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We present a calculation of the pion quark momentum fraction, hxi, and its third Mellin moment hx2i.
We also obtain directly, for the first time, hxi and hx2i for the kaon using local operators. We use an
ensemble of two degenerate light, a strange, and a charm quark (Nf ¼ 2þ 1þ 1) of maximally twisted

mass fermions with clover improvement. The quark masses are chosen so that they reproduce a pion mass
of about 260 MeV and a kaon mass of 530 MeV. The lattice spacing of the ensemble is 0.093 fm and the
lattice has a spatial extent of 3 fm. We analyze several values of the source-sink time separation within
the range of 1.12–2.23 fm to study and eliminate excited-state contributions. The necessary renormalization
functions are calculated nonperturbatively in the RI0 scheme and are converted to the modified minimal
subtraction scheme at a scale of 2 GeV. The final values for the momentum fraction are hxiπuþ ¼
0.261ð3Þstatð6Þsyst, hxiKuþ ¼ 0.246ð2Þstatð2Þsyst, and hxiKsþ ¼0.317ð2Þstatð1Þsyst. For the third Mellin mo-

ments, we find hx2iπuþ ¼0.082ð21Þstatð17Þsyst, hx2iKuþ ¼0.093ð5Þstatð3Þsyst, and hx2iKsþ ¼ 0.134ð5Þstatð2Þsyst.
The reported systematic uncertainties are due to excited-state contamination. We also give the ratio

hx2i=hxi which is an indication of how quickly the parton distribution functions lose support at large x.
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I. INTRODUCTION

The pion and kaon provide a good laboratory for
studying QCD dynamics at hadronic scales. Moments of
parton distribution functions (PDFs) are important quan-
tities for the study of the internal structure of hadrons. They
can directly be computed nonperturbatively within lattice
QCD, using local operators, up to hx3i, and yield important
insights that complement experimental programs that
mostly measure PDFs for the nucleon. As the global
initiatives to study PDFs in a variety of high-energy
processes, such as deep-inelastic lepton scattering and
Drell-Yan in hadron-hadron collisions, at facilities such
as Jefferson Lab, RHIC, Fermilab, and the LHC, intensify,

providing theoretical insights on the moments has become
very timely. In particular, studying the pion and kaon
moments will provide valuable information for the exper-
imental program of the future Electron-Ion Collider [1,2].
PDFs provide a complementary picture of the structure

of hadrons, as compared to electromagnetic form factors.
However, unlike form factors, PDFs are light-cone domi-
nated quantities, and thus, cannot be calculated directly on
a Euclidean lattice. There exist in the literature alternative
approaches to obtain the x-dependence of distribution
functions, such as the hadronic tensor [3], operator product
expansion (OPE) without an OPE [4], auxiliary quark field
approaches [5,6], quasidistributions [7,8], pseudodistribu-
tions [9], an approach that uses the Compton amplitude
[10], and the current-current correlators method [11–13].
These methods progress in parallel with direct calculations
of moments of PDFs using local operators. For a recent
review on these approaches, see Refs. [14,15]. Of particular
interest are the calculations of the pion and kaon PDFs
using some of these methods [16–22], some of which have
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extracted moments of these distributions. Despite the
significant progress, dedicated studied are needed to under-
stand the various sources of systematic uncertainties related
to these methods. For example, all of these suffer from the
ill-defined inverse problem due to the limited number of
lattice data entering the reconstruction of the x dependence
[23]. Therefore, having results for the moments of PDFs
extracted directly from local operators is imperative and
can be used to compare with other studies. The moments
are interesting in their own right, as they are extracted from
phenomenological analyses of experimental data, enabling
direct comparison.
While the proton has been extensively investigated using

lattice QCD, there are only limited studies for pion and
kaon structure [24–28]. A few studies exist beyond lattice
QCD mainly within models, such as the Dyson-Schwinger
equations [29–32] and Nambu-Jona-Lasinio [33,34]. In
addition, lattice QCD calculations mostly focus on the pion
electromagnetic form factor [35–39] and the pion average
momentum fraction [37,40–44]. Given the relatively small
amount of experimental data to date, it is important to
obtain results on the Mellin moments from first principle
calculations.
Pion and kaon structure is relevant to a number of

important questions, such as, how hadron masses are
generated, the dynamics of chiral symmetry breaking,
and the role of pions in nucleon-nucleon interactions.
The contrast between the nucleon, and the pion and kaon,
is crucial to understand the Standard Model mechanisms
that produce hadron masses. For example, in the chiral
limit, the masses of the pion and kaon vanish, whereas the
nucleon still has a mass on the order of 1 GeV. As such, the
trace anomaly must vanish in the pion/kaon in the chiral
limit but is nonvanishing in the nucleon. The pion, the
lightest hadronic state in the QCD spectrum, is relevant for
chiral symmetry breaking involved in nucleon-nucleon
interactions. Pion cloud, for instance, can explain why
there are more d̄ than ū antiquarks in the proton sea
[45–48]. Comparisons between pion and kaon structure can
reveal interesting aspects of QCD dynamics. For example, a
model calculation [33] suggests that the strange contribu-
tion to the kaon form factors drops faster with increasing
momentum transfer, compared to the up quark form factor,
which has been interpreted as a consequence of confine-
ment.
The rest of the paper is organized as follows: in Sec. II,

we present the theoretical setup of the calculation and the
appropriate decomposition to obtain hxi and hx2i for
mesons. In Sec. III A, we provide the details of the lattice
formulation, the parameters of the ensemble employed, as
well as the calculation of the correlation functions needed
in this work. The analysis for the extraction of reliable
estimates for the nonperturbative renormalization functi-
ons is described in Sec. III B, as well as the details of
the nonperturbative prescription. The various analyses on

the two-point correlation functions for extracting the
pion and kaon masses corresponding to the ensemble
under study are presented in Sec. IV. In the same section,
we also include a thorough investigation of excited states
for both hxi and hx2i, as well as an alternative kinematic
setup for extracting hxi. The final results along with
comparison with other studies and phenomenology are
presented in Sec. V. In Sec. VI, we summarize our work and
conclude.

