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In this paper, we summarize our efforts in simulating Yang-Mills theories coupled to matter fields
transforming under the fundamental and adjoint representations of the gauge group. In the context of
composite Higgs scenarios, gauge theories with mixed representation fields have been suggested to
describe the fundamental interactions well beyond the electroweak unification scale, and they are also
closely related to supersymmetric QCD. In addition, they are studied as deformations of theories with pure
adjoint matter in the context of adiabatic continuity. We provide some first results for bare parameter tuning
and interdependence of the two representations. We also investigate how the chiral symmetry breaking or a
conformal scenario can be realized and checked in such theories.
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I. GAUGE THEORIES WITH ADJOINT AND
FUNDAMENTAL FERMIONS

In the last two decades, there has been a substantial effort
to extend lattice Monte Carlo simulations from quantum
chromodynamics (QCD) toward the full landscape of
gauge theories including different numbers of fermion
fields transforming in the fundamental representation of
the gauge group. Higher fermion representations have been
also considered, most notably the adjoint representation of
SU(2) and SU(3), and the sextet representation of SU(3).
The motivations for these studies have been the search for
an extension of the Standard Model or the consideration of
supersymmetric gauge theories. The first studies of gauge
theories coupled to fermions in two different representa-
tions have been published very recently [1–6]. Such a setup
enhances substantially the possibilities for model building
and investigations of general theoretical questions. Our
study of a mixed representation setup with an SU(2) gauge
theory coupled to two Dirac fermions in the fundamental
and one Majorana fermion in the adjoint representation has
several motivations.

The first aim is an exploratory study toward the inves-
tigations of supersymmetric QCD (SQCD). SQCD is
described by SUðNcÞ gauge fields coupled to fermionic
gluinos in the adjoint representation of the gauge group as
well asNf fermionic quark fields and scalar squark fields in
the fundamental representation. Depending on Nc and Nf,
different phases of the theory are expected. In particular,
there are predictions for the appearance of an IR conformal
fixed point in this parameter space. There have been
several attempts toward a simulation of SQCD on the
lattice [7–10], but so far no real and complete investigation
has been possible. Since there has not been much expe-
rience with numerical simulations of mixed representations,
it is important to understand first the theory without scalar
fields, as a first step toward SQCD.
A second aim is related to possible composite Higgs

theories [11]. Theories with fermions in higher representa-
tions have been already investigated in this context. One
of the most famous examples is minimal walking techni-
color (MWT), an SU(2) gauge theory with Nf ¼ 2 Dirac
fermions in the adjoint representation. As shown by
numerical investigations, the mass anomalous dimension
at the IR fixed point of this theory is quite small, which
makes it less favorable for a Standard Model extension
[12–14].1 Theories with smaller Nf lead to a larger value of
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1Early simulations of SU(2) with fermions in the adjoint
representation can be found in [15] and in [16] for the funda-
mental representation.
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the mass anomalous dimension [17,18], but they do not
provide the right particle content for the coupling to the
Standard Model. One possible way out is to combine
different representations. The matter content for a coupling
of the SU(2) gauge theory to the Standard Model are two
fundamental fermions and the theory is driven toward the
conformal or walking limit by additional adjoint fermion
flavors. The adjoint matter is not charged under the gauge
groups of the Standard Model. This minimizes the matter
content of a possible Standard Model extension compared
to an approach with only fundamental matter since the
adjoint representation requires a smaller number of flavors
to reach near conformality.
The theory with two fundamental and one adjoint Dirac

flavor, the so-called ultraminimal walking technicolor
(UMWT), has been suggested as a strongly interacting
completion of the Standard Model [19].2 Due to the relation
to SQCD, we are considering here only one Majorana
fermion in the adjoint representation. This might never-
theless already be sufficient for near conformality since the
analysis of the theory has so far only been based on
perturbative estimates. The theory can, furthermore, be
considered as a deformation SU(2) gauge theory with two
fermions in the fundamental representation, which has been
considered in several investigations as a composite Higgs
model; see, for example, numerical studies in [22–25].
Another relation of our investigations in the context of

composite Higgs is the approach of a fine grained control of
the running of the gauge coupling by different mass scales.
This has been suggested and investigated for theories with a
large number of flavors in the fundamental representation
of SU(3) [26–28]. The fermion fields have been split in a
set of ðNfÞh heavy and ðNfÞl light fermions. However, this
appears more natural in the context of mixed representa-
tions as there is no symmetry suggesting an equality of the
masses of the different representations. Our studies might
also provide additional insights for the general investiga-
tions with multiple fermion representations, which appear
in the context of composite Higgs theories and partial
compositeness [29]. There are so far only a limited number
of lattice studies in this context [1,2,6].
The third line of motivation is related to a predicted

analytic continuity between confinement of strongly
coupled gauge theories and confinement in a semiclassical
small circle regime. This provides a better analytic control
in investigations of the relevance of nonperturbative semi-
classical contributions in the confinement mechanism. The
phenomenon is well understood in supersymmetric Yang-
Mills (SYM) theory and also confirmed by numerical
simulations [30,31]. Theoretical studies have been based
on the assumption that this can be extended toward gauge
theories with a larger number of adjoint fermion flavors

than the one Majorana fermion corresponding to SYM. It is
difficult to verify these findings since already at one Dirac
flavor, the theory becomes nearly conformal. The extension
of SYM by fermion fields in the fundamental representa-
tion enlarges the space of possible applications for analytic
continuity [32,33]. It might also help to relate the SYM
confinement with the confinement of QCD in a continu-
ous way.
The current study represents the essential first step for all

of these investigations, being an exploration of the param-
eter space spanned by the two mass parameters of the
different representations and the gauge coupling. The study
of the scaling of the meson mass spectrum close to the
chiral limit provides a clear picture helping to distinguish
the signals of a chiral symmetry breaking scenario from a
conformal theory. In particular, the main target of the
present investigations is the deformation of the spectrum of
lowest mesonic states induced by the addition of fermions
in a different representation. As a first step, we aim to
identify possible unphysical bulk phases, which appear for
higher representations and in particular in the context of
near conformal theories. An important cross-check of our
current first studies is also the connection to pure adjoint
and fundamental limits.

