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A random matrix model for lattice QCD which takes into account the positive definite nature of the
Wilson term is introduced. The corresponding effective theory for fixed index of the Wilson Dirac operator
is derived to next to leading order. It reveals a new term proportional to the topological index of the Wilson
Dirac operator and the lattice spacing. The new term appears naturally in a fixed index spurion analysis.
The spurion approach reveals that the term is the first in a new family of such terms and that equivalent
terms are relevant for the effective theory of continuum QCD.
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I. INTRODUCTION

The duality between random matrix theory (RMT) and
low energy effective field theory (EFT) has revealed a
plethora of insights in physical systems as diverse as
quantum chromodynamics (QCD) [1,2] and topological
solid state systems which realize Majorana fermions [3].
Most results obtained address average spectral properties of
a central operator for the system in question, such as the
Hamiltonian or the Dirac operator, but also universal
parametric correlations can be obtained from RMT and
EFT [4–9]. The duality between the two approaches is
highly valuable as some questions may be technically
easier to address in one of the two frameworks. In addition
some questions only have a natural formulation in one
approach. One example of this is the effect of the
Hermiticity properties of the operator in question: In the
RMT formulation the Hermiticity properties are obvious
since the operator is directly present; on the contrary, in the
EFT approach these properties are hidden in the low energy
constants (LEC) [10]. In this work we investigate how the
positive definite nature of an operator explicitly appearing
in RMTaffects the dual EFT. Remarkably this will allow us
to extend the duality and show that random matrix theory
can be used to discover new terms in the low energy
effective theory. The new terms found are intimately linked
to the topological properties of the theory and appear in the
effective action for fixed topology. Studies of effective
actions with fixed topology are of great value [11] and may

for example be used to determine the LECs of the effective
theory [12].
The physical realization we study here is lattice regu-

larized QCD. In particular, we focus on the Wilson term
[13] which is essential in order to remove the Fermionic
doublers from lattice QCD; see e.g., [14]. The Wilson term
is a covariant Laplacian [13] and thus positive definite [15],
see the Appendix A. The explicit symmetry breaking of the
Wilson term is well understood in EFT [16–18]; however,
the effect of the positive definite nature of the Wilson term
on the EFT is studied here for the first time. We will
introduce a new random matrix model (RMM),1 which
takes into account the fact that the Wilson term is positive
definite. A general method to derive the next to leading
order terms in the EFT from the RMM is then developed
and used. The resulting EFT uncovers a new term in the
effective action for fixed topology. The term which is linear
in the lattice spacing and the topological index is similar to
an axial mass term. We show that the new term appears
naturally from a fixed ν spurion analysis and that it is the
first in a family of such new terms.
We use the EFT to explain why an order a-improvement

of lattice actions does not only move the Dirac eigenvalues
closer to the origin but at the same time also decreases the
width of the distributions, as was observed in lattice QCD
simulations [19].
Finally we consider continuum QCD. We use the fixed ν

spurion approach to show that new terms also appear in the
effective action for continuum QCD at fixed topology. We
show that the new terms are fully consistent with the
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1We use the abbreviation RMT when referring to the general
topic of random matrix theory and RMM when referring to a
specific random matrix model.
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effective theory at fixed θ-angle [20], despite that there are
no new terms in this action.
Longer derivations are given in the Appendixes along

with a discussion of the axial anomaly at nonzero lattice
spacing.

II. THE NEW MATRIX MODEL

The new RMM with a positive definite analogue of the
Wilson term is defined as (the parameter a > 0 is the
analogue of the lattice spacing)

Zν ¼
Z

dWdAdBPðA;B;WÞ detðDW þMÞ;

DW ¼
�

aA W

−W† aB

�
; M ¼

�
MR 0

0 ML

�
: ð1Þ

The matrix DW is the RMT analogue of the Wilson Dirac
operator and the diagonal term proportional to a corre-
sponds to the Wilson term. In order to take into account the
positive definite nature of the Wilson term, the diagonal
terms are positive definite Hermitian matrices A ∈
HermþðNRÞ and B ∈ HermþðNLÞ. We are using a chiral
basis and the integers NR and NL indicate the number of
right- and left-handed states. As in the original chiral
random matrix theory [1] the matrix W is complex,
W ∈ CNR×NL . The matrix structure ensures that the parti-
tion function has fixed index ν of the Dirac operator