II. THEORETICAL SETUP

To calculate hxi, we compute the meson matrix elements
hMðp0ÞjOfμνgjMðpÞi for p0 ¼ p, where Ofμνg is the one-
derivative vector operator defined as

Ofμνg ≡ ψ̄

�
1

2
ðγμD↔ν þ γνD

↔μÞ − 1

4

X4
ρ¼1

δμνγ
ρD
↔ρ

�
ψ ; ð1Þ

where the notation f� � �g means symmetrization and trace-

less, with D
↔ ¼ 1

2
ðD⃗μ − D⃖μÞ, D⃗μ ¼ 1

2
ð∇μ þ∇�

μÞ [49], and ψ
corresponds to the up or down quark for the pion, and the
up or strange quark for the kaon. f…g indicates symmet-
rization over the indices, in this case μ and ν, as well as
subtraction of the trace, to avoid mixing with other
operators [50–52].
The higher moment hx2i is accessed using a fermion

operator with two covariant derivatives,Oμνρ¼ψ̄γμDνDρψ .
To avoid any mixing, we choose the indices μ, ν, ρ to be
different [51,53,54]. Therefore, only a symmetrization over
these indices is needed, that is,

Ofμνρg≡1

6
ðOμνρþOμρνþOνμρþOνρμþOρμνþOρνμÞ: ð2Þ

The meson matrix elements decompose into two gener-
alized form factors, A20 and B20 for the one-derivative
vector operator, and A30 and B30 for the two-derivative
operator. The kinematic coefficients in Euclidean space are
given by

hMðp0ÞjOfμνgjMðpÞi
¼ C½2PfμPνgA20ðQ2Þ þ 2ΔfμΔνgB20ðQ2Þ�; ð3Þ

hMðp0ÞjOfμνρgjMðpÞi
¼ C½2iPfμPνPρgA30ðQ2Þ þ 2iΔfμΔνPρgB30ðQ2Þ�: ð4Þ

In the above decompositions, P is the average of the initial
and final momenta of the meson, P ¼ ðpþ p0Þ=2, and Δ
their difference, Δ ¼ p0 − p. Q2 is the momentum trans-
ferred squared. C is a kinematic factor related to the
normalization of the two-point functions. Therefore, C
depends on the frame employed and the momentum
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transferred. Based on our conventions, we obtain C ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EðpÞEðp0Þ
p for a general frame. mM is the mass of meson

M and EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M þ p⃗2
p

is the energy at momentum p⃗.
Therefore, C does not depend on the spatial directions of
the momentum, only on p⃗2. Note also that the generalized
form factors Ai0 and Bi0 are functions of the momentum
transferred squared and are independent of the kin-
ematic setup.
The quantities of interest are obtained from the forward

limit of the matrix elements, leading to hxi≡ A20ð0Þ,
hx2i≡ A30ð0Þ. The decomposition of Eq. (3) takes a simple
form for mesons at rest, and in fact, at Q2 ¼ 0 there is only
one matrix element contributing, which has μ ¼ ν ¼ 4
where we denote by index 4 the temporal direction. In such
a simplified case, Eq. (3) becomes

hMð0ÞjO44jMð0Þi ¼ −
3mM

4
hxiM: ð5Þ

The index “M” indicates the meson of interest. The
kinematic coefficient of A30 becomes zero in the rest frame
(p⃗0 ¼ p⃗ ¼ 0) and in the forward limit, unless all the indices
of the operator are temporal. This is not an optimal option,
as O444 suffers from mixing with lower-dimension oper-
ators [50–52], making the extraction of hx2i unreliable. In
fact, to eliminate mixing even with operators of equal
dimension, all indices must be different from each other,
which is the choice we employ in this work. Given these
constraints, the only way to obtain hx2i is to work in a
frame in which the meson is moving with some momentum
p⃗0 ¼ p⃗ ≠ 0 (boosted frame). In the forward limit, the
momentum is the same at the source and the sink,
p0 ¼ p ¼ ðiE; px; py; pzÞ. For μ ≠ ν ≠ ρ ≠ μ, all spatial
components of the momentum must be nonzero to extract
hx2i directly from lattice data, without the need of applying
fits on matrix elements with finite momentum transfer. In
the boosted frame, the matrix elements are related to their
corresponding Mellin moments via

hMðpÞjO44jMðpÞi¼ 1

2EMðpÞ
�
m2

M

2
−2ðEMðpÞÞ2

�
hxiM;

ð6Þ

hMðpÞjOμν4jMðpÞi ¼ −pμpνhx2iM; ð7Þ

which include all kinematic factors and normalizations. In
Eq. (7), we take one of the indices to be temporal, which

simplifies the kinematic factor of hx2i. The other two
indices are spatial and different from each other. Therefore,
there are three different combinations of operators: Ofxy4g,
Ofxz4g, and Ofyz4g, each symmetrized over its indices. In
this calculation, we extract all these combinations and we
average using their corresponding kinematic factor shown
in Eq. (7).

III. LATTICE SETUP

A. Lattice action

In this work, we employ one ensemble [55] of Nf ¼
2þ 1þ 1 twisted mass fermions with a clover term and the
Iwasaki improved gluon action. The ensemble is generated
by the Extended Twisted Mass Collaboration (ETMC).
The fermionic part of the action is written in the physical
basis as

S½ψ ; ψ̄ ; U� ¼ a4
X
x

ψ̄ðxÞ
�
D½U� þ μq

− iγ5τ3

�
Wcr þ

i
4
cswσμνF μν½U�

��
ψðxÞ: ð8Þ

D ¼ γμð∇�
μ þ∇μÞ=2, ∇μ and ∇�

μ are the forward and
backward lattice covariant derivatives, and μq is the twisted
quark mass [44]. Wcr ¼ −ða=2Þ∇�

μ∇μ þmcr and mcr is the
bare untwisted mass tuned to its critical value, which gives
automatic OðaÞ improvement [56], requiring no further
improvements on the operator level. The last term is the
clover term multiplied by the Sheikoleslami-Wohlert
improvement coefficient csw. Since we achieve OðaÞ
improvement from the critical mass, csw is used to reduce
isospin symmetry breaking effects [57]. Other parameters
for this ensemble are κ¼0.1400645 csw¼1.74, μl ¼ 0.003,
μΣ ¼ 0.1408, μΔ ¼ 0.1521. The remaining parameters of
the simulation are given in Table I.
For the interpolating fields, JM, of the mesons under

study, we take

Jπþ ¼ d̄γ5u; ð9Þ

JKþ ¼ s̄γ5u: ð10Þ

A useful consequence of the pseudoscalar structure of the
pion, as well as the γ5-hermiticity relation of the twisted
mass quark propagators,

TABLE I. Parameters of the ensemble used in this work.