II. A THEORYWITH TWO DIFFERENT FERMION
REPRESENTATIONS ON THE LATTICE

The first step for Monte Carlo simulations is the lattice
discretization of the continuum action. In our numerical
simulations, the gauge part of the lattice action is repre-
sented by the Wilson gauge action built from plaquettesUp
of link variables U in fundamental representation of
SUðNcÞ. The fermionic part comprises a Dirac-Wilson

clover improved action for NðFÞ
f fermions in the funda-

mental and NðAÞ
f fermions in the adjoint representation. In

its basic form, the complete lattice action reads

SL ¼ β
X

p

�
1 −

1

Nc
RetrUp

�
þ
X

x;y

XN
ðFÞ
f

nf¼1

ψ̄
nf
x ðDðFÞ

w Þxyψnf
y

þ
X

x;y

XN
ðAÞ
f

nf¼1

ψ̄
nf
x ðDðAÞ

w Þxyψnf
y ; ð1Þ

where DðFÞ
w (DðAÞ

w ) is the clover Wilson-Dirac operator in
the fundamental (adjoint) representation. These operators
depend on the hopping parameter κF (κA), which is related
to the bare fermion massm0 in the respective representation
via κ ¼ 1=ð2m0 þ 8Þ. Like in our previous studies, the link
fields in DðAÞ

w are converted to the adjoint representation.
The two clover parameters have been tuned by a one-loop
perturbative calculation [34], that has already provided

2The consideration of mixed representations has been ex-
tended and generalized in [20,21].
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significant improvements in our previous studies of
pure SYM.
Our simulation program allows flexible simulation for an

arbitrary number of fermions in the adjoint and funda-
mental representation of an SUðNcÞ gauge group. In the
current work, we consider one adjoint Majorana fermion,

effectively NðAÞ
f ¼ 1

2
, simulated with the rational hybrid

Monte Carlo algorithm (RHMC), and two degenerate

flavors in the fundamental representation (NðFÞ
f ¼ 2) which

are represented by the standard hybrid Monte Carlo (HMC)
algorithm.
The tuning of the RHMC algorithm has been done based

on our experience with simulations of SYM. In SYM,
rather precise rational approximations have been needed for
simulations close enough to the chiral limit. Despite the fact
that also heavier masses have been considered here, we
have still kept a rather high order approximations in most of
the simulations. In the HMC, different force contributions
for each fermion representation and for the gauge action
have to be considered. Our program allows to have multiple
time scales for the integration and we have adjusted these
parameters according to the relevance of the different force
contributions.

III. PHASE TRANSITIONS AT STRONG
COUPLING

In a first study of the theory, we map out the phase
diagram on small lattices to identify possible unphysical
bulk phases appearing in the context of IR conformal
theories. In the bare parameter space of these theories, the
strong coupling confining regime has to be separated from
the conformal phase, which corresponds to the range of
gauge couplings attracted by the IR fixed point. Such kind
of behavior has been documented, for example, for MWT
or theories with a large number of fundamental flavors.
Since we do not know a priori how far away our theory is
from the conformal window, we have to consider the
possibility of bulk transitions.
Bulk transitions have to be considered in a more general

context. Pure SU(2) Yang-Mills theory has a crossover
from weak to strong couplings which becomes a bulk
transition when an additional adjoint Wilson gauge action
is coupled to the theory. Therefore, it is natural to expect
bulk transitions for any theory with fermions in the adjoint
representation. Moreover, there are a number of evidences
for the bulk phases for theories with fermions in higher
representation of the gauge group.
As first investigation, we monitor the expectation value

of plaquette on small lattices as a function of β and κ.
Similar studies have been done in earlier investigations in
order to identify the bulk phase of MWT [35] and SU(2)
gauge theory with one adjoint Dirac flavor [17]. Note that
these studies have been connected to the theory with a
adjoint and fundamental plaquette action in [36]. In the

present case, the transition has to be mapped out in the
space of β, κF, and κA. A scan of the parameter space is
shown in Fig. 1. We have observed that the strongest
transition appears in the pure adjoint case (κF ¼ 0). The
discontinuity gets weaker when the fundamental fermion
part is added; see Fig. 1(b). In the present study, we want to
connect our investigations to the pure adjoint and pure
fundamental limit. Therefore, we have limited our main
studies to the range of beta values above the transition in the
pure adjoint case, β ≥ 2.1. Despite the fact that only one
Majorana fermion has been considered here and the
fermion action is improved by the clover term, the results
are quite consistent with the observations for MWT and
SU(2) gauge theory with one adjoint Dirac flavor, where a
sharp transition appearing at around β ¼ 2.0 has been
observed [17,35]. It is important to note that the restrictions

FIG. 1. The strong coupling phase transitions shown by
discontinuity of the average plaquette as a function of the bare
mass parameter. Figure 1(a) shows the pure adjoint theory
(κF ¼ 0). The transition can be observed for different lattice
sizes of Ns × Nt ¼ 44, 63 × 8, 123 × 16, 243 × 48. The depend-
ence on mass of the fundamental fermions is shown in Fig. 1(b).
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appear to be weaker as soon as the fundamental fermions
become dynamical.

