
 

Finding the deconfinement temperature in lattice Yang-Mills theories from
outside the scaling window with machine learning
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We study the machine learning techniques applied to the lattice gauge theory’s critical behavior,
particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We
find that the neural network, trained on lattice configurations of gauge fields at an unphysical value of the
lattice parameters as an input, builds up a gauge-invariant function, and finds correlations with the target
observable that is valid in the physical region of the parameter space. In particular, we show that the
algorithm may be trained to build up the Polyakov loop which serves an order parameter of the deconfining
phase transition. The machine learning techniques can thus be used as a numerical analog of the analytical
continuation from easily accessible but physically uninteresting regions of the coupling space to the
interesting but potentially not accessible regions.
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I. INTRODUCTION

The theory of strong interactions, quantum chromody-
namics (QCD), exhibits several nonperturbative properties
that lack so far a solid theoretical explanation. This theory
challenges scientists with the phenomena of confinement of
color, mass-gap generation, and chiral symmetry breaking
observed at low temperatures. At high enough temperature,
QCD experiences a smooth deconfinement transition of
the crossover type, where these properties are gradually
lost, leaving the scene for various thermal effects. High-
temperature properties of QCD matter can be probed
experimentally in relativistic heavy-ion collisions that
create a quark-gluon plasma that once existed in the early
moments of our Universe [1].
The nonperturbative physics of QCD appears as a result

of the gluon dynamics encoded in the non-Abelian gauge
sector of the theory. Theoretically, these issues can be
addressed either in low-energy effective models or in first-
principle numerical simulations in a lattice formulation of

the theory. In practice, however, the quark matter at finite
baryon density poses a substantial challenge even for first-
principle numerical simulations due to the notorious sign-
problem [2]. While particular methods, such as analytical
continuation, can solve this problem for a low-density
plasma, the most advanced lattice QCD approaches
encounter difficulties in dealing with the moderate-density
quark matter [3]. The dense regime is particularly interest-
ing as it will emerge in the next-generation experiments to
be performed at the NICA facility in Dubna, Russia and
FAIR facility at Darmstadt, Germany.
One of the promising ways to engage the unsolvable

problems in lattice field theories, such as QCD, is based on
the application of the newest information processing
methods in combination with standard Monte-Carlo tech-
niques. In this work, we aim to discuss machine learning
(ML) approaches [4] in the context of non-Abelian gauge
theories. We focus on a pure Yang-Mills theory without
fermions in order to elucidate the finite-temperature decon-
finement phase transition, with a further intention for future
applications to the non-Abelian theory with fermions.
It is widely believed that the ML approaches may prove

their usefulness in revealing complex mechanisms of
nonperturbative phenomena in systems with many (or even
infinite, in the thermodynamic limit) degrees of freedom
[5,6]. The neural network may learn a physical phenome-
non in an extensive system by building an approximation of
some input parameters’ function and mapping it to the
target physical observable. This procedure may give an
insight into the physical mechanism of the original phe-
nomenon in question by analyzing the way what the neural
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network learned it (see, for example, Ref. [7]). Field
configurations of the quantum field theory and spin
systems, viewed as statistical ensembles in the thermody-
namic limit, are well-suited for the application of machine-
learning techniques, as it was demonstrated in a number of
recent works [7–14].
In this article, we investigate the ability of a neural

network to reconstruct gauge-invariant observables based
on the analysis of a limited set of lattice configurations. Of
particular interest is the ability of a neural network—trained
on data in a narrow range of parameters, or even at a single
isolated value—to predict observables outside the training
range. We will consider the ability of a network trained at a
nonphysical point (which lies outside of a continuum limit
of the theory), far from a phase transition, to build up
correctly the order parameter which will later be used to
predict critical behavior of the system in the scaling region
related to the continuum limit.
The structure of our paper is as follows. In Sec. II

we start with a short overview of the machine-learning
approaches to the lattice quantum field theories and des-
cribe the aims of the current study in the ML context. In
Sec. III we describe the subject of interest, Yang-Mills
theory on the lattice, highlighting the properties of the
training regions of the ML algorithms and determination of
the phase transition. The main subject of our paper is
described in Sec. IV where we use the machine learning
methods to built up the order parameter of the lattice Yang-
Mills theory using the data outside the scaling window of
the theory. The last section is devoted to our conclusions.