Parameters

Ensemble β a (fm) Volume L3 × T Nf mπ (MeV) Lmπ L (fm)

cA211.32 1.726 0.093 323 × 64 u, d, s, c 260 4 3.0
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Guðx; x0Þ ¼ γ5G
†
dðx0; xÞγ5; ð11Þ

is that we only need to calculate the up quark contribution
to the pion three-point functions. The pion and kaon
interpolating fields are smeared using Gaussian smearing
at both source and sink. The smearing parameters are tuned
separately for the pion and kaon. We use the same value of
αG but varying the number of smear iterations NG for the
light and strange quarks. An optimal choice for NG is based
on the criterion that the root mean squared radius of the
smeared source reproduces the experimental radius of the
pion [58] for the light quarks and the experimental radius of
the kaon [59] for the strange quarks. In this work, we obtain
ðαG; NGÞ ¼ ð0.2; 50Þ for the light quarks and ðαG; NGÞ ¼
ð0.2; 40Þ for the strange quark. APE smearing is applied on
the gauge links that enter the Gaussian smearing with
parameters ðαAPE; NAPEÞ ¼ ð0.5; 50Þ.
We study the connected contribution to the matrix

elements of O44 and Oμν4, which is shown in Fig. 1.
For the calculation of the three-point functions, we use the
fixed sink sequential inversion approach. The three-point
correlation functions are calculated at zero momentum
transfer,

CΓ
Mðt; ts; p⃗Þ ¼

X
x⃗s;x⃗

JMðts; x⃗sÞOμνðt; x⃗ÞJ†Mðti; x⃗iÞe−ip⃗·ðx⃗s−x⃗iÞ;

ð12Þ
where ti, t, ts are the source, insertion, and sink Euclidean
times, respectively. The corresponding spatial coordinates
of the source, current insertion, and sink are x⃗i, x⃗, x⃗s.
Without loss of generality, we will take the source to be at
ti ¼ 0, so that the source-sink separation ts − ti ¼ ts. For a
general insertion current OΓ ¼ ūΓu� d̄Γd, the three-point
functions can be written in terms of the up and down parts,

Cμν
M ðt; tsÞ ¼

X
x⃗s;x⃗

JMðts; x⃗sÞ½ūΓðt; x⃗Þu� d̄Γðt; x⃗Þd�J†Mð0; 0⃗Þ

¼ CΓ
M;uðt; tsÞ � CΓ

M;dðt; tsÞ: ð13Þ
Performing the Wick contractions for the pion, and apply-
ing the γ5 hermiticity, it can be shown that, for πþ, the up
and down parts are related by

CΓ
π;d ¼ �ðCΓ

π;uÞ�: ð14Þ

The plus/minus sign comes from the fact that a general
γ-structure is either γ5-Hermitian or anti-γ5-Hermitian, that
is, γ5Γ†γ5 ¼ �Γ. Both the one-derivative vector and two-
derivative vector operators are γ5-Hermitian, and therefore,

C44
π;uþd ¼ 2C44

π;u; ð15Þ

Cμν4
π;uþd ¼ 2Cμν4

π;u : ð16Þ

In the results presented here, we focus on the uþ con-
tribution to the pion, where the qþ ≡ qþ q̄ notation has
been adopted. Note that, based on Eqs. (15) and (16),
hxiπuþ ¼ hxiπdþ and hx2iπuþ ¼ hx2iπdþ , that is, hxiπuþþdþ ¼
2hxiπuþ and hx2iπuþþdþ ¼ 2hx2iπuþ . This discussion is rel-
evant to the comparison with phenomenological results
presented in Sec. VI. We note that Eqs. (14)–(16) are only
applicable for the pion case, whereas for the kaon due to
different mass of the light and strange quarks such relations
do not hold.
We analyze 122 configurations, separated by 20 trajec-

tories to reduce autocorrelation effects. In the rest frame, we
use 16 randomly chosen source positions on each con-
figuration, giving a total statistics of 1952. In the boosted
frame, we use 32 source position for a total statistics
of 3904. For the calculation in the rest frame, we use six
source-sink time separations, namely, ts=a ¼ 12, 14, 16,
18, 20, 24, corresponding to ts ¼ 1.12–2.23 fm. This
allows for a thorough investigation and elimination of
possible contributions from excited states. Based on the
analysis of the results in the rest frame, we concluded that a
subset of ts=a ¼ 14, 16, 18 is sufficient for extracting the
ground-state matrix elements. Thus, we only use these three
time separations for the computation of hxi and hx2i in the
boosted frame.
According to the decomposition of Eq. (6), hx2i can be

obtained using momentum boost with at least two nonzero
spatial components, with the lowest momentum being p⃗i ¼
2π
L ð�1;�1; 0Þ (12 combinations). In this work, we employ,

for hx2i, momenta of the class p⃗i
2 ¼ 12π2

L2 , which corre-
sponds to eight combinations for the spatial components,
p⃗i ¼ 2π

L ð�1;�1;�1Þ. With the same setup, we also obtain
hxi, for a qualitative comparison with the rest frame,
and the scaling of the statistical uncertainties. The choice
p⃗i

2 ¼ 12π2

L2 is optimal for two reasons: while it increases the

statistical uncertainties as compared to momenta p⃗i
2 ¼ 8π2

L2 ,
the computational cost for the same number of configura-
tions is reduced by 33% due to the smaller number of
permutations. Also, the class p⃗i

2 ¼ 12π2

L2 allows one to
access, with the same setup, other quantities, such as
hx3i, as well as form factors and generalized form factors.
These quantities will be presented in a follow-up work.

FIG. 1. Connected diagram for the three-point function entering
the calculation of hxi and hx2i. The wavy line corresponds to the
operator insertion.
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B. Renormalization

The renormalization of the bare matrix elements is
multiplicative, and the renormalization functions are calcu-
lated nonperturbatively using the regularization indepen-
dent (RI0) scheme method [60]. The estimates are converted
to the modified minimal subtraction (MS) scheme and
evolved at a renormalization scale of μ̄ ¼ 2 GeV. We refer
to the renormalization function of Oμμ and Oμνρ

(μ ≠ ν ≠ ρ ≠ μ) as ZvD and ZvDD, respectively. The
renormalization function in the RI0 scheme is determined
by the conditions

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�jp2¼μ2

0
;

Z−1
q ZO

1

12
Tr½ΓL

OðpÞðΓBorn
O ðpÞÞ−1�jp2¼μ2

0
¼ 1; ð17Þ

where p is the momentum of the vertex function, set to the
RI0 renormalization scale, μ0. SBorn (ΓBorn

O ) is the tree-level
value of the fermion propagator (operator), and the trace is
taken over spin and color. We use the momentum source
method [61], which is successfully employed for twisted
mass fermions [62–64]. This method achieves per mil
accuracy even with a small number of configurations. In the
results presented here, we use ten configurations. In order
to reduce discretization effects, we use momenta that have
the same spatial components, that is,

ðapÞ≡ 2π

�
nt
Lt

þ 1

2Lt
;
nx
Ls

;
nx
Ls

;
nx
Ls

�
; ntϵ½2; 9�;

nxϵ½2; 5�; ðapÞ2 ∈ ½0.9 − 6.7�; ð18Þ

where Lt (Ls) is the temporal (spatial) extent of the lattice.
These momenta are chosen to have suppressed non-Lorentz
invariant contributions (