IV. RELATION TO PURE Nf = 2 SU(2)
FUNDAMENTAL

The SU(2) gauge theory with two fermions in the
fundamental representation has been recently investigated
in a series of publications; see [22–24] and references
therein. As a first important step, we must cross-check our
simulations by a comparison of our results with these
studies. In these references, a different lattice action with-
out clover improvement has been chosen. Therefore, a
comparison in terms of physical units is required. In our
studies, we measure in addition to the scale w0, the
pseudoscalar (mPS) and vector (mV) meson masses. The
corresponding operators are ψ̄1γ5ψ2 and ψ̄1γkψ2, respec-
tively, where k denotes three different spacial directions.
The same operators will be considered later also for the
adjoint representation. In that case, the additional fermion
field is considered in a partially quenched setup described
in [37]. Note that the pseudoscalar meson is sometimes
called pion (mπ) due to its similarities with the QCD
pion state.

A. Scale setting and results in physical units

In the present studies, we use the parameter w0 obtained
from the gradient flow to fix the scale and for the
conversion to physical units. The value of τ ¼ w0=a is
defined from dependence of the action density E on the
flow time τ as the point where the condition

τ
d
dτ

τ2EðτÞ ¼ Wref ð2Þ

is fulfilled. The flow is taken from the Wilson gauge
action and the clover antisymmetric definition is used for
E on the lattice. We have chosen a reference scale of
Wref ¼ 0.3 in most cases, which is the common value for
scale setting in QCD. As shown in [38], large values of
the reference scale are strongly influenced by the large
autocorrelation times of topological quantities. Large-Nc
analysis supports a scaling with Nc, which would lead to
Wref ¼ 0.2 for SU(2) instead of Wref ¼ 0.3 for SU(3) [2].
Nevertheless, a reference scale of Wref ¼ 1.0 has been
chosen in [24] and we have to consider this value for
comparison in physical units. To mark the difference, we
denote w0=a the value at Wref ¼ 0.3 and w̃0=a at Wref ¼
1.0 in the following. The scales are linearly extrapolated
as a function of ðamPSÞ2 to the chiral limit (mPS ¼ 0)
to obtain w̃0χ=a and w0χ=a. At β ¼ 2.1, a linear fit
in the range of ðamPSÞ2 < 0.3 yields a value of
w̃0χ=a ¼ 4.17ð9Þ. Our limited data for β ¼ 2.2 provide
an estimate of w̃0χ=a ¼ 5.72ð12Þ.

B. The vector meson of clover improved pure
fundamental runs

With the common scale setting, the physical value
of the vector meson mass in the chiral limit can be
compared to previous results for the SU(2) Nf ¼ 2 pure
fundamental theory. The extrapolation to the chiral
limit is done including quadratic corrections as shown
in Fig. 2. The fit of the complete range yields a value
of w̃0χmVχ ¼ 1.17ð4Þ. If we restrict the fit range, as
done in [24], to ðw̃0χmPSÞ2 < 4, the final result is
w̃0χmVχ ¼ 1.008ð9Þ, which is consistent with the con-
tinuum extrapolation of [24], w̃0χmVχ ¼ 1.01ð3Þ. Note that
comparing the same β value, the deviations from the
continuum limit are smaller indicating an improvement
by the clover term. The data at β ¼ 2.2 are currently not
sufficient to provide a fit in the relevant range, but it is
compatible with the fit at β ¼ 2.1. This also indicates that
the results are close to the continuum.
Overall, there is a reasonable agreement between our

study and earlier results in the pure fundamental case
despite the absence of a continuum extrapolation. From the
perspective of the pure fundamental theory, there seems to
be no reason not to consider coarser lattices. The main
limitation is due to the bulk phase induced by the adjoint
fermions.

V. RELATION TO THE SU(2) ADJOINT LIMIT

The SU(2) pure adjoint limit corresponds to SYM theory.
The simulations with one Majorana fermion require in this
limit the RHMC algorithm and have a significantly higher
computational cost than the pure fundamental limit. The
validation of the results in this limit against our previous

FIG. 2. The vector meson mass of the SU(2) Nf ¼ 2 funda-
mental theory extrapolated to the chiral limit. A quadratic fit
function is used for the β ¼ 2.1 data. The dotted line indicates the
fit of the complete range, but the final value is obtained only in
the range ðw0χmPSÞ2 < 4 indicated by the solid line. The β ¼ 2.2
data are added for comparison.
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data is required since the simulation setup and the lattice
action have been changed.
There are no simple physical mesonic states without

disconnected contributions in this theory. The adjoint pion
mass, corresponding to mPS, determines the deviations
from the chiral limit using partially quenched chiral
perturbation theory [37]. All particles require rather
involved measurements with large statistics, which is
inaccessible in this study. The only estimate of a bound
state that we can access is the mass of the fermionic gluino-
glue particle defined by the operator

P
μ;ν σμνTr½Fμνλ�; see

[39] for further details. This can be compared to our
previous results in units of w0χ .
We have generated only a small number of runs,

and consequently the fit range is insufficient for a precise
chiral extrapolation. The rough estimates based on a linear
fit are w0χ=a ¼ 2.42ð22Þ at β ¼ 2.1 and around w0χ=a ¼
3.85ð9Þ at β ¼ 2.2. More precise data would require to
consider a larger range of masses since higher order
corrections might be relevant. The gluino-glue mass in
units of the scale w0χ can be extrapolated to the chiral limit,
as shown in Fig. 3. We obtain a value of w0χmgg ¼
1.18ð18Þ at β ¼ 2.1 and w0χmgg ¼ 1.03ð14Þ which is close
enough to our previous continuum extrapolation w0χmgg ¼
0.93ð6Þ in [39].