II. MACHINE LEARNING OF LATTICE FIELDS

The use of the ML techniques in analysis of lattice gauge
theories may pursue different purposes.

A. Speeding up numerical calculations

Lattice QCD simulations often require vast computer
power and capacious data storage, especially in non-
Abelian gauge theories with dynamical fermions. This
problem largely limits the lattice volume and reduces the
accumulated statistics of numerical simulations. Besides
improving the computing hardware, further development of
the lattice QCD applications requires radical amelioration
of the existing algorithms. The ML methods provide us
with exciting options for an advance in this direction.
In this approach, an neural network is trained to

recognize certain observables at a limited number of lattice
Monte-Carlo configurations corresponding to a preliminary
chosen set of lattice parameters. A well-trained neural
network is then supposed to be able to predict the values
of these observables for a previously unseen lattice con-
figuration in a broader range of parameter space. Basically,
the machine-learning algorithm works as an improved tool
which efficiently makes interpolation and extrapolation
in the space of thermalized configurations based on a

small number of learned reference points. While the
learning phase of the neural networks could be rather slow,
a well-trained neural network gives its predictions very fast.
The use of the fast neural network instead of the slow
Monte-Carlo simulations may significantly reduce the
required computing power in computing observables over
a wide range of the parameter space. As an example, we
mention that this approach shows essential advantages in
estimating the constant physics line and the ability to
overcome critical slowing down [15].
The other direction of improving lattice QCD simula-

tions is the speeding up of configurations generation and
decreasing autocorrelation time. The ML techniques allow
generalizing Hamiltonian Monte Carlo algorithm (state-of-
the-art algorithm in lattice QCD) with neural networks.
Authors of [16] argue considerable improvement in effec-
tive sample size and better mixing properties when a hybrid
Monte-Carlo algorithm is stuck in one vacuum. Various
approaches, such as generative adversarial networks [17] or
normalizing flows [18], can be applied to the generation of
lattice configuration itself. The latter approach has been
recently applied to SU(N) lattice gauge theory [19] and
shown considerable improvement of autocorrelation time in
U(1) Lattice gauge theory [20].
The supervised machine learning was shown to be used

as an efficient reweighting technique to extrapolate the
Monte-Carlo data over continuous ranges in parameter
space [11].
The ML techniques can may be used to uncover the

position of a phase transition in the phase space of a model.
The key observation is that while theML algorithm can give
robust results at both sides of (and sufficiently far enough
from) the phase transition, the neural network becomes less
confident as the transition line is approached. This lack of
confidence plays a positive role in determination of the
phase diagram via ML-based methods. The confusion
of the machine-learning algorithm may be quantified via
a specific ML variable and may therefore serve as an ML-
based order parameter used to determine the location of a
phase transition [21]. This criterion, applied to Abelian
monopoles, gives a good prediction of a thermodynamically
smooth deconfinement phase transition of the Berezinskii-
Kosterlitz-Thouless type in a low-dimensional model that
exhibits the confinement phenomenon [13].
The ML techniques can also speed up the classification

of complicated (nonlocal) observables, for example, of the
topological charge in lattice Yang-Mills theory [12].

B. Uncovering underlying physics

The ML methods are instrumental in the exploration of
large datasets to reduce complexity and find new features
and correlations. These features motivate the application of
the ML methods to the high-energy physics experiments to
uncover and characterize new particle reactions [22]. The
lattice field configurations, generated by the Monte-Carlo
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techniques rather than by particle experiments, may also be
scrutinized by the ML techniques to determine unknown
correlations and pinpoint new physics.
Undoubtedly, the neural network itself cannot identify a

new mechanism of the studied phenomenon. Instead, the
method provides an efficient numerical tool to find new
relationships between field observables hidden otherwise in
vast volumes of the data (field configurations). The nature
of the new relations—provided by the ML algorithm—
gives information for a researcher to pinpoint the physical
mechanism of the phenomenon.
A neural network may uncover necessary ingredients of