ν≡ NL − NR ¼
X
j

hψ jjγ5jψ ji; ð2Þ

where jψ ji are the eigenvectors of DW .
The matrices are chosen to be distributed along

PðA; B;WÞ ∝ detνAAdetνBBe−ðNLþNRÞ=2ðTrW†WþTrAþTrBÞ:

ð3Þ

This weight is not constrained by chiral symmetry and the
Gaussian form is chosen for simplicity. As the spurion
argument in Sec. IV below shows, the new term in the
corresponding EFT is determined by the chiral symmetries
of the DW rather than by the weight. The positive definite
matrices A and B model the Wilson term and the exponents
νA, νB ≥ 0 allow for a variation of the level repulsion in the
spectra of A and B.2 These exponents are not constrained by

symmetry and will combine into two LECs in the EFT.
Finally, the fermion masses are MR, ML ∈ CNf×Nf .
The RMM introduced above reduces to the original

RMM for continuum QCD [1] in the limit a ¼ 0. In this
limit A and B drops out of the Wilson Dirac operator and
the partition function factors into an integral overW, which
equals the partition function of the original a ¼ 0 RMM,
and an integral over A and B which is equal to 1. Note that
contrary to the RMM for a ≠ 0 introduced in [22] it is not
possible to absorb the sign of a into the random matrix it is
multiplied by, and as we show below this introduces odd
terms in a in the effective theory.
This RMM is invariant under parity which interchanges

NL ↔ NR (i.e., ν → −ν) and νA ↔ νB. Note that though
parity changes the sizes of W, A and B the overall size,

N ≡ NL þ NR; ð4Þ

of DW is fixed. Additionally νA − νB is odd under this
transformation while νA þ νB is even. We introduce wt and
wM such that νA − νB ¼ wtνþ ν and νA þ νB ¼ wM ≥ 0,
and as we show below wt and wM are the natural
combinations which become LECs in the dual EFT.

III. THE EFFECTIVE THEORY AT FIXED ν

The dual EFT is obtained from the RMM in two steps
(for a detailed derivation see Appendix B). The first step is
exact. We express the determinants as an integral over
Fermionic variables ΨðR=LÞ and then average over A, B and
W. After using the superbosonization formula [23] to
exchange the dyadic matrices ΨðR=LÞ†ΨðR=LÞ with the
unitary matrices UðR=LÞ, we obtain

Zν ∼
Z
½UðNfÞ�2

dμðURÞdμðULÞdet−NRURdet−NLUL

×detνAþNRð1Nf
þ aURÞdetνBþNLð1Nf

þ aULÞ

× exp

�
NR þNL

2
ðTrURUL þTrðMRUR þMLULÞÞ

�
;

ð5Þ

where the integration is over the normalized Haar measure.
In the second step we define the counting a ∼m ∼ 1=

ffiffiffi
n

p
,

where we introduced n with NR ¼ n and NL ¼ nþ ν to
simplify the notation. We then substitute UR ¼ ffiffiffiffiffiffi

Ua
p

U and
UL ¼ U−1 ffiffiffiffiffiffi

Ua
p

, expand the massive modes like Ua ¼
expðiH=

ffiffiffi
n

p Þ ¼ 1þ iH=
ffiffiffi
n

p
−H2=ð2nÞ þ � � � and keep

all terms up to order 1=
ffiffiffi
n

p
. Finally, we integrate over

the Hermitian matrix H and get the EFT up to order 1=
ffiffiffi
n

p
,

2Equivalently for integer νA (or νB) we could have modeled the
level repulsion by writing A (or B) as A ¼ X†X with X ∈
CðNRþνAÞ×NR distributed as PðXÞ ∝ e−ðNLþNRÞ=2TrX†X, which ex-
actly corresponds toA distributed asPðAÞ ∝ detνA Ae−ðNLþNRÞ=2TrA
[21]. Thusbywriting the repulsion as determinantswegeneralize to
νA and νB real and positive. We would like to emphasize that the
dyadic structure X†X mimics the structure of the Wilson term, see
Appendix A.
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Zν ¼
Z
UðNfÞ