P
i p

4
i =ð

P
i p

2
i Þ2 < 0.3), which is

based on empirical arguments [65]. We improve the non-
perturbative estimates for ZvD by subtracting finite lattice
effects using the procedure outlined in Refs. [64,66]. The
latter is computed to one loop in perturbation theory and to
all orders in the lattice spacing,Oðg2a∞Þ. Such a procedure
is not yet available for two-derivative operators. However,
we partly improve ZvDD, by subtracting the Oðg2a∞Þ
artifacts from Zq which enters the renormalization con-
dition for ZvDD in Eq. (17).
For a proper chiral extrapolation, we calculate the

renormalization functions on several ensembles with all
masses of quark flavors degenerate (Nf ¼ 4). We use five
ensembles at different values for the pion mass, which are
produced with the same β value as one of the cA211.32
ensembles analyzed for the matrix elements. The param-
eters of the Nf ¼ 4 ensembles are given in Table II. The
chiral limit is taken using a quadratic fit with respect to the
pion mass. For both ZvD and ZvDD, we find a negligible
dependence on the pion mass, as can be seen in Table III for

two representative renormalization scales [ðaμ0Þ2 ¼ 2, 4].
On each Nf ¼ 4 ensemble, we use 23 values of the initial
RI0 scale μ0 ranging from (ðaμÞ2 ∈ ½0.9–6.7�). Each value is
converted and evolved to MSð2 GeVÞ using an intermedi-
ate renormalization group invariant scheme defined in
continuum perturbation theory. A linear fit with respect
to ðaμ0Þ2 is applied on the MS values to eliminate residual
dependence on the initial scale μ0. Such a dependence may
be present due to finite-a effects and/or truncation of the
conversion factor (to three loops in perturbation theory).
In Fig. 2, we show ZvD and ZvDD in the RI0 and MS

schemes as a function of the initial RI0 renormalization

scale, μ0. ZMS
O are given at μ ¼ 2 GeV, and the purely

nonperturbative data exhibit a small residual dependence
on the initial scale μ0 they were evolved from. A procedure
of subtracting the finite-a effects toOðg2a∞Þ is also applied
on ZvD. For ZvDD, the improvement is only applied to Zq.
We find that for both cases, subtracted results have a much

TABLE II. Parameters for the Nf ¼ 4 ensembles used for the
renormalization functions.

β ¼ 1.726, a ¼ 0.093 fm

aμ amPS Lattice size

0.0060 0.1680 243 × 48
0.0080 0.1916 243 × 48
0.0100 0.2129 243 × 48
0.0115 0.2293 243 × 48
0.0130 0.2432 243 × 48

TABLE III. Pion mass dependence of the renormalization
function ZvD (left panel) and ZvDD (right panel) in the RI0
scheme. The first column is the pion mass (in lattice units) for the
ensemble, and the second (third) is the renormalization function
at scale ðaμ0Þ2 ¼ 2 (ðaμ0Þ2 ¼ 4). The numbers in the parenthesis
are the statistical errors.

ZRI0
vD

amPS ðaμ0Þ2 ¼ 2 ðaμ0Þ2 ¼ 4

0.1680 1.1762(2) 1.1043(1)
0.1916 1.1770(3) 1.1045(2)
0.2129 1.1773(2) 1.1046(1)
0.2293 1.1782(2) 1.1048(1)
0.2432 1.1779(2) 1.1047(1)

ZRI0
vDD

amPS ðaμ0Þ2 ¼ 2 ðaμ0Þ2 ¼ 4

0.1680 1.4870(4) 1.3722(2)
0.1916 1.4890(5) 1.3733(2)
0.2129 1.4888(5) 1.3732(3)
0.2293 1.4922(4) 1.3751(2)
0.2432 1.4914(6) 1.3748(3)

MELLIN MOMENTS hxi AND … PHYS. REV. D 103, 014508 (2021)

014508-5



smaller slope than the nonsubstracted ones, demonstrating
the effectiveness of the artifact-subtraction procedure.
We eliminate any residual ðaμ0Þ2 dependence in each

renormalization function by using the ansatz,

ZOðapÞ ¼ ZO þ Zð1Þ
O · ðaμ0Þ2: ð19Þ

ZO corresponds to the final value of the renormalization
function for operatorO. We obtain ZvD ¼ 1.123ð1Þð5Þ and
ZvDD ¼ 1.340ð1Þð15Þ, where the numbers in the first and
second parentheses are the statistical and systematic errors,
respectively. The source of systematics is related to the
ðaμ0Þ2 → 0 extrapolation. The final value uses the fit
interval ðaμ0Þ2ϵ½2–7� and the systematic is estimated by
varying the lower range of the fit range between
ðaμ0Þ2Þlowϵ½2–4�. The reported uncertainty is the differ-
ence with the value obtained from ðaμ0Þ2ϵ½4–7�.

IV. ANALYSIS METHODS

A. Effective mass

One of the important ingredients in the determination of
theMellin moments is the mass (energy) of the meson in the
rest (boosted) frame. This is needed because the ground-
state energy enters in the decomposition of Eqs. (3)–(6). We
implement two fits for extracting the ground-state energy
from the two-point correlation functions

C2pt
M ðt; p⃗Þ ¼

X
x⃗

JMðt; x⃗ÞJ†Mð0; 0⃗Þeip⃗·x⃗; ð20Þ

as described below.We exploit the symmetry properties and
we symmetrize the correlator corresponding to t and T − t,
for t ∈ ½0; T=2�, that is, the value at t has been averaged with
their corresponding value at T − t.

1. Plateau method

The first method relies on a single-state fit where the
effective mass (energy) is fitted to a constant with respect to
t. The fit is taken over a range of t where the effective mass
(energy) becomes time independent (plateau region). We
calculate the effective mass from the symmetrized two-
point function according to

mM
effðtÞ¼

1

2
ln

2
64C2pt

M ðt−1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2pt

M ðt−1ÞÞ2− ðC2pt
M ðT

2
ÞÞ2

q

C2pt
M ðtþ1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2pt

M ðtþ1ÞÞ2− ðC2pt
M ðT

2
ÞÞ2

q
3
75:

ð21Þ

We test several values for the lower value of t entering the
plateau fit, tlow=a ∈ ½11–19� for the rest frame and tlow=a ∈
½8–14� for the boosted frame, while the maximum value is
fixed to t=a ¼ 31.