a mechanism that drives a phase transition. One of the
essential tasks of an ML algorithm is the phase classifi-
cation. The classification is done on the basis of lattice
configurations that contain all information about the non-
perturbative physics of the modeled system. In the process
of learning how to classify the phases, the machine-learning
algorithm studies the lattice data that was previously
generated by the Monte-Carlo algorithm. The network
builds an internal observable (a decision function) that
allows it to distinguish the two phases. As soon as the
network acquires sufficient skills to distinguish the phases,
the constructed decision becomes an object for the further
study: it gives explicitly the structure of the variable that the
neural network has built to distinguish the phases. A recent
discussion of the use of the machine learning techniques for
understanding of the phase structure of a lattice field
theories through the statistical analysis of Monte Carlo
samples may be found in Ref. [23].
The feasibility of this approach has recently been

demonstrated in Ref. [7] where the machine-learning
algorithm has constructed—via a training process—the
phase-sensitive observables in the Ising model and SU(2)
Yang-Mills theory on the lattice. It turned out that the
decision functions give, respectively, the mean magnetiza-
tion and the Polyakov loop variable which are indeed well
known order parameters that determine the phase structure in
these theories.

C. Application to problems unreachable with
traditional methods

An essential advantage of the machine learning methods
is that they can be applied to certain physical phenomena
which cannot be simulated with traditional Monte Carlo
methods. For example, the authors of Ref. [24] demon-
strated that convolutional neural networks may identify and
locate phase transitions for quantummany-fermion systems
that experience severe fermion sign problem where conven-
tional approaches fail. Notice, the ML model did not have
any knowledge about the Hamiltonian of the system. This
result demonstrates the power of the neural network, and
the ability to make physically sound predictions.
In our paper, we aim to solve yet a different problem with

the ML methods. Let’s assume that we have a lattice system

where the traditional Monte Carlo methods work in a
restricted domain of the parameter space that cannot be
extrapolated to the continuum limit. The importance of this
unphysical and seemingly useless region is that in this
particular domain of coupling constants we know the value
of the order parameter very well, in a contrast with the
physically interesting critical region. We demonstrate the
power of the ML algorithm which is able to make correct
predictions in the interesting domain of the coupling space
after being trained in an unphysical single point of the
model. Based on the data in an unphysical point, the ML
algorithm restores an unknown—to the algorithm—lattice
expression for the order parameter and then this expression
is applied to recover the properties of the system in the
physical region. The prediction requires lattice configura-
tions at the prediction points. Thus, this approach does not
solve the issue of the generation of lattice configurations
in problematic areas. It is rather a tool for extrapolating
observables to the areas where direct calculations are
difficult or impossible.
Our study is motivated by the unsolved status of the QCD

phase diagramat nonzero baryonic density, where the results
are available at low values of the baryonic chemical
potential. The interesting region of the parameter space,
that contains a critical endpoint, cannot be reached with the
direct Monte Carlo simulations. The moderate-density
region is accessible only with a combination of analytical
and numerical tools such as Taylor expansion and analytical
continuation (see, for example, a recent review in Ref. [3]).
In this sense, our machine learning approach may be
considered as a simplified version of a purely numerical
technique that serves as an analytical continuation tool.
To demonstrate the power of the method, we take a

well studied model as a playground. We consider the lattice
Yang-Mills theory for two and three colors, train an neural
network to guess an order parameter on the configura-
tions with a small physical volumes in a perturbative
regime, and then show that the ML method may extrapo-
late (“analytically continue”) the results to the critical
confining-deconfining region, using the appropriate lattice
configurations as input.

III. YANG-MILLS THEORY AT FINITE
TEMPERATURE

We consider lattice SU(N) gauge theories with N ¼ 2
and N ¼ 3 colors at finite temperature. The lattice theory is
formulated via the Euclidean path integral

Z ¼
Z �Y

l

Ul

�
e−S½U�; ð1Þ

where the integration over the lattice gauge fields Ul that
belong to the SU(N) gauge group.
The Wilson action of the lattice SU(N) Yang-Mills

theory,

FINDING THE DECONFINEMENT TEMPERATURE IN LATTICE … PHYS. REV. D 103, 014509 (2021)

014509-3



S½U� ¼ β
X
P

�
1 −

1

N
ReTrUP

�
: ð2Þ

is formulated in the Euclidean spacetime on the lattice with
the volume N3

s × Nt with periodic boundary conditions in
all dimensions. The sum runs over the lattice plaquettes
P ¼ fx; μνg described by the position of a plaquette corner
x and the plane orientation with directions μ ≠ ν. The non-
Abelian plaquette field UP is given by the ordered product
of the non-Abelian link fields Ul along the perimeter of the
plaquette: UP ¼ Q

l∈∂P Ul.
The lattice coupling in the action (2) is related to the

gauge coupling g in the continuum limit:

β ¼ 2N
g2

: ð3Þ

The continuum limit of the lattice Yang-Mills theory (2)
corresponds to the weak-coupling regime, β → ∞.
The length Ns of the shortest lattice direction determines

the temperature T of the system:

T ¼ 1

aNs
; ð4Þ

where a is the physical lattice spacing. The critical temper-
ature of SU(2) and SU(3) gauge theories in the continuum
limit are, respectively, as follows [25,26]:

TSUð2Þ
c ¼ 0.69ð2Þσ1=2SUð2Þ; TSUð3Þ

c ¼ 0.629ð3Þσ1=2SUð3Þ; ð5Þ

where σSUðNÞ denotes the corresponding zero-temperature
string tensions.
The knowledge of the physical value of the lattice

spacing a at a given value of the lattice coupling β allows
us to relate dimensionful lattice quantities to their con-
tinuum counterparts. For example, the value of temperature
(4) at a critical lattice coupling βc allows us to recover the
deconfining temperatures in physical units (5). The con-
tinuum limit of lattice Yang-Mills theory is achieved in a
weakly-coupling region (g ≪ 1 or, equivalently, β ≫ 1)
where the dependence of the lattice spacing a on the SUðNÞ
coupling constant g is controlled by the renormalization
group equation. For example, in pure SU(2) gauge theory a
two-loop calculation gives

aSUð2Þðg2Þ ¼
1

ΛL
exp

�
−
12π2

11g2
þ 51

121
ln
24π2

11g2

�
; ð6Þ

where ΛL ≃ 0.0221 ffiffiffiffiffiffiffiffiffiffiffiffiσSUð2Þ
p is a fixed mass scale. The

coupling constants in the continuum g and on lattice β
are related to each other via Eq. (3).
The Yang-Mills theories possess the confining phase at

low temperature and the deconfinement phase at high tem-
perature. The phases are separated by the thermodynamic
phase transition. The phase transition in the simplest

two-color (N ¼ 2) gluodynamics is of the second order
while the theories with the N ≥ 3 colors possess the
stronger, first-order phase transition.
The order parameter of the deconfinement phase tran-

sition is the expectation value of the Polyakov loop. In the
lattice calculations, it is convenient to identify the bulk
Polyakov loop:

L ¼ 1

V

�����
X
x

Lx

����
	
; ð7Þ

where the sum goes over all spatial sites x of the lattice and
V ¼ N3

s is the spatial volume. The local Polyakov loop,

Lx ¼
1

N
Tr

YNt−1

t¼0

Ux;t;4; ð8Þ

is given by the ordered product of the lattice Ux;μ matrices
along the temporal direction μ ¼ 4.
It is also convenient to define the susceptibility of the

Polyakov loop using a light abuse of notations:

χ2 ≡ hL2i − hLi2 ¼
�����

X
x

Lx

����
2
	
−
�����

X
x

Lx

����
	

2

: ð9Þ

In the SU(3) gauge theory, we will also work with the real
and imaginary parts of the Polyakov loop, which amounts
to substitute Lx → ReLx; ImLx in Eq. (7) and below.
Susceptibility of the Polyakov loop provides us with a

convenient tool for the determination of the confinement/
deconfinement phase transition and the critical lattice cou-
pling. In our study, we use rather low statistics (about 100
lattice configurations) for the neural network predictions.
Therefore, statistical errors are large and they do not allow us
to determine the critical value with acceptable errors using
the susceptibility only. In this study, we employed another
statistical moment, the Binder cumulant [27]:

C4 ¼ 1 −
hL4i
3hL2i2 ; ð10Þ

and determine the critical value βc by fitting data of the
Binder moments of the Polyakov loop with the help of the
following function:

Cfit
4 ðβÞ ¼ Aþ B tanh

β − βc
δβ

; ð11Þ

where A and B are the fitting parameters that determine the
strength of the cumulant, while βc and δβ correspond to the
position of the transition and its width, respectively. These
critical values will be shown in the figures below.
In the next section, we describe the machine-learning

algorithm which includes the training of the neural net-
work. The training points for SU(2) and SU(3) gauge
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theories are set at the lattice coupling constants β ¼ 4 and
β ¼ 10, respectively. Both these points correspond to a
deep weak-coupling regime where the gluons reside in a
perturbatively deconfining phase for the lattice sizes used.
In other words, at these parameters, the physical size of the
lattice is so small, that the confining string has no space to
develop itself. Since all distances in such a volume are
smaller than the confining scale, the Yang-Mills theory
resides necessarily in a deconfining state. The perturbative
deconfinement regime has obviously a different nature
compared to the usual deconfinement phase: the former
appears as a result of a finite spatial volume while the latter
comes as a consequences of finite-temperature effects in the
thermodynamic (infinite-volume) limit.
In order to quantify the scales of the finite-volume

deconfinement, we notice that at the large lattice coupling
β ¼ 4, the lattice spacing of the SU(2) gauge theory is
a ¼ 3.4 × 10−3σ−1=2. In physical units, a ¼ 1.6 × 10−3 fm,
where we adopted the phenomenological value

ffiffiffi
σ

p ¼
440 MeV ≃ ð0.46 fmÞ−1 for the string tension. The con-
finement phase may only be realized at spatial lattice sizes
Ns ≳ 300, for which the lattice size is of the order or bigger
than the typical confining distance scale, aSUð2ÞNs ≳ σ−1=2.
For a typical lattice size used in the numerical simulations,
Ns ∼ ða fewÞ × 10, the vacuum resides in the finite-volume
deconfining phase because the maximal possible interquark
distances are much smaller than the perturbative scale
r ≃ 0.1 fm. Similar estimations are also valid for the SU(3)
lattice theory.
The training points β ¼ 4 and β ¼ 10 do not correspond

to physically viable realizations of the continuum SU(2)
and SU(3) Yang-Mills theories in their thermodynamic
limits. These points are selected to represent an uninterest-
ing unphysical region of the theory at which, however, the
explicit calculations may be performed with the help of a
Monte Carlo technique. We will show that the information
coming from the MC configurations are enough for the ML
algorithm to learn about the order parameter and use this
order parameter later in order to make accurate predictions
in the physically relevant scaling window of the lattice
Yang-Mills theory.

IV. RESTORATION OF THE ORDER PARAMETER
WITH NEURAL NETWORKS

In this section, we discuss application of the ML
methods to predict an order parameter of the theory with
lattice configurations as an input. The study focuses on
building of an neural network that can predict observables
of the SU(2) and SU(3) theories.

A. SU(2) gauge theory

To build a machine-learning algorithm that can analyze
lattice data of non-Abelian theory, we need to construct a
multidimensional dataset from a lattice configuration that is

a matrices dataset. To this end, we use the following vector
representation for the SU(2) matrices:

U ¼
�
u11 u12
u21 u22

�
≡

�
a1 þ ia2 a3 þ ia4
−a3 þ ia4 a1 − ia2

�
→

0
BB@

a1
a2
a3
a4

1
CCA;

ð12Þ

where a1 ¼ Reðu11Þ, a2 ¼ Imðu11Þ, a3 ¼ Reðu12Þ, and
a4 ¼ Imðu12Þ.
After the matrix dimension’s flattening, an array with

shape ½Nt; Ns; Ns; Ns; Dim; 4� represents the lattice con-
figuration. The last dimension corresponds to the matrix
element numbering discussed above, and Dim is the
direction μ of the matrix UμðxÞ at every lattice site [Nt,
Ns, Ns, Ns]. We use 3D convolutional layers and reshape
lattice configuration as a 4D array (3 dimensions for spatial
coordinates and one for channels) due to technical reasons.
Since we build a neural network that searches correlations
between any two matrices UμðxÞ and UνðyÞ at the points
x and y closed to each other, we merge the last two
dimensions of the array. The other two dimensions could be
also merged by cost of locality—array M½y�½x� can be
presented as an array M½y � Ny þ x�.
The resulting lattice data array has a dimension of 4. The

first dimension corresponds to the numbering of temporal
layers of the lattice. The second dimension described by
single flattened array of two spatial axis, third dimension of
array corresponds to the last axis of the spatial direction,
and the last dimension corresponds to the numbering of the
matrix elements (12) for all lattice directions μ.
For the lattices with Nt ¼ 2, the neural network consists