dμðUÞdetνUeðN=2þNf=8ÞTrðUMðaÞ
R þMðaÞ

L U−1Þ−ðNa2=4ÞTrðU2þU−2Þ−ðN=16ÞTrðUMðaÞ
R þMðaÞ

L U−1Þ2

× eðN=192ÞTrðUMðaÞ
R þMðaÞ

L U−1Þ3þðNa2=8ÞTrðUMðaÞ
R þMðaÞ

L U−1ÞðU2þU−2Þ

× eðNa3=6ÞTrðU3þU−3Þþðwtνa=2ÞTrðU−U−1Þ: ð6Þ

Note that the shifted mass matrix MðaÞ
R=L ¼ MR=L þ aþ

wma=N results naturally from the positivity of the Wilson
term.
While the Gaussian form of the weight (3) makes this

direct computation possible, we stress the Gaussian form is
not essential for the terms in the EFT. Likewise, the values
of the exponents νA and νB are not important for the terms
generated in (6), even if the determinant factors are omitted
νA ¼ νB ¼ 0, we obtain the same terms in the EFT (with
wt ¼ −1). A general νA and νB, however, generates the free
LEC wt. For a detailed discussion of this universality in the
context of RMT at a ¼ 0 see [24].
A word on the counting before we proceed: We here

make use of the p-regime counting for m and derivative
terms therefore also enter at the leading orders in the EFT.
Since it is zero dimensional the RMM does not generate
dynamical terms. However, the virtue of the RMTapproach
used here is that we can explicitly derive the corresponding
EFT from the RMM and in this way obtain terms in the
EFT that may have been overlooked in the standard
approach to EFT.

IV. THE NEW TERM IN THE EFT
AND SPURION ANALYSIS AT FIXED ν

All terms apart from the last in the effective action of (6)
also appear in [16–18] and this allows us to identify N as
the dimensionless volume where the dimension is set by a
LEC multiplying each term in the effective action.
However, the last term in (6)

wtν
a
2
TrðU −U−1Þ ð7Þ

has not appeared previously. Note that this new term takes
the form of an axial mass proportional to νa.
Let us try to understand why the new term has not

appeared in effective actions previously. From the RMT
side the term could not be generated by the model of [22]
since this by construction was even in a. From the EFT side
[16–18], one writes down the most general effective
action consistent with the symmetries order by order in
a of the Symanzik action at fixed θ-angle. However, one
discards all terms that are total derivatives [25,26]. Here, we
consider the theory in a sector with fixed index of the Dirac
operator, therefore in the associated continuum expansion
the topological density, which is a total derivative, will

integrate to ν. Including the total derivatives associated with
the fixed topology opens for possible new terms in the
Symanzik expansion, which in turn gives rise to new terms
in the effective theory. As we now show the new term,
wtνaTrðU − U−1Þ=2, has just the right structure from a
spurion perspective.
On this end we now extend the standard spurion

approach to fixed ν and show that the new term, (7), arises
naturally in this fixed ν spurion analysis. The basic rules for
a fixed ν spurion analysis are the same as used for the fixed
θ ¼ 0 spurion analysis in [16–18]: First, since the explicit
breaking of chiral symmetry by the Wilson term at leading
order in a can be restored, provided that we spurion
transform a → gRag

†
L, the lattice spacing can enter the

effective action only through invariant combinations such
as TrðaU†Þ and Trða�UÞ. Second, the effective action must
be invariant under parity which interchanges U ↔ U†. In
addition in the fixed ν spurion analysis we must take into
account that volume splits into a parity even part NL þ NR
and a parity odd part ν ¼ NL − NR. Hence we naturally
have the invariant combinations ðNLþNRÞTrða�UþaU†Þ
and νTrða�U − aU†Þ to leading order in a. From a spurion
perspective at fixed ν the new term found is therefore
as natural as the ordinary linear term in a. Of course
since typically NL þ NR ≫ jNL − NRj the new term is of
higher order.

