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A method was proposed recently [X. Feng and L. Jin, Phys. Rev. D 100, 094509 (2019)] to calculate
QED corrections to hadronic self-energies from lattice QCD without power-law finite-volume errors. In
this paper, we extend the method to processes which occur at second order in the weak interaction and in
which there is a massless (or almost massless) leptonic propagator. We demonstrate that, in spite of the
presence of the propagator of an almost massless electron, such an infinite-volume reconstruction
procedure can be used to obtain the amplitude for the rare kaon decay Kþ → πþνν̄ from a lattice quantum
chromodynamics computation with only exponentially small finite-volume corrections.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) has been
successful in precision flavor physics, where observables
such as the decay constants fK , fπ and semileptonic form
factors fþð0Þ can be calculated with subpercent precision
[1]. The quantities mentioned above, which occur at
leading order in the weak interaction, provide important
constraints for Cabibbo-Kobayashi-Masukawa matrix ele-
ments. With the development of supercomputers, algo-
rithms and new ideas, the range of lattice QCD calculations
has been extended to include many second-order electro-
weak processes, where the calculations involve the con-
struction of four-point correlation functions and the
treatment of bilocal matrix elements with the insertion of
two operators from the effective Hamiltonian. Here we are
mainly interested in the processes involving a massless
lepton or photon in the intermediate state, such as rare kaon
decays [2–8], neutrinoless double beta decays [9–12]

and radiative corrections to leptonic and semileptonic
decays [13–17].
When analyzing matrix elements of bilocal operators, it

is useful to insert a complete set of intermediate states
between the two local operators. If the energy of the initial
state is sufficiently large to create on-shell intermediate
multiparticle states, power-law finite-volume effects can be
generated.1 Following Ref. [18], where the KL‐KS mixing
is analyzed as an example, one can correct for such
potentially large finite-volume effects. However, the sit-
uation changes when the intermediate multiparticle state
involves a massless, or nearly massless, particle. Since the
long-range massless propagator is distorted by the finite
volume, power-law finite-volume effects appear even for
states containing off-shell particles. Such a situation hap-
pens, for example, in the rare kaon decay Kþ → Xeþνe →
πþνeν̄e [2–5] where the intermediate states contain a
positron, together possibly with additional hadronic par-
ticles specified here by the symbol X. The positron is
effectively massless since its mass, me, satisfies meL ≪ 1,
where L is the spacial extent of current lattices (with
volume, V ¼ L3). An analogous procedure has been
applied to the calculation of the amplitude for neutrinoless
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1Throughout this paper we use the shorthand notation ex-
ponential finite-volume effects to denote ones which decrease
exponentially with the spacial extent of the lattice L, and power-
law finite-volume effects to denote those which decrease only as
powers of L.
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double-β decay π−π− → Xeν̄e → ee, in which there is the
propagator of a massless neutrino [10].
To completely remove the power-law finite-volume

effects induced by the massless electron or neutrino, we
adopt the infinite-volume reconstruction (IVR) method
proposed in Ref. [19], which has been used to eliminate
such effects in QED corrections to hadronic self-energies.
In that case the lightest intermediate hadron is the same as
the stable hadron in the initial and final states. In this
paper, we use the rare decay Kþ → πþνν̄l to illustrate that
the method is also applicable to processes in which the
intermediate hadronic state is not degenerate with the initial
state; indeed it can be either heavier or lighter than
initial state.
The structure of the remainder of this paper is as follows.

In the following section we discuss the structure and
properties of the physical amplitude for the rare kaon
decay Kþ → πþνν̄ in Minkowski space and write the
amplitude in a form which is convenient for continuation
into Euclidean space. In Sec. III we present our proposed
method for the evaluation of the amplitude from Euclidean
correlation functions computed in a finite volume, but with
only exponentially small finite-volume corrections. Finally
we present our conclusions in Sec. IV.

II. FINITE-VOLUME EFFECTS
IN K + → π + νlν̄l DECAYS

As explained in Ref. [3], the Kþ → πþνlν̄l decay
amplitude, where l represents the lepton quantum number,
contains contributions from both Z-exchange diagrams and
W‐W diagrams. For the Z-exchange diagrams, for which
the νν̄ pair is emitted from the same vertex, there are no
leptonic propagators in the amplitude and the dominant,
power-law finite-volume effects are associated with the
process Kþ → πþπ0 → πþνlν̄l, which can be corrected
using the formula provided in Ref. [18]. Here we focus
on the contribution from the W −W diagrams illustrated
in Fig. 1 in which the νl and ν̄l are emitted from
separate vertices and which contain the propagator of the

corresponding charged lepton lþðeþ; μþ or τþÞ. The dis-
cussion of the properties and structure of the physical
amplitude in this section is presented in Minkowski space.
The contribution to the amplitude from the W‐W dia-

grams in Minkowski space, AM
l , is given by

AM
l ¼ AM

u;l − AM
c;l ð1Þ

where the AM
q;l are defined by

AM
q;l ¼ i

Z
d4xhπþνlν̄ljTfOM;ΔS¼1

ql ðxÞOM;ΔS¼0
ql ð0ÞgjKþi;