VI. SCENARIOS FOR THE MIXED
FUNDAMENTAL-ADJOINT THEORY

In the previous sections, we have confirmed the reli-
ability of our simulations in the limiting pure fundamental
and pure adjoint cases. The current first study of the mixed
representation theory is organized in such a way that both
limiting cases can be reached with the same bare coupling.
This means that the range of β is limited by the pure adjoint

bulk transition. In later studies, even smaller β might be
considered since the transition is weakened by the funda-
mental fermions.
A possible scenario for the theory is a spontaneous chiral

symmetry breaking in the limit where both masses tend to
zero (chiral limit). Like in QCD, Goldstone bosons are
expected to interact accordingly to chiral perturbation
theory in the small mass regime. Alternatively, this theory
could be close to an infrared conformal fixed point (IRFP).
Near an IRFP, the masses of all particles scale to zero with
an exponent provided by the mass anomalous dimension.
In a walking or near conformal regime, the behavior could
be quite similar, even though it is difficult to quantify the
distance to the conformal case. Hence, it could be that
the theory shows already signs of conformality even if
a chiral symmetry breaking scenario is obtained in the
deep infrared.

FIG. 3. The mass of the gluino-glue particle in the pure adjoint
limit (supersymmetric Yang-Mills theory). The plot shows a
linear chiral extrapolation in units of w0χ as a function of the
square of the adjoint pion mass mPS.

FIG. 4. Dependence of the pseudoscalar mass in one repre-
sentation on the bare mass parameter of the other. In Fig. 4(a), κF
is fixed to 0.1350 and in Fig. 4(b) κA is fixed to 0.1600. The
quadratic fit is added to illustrate the qualitative trend.

LATTICE SIMULATIONS OF A GAUGE THEORY WITH MIXED … PHYS. REV. D 103, 014503 (2021)

014503-5



In the following, we investigate to what extends these
two scenarios are reflected in the numerical data. The fact
that two different fermion representations are considered
leads to some complications, for instance, related to the
parameter tuning and scale setting, that will be explained in
the following.

A. Parameter tuning and scale setting

The tuning of the bare mass in one representation shows
a clear dependence on the mass parameter of the other, as
illustrated in Fig. 4. Such a dependence complicates the
tuning of the theory toward the chiral limit. Note, however,
that the bare parameter dependence is not the relevant
quantity for fits of chiral perturbation theory in case of
Wilson fermions. The mass for the chiral fits is obtained
from the partially conserved axial current (PCAC) relation
(mPCAC). The PCAC masses in both representations for the
relevant simulations are shown in Fig. 5.
Another observation is a significant increase of the flow

scale. At β ¼ 2.1, κF ¼ 0.1360, κA ¼ 0.1620, the value of
w0=a ¼ 4.639ð77Þ is obtained, which is significantly larger
than values at a similar mPS;A in the pure adjoint case
(between w0=a ¼ 2.289ð11Þ and 3.348(22) at the same β).
This indicates a slow running of the coupling. In addition,
the topological fluctuations are suppressed, which in turn
leads to a large autocorrelation of w0=a. Due to this reason
and the small statistic, the values for this quantity at β ¼ 2.2
are currently not reliable. A very rough estimate of can be
obtained in a chiral extrapolation as a function of the
adjoint PCAC mass, which is the dominant dependence
compared to the PCAC mass of the fundamental repre-
sentation. This leads to a prediction of w0=a ¼ 4.9ð2Þ at
β ¼ 2.1. The data at β ¼ 2.2 are within very large errors

consistent with this value, but they show a strong corre-
lation with the topological charge. Note that all of our runs
are based on a minimum of 300 thermalized configurations.
Further discussions of the problem of topological freezing
and estimates of induced systematic uncertainties can be
found in Appendix A.

VII. CHIRAL PERTURBATION THEORY AND
CHIRAL EXTRAPOLATIONS

Chiral perturbation theory with two different represen-
tations has been worked out in [1] and applied in the
analysis of lattice data in [2]. As a first step, it is already
instructive to test the approximation that neglects the
interdependence of the two fermion species. This means
to apply a fit function according to Nf ¼ 2 chiral pertur-
bation theory for the fundamental representation. The
breaking pattern for the gauge group SU(2) is [22]

SUð2NðFÞ
f Þ → Spð2NðFÞ

f Þ; ð3Þ

leading to three pseudoscalar and two scalar Goldstone
states. The breaking pattern for the adjoint representation is

SUð2NðAÞ
f Þ → SOð2NðAÞ

f Þ: ð4Þ

For one adjoint Majorana fermion, an approach based on
partially quenched chiral perturbation theory has to be
used, in which the disconnected part of the pseudoscalar
meson (adjoint pion) becomes massless in the chiral limit
[37]. A PCAC mass is measured from the disconnected
correlators, which is the same measurement as for

NðAÞ
f ¼ 1, but with gauge configurations of the NðAÞ

f ¼
1=2 theory.
We consider first a fit of ðmPSÞ2, which is linear inmPCAC

at leading order, including also quadratic corrections; see
Fig. 6. Here and in the following considerations, the fits
are related only to the data at β ¼ 2.1. A complete summary
of the data can be found in Appendixes B and C. At
small mPCAC, the fit captures the main dependence, but for
the fundamental representation there are considerable
differences at larger mPCAC;F. This already indicates cor-
rections at the order of the product of the two masses. These
corrections seem to be much smaller for the adjoint
representation.
In order to include the corrections from the mutual

interactions of the fields in the other representation, the fit
must include two dimensions. Due to our currently limited
data, we consider only the leading contributions in [2].
Higher order terms are either of logarithmic form or
describe lattice artifacts and a determination of the coef-
ficients would require more data and different lattice
spacings. In the expected functional dependence,

FIG. 5. Range of masses obtained from the partially conserved
axial current (PCAC) relation for both of the representations. The
adjoint PCAC mass mPCAC;A and one of the fundamental
representations mPCAC;F are shown in lattice units for the two
different values of the coupling β.
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ðamPS;FÞ2 ¼ c1amPCAC;F þ c2amPCAC;FamPCAC;A