V. THE EFFECTIVE THEORY AT FIXED θ

In order to check that the EFT with the new term is
physically consistent with the standard EFT at fixed θ, we
now derive the partition function at fixed vacuum angle θ.
From the spurion approach no new terms are expected in
Zθ, since for fixed θ the volume does not split naturally in a
parity even and odd part. As we now show by explicitly
deriving Zθ this is indeed the case.
We use the relation

Zθðm; aÞ≡ X∞
ν¼−∞

eiνθZνðm; aÞ ð8Þ

to define the partition function at fixed θ for nonzero a.
Note that despite the new term proportional to ν in the EFT,
we still have Zν ¼ Z−ν, and thus Zθ ¼ Z−θ. For notational
simplicity we set Nf ¼ 1 where U ¼ eiθ̃ and set the mass
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matrix to ma ≡MðaÞ
R ¼ MðaÞ

L ¼ mþ aþ wma=N ∈ R,
meaning without axial mass source term. The sum over
ν in (8) imposes the constraint θ þ θ̃ þ wta sinðθ̃Þ ¼ 0
which when expanded in a yields

θ̃ ¼ −θ þ wta sinðθÞ − w2
t a2 sinð2θÞ=2þOða3Þ: ð9Þ

We thus obtain for the partition function up to
Oð1= ffiffiffi

n
p Þ

Zθ ¼ exp ½ðNma þma=4þ wtaÞ cosðθÞ − Na2=2 cosð2θÞ þ wtNmaasin2ðθÞ − Nm2
a=4cos2ðθÞ�

× exp ½Nm3
a=24cos3ðθÞ − wtNm2

aa=2 cosðθÞsin2ðθÞ�
× exp ½Na2ma=2ðcosðθÞ cosð2θÞ þ wt sinðθÞ sinð2θÞ − w2

t cosðθÞsin2ðθÞÞ�
× exp ½Na3=3ðcosð3θÞ − 3wt sinð2θÞ sinðθÞÞ�: ð10Þ

Despite the new term at fixed ν, the partition function at
fixed θ has no new terms. Zθ is, as it should be, perfectly
consistent with the standard spurion approach where the
volume does not split into a parity even and odd part.
The effective theory with fixed θ just obtained allows us

to compute the topological susceptibility

hν2i ¼ −∂2
θ logðZθÞjθ¼0 ¼ Nma þOð1Þ: ð11Þ

Therefore, we have hν2i ∼ ffiffiffiffi
N

p
in the counting considered,

and hence the new term is in fact typically enhanced by a
factor N1=4.

VI. TWO EQUIVALENT FORMULATIONS

It is of course possible also to go back to the partition
function Zν we started from using [11]

ZνðmÞ ¼ 1

2π

Z
π

−π
dθe−iνθZθðmÞ: ð12Þ

If we insert Zθ from (10) we have a formulation of Zν which
contains only standard terms

ZνðmÞ¼ 1

2π

Z
π

−π
dθe−iνθ exp ½−acosðθÞ�

×exp

�
NðmþaÞ

�
cosðθÞþasin2ðθÞ−3

2
a2 cosðθÞsin2ðθÞ

��

×exp

�
−
Na2

2
ðcosð2θÞþ2asinðθÞsinð2θÞÞ

�

×exp
�
−
N
4
ðmþaÞ2ðcos2ðθÞþ2acosðθÞsin2ðθÞÞþ N

24
ðmþaÞ3cos3ðθÞ

�

×exp

�
Na2

2
ðmþaÞcosðθÞcosð2θÞþNa3

3
cosð3θÞ

�

×exp

�
a
4
cosðθÞ

�
: ð13Þ

However, when we shift the integration variable

θ ¼ θ0 þ a sinðθ0Þ; ð14Þ

and expand in a we recover the expression (6) for Zν we
started from. Note that the Jacobian

∂θ
∂θ0 ¼ 1þ a cosðθ0Þ ∼ exp ½a cosðθ0Þ� ð15Þ

cancels the factor from the δ-function. The conclusion is
remarkable: Zν has two formulations at the given order, one
including only standard terms and one including the new
term.
The two partition functions (6) and (13) are equal at the

given order. This is similar to asymptotic expansions which
may have different and yet equivalent expressions to a
given order [27]. The different formulations may be useful
for example when determining the low energy constants of
the EFT.
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VII. APPLICATION OF THE EFT

The EFT (6) may be used to derive properties of the real
eigenvalues λk of the original Wilson Dirac operator. For
example, we may get the distribution of the chiralities over
the real eigenvalues of the Wilson Dirac operator [9]