ð2Þ

where q ¼ u, c are the flavors of up-type quarks and l ¼ e,
μ, τ are the flavors of leptons. The two operators in Eq. (2)
are given by

OM;ΔS¼1
ql ¼ ðs̄qÞV−Aðν̄llÞV−A;

OM;ΔS¼0
ql ¼ ðq̄dÞV−Aðl̄νlÞV−A; ð3Þ

where, for example, ðs̄qÞV−Aðν̄llÞV−A ≡ ðs̄γμð1 − γ5ÞqÞ×
ðν̄lγμð1 − γ5ÞlÞ.
In this paper we focus on the transition Kþ → Xlþνl →

πþνlν̄l. We denote the potentially large, i.e., the power-
law, finite-volume effects in the spatial integral over a finite
volume of size L3, by AXlþ

FV ¼ AXlþðLÞ − AXlþð∞Þ, where
AXlþðLÞ and AXlþð∞Þ are the amplitudes in finite and
infinite volumes respectively. The label Xlþ indicates that
the correction comes from the Xlþ intermediate states,
where X can represent (i) the vacuum, (ii) the stable single-
hadron states, π0 or D0, or (iii) multihadron states of which
the lightest ones are two-pion states. The neutrino in the
Xlþνl intermediate state is the one which appears in the
final state, and its energy and momentum determine those
of Xlþ.

FIG. 1. Quark and lepton contractions for the W‐W diagrams. The quark flavors are as indicated and the lepton l ¼ e, μ or τ. The
quark (leptons) are represented by solid (dashed) lines.The operators OΔS¼1 and OΔS¼0 are shorthand representations of OM;ΔS¼1

ql and

OM;ΔS¼0
ql defined in Eq. (3).
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For the transition Kþ → Yl−ν̄l → πþνlν̄l, charge
conservation requires Y to be a multihadron state. The
corresponding finite-volume effects are largely similar to
those from multihadron states X in Kþ → Xlþνl →
πþνlν̄l transitions apart from the presence of disconnected
diagrams as discussed in Sec. III B.
We now consider the three possibilities for X in turn.

When X is the vacuum, the momentum of lþ is completely
fixed by momentum conservation, plþ ¼ pK − pνl ≡ P.
There are no power-law finite-volume effects in this case.
When X is a single stable hadron with four momentum k,

as shown in Fig. 2, the finite-volume effects in the
amplitude, AXlþ

FV , can be expressed as [3,5]

AXlþ
FV ¼

�
1

L3

X
k⃗

Z
dk0
2π

−
Z

d4k
ð2πÞ4

��
AKþ→X
α ðpK; kÞ

i
k2 −m2

X þ iε
AX→πþ
β ðk; pπÞ

�

×

�
ūðpνlÞγαð1 − γ5Þ

i
ðP − =kÞ −ml þ iε

γβð1 − γ5Þvðpν̄lÞ
�
; ð4Þ

where k is the momentum carried by the intermediate hadron X and P ¼ pK − pνl is the total momentum flowing into the
Xlþ loop. The terms AKþ→X

α and AX→πþ
β represent the transition matrix elements indicated by the superscripts and α, β are

the Lorentz indices of the weak currents.
Although the present study is focused on rare kaon decays, the main ideas are more general. Equation (4) is an example of

the generic form of the expression for finite-volume effects:

IFV ¼ IðLÞ − Ið∞Þ ¼
�
1

L3

X
k⃗

Z
dk0
2π

−
Z

d4k
ð2πÞ4

�
fðk0;kÞ

ðk2 −m2
1 þ iεÞððP − kÞ2 −m2

2 þ iεÞ ; ð5Þ

where, in the present calculation, P ¼ pK − pνl ≡ ðE; P⃗Þ,m1 ¼ mX andm2 ¼ ml. We can evaluate the k0 integration using
Cauchy’s theorem, including the contributions from the poles in the two propagators shown in Eq. (5) and ignoring
contributions from any other k0 singularities in fðk0; kÞ since these will result from other more massive intermediate states
than those we have chosen to study. For simplicity of notation, the dependence of fðk0;kÞ on the external momenta is not
shown explicitly. Performing the integral over k0 we obtain the integrand

−i
fðE1; k⃗Þ

2E1ððE − E1Þ2 − E2
2 þ iεÞ − i

fðEþ E2; k⃗Þ
2E2ððEþ E2Þ2 − E2

1 þ iεÞ ð6Þ

with E1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ k⃗2
q

and E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ ðP⃗ − k⃗Þ2
q

. Using
the Poisson summation formula, it can be shown that two
singularities of the integrand contribute finite-volume
effects which are not exponentially small in volume. In
the first term in Eq. (6) there is a singularity when the
condition E ¼ E1 þ E2 is satisfied and two on-shell par-
ticles are created [20]. In the second term of Eq. (6), ifm2 is
very small then there is an additional singularity from the
factor 1=E2 ≈ 1=jP⃗ − k⃗j. For example, using a QEDL-style
regularization and omitting the zero-momentum mode
from the allowed finite-volume lepton states, the region
around jP⃗ − k⃗j ¼ 0 leads to a 1=L2 difference between the
finite-volume summation and infinite-volume integration