þ c3ðamPCAC;FÞ2 ð5Þ

ðamPS;AÞ2 ¼ c1amPCAC;A þ c2amPCAC;FamPCAC;A

þ c3ðamPCAC;AÞ2; ð6Þ

the unknown parameters c1, c2, and c3 need to be
determined by the fit. In order to handle finite size effects,
we have excluded mPSL < 7 for both representations. We
have tested several different cuts for the fit ranges to
optimize the goodness of fit (χ2=d:o:f). The final fitting
intervals include 11 and 10 points and are restricted to
amPCAC;F < 0.2, amPCAC;A < 0.6 for ðamPS;FÞ2, and
amPCAC;F < 0.5, amPCAC;A < 0.3 for ðamPS;AÞ2.
The fitted parameters are summarized in Table I. The

results show that the dominant contribution comes from the

mass of the same representation with still a significant
mixing with the other representation.
Apart from mPS, the chiral symmetry breaking scenario

can also be checked with the pseudoscalar decay constant
fPS. The dependence on the fermion mass in the same
representation is shown in Fig. 7. In case of the

FIG. 6. Dependence of the pseudoscalar mass on the PCAC
mass of the same representation. (a) shows the fundamental and
(b) the adjoint case. The leading order of chiral perturbation
theory predicts a linear behavior of m2

PS. The fit includes an
additional quadratic correction, but not the dependence on the
mass of the other representation.

TABLE I. Summary of the fit results for the pion masses. The fit
range has been restricted to amPCAC;F < 0.2; amPCAC;A < 0.6 for
ðamPS;FÞ2 and amPCAC;F < 0.5; amPCAC;A < 0.3 for ðamPS;AÞ2.
The last column specifies the reduced chi-square. Note that the
reduced chi-square without the mass of the second representation
(c2) was a factor of 7 (for mPS;F) and 4 (for mPS;A) larger.

c1 c2 c3 χ2=d:o:f

ðamPS;FÞ2 0.902(22) 1.725(82) 6.40(18) 8
ðamPS;AÞ2 2.941(80) 2.11(51) 9.47(50) 0.8

FIG. 7. Dependence of the pseudoscalar decay constant on the
PCAC mass of the same representation. (a) shows the fundamental
and (b) the adjoint case. Compared to the functions (7) and (8), the
fit includes an additional quadratic correction, but not the depend-
ence on the mass of the other representation. The fit in Fig. 7(b) is
considered in the range amPCAC;A < 0.11.
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fundamental representation, it indicates clearly an addi-
tional dependence on the adjoint mass. We are again only
able to extract the leading behavior of the dependence [2],

afPS;F ¼ c0 þ c1amPCAC;F þ c2amPCAC;A; ð7Þ

afPS;A ¼ c0 þ c1amPCAC;A þ c2amPCAC;F: ð8Þ

This fit resolves the dependence on the two masses, as can
be seen in Table II. Note that there is still a rather large
residual for the fundamental representation, which could be
due to higher order corrections but also to the current
limited precision of the data.
Besides the expected massless states in the scenario of

chiral perturbation theory, we can also look at the vector
statesmV . In case of the adjoint representation, this is again
not a physical particle of the theory, but it is obtained in the
partially quenched setup considering only the disconnected
part of the correlator. It is extrapolated to a constant value in
the chiral limit and we consider linear and quadratic
corrections in the fit. As shown in Fig. 8, there are again
considerable deviations in case of the fundamental repre-
sentation, whereas for the adjoint representation the
dependence in mPCAC;A seems to be dominant. The mass
of the gluino-glue particle mgg can also be extrapolated to
the chiral limit as a function of mPCAC;A, but due to the
limited statistics there are much larger uncertainties and the
errors are currently underestimated, see Fig. 9(a) and
similar for w0=a Fig. 9(b).
A generic fit ansatz for mV (and mgg) are the following

functions:

amV;F ¼ c0 þ c1amPCAC;F þ c2amPCAC;A; ð9Þ

amV;A ¼ c0 þ c1amPCAC;A þ c2amPCAC;F; ð10Þ

amgg ¼ c0 þ c1amPCAC;A þ c2amPCAC;F: ð11Þ

We have tested higher order corrections, but it turned out
that they are not significant and cannot be reliably
estimated in this case. We have considered the same fit
ranges as for mPS. The results are summarized in Table III.
The dominant contribution comes still from the fermion
mass in the same representation. In case of the adjoint

representation, it is not even clear that the inclusion of the
mass of the fundamental representation provides a more
reliable fit. The gluino-glue mass is clearly dominated by
the fermion mass of the adjoint representation and the
inclusion of the fundamental representation seems not
necessary given the current uncertainties.

FIG. 8. Dependence of the vector meson mass on the PCAC
mass of the same representation. (a) shows the fundamental and
(b) the adjoint case. The fit is done with a constant and up to
quadratic corrections ignoring the dependence on the mass of the
other representation.

TABLE II. Summary of the fit results for the pseudoscalar
decay constants. The fit ranges are the same as in Table I.
Note that the reduced chi-square without the mass of the
second representation (c2) is a factor of 5 (for fPS;F) and 6
(for fPS;A) larger.

c0 c1 c2 χ2=d:o:f

afPS;F 0.02465(46) 0.1139(37) 0.0387(19) 11
afPS;A 0.0591(22) 0.668(15) 0.116(16) 1.4

TABLE III. Summary of the fit results for the pion masses. The
last two columns specify the fit ranges and reduced chi-square.
Note that the reduced chi-square without the second representa-
tion (c2), but including instead a quadratic correction, is a factor
of 10 larger for mV;F. For mV;A, the reduced chi-square is
approximately the same and for mgg it is larger by a factor of 2.

