
versus Rξ, the transitions in the two models belong to the
same universality class. Therefore, we will compare the
FSS curves for the lattice SO(Nc) gauge model with
the analogous ones for the 2D XY model. If the data
for the two models have the same scaling behavior, we
will conclude that the gauge model undergoes a BKT
transition as the XY model. The same strategy was
employed in Refs. [6–8], to characterize the asymptotic
zero-temperature behavior of 2D lattice gauge models with
non-Abelian global symmetry group.

III. NUMERICAL RESULTS

A. The conjecture for systems
with O(2) global symmetry

We wish to verify numerically the general conjecture
originally put forward in Ref. [7]. In the present case,
it predicts that, for any Nc ≥ 3, the lattice model with
Hamiltonian (1) with two flavors undergoes a transition
analogous to that of the paradigmatic 2D O(2) invariant XY
model defined by the Hamiltonian

HXY ¼ −
X

x;μ

Reψ�
xψxþμ̂; ð10Þ

where ψx are complex phase variables, jψxj ¼ 1, associated
with each site of the square lattice. This model undergoes
a BKT transition at βc ¼ 1.1199ð1Þ [16,19], with a
low-temperature phase that shows QLRO with vanishing
magnetization.
The correspondence can be justified using the arguments

presented in Ref. [8]. If the conjecture holds, the lattice
model (1) withNf scalar flavors should be related to the 2D
RPNf−1 model, defined by the Hamiltonian

HRP ¼ −t
X

x;μ

ðφx · φxþμ̂Þ2; ð11Þ

where φx is a unit-length Nf-component real field. Indeed,
the RPN−1 space is a symmetric space that has the same
global O(Nf) symmetry. The model has also a local Z2

symmetry, which effectively appears because the order
parameter Qx is invariant under the local Z2 transforma-
tions ϕx → sxϕx, sx ¼ �1. In the RPN−1 model, the order
parameter is

qfgx ¼ φf
xφ

g
x −

1

Nf
δfg; ð12Þ

which is the counterpart of Qfg
x defined in the lattice

SOðNcÞ gauge theory. In the two-flavor case, Nf ¼ 2, one
can easily show that, for the computation of Z2 gauge-
invariant quantities, the RP1 model can be mapped onto the
XY model. Under this mapping, the order parameter qfgx
(which has only two independent real components) is
mapped onto the complex field ψx of the XY model.
Therefore, the critical behavior of the correlation function
of the operator Qx, defined in Eq. (5), is expected to
correspond to that of the two-point function,

GXYðx; yÞ ¼ hψ�
xψ yi; ð13Þ

in the XY model. Using GXY , one can then define the
correlation length ξ, the Binder parameter U, and the ratio
Rξ, using again Eqs. (6), (7), and (8), respectively.

B. Monte Carlo simulations

In the following, we report numerical results for the 2D
lattice SOðNcÞ gauge theories with two scalar flavors,
cf. Eq. (1). We consider square lattices of linear size L with
periodic boundary conditions. To update the gauge fields,
we use an overrelaxation algorithm implemented à la
Cabibbo-Marinari [29], considering the SO(2) subgroups
of SOðNcÞ. We use a combination of Metropolis updates
and microcanonical steps [30] in the ratio 3∶7. In the
Metropolis update, link variables are randomly generated,
and then accepted or rejected by a Metropolis step [31],
with an acceptance rate of approximately 30%. For the
scalar fields, a combination of Metropolis and micro-
canonical updates is used, with the Metropolis step tuned
to have an acceptance rate of approximately 30%. Errors
are estimated using a standard blocking and jackknife
procedure, to take into account autocorrelations, which
are expected to increase roughly as L2. Typical statistics of
our runs, for a given value of the parameters and of the size
of the lattice, are approximately 107 lattice sweeps (in a
sweep we update once all lattice variables). For the larger
lattice sizes, the autocorrelation times of the observables
considered were of order 104 sweeps at most, even at Tc,
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thus obtaining a sufficiently large number of independent
measures.