[14,21]. This is the situation for rare kaon decays when the
lepton is the electron where, since in practicemeL ≪ 1, the
electron is effectively massless in lattice computations.
Therefore, no matter how heavy is the hadron X, power-law
finite-volume effects associated with the massless electron
always exist. In the following section we will discuss how
to remove these two sources of power-law finite-volume
effects by extending the method developed in Ref. [19].
When X is a multihadron state, the situation is more

complicated. For multihadron states with energies that are
larger than the energy of the initial hadron, the contribu-
tions are exponentially suppressed at large time separations
and the corresponding power-law finite-volume effects can

FIG. 2. Illustration of the process Kþ → Xlþνl → πþνlν̄l.
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be safely eliminated using our proposed method. For
multihadron states with energies which are smaller than
that of the initial hadron, it is unclear in general how
to remove all the power-law finite-volume effects.
Fortunately, for the Kþ → πþνlν̄l decay, the contribution
from low-lying multihadron states, e.g., Kþ → 2πlþνl →
πþνlν̄l, can safely be neglected due to the significant phase
space suppression (see Table I in Ref. [3] and the relevant
context for details).

A. Structure of the amplitude

Before explaining how to obtain the physical decay
amplitude from a computation on a finite lattice, we
formulate it in an expression suitable for continuation into
Euclidean space. We start by rewriting the bilocal matrix
element in the integrand of AM

q;l in Eq. (2) as a product of
two factors:

AM
q;l ¼ i

Z
d4xHM;ðqÞ

αβ ðxÞLM;αβðxÞ; ð7Þ

where α and β are Lorentz indices. The hadronic factor

HM;ðqÞ
αβ ðxÞ and the leptonic factor LM;αβðxÞ are defined by

HM;ðqÞ
αβ ðxÞ ¼ hπþðpπÞjTf½s̄ðxÞγαð1 − γ5ÞqðxÞ�

× ½q̄ð0Þγβð1 − γ5Þdð0Þ�gjKþðpKÞi; ð8Þ

LM;αβðxÞ¼ ūðpνlÞγαð1− γ5ÞSlðx;0Þγβð1− γ5Þvðpν̄lÞeipνl
·x:

ð9Þ

Here Slðx; 0Þ is a free lepton propagator. By inserting a
complete set of energy eigenstates, AM

q;l can further be
written as

AM
q;l ¼

Z
dϕn

hπþjOðqÞ
d;βð0ÞjnihnjOðqÞ

s;αð0ÞjKþi
En þElþ þEνl −EK − iε

Lαβ
1 ðp⃗nÞ

þ
Z

dϕns

hπþjOðqÞ
s;αð0ÞjnsihnsjOðqÞ

d;βð0ÞjKþi
Ens þEl− þEν̄l −EK

Lαβ
2 ðp⃗nsÞ

ð10Þ

≡AM;−
q;l þ AM;þ

q;l ; ð11Þ

where the first and second terms on the right-hand sides of
Eqs. (10) and (11) are the contributions from the regions
x0 < 0 and x0 > 0 respectively. Here jni and jnsi represent
nonstrange and strangeness S ¼ 1 intermediate states
respectively and in each case ϕn and ϕns is the correspond-
ing phase space and a sum over all such states is implied.
The denominator in the second term on the right-hand side
of Eq. (10) is always positive and hence we omit the −iε.
The three-momenta of the charged leptons are fixed by the

momentum-conserving δ-functions obtained after the inte-
gration over x⃗, so that

Lαβ
1 ðp⃗nÞ ¼

1

2Eþ
l
ūðpνlÞγαð1 − γ5Þðplþ −mlÞ

× γβð1 − γ5Þvðpν̄lÞ; ð12Þ

Lαβ
2 ðp⃗nsÞ ¼

1

2E−
l
ūðpνlÞγαð1 − γ5Þðpl− þmlÞ

× γβð1 − γ5Þvðpν̄lÞ; ð13Þ

where p⃗lþ ¼ p⃗K − p⃗νl − p⃗n in Eq. (12) and p⃗l− ¼
p⃗K − p⃗ν̄l − p⃗ns in Eq. (13). In both cases the energy of

the charged lepton is given by El� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
l� þm2

l

q
.

In deriving Eq. (10) we have used the space-time
translation property

hfjOðt; x⃗Þjii ¼ e−iðEi−EfÞtþiðp⃗i−p⃗fÞ·x⃗hfjOð0; 0⃗Þjii; ð14Þ

where ðEi; p⃗iÞ and ðEf; p⃗fÞ are the four-momenta of the
initial and final states respectively, and we have defined the
quark V − A currents by

OðqÞ
s;α ¼ s̄γαð1 − γ5Þq; OðqÞ

d;β ¼ q̄γβð1 − γ5Þd: ð15Þ

The principal objective of this paper is to demonstrate
how to obtain the expression on the right-hand side of
Eq. (10) from computations of correlation functions on a
finite Euclidean lattice with only exponentially small finite-
volume effects. We explain how to achieve this in the
following section.