2. Two-state fit

The second method is a two-state fit in which we include
the first excited state in the fit ansatz given by

0 1 2 3 4 5 6 7

(a µ
0
)2

1.2

1.3

1.4

1.5

1.6

Z
vD

D
 

0.9

1.0

1.1

1.2

1.3

Z
vD

 

RI’
MS unsub
MS O(g2ainf)-subtracted

FIG. 2. Chirally extrapolated results for ZvD (top) and ZvDD (bottom). Blue triangles correspond to RI0 scheme, black circles to MS
scheme, and magenta diamonds to the subtracted results in the MS scheme. The data are plotted as a function of the initial RI0 scale
ðaμ0Þ2. The dashed line corresponds to the fit of Eq. (19), and the filled magenta diamonds represent our final values for ZvD and ZvDD.
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C2pt
M ðtÞ¼ c0ðe−E0tþe−E0ðT−tÞÞþc1ðe−E1tþe−E1ðT−tÞÞ:

ð22Þ

The amplitudes c0 and c1, as well as the ground and first
excited-state energies E0, E1, are fit parameters. An
alternative procedure is to apply the two-state fit on meff
directly, by substituting Eq. (22) into Eq. (21). This way,
one of the amplitudes cancels out and the fit consists
of three free parameters. Here we employ both procedures
to cross-check the consistency of the results. We note that
extracting the amplitude c0 is needed in order to calculate
the ratios between the three-point and two-point functions
as described in the next section [see, e.g., Eq. (32)]. The
two-state fit is taken over the range t ∈ ½tlow − 31a�,
with tlow=a ∈ ½1–4�.
In Fig. 3, we show the pion and kaon mass as a function

of the lowest value of t=a entering the fit. We note that for
the kaon we use the so-called Osterwalder Seiler fermions
[67] which avoids the mixing effects between strange and
charm quarks. The value of the μs ¼ 0.022which enters the
strange quark propagator is fixed by the physical ratio
mDs

=fDs
¼ 7.9 [68], where mDs

is the mass of the Ds

meson and fDs
its decay constant. We compare the results

extracted from the plateau and two-state fits of Eq. (22). We
find that there is a very good agreement between the two
methods, when tlow=a ≥ 11 in the plateau fit.
We repeat a similar process of extracting the energy and

amplitude of the ground state, using the data in the boosted
frame. As explained above, we focus on meson momentum
boost p⃗i

2 ¼ 12π2

L2 . To increase the accuracy of the results
and improve the stability of the fit, we perform the various

fits on the averaged two-point functions over the eight
values of the momentum boost leading to the same p⃗i

2

(p⃗i ¼ 2π
L ð�1;�1;�1Þ). The results of the fit are shown

in Fig. 4.
The final values shown with purple and blue in Figs. 3

and 4 are selected based on the following criterion: we
accept a plateau fit with tlow when the lowest state mass
(energy) in the rest (boosted) frame obtained using the
plateau method, mplat (E0;plat), and the two-state fit m2st

(E0;2st) satisfy the conditions

1

2
δmplat¼> jmplat −m2st:j; ð23Þ

where δmplat is the statistical error on the value extracted
from the plateau method. An additional constraint for the
accepted fit is χ2plat=d:o:f < 1. Our final values for the pion
mass in the rest frame based on the above criteria are as
follows:

Plateau∶ amπ ¼ 0.1250ð2Þ; tlow=a ¼ 11; ð24Þ

Two-state∶ amπ ¼ 0.1251ð2Þ; tlow=a ¼ 2; ð25Þ

while in the boosted frame we obtain

Plateau∶ aE0π ¼ 0.361ð4Þ; tlow=a ¼ 8; ð26Þ

Two − state∶ aE0π ¼ 0.360ð3Þ; tlow=a ¼ 1: ð27Þ

A similar procedure for the kaon leads to

FIG. 3. Pion (top) and kaon (bottom) mass in the rest frame as a function of the lowest value of t=a, tlow=a entering the fit. Results
using the plateau method are shown with red squares and results from the two-state fit with green circles. The selected values extracted
using the plateau and two-state fits are shown with the purple square and blue circle, respectively.
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Plateau∶ amK ¼ 0.2507ð3Þ; tlow=a ¼ 11; ð28Þ

Two − state∶ amK ¼ 0.2508ð2Þ; tlow=a ¼ 2 ð29Þ

in the rest frame and to

Plateau∶ aE0K ¼ 0.423ð1Þ; tlow=a ¼ 8; ð30Þ

Two − state∶ aE0K ¼ 0.423ð1Þ; tlow=a ¼ 2 ð31Þ

in the boosted frame.
In Fig. 5, we plot the effective mass in the rest frame

calculated from Eq. (21). We also show the plateau fit value
and the two-state fit on the correlator as chosen based on
Eq. (23). We find full agreement between the two fits, for
both the pion and the kaon.

B. Excited-states contamination in hxi
To extract the ground-state contributions to hxi, one has

to ensure suppression of excited states in the three-point
functions. This is achieved at sufficiently large insertion
(t=a ≫ 1) and sink times (ðts − tÞ=a ≫ 1), where the
ground state of the hadron gives the dominant contribution
to the three-point correlation functions. It is in this region
that we need to extract the matrix elements in order to
control excited-state contamination. We employ six values
of ts in the rest frame, ts=a ∈ ½12; 24�, which for mesons
can be achieved with a reasonable computational cost. For
the pion, this is due to the fact that the statistical error for
meson matrix elements in the rest frame remains the same
with increasing ts. Similarly, to the analysis of the two-
point functions, we use two different analysis methods on
the three-point functions, in order to study the convergence

FIG. 4. Pion (top) and kaon (bottom) mass in the boosted frame as a function of the lowest value of t=a entering the fit. The notation is
the same as in Fig. 3.

FIG. 5. Pion (left) and kaon (right) meff in the rest frame. The fitted value from the plateau mplat is shown with a red band and from the
two-state fit applied on meff with a green band.
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to the ground state and the significance of excited-state
contributions. We used this study in the rest frame, as a
guidance for the ts values to be employed in the boosted
frame. Conclusions from such a study are also useful in a
follow-up work for other studies of pion and kaon matrix
elements.

1. Plateau method

The first method is based on a constant fit applied to an
appropriate ratio of three-point and two-point functions.
We choose a convenient ratio so that the denominator
contains the ground state obtained from the fit of Eq. (22)
(instead of the actual two-point functions). This removes
the ts dependence in the ratio, allowing plateau conver-
gence with increasing ts,

R44
M ðts; tÞ ¼

C44
M ðts; tÞ
c0e−E0ts

: ð32Þ

We perform a constant fit as a function of the time t of the
operator insertion for each ts separately and in a region
where mild t-dependence is observed. In particular, we use

the fit range ts=2 − 2 ≤ t ≤ ts=2þ 2. One then seeks
convergence of the extracted plateau values as ts increases.
In the limit of large time separations, the ratio becomes time
independent, that is,

R44
M ðts; tÞ ⟶

ΔEðts−tÞ≫1

Et≫1
Π44

M : ð33Þ

Combining Eq. (5) with Eq. (33), we can obtain hxi via

hxiM ¼ −
4

3mM
ZvDΠ44

M : ð34Þ

In the above expression, we include the renormalization
function for the one-derivative operator, ZvD, and all
kinematic and normalization factors.