c0 c1 c2 χ2=d:o:f

amV;F 0.1625(50) 2.545(40) 0.241(13) 4
amV;A 0.288(11) 3.825(70) 0.258(67) 2
amgg 0.213(20) 2.82(16) 0.80(13) 6
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The range of mV and mPS in our simulations requires
some further comments when compared to simulations of
QCD. Usually a small mPS=mV value would be preferred
for chiral fits. However, in a conformal theory, these ratios
are close to mPS=mV ≈ 1. The theory considered here is
quite close to the conformal case and it is consequently
difficult to reach a regime of mPS=mV ≪ 1.
The figures have been presented in lattice units to show

the general functional dependence and avoid additional
errors from the scale setting. In Fig. 10, mV is represented
in physical units to allow for a better comparison of the
general scale. Note, however, that the scale setting quan-
tities w0 and fPS are affected by the topological freezing
which leads to additional systematic uncertainties. Another
representation in physical units is provided by the mass
ratios; see Fig. 12.
In addition, we want to comment further on the relevance

of higher order corrections in view of a larger reduced chi-
square for amPS;F and afPS;F in Tables I and II. We have

tested a fit of amPS;F with higher order corrections
including a logarithmic term and a term linear in
amPCAC;A, but it leads only to an increase of the reduced
chi-square. In case of afPS;F, these corrections lead to a
slightly smaller reduced chi-square (approximately 9), but a
negative c1 is preferred, which renders this fit unreason-
able. We therefore conclude that more data are needed to
constrain the additional parameters.
We have also done a number of simulations at a larger

value of β equal to 2.2. In Figs. 6, 7, and 9(a), we have
added these data to the fit at β ¼ 2.1. Compared to the other
uncertainties, only a rather small dependence on the gauge
coupling can be observed. From the present data, we are not
able to resolve a continuum extrapolation.

VIII. CONFORMAL SCENARIO

In a conformal scenario, the behavior of the theory is
influenced by an infrared fixed point (IRFP) of the massless
theory. If the scalar matter fields and their interactions were
included in the Lagrangian of our theory, the corresponding
SQCD theory has Nc ¼ 2, Nf ¼ 2 and is conjectured to be
outside the conformal window [40]. Naively, the scalar
matter fields are expected to decrease the running of the
coupling (β-function) and bring the evolution toward an
IRFP. Hence, the conformal scenario is not expected in our

theory with NðFÞ
f ¼ 2 and NðAÞ

f ¼ 1=2. Nevertheless, it is
interesting to check for a walking (near conformal) sce-
nario, which has been conjectured for the theory with

NðAÞ
f ¼ 1 based on perturbative estimates. In such a

scenario, it is assumed that in a certain range of scales
the β-function is already strongly influenced by an IRFP
appearing at a larger Nf. In this range of scales, it should be
close to a conformal scenario. We therefore test the scaling
of the masses to the chiral point assuming the presence of
an IRFP. More generally, the difference between a chirally

FIG. 9. Chiral extrapolations of the gluino-glue mass (a) and
the scale w0=a (b) as a function of the adjoint PCAC mass,
neglecting the dependence on the fundamental mass. Only the
data for β ¼ 2.1 are shown in Fig. 9(b).

FIG. 10. Dependence of the vector meson mass on the PCAC
mass of the same representation as in Fig. 8(a). This plot
represents the values in units of fPS;F.
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broken or a conformal scenario is quite subtle for theories
close to the lower edge of the conformal window, and we
also want to investigate how well the two scenarios can be
distinguished.
In the conformal case, the masses are relevant directions

of the renormalization group transformation in the vicinity
of the IRFP, while the gauge coupling is irrelevant. If one
considers Nf fermions in one single representation, each
mass is an independent relevant direction. However, they
all have a common scaling dimension and it is therefore
rather trivial to consider the RG flow in the manifold
spanned by the mass parameters. The theory defined by a
certain RG trajectory is determined by the ratios of the
different mass parameters. In a simplified setup, one can
consider just two relevant directions defined by the mass of
ðNfÞh heavy and ðNfÞl light flavors. The flow is in this case
defined by the ratio of the two masses. The mass param-
eters can be used to tune the running of the gauge coupling
to a walking scenario. Projected onto the plane of the gauge
coupling, the two mass parameters introduce an intermedi-
ate region of scales with a small running of the gauge
coupling. This is the basic idea of the scenario proposed
in [26,27].
The situation becomes more complicated for a theory

with two different representations, since the anomalous
dimensions of the two relevant mass parameters are not
the same. We therefore recall some of the arguments
presented in [26,27,41] and extend them to the current
case. When the scale is changed by μ → μ=b (b > 1), the
scaling of a correlation function near the fixed point is
given by

CHðt; gi; mi; μÞ ¼ b−2yHCHðt=b; bygi gi; byimi; μ=bÞ; ð12Þ

with scaling exponents of the operator yH and the relevant
mass directions with scaling dimension yi. The irrelevant
couplings gi with scaling dimension ygi < 1 can be approx-
imately set to their fixed point value and are ignored in the
following. We can assume that the scale is set by one of the
mass parameters b ¼ m−1=y1

1 , while the other fermions are

below the decoupling scale (m−yi=y1
1 mi is small enough). The

scaling is simplified to (i ≠ 1)

CHðt; m1; miÞ ¼ m−2yH=y1CHðtm1=y1
1 ; mi=ðmyi=y1

1 ÞÞ: ð13Þ

For large t, the correlation function approaches the expo-
nential form expð−MHtÞ with the mass of some state MH.
Consequently, all particlemasses should scale likem1=y1