III. AM
q;l FROM EUCLIDEAN

CORRELATION FUNCTIONS

Hadronic matrix elements are obtained in lattice QCD
computations from calculations of finite-volume Euclidean
correlation functions. In this section we present a detailed
discussion of the evaluation of AM

u;l, since the evaluation of
AM
c;l is considerably more straightforward and can readily

be deduced from that of AM
u;l (as we briefly explain at the

appropriate points in the discussion). We consider sepa-
rately the two time-orderings t < 0 and t > 0 correspond-
ing to each of the two terms on the right-hand side of
Eq. (10). The correlation functions for the two time-
orderings are sketched schematically in Fig. 3.

A. The time-ordering t < 0

Consider the finite-volume Euclidean correlation
function
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CðuÞ
αβ ðt; x⃗Þ ¼

X
x⃗π ;x⃗K

h0jJπðtπ; x⃗πÞOðuÞ
d;βð0; 0⃗ÞOðuÞ

s;αðt; x⃗Þ

× J†KðtK; x⃗KÞj0ieip⃗K ·x⃗K e−ip⃗π ·x⃗π ; ð16Þ

where J†K and Jπ are interpolating operators for the creation
of a kaon and annihilation of a pion respectively. The
correlation function in Eq. (16) describes the creation of a
kaon at a large negative time tK , the insertion of the weak

operators OðuÞ
s;α and OðuÞ

d;β at times t and 0 respectively, with
t < 0 and the annihilation of the pion at time tπ ≫ 0. This is
illustrated in Fig. 3(a). For compactness of notation we

suppress the dependence of CðuÞ
αβ ðtÞ on tK , tπ and the

momenta. In this section we show how to obtain the AM;−
u;l

component of the amplitude from the evaluation ofCðuÞ
αβ ðt; x⃗Þ

up to exponentially small finite-volume corrections.
Assuming, as is standard, that t − tk and tπ are suffi-

ciently large for the correlation function to be dominated by
a kaon of momentum p⃗K propagating in the time interval
ðtK; tÞ and for a single pion to be propagating in the interval
ð0; tπÞ we have

CðuÞ
αβ ðt; x⃗Þ ¼ ZKZπ

eEKtK

2EK

e−Eπtπ

2Eπ
hπðp⃗πÞjOðuÞ

d;βð0; 0⃗Þ

×OðuÞ
s;αðt; x⃗ÞjKðp⃗KÞi: ð17Þ

The energies of the kaon and pion, EK and Eπ respectively,
and the matrix elements ZK ¼ hKðp⃗KÞjJ†Kð0Þj0i and Zπ ¼
h0jJπð0Þjπðp⃗πÞi can be obtained in the standard way from
two-point meson correlation functions using our normali-
zation conventions, e.g., for the finite-volume state jπðp⃗πÞi,

hπðp⃗0
πÞjπðp⃗πÞi ¼ 2Eπ

�
L
2π

�
3

δp⃗0
π ;p⃗π

: ð18Þ

We then rewrite Eq. (17) as

CðuÞ
αβ ðt; x⃗Þ≡ ZKπH

E;ðuÞ
αβ ðt; x⃗Þ; ð19Þ

where

ZKπ ¼ ZKZπ
eEKtK

2EK

e−Eπ tπ

2Eπ
ð20Þ

and HE;ðuÞ
αβ ðt; x⃗Þ is the Euclidean equivalent of the bilocal

hadronic matrix element in Eq. (8) at t < 0

HE;ðuÞ
αβ ðt; x⃗Þ¼ hπþðpπÞj½ūð0Þγβð1− γ5Þdð0Þs̄ðxÞ

× γαð1− γ5ÞuðxÞ�jKþðpKÞi
¼
X
n

hπðpπÞjOðuÞ
d;βð0ÞjnðpnÞihnðpnÞj

×OðuÞ
s;αð0ÞjKðpKÞieiðp⃗K−p⃗nÞ·x⃗e−ðEK−EnÞt; ð21Þ

where the sum is over a complete set of nonstrange states
jni. The basis of the infinite-volume reconstruction method
is that we perform the integral in Eq. (7) using the hadronic

matrix elementHE;ðuÞ
αβ ðt; x⃗Þ calculated using lattice methods

on a finite spatial volume and the leptonic tensor LE;αβ

calculated in an infinite spatial volume which for t < 0 is
given by

LE;αβðxÞ¼
Z

d3plþ

ð2πÞ3
eðEνl

þElþÞte−iðp⃗lþþp⃗νl
Þ·x⃗

2Elþ
ūðpνlÞ

× γαð1− γ5Þðplþ −mlÞγβð1− γ5Þvðpν̄lÞ: ð22Þ

In order to allow the external kaon and pion to propagate
over sufficiently large time intervals to eliminate excited

external states and obtain HE;ðuÞ
αβ ðt; x⃗Þ we imagine perform-

ing the time integration over the interval ðTA; TBÞ, where
tK ≪ TA ≪ 0 ≪ TB ≪ tπ , as illustrated in Fig. 3. In this
subsection we are considering the contribution from the
region t < 0 and so the range of integration is ðTA; 0Þ and
the aim here is to compute

AE;−
u;l ¼

Z
0

TA

dt
Z
L3

d3xHE;ðuÞ
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ ð23Þ

in such a way as to reproduce the first term on the right-
hand side of Eq. (10), AM;−

u;l , with only exponentially small
finite-volume effects.2 However, the presence of states jni
in the sum in the second line of Eq. (21) with energies
which are smaller than those of the external states leads to
exponentially growing terms in jTAj and power-law finite-
volume effects. We therefore cannot simply evaluate the

FIG. 3. Schematic drawing of the two time orderings in the correlation function. In (a) we have t < 0 and in (b) we have t > 0.