C. The low-temperature spin-wave phase

To gain evidence of the existence of a low-temperature
QLRO phase, we show that spin-wave relations hold
asymptotically for sufficiently low temperatures. The
spin-wave theory is expected to describe the critical
behavior of the XY model along the line of fixed points
that runs from T ¼ 0 up to the BKT point Tc. Conformal
field theory, see, e.g., Ref. [32], exactly provides the large-
L limit of the two-point function in the spin-wave model. In
particular, it allows us to compute the universal asymptotic
relation between the ratio Rξ and the exponent η. Results
for square lattices with periodic boundary conditions are
reported in Refs. [19,27] (see, in particular, the formulas
reported in Appendix B of Ref. [27]). The exponent η
characterizes the temperature-dependent power-law decay
of the two-point function in the QLRO phase,

GðxÞ ∼ jxj−ηðTÞ: ð14Þ

Alternatively, we can define it by considering the large-L
behavior of the susceptibility,

χðL; TÞ ∼ L2−ηðTÞ: ð15Þ

In the QLRO phase, ηðTÞ varies from ηðTcÞ ¼ 1=4 to
ηðT → 0Þ → 0, and Rξ from RξðTcÞ ¼ 0.750691… to
RξðT → 0Þ → ∞.
We recall that, at Tc, the RG theory appropriate for the

BKT transition predicts the asymptotic large-L behavior
[19,20,27],

RξðL; TcÞ ¼ RξðTcÞ þ
CRξ

wðLÞ þOðw−2Þ;

wðLÞ ¼ ln
L
Λ
þ 1

2
ln ln

L
Λ
; ð16Þ

where Λ is a model-dependent constant, and RξðTcÞ and
CRξ

are universal. Using the spin-wave theory, one obtains
RξðTcÞ ¼ 0.750691… and CRξ

¼ 0.212431…. Analogous
results can be obtained for the Binder parameter U [26], in
particular UðTcÞ ¼ 1.018192ð6Þ.
To study the low-temperature behavior, we have per-

formed simulations for Nc ¼ 3 at values of β such that
Rξ > RξðTcÞ, using periodic boundary conditions. We have
determined the large-L extrapolations of Rξ and η, by fitting
the data of χ and Rξ at fixed β to the Ansätze,

ln χðLÞ ¼ aþ ð2 − ηÞ lnLþ bL−ε; ð17Þ

RξðLÞ ¼ Rξ þ aL−ε; ð18Þ

respectively, where ε is the exponent associated with the
expected leading corrections [27,33],

ε ¼ Minð2 − η;ωÞ; ω ¼ 1=η − 4þO½ð1=η − 4Þ2�:
ð19Þ

For Nc ¼ 3 and γ ¼ 0, the quality of the fits can be
assessed from the results shown in Fig. 1. Fits to Eqs. (17)
and (18) are very good, as it also supported by the values of
χ2=d:o:f (χ2 is here the sum of the fit residuals and d.o.f is
the number of degrees of freedom of the fit), which are
smaller than 1, if a few results for the smallest lattice sizes
are discarded. For Nc ¼ 3 and γ ¼ 0, we obtain the large-L
extrapolations η ¼ 0.195ð1Þ, 0.1659(8), 0.1464(4), and
Rξ ¼ 0.8630ð5Þ, 0.9439(2), 1.0080(2), for β ¼ 4.0, 4.2,
4.4, respectively. We have also performed a detailed study
for γ ¼ 1 and β ¼ 4.4. We obtain η ¼ 0.153ð2Þ and Rξ ¼
0.9895ð3Þ. Note that ω, see Eq. (19), is known precisely

20 30 40 50 60 70 80 90 100

L

4

5

6

7

8

ln χ

β = 4.4
β = 4.2

20 30 40 50 60 70 80 90 100

L

0.95

1.00

Rξ

β = 4.4
β = 4.2

FIG. 1. Data of Rξ (bottom) and ln χ (top) in the low-temper-
ature spin-wave phase of the model with Nc ¼ 3 and γ ¼ 0, at
β ¼ 4.2 and β ¼ 4.4. The dashed lines are obtained by fitting the
data (results for the smallest lattice sizes have been discarded) to
the Ansätze (17) and (18).
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only for η close to 1=4. In the fits, we use ω as obtained
from Eq. (19), and therefore ω gives the leading correction-
to-scaling exponent for η≳ 0.17. In such cases, to estimate
the error due to the uncertainty on ω, we checked the
variation of the results of the fits when varying ω in around
the approximation obtained from Eq. (19), within a
reasonable interval of about 10%. This has allowed us to
estimate how η and Rξ vary with changes of ω. Such
variation has been included in the final error.
In Fig. 2, we plot Rξ versus η together with the universal

curve computed in the spin-wave theory. The results for Rξ

and η are in excellent agreement with the spin-wave
predictions. This shows the existence of a low-temperature
phase with QLRO, analogous to that occurring in the
XY model.