2. Two-state method

In the second method of extracting hxi, we take into
account the contribution from the first excited state in the
three-point correlation functions. A two-state fit may be
performed via

C44ðt; tsÞ¼A00fθðts− tÞe−E0ts −θðt− tsÞe−E0ðT−tsÞgþA01fθðts− tÞe−E0ðts−tÞ−E1t−θðt− tsÞe−E0ðt−tsÞ−E1ðT−tÞg
þA10fθðts− tÞe−E1ðts−tÞ−E0t−θðt− tsÞe−E1ðt−tsÞ−E0ðT−tÞgþA11fθðts− tÞe−E1ts −θðt− tsÞe−E1ðT−tsÞg; ð35Þ

where θðtÞ ¼ 1 for t ≥ 0 and θðtÞ ¼ 0 for t < 0. Given
the large number of parameters, in Eq. (35), we use m for
the rest frame and E0 for the boosted frame and E1 for the
excited states extracted from the two-state fit of Eq. (22).
Therefore, the actual free parameters are the amplitudes
A00, A01, and A11 (A01 ¼ A10 for zero momentum transfer).
The desirable matrix element of the ground state is
extracted via

hMð0ÞjO44jMð0Þi ¼ A00

c0
; ð36Þ

where c0 is the coefficient obtained from Eq. (22). Equa-
tion (36) leads to the following expression for the renor-
malized hxi:

hxiM ¼ −
4

3mM
ZvD

A00

c0
: ð37Þ

In Table IV, we collect the values for hxi for the pion and
kaon extracted from different source-sink time separations,
and the two-state fit using ts=a ¼ 12–24. The results for the
two-state fit using ts=a ¼ 14–18 is also included. The latter
choice is based on investigating the dependence of hxi on
the fit range. We find that the excited-state fit is compatible
with the values obtained from ts=a≳ 18 for both the pion

and the kaon. As expected in the rest frame, the statistical
uncertainties remain constant with increase of the source-
sink separation. We find that the plateau values have
statistical errors of 2% or less.
The ratios of three- to two-point functions for each value

of ts are shown in Fig. 6, for the up contribution to the pion
and the up and strange contribution of the kaon.R denotes
the ratio R44

M of Eq. (32) multiplied by all kinematic factors
and the renormalization function. We observe that the
excited-state contamination is similar for both the pion
and kaon. We find convergence on hxi for ts ≳ 18a. A
comparison of the two-state fit using ts ∈ ½12a − 24a� and

TABLE IV. Renormalized data for hxi for various ts values and
the two-state fit ((a) ts ∈ ½12 − 24�, (b) ts ∈ ½14 − 18�). The
numbers shown in the parenthesis are the statistical errors.

ts=a hxiπuþ hxiku hxiks
12 0.309(3) 0.278(2) 0.339(2)
14 0.287(3) 0.264(2) 0.330(2)
16 0.275(3) 0.257(2) 0.325(2)
18 0.267(3) 0.252(2) 0.322(2)
20 0.261(4) 0.248(2) 0.319(2)
24 0.255(4) 0.244(3) 0.316(2)
Two-state (a) 0.261(3) 0.246(2) 0.317(2)
Two-state (b) 0.262(4) 0.246(2) 0.317(2)
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the plateau values is shown in the right panels of Fig. 6.
Since the ground-state contribution is established at
ts ≥ 18a and the two-state fits using ts ∈ ½12a − 24a�
and ts ∈ ½14a − 18a� yield the same values, we choose
to limit our calculations to ts=a ¼ 14, 16, 18 for the
boosted frame. A comparison for hxi between the two
frames is discussed in Sec. IV C.

C. Alternative setup for hxi in the boosted frame

In the above discussion, we have used the rest frame for
the extraction of hxi, p⃗f ¼ 0⃗, and in the forward limit we
also have p⃗i ¼ 0⃗. In this paragraph, we explore an alter-
native setup, a boosted frame with p⃗f ¼ p⃗i ≠ 0⃗. Note that
employing such a frame is not necessary for hxi, as A20ð0Þ

has a nonzero kinematic coefficient in the rest frame.
However, the study of hxi within the boosted frame is
interesting because one can understand how the statistical
errors increase with ts. Based on the conclusions from
Sec. IV B on the analysis of excited states, we focus on
ts=a ¼ 14, 16, 18, as the computational cost for the same
number of configurations is increased by a factor of 8 as
compared to the rest frame. Since this calculation is part of
a wider set of operators, the optimal class of momenta is
p⃗2
i ¼ 12π2

L2 . This corresponds to eight combinations for the
spatial components, that is, p⃗ ¼ 2π

L ð�1;�1;�1Þ. In such a
frame, the appropriate decomposition is given in Eq. (6),
instead of Eq. (5).
In Fig. 7, we compare the ratios leading to hxi for both

the pion (top panels) and kaon (center and bottom panels).

FIG. 6. Results for the ratio leading to hxi. We show the up part of the pion, the up and strange parts of the kaon, in the top, center, and
bottom panels, respectively. In the left column, the points are the ratios in Eq. (32) multiplied by the renormalization and all kinematic
factors. We plot values for ts=a ¼ 12 up to ts=a ¼ 24. The blue, red, green, magenta, cyan, and orange constant bands are the results
obtained from Eq. (34). The purple band is the two-state fit value obtained from Eq. (37). In the right column, we plot the plateau values,
together with two-state fit results. The gray band is the function obtained from a two-state fit using ts ∈ ½12a − 24a� and taking t ¼ ts=2.
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The left, center, and right columns correspond to ts ¼ 14a,
16a, 18a, respectively. The ratios include all the kinematic
factors and thus can be compared to each other. As can be
seen, the statistical uncertainties increase with ts in the
boosted frame, which is expected. For both the pion and
kaon, we find agreement between the plateau values
obtained from the two frames within the uncertainties.
The ratio for the hxi for the pion and the kaon is shown in

Fig. 8 for ts=a ¼ 14, 16, 18 and also compared to the two-
state results. We find that all plateau values are compatible
with the results of the two-state, indicating that excited-
state contamination is within the reported uncertainties,
which are larger compared to the ones in the rest frame.
In Table V, we collect all the results obtained in the boosted
frame. We find that the statistical uncertainties in hxiπu
grow from 5% to 10%, with the increase of ts from 14a to
18a. The corresponding increase in hxiku (hxiks) is 2%–3%
(2%–4%). We remind that the error in the rest frame is

less or equal to 2%, and it is constant for all source-sink
separations.