of one three-dimensional convolutional layer with 16 filters
and the kernel size 2 × 1 × 1 with Relu activation function,
and a final dense layer with a linear activation function with
16 neurons. The averaging layer over the entire volume and
the flattening layer separate the convolutional and dense
layers. The architecture for the temporal lattice extension
Nt ¼ 2 is shown in Table I.
It is important to stress that the convolution kernels shape

defines the physical observable that the neural network can
extract from the lattice data. For example, the kernel size
equal to Nt × 1 × 1 leads to the neural network output with
a function of Nt UμðxÞ matrices located along the closed
line in Nt direction that corresponds to the Polyakov loop.
We generate 9000 lattice configurations at the one value

(β ¼ 4) of the lattice coupling for lattices with the spatial
sizes Ns ¼ 8, 16, 32 and the temporal sizes Nt ¼ 2, 4. We
also generate 100 configurations for a number of points at
lower values of the coupling β, that the neural network does
not use for training but rather for prediction.
Although a study of confinement-deconfinement phase

transition does not require configurations from all possible
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vacuum sectors, we found it essential to have high-quality
data generated from different vacuum sectors to train a
neural network.
We train the neural network on the lattice configurations

generated in the (volume-induced) deconfinement phase at
the point β ¼ 4 for SU(2) that is far from the phase
transition point. The neural network is trained to predict
correctly the value of the Polyakov loop that is already
known from the Monte Carlo simulations. We use the mean
squared error (MSE) as a loss function and the Adam
algorithm as the neural network parameters’ optimization
method. The training is done in batches of size 10–50
configurations for SU(3) and 10–50 for SU(2). The training
is halted when the loss function reached a plateau so that
the neural network gained the maximal possible—for the
given architecture—knowledge how to reconstruct the
order parameter from the lattice configurations.

As the result, the neural network that trained on the value
of the β ¼ 4 deep in the deconfinement region reproduces
the Polyakov loop with a perfect agreement with Monte-
Carlo data at all other values of the lattice coupling constant
including the region of the true deconfinement transition.
For the smallest spatial extension, Nt ¼ 2, the results are
shown in Fig. 1.
The perfect (modulo statistical errors) overlap between

the predicted and the original data indicates that the critical
value of the coupling constant βc is recovered by the
machine-learning algorithm very well. The errors in Fig. 1
correspond to the statistical uncertainties inherent to the
original Monte Carlo configurations of the gluon fields. At
the smallest lattice volume (Ns ¼ 8), the statistical errors
are naturally larger. We use the same number (100)
configurations for all three lattice sizes.
It is worth noticing the presence of the systematic bias of

the machine learning prediction visible in Fig. 1. Since the
bias increases as one moves away from the training
coupling constant β ¼ 4, one could, in principle, reduce
this bias by adding a training point at an intermediate
coupling constant. For our purposes of finding a point of
the phase transition, this improvement seems to be unnec-
essary since the systematic bias does not affect the critical
coupling constant within the statistical Monte-Carlo errors.
The observed systematics could be related to the fact that
the model has not restored the Polyakov loop perfectly at
the training point so that a small deviation from the perfect
theoretical expression gives a small systematic deviation
visible for all values of β.
We repeat the same analysis for the lattices with Nt ¼ 4

in which the critical coupling constant lies in the scaling
region of the theory. In this case, to find input data
correlations that correspond to the Polyakov loop, the
neural network needs to analyze longer pathways in the
gauge groups in order to be able to cover at least one
winding of the path along the time direction. Thus,
increasing the Nt value requires an additional convolution

FIG. 1. The Polyakov loop in SU(2) gauge theory at theNt ¼ 2 andNs ¼ 8, 16, 32 lattices. The Monte-Carlo (MC) simulation, shown
by the blue line, and the prediction of the machine-learning (ML) algorithm, shown by the orange line, overlap within the error bars. The
vertical dashed line shows the critical value of β obtained with the fits (11) of the Polyakov loop susceptibility (9). We use 100
configurations for all three lattice sizes.

TABLE I. Architecture of the neural network for the prediction
of the Polyakov loop in the SU(N) gauge theory with the temporal
size of the lattice Nt ¼ 2. Here Dim is dimension of theory, U is
dimension of vector representation.