D. FSS at the BKT transition

In Sec. III C, we showed that the SO(3) gauge model has
a low-temperature phase with the same features of the low-
temperature phase of the XY model. Now, we focus on the
finite-temperature transition that ends the high-temperature
phase, to check whether the FSS behavior is the same as
that observed at the BKT transition of the XY model.
To begin with, in Fig. 3, we show the estimates of the

correlation length ξ for Nc ¼ 3 and γ ¼ 0. They show a
sudden increase around β ≳ 3.5, as expected in the pres-
ence of a finite-temperature BKT transition. To characterize
the nature of the transition, we plot the Binder parameter U
versus the ratio Rξ, In the FSS limit, data should belong to a
curve that only depends on the universality class. In Fig. 4,
we report our numerical results for Nc ¼ 3 and for three

values of γ, which are γ ¼ 0;�1. In all cases, data appear to
approach a universal FSS curve with corrections that
decrease quite rapidly with the size. We also report data
for the 2D XY model, that have been obtained by standard
Monte Carlo simulations for lattice sizes L ¼ 100, 200.
They are apparently sufficient to provide a good approxi-
mation of the asymptotic FSS behavior (the differences
between the L ¼ 100 and L ¼ 200 scaling curves are very
small and hardly visible in Fig. 4). It is quite clear that the
data for the gauge model fall on top of the XY scaling
curve, confirming that the transition has the same universal
features: the gauge SO(3) model undergoes a BKT tran-
sition as the XY model. Analogous results are obtained for
Nc ¼ 4 and Nc ¼ 5, as shown in Fig. 5, where we report
data for γ ¼ 0. In both cases, the data for the gauge model
converge toward the FSS curve of the XY model.
We note that the approach to the asymptotic FSS

behavior (9) is apparently quite fast in all lattice models
considered, including the 2D XY model. In particular, the
scaling corrections for the lattice SO(Nc) gauge models
appear to effectively decrease roughly as L−1 in the limited
range of L that we consider, up to L ¼ 128. At BKT
transitions, logarithmic corrections are generally expected
[16,17,20,26,27]. However, our range of values of L is too
small to allow us to detect logarithmic changes of the
estimates. In the range we consider, power-law corrections
effectively dominate. Significantly larger sizes are needed
to allow us to perform fits that include both logarithmic and
power-law corrections. Even though our analyses are not
sensitive to the slowly decaying logarithmic corrections, we
can argue that the systematic error they induce is small
(we only refer here to the behavior of U versus Rξ; we
are not claiming that logarithmic corrections are always

0.10 0.15 0.20 0.25

 η

0.8

1.0

1.2

Rξ

spin wave
N

c
=3    γ=0

N
c
=3    γ=1

FIG. 2. Plot of the large-L extrapolations of Rξ versus η
(computed from the finite-size behavior of the susceptibility χ)
for the lattice SO(3) gauge model. We report results for γ ¼ 0 and
β ¼ 4.0, 4.2, 4.4 and for γ ¼ 1, β ¼ 4.4. We also report the
universal asymptotic large-L curve (full line) computed in the
spin-wave theory, for a system with square geometry and periodic
boundary conditions [19,27].

3.0 3.2 3.4 3.6 3.8 4.0
β

20

40

60

80

ξ

L=16
L=32
L=64
L=128

N
c
=3

FIG. 3. Estimates of the correlation length ξ versus β for the
lattice SO(3) gauge model (1) with γ ¼ 0, for several values of L,
up to L ¼ 128. When the results for different values of L agree,
they can be considered as good approximations of the infinite-
volume correlation length, within errors. The vertical lines
indicate the interval of values of β in which the BKT transition
occurs.
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negligible). Indeed, the coefficients of the logarithmic
corrections are not universal, and therefore we expect
different logarithmic corrections in the XY model and in

the gauge models we consider here. Thus, assuming that all
models have a common universal asymptotic behavior,
we can infer the size of the logarithmic correction by
looking at the differences between the results obtained
in the different models. As apparent from Figs. 4 and 5,
differences are tiny, indicating that these elusive corrections
play little role here.
Accurate estimates of the critical BKT temperatures

are hard to obtain, since their determination is generally
affected by logarithmic corrections; see Eq. (16). The pro-
blem of the logarithmic corrections can be overcome by the
so-called matching method put forward in Refs. [16,17,19]
(see also Refs. [27,28] for applications to some 2D
quantum lattice gas models). Here, we do not pursue this
analysis further, since we are not particularly interested
in obtaining precise estimates of the critical temperatures.
We only mention some rough estimates of the transition
temperatures obtained by looking at the β-values where
Rξðβ; LÞ ≈ RξðTcÞ ¼ 0.750691…. For Nc ¼ 3, we find
βc ≈ 3.82 for γ ¼ 0, βc ≈ 3.77 for γ ¼ 1, and βc ≈ 3.92