1 and
the dependence on other mass parameters is via the ratio
mim

−yi=y1
1 , or equivalently m1m

−y1=yi
i . As shown in [27],

mass ratios can be considered to cancel the leading m1=y1
1

dependence.
In our case, we can consider the ratio of vector and

pseudoscalar mesons, for example, in order to check

whether it can be represented by a functional dependence
FR given by

amV;F

amPS;F
¼ FRðamPCAC;FðamPCAC;AÞ−yF=yAÞ: ð14Þ

This study requires the determination of anomalous dimen-
sions γF and γA for adjoint and fundamental representation,
which define the scaling yi ¼ 1þ γi.
For this reason, let us first investigate the leading

dependence MH ∼m1=ð1þγiÞ
i . Therefore, we consider for

each state only the leading dependence, either m1 ¼ mf or
m2 ¼ ma, already determined in the chiral fits of Sec. VII.
The simplest way to extract the leading exponents is a
linear fit in a double logarithmic representation. We have
done this using amPS;F and amV;F as a function of
amPCAC;F [Fig. 11(a)]. A fit of the mass amPS;F leads to

FIG. 11. Double log representation of the dominant depend-
ence of the bound state masses on the two mass parameters.
(a) shows the fundamental and (b) the adjoint case. The linear fit
assumes an approximate scaling near an IRFP.
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a scaling dimension yF ¼ 1.46ð8Þ. According to the
assumed conformal behavior, amV;F is expected to show
approximately the same scaling, but a considerable
deviation is observed which might be due to the additional
dependence on amPCAC;A. This is also reflected by the large
error of the obtained scaling dimension. The fit of amPS;A,
amV;A, and amgg shows a quite consistent scaling as a
function of amPCAC;A [Fig. 11(b)]. All obtained scaling
dimension are listed in Table IV. Overall, the fits indicate a
slightly larger yA, but the ratio r ¼ yF=yA is still above 0.5.
We have also used the mode number with the same
methods as in [18] to estimate the mass anomalous
dimension for the run with the smallest masses for both
representations. Since we have not done a careful analysis
of the mass dependence, only a rough estimate can be
provided from this method, which is γF ≈ 0.3 and γA ≈ 1.0.
In summary, these investigations of the leading dependence
indicate a γF in the range 0.3–0.5 and γA in the range
0.3–1.0, assuming conformal scaling. This implies that
r ¼ yF=yA is expected to be at least above 0.3.
The leading scaling can be used to investigate finally the

subleading dependence (14). We have investigated the ratio
of mV;F=mPS;F as a function of amPCAC;FðamPCAC;AÞ−r.
The fit according to aþ b=ðamPCAC;FðamPCAC;AÞ−rÞ can
be used to optimize the residual as a function of r. In this
process, we observe that small values of r < 0.4 are

preferred and a value of r ¼ 0 cannot be excluded, see
Fig. 12, indicating rather a chiral symmetry breaking than a
conformal scenario. The best fit is obtained with r ¼ 0.1,
which is clearly outside the region predicted by conformal
scaling. Note, however, that the ratio mV;F=mPS;F still
shows only a weak dependence on the masses and the
consistent scaling in Fig. 12 leads to almost constant ratios
between the masses in this figure.

IX. CONCLUSIONS

We have presented the first results of the simulations
with a gauge theory coupled to fermions in adjoint and
fundamental representation. The present work provides a
preparatory study for further simulations of SQCD,
UMWT, or compactified SYM with fundamental matter.
In the current study, we have considered SU(2) gauge
theory with one Majorana fermion in the adjoint repre-
sentation and two fundamental flavors. This corresponds to
two flavor SU(2) SQCD without scalar fields.
We have presented cross-checks with existing results in

the pure adjoint and fundamental limit. In a first inves-
tigations we have also determined the reliable range of
parameters by an investigation of the bulk transition.
The main objective of this work has been the determi-

nation of signals for a chiral symmetry breaking or a
conformal scenario since the realization of these distinct
infrared scenarios will affect any further investigation of the
theory. We have derived scaling relations for theories with
two different fermion representation according to an IR
conformal scenario. We have compared our numerical data
to the expected functional dependence in the conformal and
the chiral symmetry breaking case. In the conformal case,
we have found no consistent scaling determined by scaling
dimensions yF and yA.
Our investigation shows that the theory is consistent with

a chiral symmetry breaking scenario, but still close to the
conformal window. The running of the gauge coupling is
quite small and mass ratios are nearly constant. This
situation is similar to what is expected for SU(2) SQCD
with two flavors, since the conformal window is predicted
to start close by at Nf ¼ 3Nc

2
. The number of colors Nc

would have to be increased in order to get a more
significant difference from the conformal case with two
flavor SUðNcÞ SQCD.
The bare parameter tuning with Wilson fermions of one

representation seems to be considerably affected by the
other. The dependence on physical mass parameters is
provided by the two PCAC masses. We observe a rather
mild dependence of the states in one representation on the
mass of the other. The most significant effect has the adjoint
fermion mass since the fundamental meson masses clearly
depend on it. Furthermore, the adjoint mesons and the
gluino-glue can be extrapolated to the chiral limit consid-
ering as a good approximation only the dependence on the
adjoint mass.

TABLE IV. Summary of the approximate leading scaling
dimensions obtained with the fits in logarithmic representation,
Fig. 11.

amPS;F: yF ¼ 1.46ð8Þ amV;F: yF ¼ 1.82ð30Þ
amPS;A: yA ¼ 1.60ð2Þ amV;A: yA ¼ 1.70ð4Þ
amgg: yA ¼ 1.26ð12Þ