2The L3 suffix in Eq. (23) indicates that the integral is
performed over the finite spatial volume.
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integral in Eq. (23) using HE;ðuÞ
αβ ðt; x⃗Þ computed directly on

a finite Euclidean lattice for all t ∈ ðTA; 0Þ and a modified
procedure must be introduced. We now explain in some
detail the presence of power-law finite-volume effects and
the exponentially growing behavior with jTAj in Eq. (23)
together with our proposed method for eliminating them.
Using Eqs. (21) and (22) we see that the integration over

time (under the sum over jni and integration over p⃗lþ) is
given by
Z

0

TA

dteðEnþElþþEνl
−EKÞt

¼ 1

EnþElþ þEνl −EK
½1−e−ðEnþElþþEνl

−EKÞjTAj�: ð24Þ

The difficulty arises because there are states jni for which
En þ Elþ þ Eνl − EK < 0 leading to an unphysical con-
tribution that is exponentially growing in TA and power-law
finite-volume effects due to the singularity in the denom-
inator of the right-hand side of Eq. (24). This singularity is
present in the range of the summation over intermediate
states. This demonstrates that it is not possible to achieve
the stated aim by performing the integral in Eq. (23) using

HE;ðuÞ
αβ ðxÞ, computed on the lattice over the full time interval

ðTA; 0Þ, and the infinite-volume leptonic tensor LE;αβðt; x⃗Þ
in Eq. (22). We now discuss the modifications we propose
in order to complete the determination of the first term of
the physical amplitude AM;−

u;l , i.e., the first term on the right-
hand side of Eq. (10), with only exponential finite-volume
effects.
We separate HE;ðuÞ

αβ ðt; x⃗Þ into the contributions from the
vacuum and the hadronic intermediate states writing

HE;ðuÞ
αβ ðt; x⃗Þ ¼ Hvac

αβ ðt; x⃗Þ þHhad;ðuÞ
αβ ðt; x⃗Þ; ð25Þ

where

Hvac
αβ ðt; x⃗Þ≡ hπjOðuÞ

d;βð0Þj0ih0jOðuÞ
s;αð0ÞjKieip⃗K ·x⃗e−EKt: ð26Þ

The vacuum contributionHvac
αβ ðt; x⃗Þ can be determined with

only exponential finite-volume errors using the matrix

elements hπjOðuÞ
d;βð0Þj0ilatt and h0jOðuÞ

s;αð0ÞjKilatt determined
in lattice computations of two-point correlation functions in
the standard way. We can therefore obtain the contribution
from the purely leptonic intermediate state (jni ¼ j0i) to
the physical amplitude in Eq. (10)

Avac ¼ hπjOðuÞ
d;βð0Þj0ilatth0jOðuÞ

s;αð0ÞjKilatt
Elþ þ Eνl − EK − iε

Lαβ
1 ð0⃗Þ: ð27Þ

The subtraction of the vacuum contribution analogous to
that needed to obtainHhad;ðuÞ from Eq. (25) is not specific to
the infinite-volume reconstruction method. It has been

performed successfully in the study of rare kaon decays
[2–8], the KL‐KS mass difference [22,23], and neutrinoless
double β decay [11]. Here, similarly to these earlier studies,
we envisage exploiting the statistical correlations between

HE;ðuÞ
αβ andHvac

αβ in order to obtain sufficiently precise values

of Hhad;ðuÞ
αβ .

We now consider Hhad;ðuÞ
αβ ðt; x⃗Þ for t < 0, obtained after

subtracting the vacuum contribution from HE;ðuÞ
αβ ðt; x⃗Þ. We

assume that for some sufficiently large jtsj the hadronic

factor Hhad;ðuÞ
αβ ðt; x⃗Þ with jtj ≥ jtsj is dominated by the jπ0i

intermediate state, so that in particular

Hhad;ðuÞ
αβ ðts; x⃗Þ ≃

Z
d3pπ0

ð2πÞ3
1

2Eπ0
hπðpπÞjOðuÞ

d;βð0Þjπ0ðpπ0Þi

× hπ0ðpπ0ÞjOðuÞ
s;αð0ÞjKðpKÞi

× eiðp⃗K−p⃗π0 Þ·x⃗e−ðEK−Eπ0 Þts ; ð28Þ

where the ≃ symbol indicates the equality of the two sides
of the equation up to excited-state contributions which are
assumed to be negligible. Although jtsj is large enough for
the ground state to dominate for jtj ≥ jtsj, it is nevertheless
finite so that the finite-volume corrections in Hhad;ðuÞ