Layer Structure

InputLayer In (Nt ¼ 2, Ns × Ns, Ns, Dim × U)
Out (Nt ¼ 2, Ns × Ns, Ns, Dim × U)

Conv3D In (2, Ns × Ns, Ns, Dim × U)
Out (1, Ns × Ns, Ns, 16)

AveragePooling3D In (1, Ns × Ns, Ns, 16)
Out (1, 1, 1, 16)

Flatten In (1, 1, 1, 16)
Out (16)

Dense In (16)
Out (1)
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layer. A combination of two convolution layers allows the
machine-learning algorithm to find correlations along four
time-links on the lattice. The space of the correlated
parameters increases as well. Thus, the dense layer has
to contain more neurons to learn the correlations. In the
case of Nt ¼ 4, the dense layer is built of 32 neurons (see
Table II).
The learning and validation curves for Nt ¼ 4 lattice are

shown in Fig. 2. These are representative examples,
qualitatively valid for all studied systems with Nt ¼ 2, 4
temporal extensions, Ns ¼ 8, 16, 32 spatial sizes, and both
SU(2) and SU(3) gauge groups. The learning rate lies in the
range [0.001, 0.002] depending on lattice size and theory.
The training with the subsequent validation has been done
at the perturbatively deconfining point with β ¼ 4. Both
learning and validation curves of Fig. 2 show the absence of
under- and overfitting as both curves gradually approach a
common plateau at the end of the learning process.
The result of the neural network analysis of the Nt ¼ 4

lattice is presented in Fig. 3. One can clearly see that
machine-learning algorithm reproduces the Polyakov loop
with a perfect agreement with Monte-Carlo data.
Our results point to the neural network’s ability to find

a physically meaningful correlation between the input
parameters that correspond to the trace of the SU(2)
matrices product along the time direction. The lattice
configurations of the gluon fields generated by the
Monte Carlo procedure contain noisy background related
to the ultraviolet fluctuations of the gluon fields and
random transformations of the SU(2) gauge-symmetry
group. The noise “hides” the signal of any observables
that are not prone to withstand these fluctuations. The
ultraviolet fluctuations affect any local observable, while
the random gauge transformations hide any nongauge-
invariant quantity in the random noise.

We also check the vulnerability of the ML algorithm for
the gauge noise that could theoretically affect the accuracy
in the prediction of the Polyakov loop. To this end, we take
100 gluon configurations at the coupling β ¼ 2.5 for the
representative lattice size 163 × 4. We then apply several
random gauge transformation to each gluon configuration
and subsequently initiate the machine learning algorithm to
predict the Polyakov loop using the gauge-randomized
gluons as an input. The result, presented in Fig. 4, shows
that the ML algorithm’s forecast is a gauge-invariant
quantity that does not depend on the strength of the gluonic
configuration’s randomization in the gauge group’s space
transformations.
Thus, the neural network selects a nonlocal and gauge-

invariant observable to characterize the phase. This simple
observation explains the impressive ability of the machine-
learning algorithm to find correlations in the data that
correspond to the Polyakov loop during the learning phase,
and subsequently find its values in the full range of the
coupling β during the prediction phase.
A correlation between the decision function of the

machine-learning algorithm and the Polyakov loop was
pointed out in Ref. [7]. The correlation was found after
the phase classification for the SU(2) theory by poly-
nomial fit of the neural network prediction function.
We used a neural network with a 3D convolution layer (I)
to analyze the SU(2) group parameters (12) as indepen-
dent quantities. Our approach allows us to build and train
the neural network that can find the order parameter at
the gauge configurations lying far outside the range
of the lattice coupling values used for the training. As
a result, the neural network recovers the order parameter
which is later applied to all physically interesting values
of coupling.

TABLE II. The same as in Table II but for Nt ¼ 4.