D. Excited-states contamination in hx2i
The extraction of hx2i is more challenging than hxi for

several reasons. First, hx2i cannot be extracted in the rest
frame due to a vanishing kinematic factor in Eq. (7). The
introduction of momentum in the meson states increases the
statistical noise, and in our case, the use of a rather large
momentum (p⃗2

i ¼ 12π2

L2 ) worsens the signal even more.
Second, the presence of two covariant derivatives in the
operator contributes to the increase of the gauge noise.
Third, having three Dirac indices leads to a more compli-
cated renormalization pattern, and, to completely avoid the
mixing with operators of equal or lower dimension, the
indices of the operator must be selected different from each
other. Here we employ the operator Oμν4.

FIG. 7. Comparison of hxi in the boosted (filled symbols) and rest (open symbols) frame. From top to bottom, we show hxi for the pion
and kaon up and strange contribution. Results at ts=a ¼ 14, 16, 18 are shown in the left, center, and right columns, respectively. For this
comparison, we use 16 source positions for each momentum frame so that the statistics are consistent.
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In Fig. 9, we show the ratio leading to hx2i for the pion
and the kaon. We plot the data for the three values of ts
considered, that is, ts=a ¼ 14, 16, 18, and compare with the
two-state results. We find that all plateau values are

compatible with the results of the two-state, indicating
that excited-state contamination is mild compared to the
errors on this quantity. The values obtained from the
plateau and two-state fits are given in Table VI.

V. FINAL RESULTS AND COMPARISON WITH
OTHER STUDIES

In this section, we discuss our final values for
the quantities studied in this work. For hxi, we give the
results in the rest frame and using the two-state fits. This is
because the statistical uncertainties are the same for all
values of ts. For hx2i, we use the results extracted from
ts=a ¼ 18, as the two-state fit may be driven by the most
accurate data,

FIG. 8. Ratio for hxiπu (top), hxiKu (center), and hxiKs (bottom) for ts=a ¼ 14, 16, 18, shown with blue circles, red squares, and green
triangles, respectively. The corresponding plateau values are shown with bands of the same color. The purple band corresponds to the
value extracted using the two-state fit.

TABLE V. Renormalized data for hxi for the three ts values and
the two-state fit using ts ∈ ½14 − 18�). The numbers shown in the
parenthesis are the statistical errors.

ts=a hxiπu hxiku hxiks
14 0.273(9) 0.262(3) 0.332(3)
16 0.269(13) 0.257(4) 0.330(4)
18 0.255(19) 0.248(5) 0.327(6)
Two-state 0.263(13) 0.251(4) 0.325(4)
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hxiπuþ ¼ 0.261ð3Þð6Þ; ð38Þ

hxiKuþ ¼ 0.246ð2Þð2Þ; ð39Þ

hxiKsþ ¼ 0.317ð2Þð1Þ; ð40Þ

and

hx2iπuþ ¼ 0.082ð21Þð17Þ; ð41Þ

hx2iKuþ ¼ 0.093ð5Þð3Þ; ð42Þ

hx2iKsþ ¼ 0.134ð5Þð2Þ: ð43Þ

These results are in the MS scheme at a scale of 2 GeV. We
use the notation qþ ≡ qþ q̄ for the sum from quark and
antiquark contributions. As already mentioned, hxiπuþþdþ ¼
2hxiπuþ and hx2iπuþþdþ ¼ 2hx2iπuþ . The numbers given in the
first parenthesis are the statistical errors obtained from a
jackknife analysis. We also report systematic errors, given
in second parenthesis, which are due to excited-states
contamination. This systematic error is the difference
between the value extracted using the two-state fit and
the value of the plateau method at ts ¼ 24 for hxi and
ts ¼ 18 for hx2i. We also extract the ratio hx2i=hxi, for
which we find

hx2iπuþ
hxiπuþ

¼ 0.30ð8Þð7Þ; ð44Þ

FIG. 9. Ratio for hx2iπu (top), hx2iKu (center), and hx2iKs (bottom) for ts=a ¼ 14, 16, 18, shown with blue circles, red squares, and green
triangles, respectively. The corresponding plateau values are shown with bands of the same color. The purple band corresponds to the
value extracted using the two-state fit.

TABLE VI. Renormalized data for hx2i at each ts values and
the two-state fit (ts ∈ ½14–18�). The numbers shown in the
parenthesis are statistical errors.

ts=a hx2iπu hx2iKu hx2iKs
14 0.111(7) 0.098(2) 0.140(2)
16 0.099(13) 0.097(4) 0.138(3)
18 0.082(21) 0.093(5) 0.134(5)
Two-state 0.099(13) 0.096(3) 0.137(3)
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hx2iKuþ
hxiKuþ

¼ 0.37ð2Þð2Þ; ð45Þ

hx2iKsþ
hxiKsþ

¼ 0.42ð2Þð2Þ; ð46Þ

using the results at ts=a ¼ 18 for hxi and hx2i.
The numbers in the first parenthesis are statistical, while
in the second parenthesis are systematic due to excited
states.
There are very limited experimental data on the kaon

PDF, so it is interesting to contrast these moment results
with expectations from model calculations. For our lattice
results, we find hxiKuþ < hxiπuþ < hxiKsþ which is consistent
with many phenomenological calculations, including the
Dyson-Schwinger equation results of Ref. [32]. This order-
ing in the momentum fractions is understood because the
heavier s quark skews sKðxÞ to larger x which is compen-
sated by a shift in uKðxÞ to smaller x. In the limit of equal
quark masses, these moments would degenerate; therefore,
we find flavor breaking effects of up to 20% in these
moments. For the third Mellin moment, we find
hx2iKuþ ; hx2iπuþ < hxiKsþ , which is again consistent with
expectations. Uncertainties on the third Mellin for the u
quark in the pion and kaon do not allow an ordering of
these moments; however, any deviation from the order
found for the momentum fractions would be very
interesting.
There are a number of calculations on the pion hxi

[40,42,44,69,70], including results obtained directly at the
physical point [43]. The pion third Mellin moment hx2i, on
the other hand, is lesser known and has been studied in
Refs. [40,44,69] using different lattice formulations. It is
worth mentioning that moments of PDFs for the pion and
kaon have been extracted using nonlocal operators [16–22].
However, we do not attempt comparison with such studies,
as they suffer from very different systematic uncertainties.
Here we compare with lattice results on hxiπuþ extracted
at the same or similar value of the pion mass, that is,
240–270 MeV.
In Ref. [44], several Nf ¼ 2þ 1þ 1 ensembles of

twisted mass fermions with no clover improvement were
used for the calculation of the pion moments. They find
hxiπuþ ¼ 0.2586ð41Þð28Þ on an ensemble (A30.32) with the
similar lattice spacing (a ¼ 0.09 fm) and lattice size to
the one of this work. For another ensemble (B25.32) with
a smaller lattice spacing a ¼ 0.082 fm, mπ ¼ 260 MeV,
and mπL ¼ 3.5, they found hxiπuþ ¼ 0.2523ð51Þð71Þ.
Both values are in agreement with hxiπuþ ¼ 0.261ð3Þð6Þ
obtained using our Nf ¼ 2þ 1þ 1 clover-improved
ensemble.
It is interesting to compare with phenomenological

estimates, which can be found in Refs. [71,72]. The older
analysis of Ref. [72] gives a value of hxiπu¼0.217ð10Þ, in the
MS at a scale at ð5.2 GeVÞ2, while ours is ð2 GeVÞ2.