αβ ðts; x⃗Þ
are exponentially suppressed, and we have therefore
replaced the sum over finite-volume jπ0i by the infinite-
volume phase-space integral.
In the original presentation of the IVR method [19], the

integration region over t, i.e., t ∈ ð−∞; 0Þ, is divided into
two intervals ðts; 0Þ and ð−∞; tsÞ, labeled as regions s (for
short) and l (long) respectively. Here we start by evaluating
I ðsÞ, the integral over the region t ∈ ðts; 0Þ [see Eq. (29)
below]. We then show that the corresponding contribution
to the physical amplitude AM;−

u;l [see Eqs. (10) and (11)] is

obtained from I ðsÞ þ Ĩ ðlÞ, where Ĩ ðlÞ is an appropriately
modified contribution from the integration region ð−∞; tsÞ.
The hadronic components of I ðsÞ and Ĩ ðlÞ can both be
determined from lattice computations.
The integration over t in the interval ðts; 0Þ is defined by

I ðsÞ ≡
Z

0

ts

dt
Z
L3

d3xHhad;ðuÞ
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ

≃
Z

0

ts

dt
Z
∞
d3xHhad;ðuÞ

αβ ðt; x⃗ÞLE;αβðt; x⃗Þ; ð29Þ

since for finite ts the finite-volume effects are exponentially
small.3 Nevertheless I ðsÞ does not reproduce the corre-

sponding contribution to the Minkowski amplitude, AðM;−Þ
u;l

defined in Eq. (11). Instead I ðsÞ is given by

3The suffix ∞ in Eq. (29) indicates that the integral is
performed in infinite volume.
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I ðsÞ ¼
Z

dϕn

hπjOðuÞ
d;βð0Þjnðp⃗nÞihnðp⃗nÞjOðuÞ

s;αð0ÞjKi
En þ Elþ þ Eνl − EK

× Lαβ
1 ðp⃗nÞ½1 − e−ðEnþElþþEνl

−EKÞjtsj�; ð30Þ
where a sum over intermediate states jni is implied. For
excited states with En þ Elþ þ Eνl − EK > 0 the contri-
butions from Euclidean matrix elements reproduce the
corresponding Minkowski results up to the exponentially
suppressed term e−ðEnþElþþEνl

−EKÞjtsj. This is not the case

however, for the ground-state, jπ0i, contribution which has
to be treated differently. [Note that even in this case, the
integrand on the right-hand side of Eq. (30) has no
singularity at Eπ0 þ Elþ þ Eνl − EK ¼ 0 since the numer-
ator also vanishes at this point.]
In order to reproduce AM;−

u;l we must remove the jπ0i
contribution from I ðsÞ in (30), and replace it by the
corresponding term (i.e., the term with jni ¼ jπ0i) in
Eq. (10). To this end we define the quantity Ĩ ðlÞ by4

Ĩ ðlÞ ¼
Z

d3pπ0

ð2πÞ3
1

2Eπ0
hπjOðuÞ

d;βð0Þjπ0ðp⃗π0Þihπ0ðp⃗π0ÞjOðuÞ
s;αð0ÞjKiLαβ

1 ðp⃗π0Þ

×

�
1

Eπ0 þ Elþ þ Eνl − EK − iε
−

1 − e−ðEπ0þElþþEνl
−EKÞjtsj

Eπ0 þ Elþ þ Eνl − EK − iε

�
; ð31Þ

¼
Z

d3pπ0

ð2πÞ3
1

2Eπ0
hπjOðuÞ

d;βð0Þjπ0ðp⃗π0Þihπ0ðp⃗π0ÞjOðuÞ
s;αð0ÞjKiLαβ

1 ðp⃗π0Þ
e−ðEπ0þElþþEνl

−EKÞjtsj

Eπ0 þ Elþ þ Eνl − EK − iε
; ð32Þ

where Eπ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p⃗2
π0

q
. In the second line of Eq. (31) the

first term is the Minkowski contribution from the jπ0i
intermediate state [see Eq. (10)] and the second term is the
jπ0i contribution to I ðsÞ [see Eq. (30)]. Since in this second
term there is no singularity, it is possible and also
convenient to add −iε to the denominator. In this way
we remove the unphysical contribution in I ðsÞ and replace it
with the missing term in the physical amplitude. Combin-
ing Eqs. (28) and (32) we have

Ĩ ðlÞ ¼
Z

d3xHhad;ðuÞ
αβ ðts; x⃗ÞL̃αβ

1 ðts; x⃗Þ; ð33Þ

where L̃αβ
1 ðts; x⃗Þ is defined as

L̃αβ
1 ðts; x⃗Þ ¼

Z
d3plþ

ð2πÞ3 e
−iðp⃗lþþp⃗νl

Þ·x⃗Lαβ
1 ðp⃗π0Þ

×
e−ðElþþEνl

Þjtsj

Eπ0 þ Elþ þ Eνl − EK − iϵ
: ð34Þ

In the integrand of Eq. (34), p⃗π0 ¼ p⃗K − p⃗lþ − p⃗νl and

Eπ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
π0 þm2

π0

q
. Thus we see that the quantities I ðsÞ

and Ĩ ðlÞ can be approximated using the quantitiesHhad
αβ ðt; x⃗Þ

calculated for jtj ≤ jtsj in a lattice computation as inputs.
The finite-volume effects induced by this approximation
are exponentially suppressed.