Layer Structure

InputLayer In (Nt ¼ 4, Ns × Ns, Ns, Dim × U)
Out (Nt ¼ 4, Ns × Ns, Ns, Dim × U)

Conv3D In (4, Ns × Ns, Ns, Dim × U)
Out (2, Ns × Ns, Ns, 256)

Conv3D In (2, Ns × Ns, Ns, 256)
Out (1, Ns × Ns, Ns, 32)

AveragePooling3D In (1, Ns × Ns, Ns, 32)
Out (1, 1, 1, 32)

Flatten In (1, 1, 1, 32)
Out (32)

Dense In (32)
Out (1)

FIG. 2. Learning curves for training and validation at the point
β ¼ 4 of the SU(2) gauge theory on 163 × 4 lattice with the mean
squared error (MSE) used as a loss function. The MSE normal-
ized on the value of the order parameter squared, hjLji2, gives
qualitatively the same picture.
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B. SU(3) gauge theory

In this section we repeat the procedure of the prediction/
restoration of the order parameter for the SU(3) configu-
rations. We employ the same architecture of the neural
network that has already been used for the SU(2) lattice
gauge theory. Contrary to the SU(2) case, we use the full set
of 9 complex numbers in the SU(3) case.
In the case of the SU(3) group, the Polyakov loop is a

complex number. Therefore, we have to train and predict its
value independently both for real and imaginary part of the
Polyakov loop. As a training point, we use the lattice
coupling β ¼ 10 that corresponds to artificially small
lattices which feature the perturbative deconfinement.
Similarly to the SU(2) case, we generate 9000 lattice field
configurations for the training of the neural network and
use only 100 configurations for the prediction. The error
bars in the figures reflect the level of statistical fluctuations
of the original Monte Carlo configurations.
Repeating the same procedures as we done in the case of

SU(2) Yang Mills theory, we obtain the Polyakov loop in a

FIG. 4. The degree of the gauge dependence in the prediction of
the order parameter by the ML algorithm. The predicted order
parameter along with the prediction uncertainty vs the number of
the gauge randomization steps of the initial 163 × 4 gluon
configuration at β ¼ 2.5.

FIG. 3. The results for the Polyakov loop for SU(2) gauge theory atNt ¼ 4 coming from the Monte Carlo (MC) simulations compared
with the prediction of the machine-learning (ML) algorithm. The notations are same as in Fig. 1.

FIG. 5. The results for the Polyakov loop for SU(3) gauge theory at Nt ¼ 2 obtained with the Monte Carlo simulations as compared to
the neural network prediction. The absolute value, the real and imaginary parts of the loop are shown. The ML value of jLj restored from
ML predictions of jRe½L�j and jIm½L�j.
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perfect agreement with Monte Carlo simulations of the
SU(3) gauge theory, as shown in Figs. 5 and 6 for Nt ¼ 2
and Nt ¼ 4 cases, respectively. The neural network is able
to find the correlations in the lattice data at one (unphysical)
point of the lattice coupling, reconstruct the appropriate
order parameter, and find the critical behavior of the system
by applying the reconstructed operator to the full range of
the lattice couplings including the interesting region of the
real physical phase transition.

V. CONCLUSION

In our paper, we aim to demonstrate that the neural
network may serve as an efficient numerical counterpart of
an “analytical continuation” of physical observable as a
function of lattice configuration. The machine-learning
algorithm allows us to restore a gauge-invariant order
parameter after being trained on lattice configurations at
one unphysical point in the lattice parameter space. We
show that this numerically constructed order parameter
recovers the critical behavior of the system in the physical
region.
We have chosen the training point far away from the

physical region at a very weak coupling in the SU(2) and
SU(3) lattice gauge theories. This particular choice was
deliberately made in the most-possible unphysical way:
the training point cannot serve, either in numerical
approaches or in analytical techniques, for any meaningful
analysis of the phase structure of the theory because
the system experiences a finite-volume deconfinement
transition. Therefore, the model resides in the perturbative

regime and has no relation to the continuum nonperturba-
tive Yang-Mills theory.
After the training phase, the neural network was aimed to

reconstruct the Polyakov loop which is known to be the
deconfining order parameter of pure gauge theories. The
machine learning algorithm was able to build a trace of
the gauge group matrices product along a closed loop in the
time direction. As a result, the neural network trained at one
(unphysical) value of the lattice coupling β is effectively
able to predict the order parameter in the whole region of
the β values with a good precision. We thus demonstrated
that the machine learning techniques may be used as an
analytical-type continuation from easily reachable but
physically uninteresting regions of the coupling space to
the interesting but potentially not accessible regions. This
approach may prove to be particularly useful in models,
where simulations in a physical region cannot be done to
due numerical (computational) constraints provided the
unphysical (extreme) points are still available for training.
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