Converting to 2 GeV, their value becomes hxiπu¼0.361ð17Þ.
A more recent analysis is presented by the JAM
Collaboration [71] on a large set of experimental data
including Drell-Yan data and leading neutron electropro-
duction from HERA. They find hxiπvalence ¼ 0.480ð10Þ,
which is reasonably close to our value of 2hxiπuþ ¼
0.522ð13Þ. The error in the parenthesis is the combined
statistical and systematic uncertainties added in quadrature.
The fact that our value is higher, by ∼4%, maybe attributed
to the fact that our calculation is not at the physical point
and the continuum limit is not taken. Both the chiral
extrapolation and taking a → 0 will decrease this value
as demonstrated in Ref. [44]. We also note that all
lattice calculations to date consider only the connected
contributions as done in this work. The disconnected
contributions should be included for a final comparison
with phenomenology. We summarize the results for hxiπu in
Table VII.
There are very limited calculations for hx2i within lattice

QCD, and the one which we can directly compare with
our results is Ref. [44]. They find hx2iπuþ ¼ 0.131ð18Þð24Þ
and hx2iπuþ ¼ 0.132ð40Þð53Þ for ensembles A30.32 and
B25.32, respectively. These estimates are compatible
with our final value, within the large uncertainties of the
aforementioned values. hx2iπ was also calculated in
Refs. [40,69] using a different operator, which has two
Dirac indices the same. Such a choice is expected to lead to
more complicated renormalization pattern due to mixing,
which is not addressed in Refs. [40,69]. They obtain
hx2iπuþ ¼ 0.128ð9Þð4Þ which is, however, consistent with
the value obtained in this work.
Phenomenological estimates for hx2iπ can be found in

Ref. [71] where a value of hx2iπvalence ¼ 0.210ð5Þ is
reported, which is compatible with our value of 2hx2iπuþ ¼
0.164ð54Þ within uncertainties. However, one needs to bear
in mind that the phenomenological value does not include
sea quark contributions unlike the lattice QCD calculation,
where such sea quark effects are automatically included.
For completeness, we also provide the results from
Ref. [72], which correspond to a scale of ð5.2 GeVÞ2.
Their finding is hx2iπu ¼ 0.087ð5Þ. We convert this result to
2 GeV resulting to hx2iπu ¼ 0.169ð10Þ. This is compatible
with our value.

TABLE VII. Comparison of lattice results and phenomeno-
logical data for hxiπ and hx2iπ .
Reference hxiπ hx2iπ
This work (lattice) 0.522(13) 0.164(54)
Ref. [44] (lattice) 0.517(99) 0.262(60)
Ref. [44] (lattice) 0.505 (174) 0.264(133)
Ref. [72] (global fits) 0.361(17) 0.169(10)
Ref. [71] (global fits) 0.480(10) 0.210(5)
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VI. SUMMARY

We present a calculation of the second and third Mellin
moments, hxi and hx2i for the pion and kaon. We use one
Nf ¼ 2þ 1þ 1 ensemble reproducing a pion mass of
260 MeV and a kaon mass of 530 MeV. For hxi, we
employ both the rest and boosted frames, and we find full
agreement between the two. However, the statistical
uncertainties for the boosted frame are larger, as can be
seen in Fig. 7. To extract hx2i, one requires a boosted frame
due to kinematical factors. The selected meson momentum

boost has all spatial components nonzero and gives jp⃗ij ¼ffiffiffiffi
12

p
π

L (0.72 GeV). We renormalize all matrix elements with
nonperturbative renormalization with cutoff subtraction
that utilizes lattice QCD perturbation theory.
We perform a thorough investigation of excited states

using the three-point function that determines hxi. For this
investigation, we use the rest frame and calculated the
matrix elements for six values of the source-sink time
separation ranging from 1.12 to 2.23 fm. The computa-
tional cost for this study is within reach, as the statistical
error does not increase with ts in the rest frame for the pion
and only increases mildly for the kaon. We analyze the data
using one-state and two-state fits. We find that excited
states are suppressed for ts > 1.6 fm, that is, ts ¼ 18a or
higher. Another important conclusion from the analysis is
that the two-state fits using only ts=a ¼ 14, 16, 18 are
compatible with the two-state fits obtained including the
larger ts values. This is crucial, as in the case of the boosted
frame, the statistical errors increase with ts, as illustrated in
e.g., Fig. 9, limiting how large ts can be. Thus, for the
boosted frame, we perform the computation for ts=a ¼ 14,
16, 18, where the consistency of the results extracted
between one- and two-state fits demonstrates that excited
states are correctly accounted for.
The results for the pion are given in Eqs. (38) and (41) in

the MS scheme at a renormalization scale of 2 GeV. Our
results agree very well with the lattice QCD analysis of
Ref. [44]. It is important to emphasize that the in-depth
study and elimination of excited states in our analysis have
reduced the extracted values bringing them closer to those
determined from phenomenology. For example, our lattice
data for source-sink time separations below 1.6 fm give a
value that is 10%–20% higher than the final value extracted
when the larger separations are used (see Table IV).
Our final results for hxiKu;s and hx2iKu;s are given in

Eqs. (39) and (40) and Eqs. (42) and (43), respectively,
in the MS scheme at a scale of 2 GeV. Currently, there are
no other lattice data for these quantities, nor global fits on
experimental data. Therefore, the results on the kaon
presented in this work provide a first prediction. Taking
in to account that for the ensemble employed in this work

the kaon mass is about 530 MeV, that is, only ∼7% heavier
than its physical value, means that the values for hxiKu;s and
hx2iKu;s can be considered as a good approximation of their
physical counterparts.
In the near future, we will consider calculation of hx3i for

both the pion and kaon. Another direction is the form
factors and generalized form factors, which require off-
forward matrix elements. We intend to test the momentum
smearing method [73] for the boosted frame, which has
been proven to increase the overlap with the ground
state, decreasing significantly the statistical noise. This
method is successful in the reduction of statistical noise in
hadron matrix elements of nonlocal operators (see, e.g.,
Refs. [16,22,74–81]).
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