Combining the contribution from the vacuum intermedi-
ate state in Eq. (27), with those from the hadronic
intermediate states in Eqs. (29) and (33), we obtain the
contribution to the physical amplitude in Eq. (10) from
the region x0 < 0 with only exponential finite-volume
corrections:

AM;−
u;l ¼ Avac þ I ðsÞ þ Ĩ ðlÞ: ð35Þ

The contribution AM;−
c;l is much more straightforward to

evaluate as the intermediate states now have charm quan-
tum number C ¼ 1, and so have larger energies thanmK . In
this case one simply performs the integral

AE;−
c;l ¼

Z
0

TA

dt
Z

d3xHE;ðcÞ
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ ð36Þ

with the hadronic matrix elements computed directly in
lattice QCD. In this case AE;−

c;l ¼ AM;−
c;l up to exponential

finite-volume effects.

B. The time-ordering t > 0

We now consider the case t > 0 and the evaluation of
AM;þ
u;l , for which the elimination of the power-law finite-

volume effects is a little more straightforward but which
nevertheless contains a new subtlety. We start by following
the same steps as for t < 0, relating the Euclidean corre-
lation function illustrated in Fig. 3(b) to the bilocal
hadronic matrix element:

4The tilde on Ĩ ðlÞ is introduced to denote the fact that Ĩ ðlÞ is not
simply the integral over the region t < ts.
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CðuÞ
αβ ðt; x⃗Þ ¼

X
x⃗π ;x⃗K

h0jJπðtπ; x⃗πÞOðuÞ
s;αðt; x⃗ÞOðuÞ

d;βð0; 0⃗Þ

× J†KðtK; x⃗KÞj0ieip⃗K ·x⃗K e−ip⃗π ·x⃗π

¼ ZKπH
E;ðuÞ
αβ ðt; x⃗Þ; ð37Þ

where ZKπ is given in Eq. (20) and for t > 0,

HE;ðuÞ
αβ ðt; x⃗Þ ¼ hπþðpπÞj½s̄ðxÞγαð1 − γ5ÞuðxÞ�

× ½ūð0Þγβð1 − γ5Þdð0Þ�jKþðpKÞi
¼

X
ns

hπðpπÞjOðuÞ
s;αð0ÞjnsðpnsÞihnsðpnsÞjOðuÞ

d;βð0Þ

× jKðpKÞieiðp⃗ns−p⃗πÞ·x⃗e−ðEns−EπÞt; ð38Þ

and the sum is over the finite-volume multihadron strange-
ness S ¼ 1 states jnsi. There are therefore no on-shell
intermediate states jnsi and consequently there is no
unphysical exponentially growing behavior in TB in the
integral over t. Nevertheless there is a subtlety which must
be taken into account. Consider the type 1 diagram in
Fig. 1. Although we have drawn the two loops as only
being connected by a lepton propagator, it is to be under-
stood that gluonic and vacuum polarization effects,
although not drawn explicitly, are also implicitly included.
However, the functional integral over the gluon and sea-
quark fields contains contributions in which the strong-
interaction effects are restricted to each loop separately and
do not connect the two loops. For these contributions there

is no suppression in jx⃗j when evaluating HE;ðuÞ
αβ ðt; x⃗Þ and

they need to be treated separately in an analogous way to
the vacuum contribution in Eq. (26). We call these con-
tributions disconnected.5

Analogously to Eq. (25) we write for t > 0,

HE;ðuÞ
αβ ðt; x⃗Þ ¼ Hdisc

αβ ðt; x⃗Þ þHconn;ðuÞ
αβ ðt; x⃗Þ ð39Þ

where the labels disc and conn represent the disconnected
and connected contributions respectively. The disconnected
contribution has the same form as Hvacðt; x⃗Þ, but now
t > 0:

Hdisc
αβ ðt; x⃗Þ≡ h0jOðuÞ

s;αð0ÞjKihπjOðuÞ
d;βð0Þj0ieip⃗K ·x⃗e−EKt: ð40Þ

Each of the two local matrix elements in Eq. (40) can be
computed independently as an average over the gauge
configurations with only exponential finite-volume correc-
tions. We write the corresponding contribution to the
amplitude in the form

Adisc
u;l ¼ hπjOðuÞ

d;βð0Þj0ih0jOðuÞ
s;αð0ÞjKi

ðEK þ EπÞ þ Eν̄l þ El− − EK
L2ðp⃗K þ p⃗πÞ ð41Þ

to demonstrate that it is the disconnected contribution to
AM;þ
u;l in Eq. (10). Note that for the disconnected contribu-

tion pns ¼ pK þ pπ .
For the connected contribution, there are two important

points to note, both resulting from the observation that the
intermediate states jnsi all have energies which are larger
than those of the external states. The first point is that the

finite-volume effects in Hconn;ðuÞ
αβ ðt; x⃗Þ computed on a finite

lattice are exponentially suppressed. The second related
point is that even in infinite volume this hadronic matrix
element is exponentially suppressed at large t and jx⃗j.
In evaluating the contribution to the integral of Eq. (7)

we need to combine Hconn;ðuÞ
αβ ðt; x⃗Þ with the corresponding

leptonic tensor LE;αβðt; x⃗Þ, where for t > 0

LE;αβðxÞ¼
Z

d3pl−

ð2πÞ3
e−ðEνl

−El− Þteiðp⃗l−−p⃗νl
Þ·x⃗

2El−
ūðpνlÞ

× γαð1− γ5Þðpl− þmlÞγβð1− γ5Þvðpν̄lÞ: ð42Þ

In this subsection we are considering the contribution from
the region t > 0, so the range of integration is ð0; TBÞ and
we arrive at the following contribution to the decay
amplitude:

Aconn
u;l ¼

Z
TB

0

dt
Z
L3

d3xHconn;ðuÞ
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ: ð43Þ

The contribution Aconn
u;l is equal to the connected contribu-

tion to AM;þ
u;l up to exponentially suppressed terms in the

volume and in TB.
Combining Eqs. (41) and (43) we obtain

AM;þ
u;l ¼ Adisc

u;l þ Aconn
u;l ; ð44Þ

where the equality holds up to exponentially small finite-
volume corrections.
The evaluation of the corresponding contribution from

the charmed intermediate states, i.e., to AMþ
c;l , follows in the

same way except that there are no type 1 diagrams and
hence there is no disconnected contribution.
The discussion of the contribution from the region t > 0

is considerably simplified because the necessary presence
of multihadron S ¼ 1 intermediate states implies that there
are no power-law finite-volume effects arising from on-
shell intermediate states. In addition, the use of the infinite-
volume leptonic tensor (42) in the integration in Eq. (43)
avoids power-law finite-volume effects which would arise
due to the factor of 1=2El− in the difference between a
finite-volume sum over p⃗l− and the corresponding infinite-
volume integration. The above discussion is a particular

5In lattice QCD literature “disconnected” frequently refers to
diagrams in which quark loops are only connected by gluons. We
stress that our use of “disconnected” here is different and denotes
diagrams with no strong interactions between the quark loops.
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illustration of how to avoid power-law finite-volume
corrections in the second term on the right-hand side of
Eq. (6), which applies to general processes with a massless
(or almost massless) leptonic propagator.

C. Summary

In summary therefore, we propose to calculate the decay
amplitude AM

u;l, using the following form where all the
hadronic quantities can be obtained from lattice simulations
with exponential finite-volume effects:

AM
u;l ¼

hπjOðuÞ
d;βð0Þj0ilatth0jOðuÞ

s;αð0ÞjKilatt
Elþ þEνl −EK − iε

Lαβ
1 ð0⃗Þ

þ
Z

0

ts

dt
Z
L3

d3xHhad;ðuÞ;latt
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ

þ
Z
L3

d3xHhad;ðuÞ;latt
αβ ðts; x⃗ÞL̃αβ

1 ðts; x⃗Þ

þ hπjOðuÞ
d;βð0Þj0ilatth0jOðuÞ

s;αð0ÞjKilatt
ðEK þEπÞ þEν̄l þEl− −EK

Lαβ
2 ðp⃗K þ p⃗πÞ

þ
Z

TB

0

dt
Z
L3

d3xHconn;ðuÞ;latt
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ: ð45Þ

The first three terms on the right-hand side of Eq. (45)
come from the region t < 0 and are respectively (i) the
vacuum contribution obtained using Hvac

αβ in Eq. (26) and

the contributions from (ii) Is in Eq. (25) and (iii) Ĩ l in
Eqs. (33) and (34). The final two terms in Eq. (45) come
from the region t > 0 and are the (iv) disconnected con-
tributions, see Eq. (41) and (v) the connected contributions
in Eq. (43). The superscript latt underlines the observation
that the local and bilocal matrix elements are calculable in a
lattice computation with only exponential finite-volume
effects.
The focus of this paper has been on the demonstration of

the presence of power-law finite-volume effects in the
amplitudes AM

u;l for rare-kaon decays K → πνlν̄l and the
presentation of a proposed method to eliminate them. Such
effects are absent from AM

c;l, where the intermediate states

carry C ¼ 1 charm quantum number and type 1 diagrams
do not contribute. There are therefore no vacuum or
disconnected contributions, nor any from other intermediate

states lighter then thekaon and soHE;ðcÞ
αβ ðt; x⃗Þ as computedon

a finite Euclidean lattice can be used directly in the integralR TB
TA

dt
R
L3 d3xH

E;ðcÞ
αβ ðt; x⃗ÞLE;αβðt; x⃗Þ to obtain AM

c;l.
An important point to note is that it still requires further

investigations to extend the method developed in Ref. [19]
and in this work to multihadron intermediate states with
energies smaller than the external ones, as such states
induce branch cuts which cannot be simply described by
discrete QCD eigenstates in infinite volume.

IV. CONCLUSION

In this work, we extend the infinite-volume
reconstruction method proposed in Ref. [19] to long-
distance processes with massless (or almost massless)
leptonic propagators. Using the rare Kþ → πþνlν̄l decay
as an example, we show that the power-law finite-volume
effects induced by the massless electron can safely be
removed using the form in Eq. (45) in lattice computations.
A similar approach has been applied to the amplitude for
neutrinoless double β decay in which there is the propa-
gator of a massless neutrino [11]. We are also performing
exploratory studies with the aim of extending the method to
the evaluation of electromagnetic corrections to leptonic
and semileptonic decays [17] and applying it in numerical
lattice QCD calculations.
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