0.0 0.2 0.4 0.6 0.8
Rξ

1.0

1.2

1.4

1.6

1.8

2.0

U

L=16
L=32
L=64
L=128
L=100
L=200

N
c
=3    γ=1

XY

0.0 0.2 0.4 0.6 0.8
Rξ

1.0

1.2

1.4

1.6

1.8

2.0

U

L=16
L=32
L=64
L=128
L=100
L=200

N
c
=3   γ=0

XY

0.0 0.2 0.4 0.6 0.8
Rξ

1.0

1.2

1.4

1.6

1.8

2.0

U

L=16
L=32
L=64
L=128
L=100
L=200

N
c
=3    γ=−1

XY

FIG. 4. We plot data of U versus Rξ for Nc ¼ 3, γ ¼ 1 (top),
γ ¼ 0 (middle), and γ ¼ −1 (bottom).We report analogous data for
the 2D XY model (10). We observe a nice agreement, supporting
the conjecture that the lattice SO(Nc) gauge model with two scalar
flavors undergoes a finite-temperature BKT transition for generic
values of γ. The horizontal and vertical lines indicate the universal
values of U and Rξ at the BKT transition, i.e., UðTcÞ ¼
1.018192ð6Þ and RξðTcÞ ¼ 0.750691…, respectively [19,26].

0.0 0.2 0.4 0.6 0.8
Rξ

1.0

1.2

1.4

1.6

1.8

2.0

U
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L=32
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L=100
L=200

N
c
=5
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0.0 0.2 0.4 0.6 0.8
Rξ

1.0

1.2

1.4

1.6

1.8

2.0

U

L=16
L=32
L=64
L=128
L=100
L=200

N
c
=4

XY

FIG. 5. Plot of U versus Rξ for Nc ¼ 4 (bottom) and Nc ¼ 5
(top), at γ ¼ 0. We also report data for the 2D XY model (10). The
FSS curve of the XY model is clearly approached by the data for
the lattice SOðNcÞ models with increasing L. The horizontal and
vertical lines indicate the BKT values UðTcÞ ¼ 1.018192ð6Þ and
RξðTcÞ ¼ 0.750691…, respectively [19,26].
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for γ ¼ −1. Moreover, we estimate βc ≈ 4.80 for Nc ¼ 4
and βc ≈ 5.76 for Nc ¼ 5, at γ ¼ 0.
In conclusion, the FSS analysis has allowed us to

determine the nature of the finite-temperature transitions
occurring in the lattice SOðNcÞ gauge model (1) with two
flavors. ForNc ¼ 3, 4, 5, we find that the transition belongs
to the BKT universality class, as in the classical XY model.
This occurs at least in an interval of values of γ around the
infinite gauge-coupling value γ ¼ 0.

IV. CONCLUSIONS

We have studied a class of 2D lattice non-Abelian
SO(Nc) gauge models with two real scalar fields, defined
by the Hamiltonian (1). Such lattice gauge models are
obtained by partially gauging a maximally Oð2NcÞ-
symmetric multicomponent real scalar model, using the
Wilson lattice approach. For Nc ≥ 3, the resulting theory is
locally invariant under SOðNcÞ gauge transformations and
globally invariant under Abelian O(2) transformations. This
study extends previous work on 2D models with a local
gauge invariance and a global non-Abelian symmetry
[6–8], in which a critical behavior can only be observed
in the zero-temperature limit. In the models considered
here, instead, the global Abelian O(2) symmetry may allow
finite-temperature BKT transitions between the disordered
phase and the low-temperature QLRO phase.
The universal features of the transitions have been

determined by performing FSS analyses of Monte Carlo

data. We present results for the two-flavor lattice SOðNcÞ
gauge models (1) with Nc ¼ 3, 4, 5. They show that these
systems undergo a finite-temperature BKT transition that
separates the disordered phase from the low-temperature
phase. Moreover, we have verified that the low-temperature
phase is characterized by spin waves, analogously to the
standard XY model.
These results provide additional evidence in favor of the

conjecture that the critical behavior of 2D lattice gauge
models, defined using the Wilson approach [1], belongs to
the universality class of the field theories associated with
the symmetric spaces that have the same global symmetry.
This conjecture assumes that gauge correlations are not
critical and decouple in the critical limit. Therefore, the
conjecture may fail when the gauge correlations are critical,
giving rise to a more complex behavior. A similar phe-
nomenon has been observed in the three-dimensional
lattice Abelian-Higgs model with noncompact gauge fields;
see, e.g., Ref. [34] and references therein.
We finally mention that the interplay between global

and gauge symmetries has also been studied in three-
dimensional models; see Refs. [21,34–36].
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