FIG. 12. The ratio of vector over pseudoscalar
mass in the fundamental representation as a function of
amPCAC;FðamPCAC;AÞ−r. The line shows a fit according to aþ
b=x of the β ¼ 2.1 data. The value of r ¼ 0.1 corresponds to an
optimal choice according to the residual.
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Regarding the simulations of SU(2) two flavor SQCD,
the following strategy could be derived from the data. Since
the system is close to the conformal window, one might
neglect the running of marginal couplings like the gauge
coupling and set them to their tree level value. The
important extrapolation of the pure SYM part to the chiral
limit can be done as a first approximation just from the
adjoint PCAC mass, which might capture the leading
dependence. Note, however, that due to Yukawa couplings
the chiral transformations of fundamental and adjoint
fermions are not independent in SQCD. The Yukawa terms
are only invariant under a combined transformation of the
two fermion fields and the scalar field.
In order to investigate in more detail, the conformal

scenario with two different representations, a larger number
of adjoint fields should be considered. One interesting
investigation is the simulation of UMWT, which means one
Dirac instead of one Majorana fermion in the adjoint
representation.
The current data correspond to a first investigation of the

theory. A larger statistic, a more complete scan of the
relevant parameter range, and a more careful considerations
of methods such as the mode number measurement for two
fermion representations would be required to provide more
precise data. Note, however, that the parameter scan with
two independent fermion representations will require a
considerably larger amount of computational resources.
The choice of the parameters provides particular chal-

lenges in the current close to conformal theory with two
representations. In principle, one would like to avoid bulk
phases for the complete range of mass parameters, which is
achieved by a sufficiently large β. Due to strong influence
of the fermions on the running of the gauge coupling, this
leads, however, to large finite size effects and topological
freezing when both fermion masses become small. One
way to avoid this is to adjust the gauge coupling depending
on the fermion masses, but this might lead to a more
difficult scale determination and possible remnant effects of
bulk phases.
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APPENDIX A: TOPOLOGICAL CHARGE
FLUCTUATIONS

An important issue for the simulation is a freezing
of the topological charge leading to simulations at an

effectively fixed topology. It is known that this effect
sets in for QCD simulations at fine lattices and large β.
We observe also a strong dependence on the fermion
masses. This is illustrated in Fig. 13. In the pure adjoint
and pure fundamental cases, the fluctuations of the topo-
logical charge are quite considerable, while toward the
chiral limit of the two representations, topology gets almost
frozen.
The method used to measure the topological charge

and the effect of topological freezing on w0 is explained
in [38]. In this reference, it is also shown that the
systematic uncertainty increases at larger β. The effect is
hard to determine from the autocorrelation time of our
current rather short runs. In order to estimate the
systematic effect, we have separated for the run at
β ¼ 2.1, κA ¼ 0.1580, κF ¼ 0.1360 the configurations
according to topological sectors Qtop ¼ −1 and
Qtop ¼ 0. A rough estimate for the uncertainty is
provided by the difference of averages between the
two sectors. Most observables do not show a significant
deviation apart from afPS (approximate difference
0.006) and w0=a (approximate difference 0.3).
Assuming that all runs are affected in a similar way
by a fixed topology, this provides an estimate for the
additional systematic uncertainty. In Fig. 14, we illus-
trate the relevance of this effect for the observables. In
this figure, we have also added the β ¼ 2.2 data for
comparison. As expected, the extrapolation of w0=a gets
larger errors and the scattering of the β ¼ 2.2 data
shows that the effect becomes even more severe at larger
β. On the other hand, afPS shows a smaller scattering of
the data at the larger β and it could be that the
systematic error is therefore actually smaller than our
estimate.

FIG. 13. Subset of the Monte Carlo history for the topological
charge determined from the gradient flow. Runs for different mass
parameters on a 243 × 48 lattice at β ¼ 2.1 are compared.
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APPENDIX B: SUMMARY OF THE DATA: PURE ADJOINT AND PURE FUNDAMENTAL RUNS

β Ns × Nt κF amPS;F amV;F w1=a Nconf

2.1 24 × 48 0.1350 0.8762(69) 0.9443(58) 2.3953(50) 587
2.1 24 × 48 0.1360 0.7819(63) 0.8559(71) 2.5433(64) 502
2.1 24 × 48 0.1390 0.4423(61) 0.5249(49) 3.287(12) 800
2.1 24 × 48 0.1395 0.3709(42) 0.4614(43) 3.426(12) 2600
2.1 24 × 48 0.1400 0.2964(87) 0.3937(93) 3.753(30) 684
2.1 24 × 48 0.1403 0.256(11) 0.358(12) 3.878(26) 673
2.1 32 × 48 0.1403 0.244(10) 0.3485(78) 3.972(23) 749
2.2 24 × 48 0.1350 0.5808(52) 0.6265(42) 3.7732(44) 860
2.2 24 × 48 0.1360 0.4909(92) 0.5450(75) 3.876(48) 350
2.2 24 × 48 0.1375 0.3164(61) 0.3796(41) 4.952(51) 795
2.2 32 × 64 0.1375 0.3237(55) � � � � � � 1144

β Ns × Nt κA amPS;A amgg w0=a Nconf

2.1 24 × 48 0.1680 0.877(11) 1.324(91) 1.3182(15) 320
2.1 24 × 48 0.1690 0.6803(97) 1.073(41) 1.6071(18) 302
2.1 24 × 48 0.1695 0.381(23) 0.637(67) 2.289(11) 314
2.2 24 × 48 0.1600 1.048(12) � � � � � � 187
2.2 24 × 48 0.1640 0.530(13) 0.593(44) 3.065(19) 331
2.2 24 × 48 0.1650 0.315(20) 0.410(28) 3.011(16) 320
2.2 24 × 48 0.1652 0.244(20) 0.316(34) 3.348(27) 333
2.2 32 × 64 0.1652 � � � � � � � � � 128

This table is a summary of the data of the pure adjoint (κF ¼ 0) and pure fundamental (κA ¼ 0) runs. The clover
coefficient was set to the one-loop values of CSW;F ¼ 1.297 and CSW;A ¼ 1.696 at β ¼ 2.1 (CSW;F ¼ 1.283 and CSW;A ¼
1.664 at β ¼ 2.2).

FIG. 14. The same data as in Figs. 7(a) and 9(b) with an additional estimate of the systematic error due to the frozen topology. As a
rough approximation, the same additional systematic error is assumed at all points. In case of w0=a also, the β ¼ 2.2 data have been
added for comparison. (a) shows the chiral extrapolation for w0=a and (b) forafPS;F.
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