ρχðλÞ≡
�X

k

δðλ − λkÞsignhψkjγ5jψki
�
; ð16Þ

through the relation [9]

ρχðλÞ ¼
1

π
Im½Σðm ¼ −λÞ�; ð17Þ

where the Green function of DW is

ΣðmÞ≡
�
Tr

1

DW þm

�
: ð18Þ

Hence we compute ρχ from the EFT by the supersymmetry
technique; see [9] for details on this method. For simplicity,
we consider the quenched case employing the relation

ΣðmÞ ¼ lim
m0→m

∂m logZ1j1ðmjm0Þ; ð19Þ

where the quenched partition function, Z1j1, comprises a
single valence fermion and boson and is given by a
supersymmetric integral. We now show that the overall
structure of the calculation motivates the counting and
allows us to understand the effect of order a improvement
on the real modes of DW . The details of the computations
are described in Appendix C.
The counting a ∼m ∼ 1=

ffiffiffi
n

p
employed here is relevant

as the positive definite order a term will move the real
eigenvalues of the Wilson Dirac operator from the origin to
values of order a. Hence, the Fermion massm, which in the
quenched supersymmetric partition function becomes the
eigenvalue, cf. (17), must be of the same order. Otherwise
the resulting eigenvalue density will only probe regions
where no eigenvalues appear. Order a improvement of the
lattice action will primarily reduce the LEC of the order a
term in the EFT action [28] and thus correspondingly the
magnitude of the eigenvalue. If the order a improvement is
so accurate that the LEC of the order a term in the EFT
becomes of order 1=

ffiffiffi
n

p
, then the relevant counting for the

eigenvalues and hence quark mass in the quenched super-
symmetric partition function becomes m ∼ 1=n. Thus
accurate order a improvement will connect back to the
standard ϵ-counting where m ∼ 1=n and a ∼ 1=

ffiffiffi
n

p
. The

EFT derived here, in this way, allow us to monitor the effect
of the order a improvement.
A simple example of this is as follows: Order

a-improvement of the Wilson Dirac operator naturally
moves the eigenvalues of the Wilson Dirac operator closer
to the origin, since the order a-term acts as a mass.
Surprisingly, however, as observed in [19] the distribution

of the real eigenvalues also becomes narrower when the
Wilson Dirac operator is order a-improved. The action of
(6) offers a natural explanation: The width of the distribu-
tion of the real modes comes from the order 1 and 1=

ffiffiffi
n

p
terms in the action which, we note, includes m. As the
action is order a improved, the relevant eigenvalue and
hence the relevant m used in the supersymmetric method
decreases. This in turn suppresses the order 1 and 1=

ffiffiffi
n

p
terms resulting in a narrower (and hence more continuum-
like) distribution of the real modes of the Wilson Dirac
operator; see Fig. 1 where the effect of the new term is also
explicitly shown.
An other example of how the EFT can be applied is given

in Appendix D, where we show that it can be used to
analyze the spectral contributions to the axial anomaly.

VIII. THE EFFECTIVE THEORY
OF CONTINUUM QCD

It is natural to ask if the new term, (7), is special to the
effective theory for lattice QCD or whether it is also
relevant in the effective theory for continuum QCD [20]
at fixed ν [11]. To answer this let us consider the fixed ν
spurion analysis in the continuum. Since ν is fixed the
volume again splits into a parity even and a parity
odd part, and thus it is as natural to have a new term
νTrðm�U −mU†Þ in the effective action as it is to have the
usual mass term ðNL þ NRÞTrðm�U þmU†Þ.

FIG. 1. The distribution of the chiralities over the real eigen-
values of the Wilson Dirac operator, ρχðλÞ defined in Eq. (16). As
the LEC of the leading order a-term is reduced (as for order
a-improvement), the distribution not only moves toward the
origin it also becomes more narrow. Compare to the lattice QCD
data of Fig. 1 in the second entry of [19]. The dotted curves
display the effect of the new term obtained by subtracting from
the full result the result without the new term. The parameters are
ν ¼ 2, n ¼ 100, a ¼ 1=

ffiffiffi
n

p
, wt ¼ 1 and wm ¼ 0. For the unim-

proved curve the LEC of the leading order term in a is enhanced
by a factor 5.
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We now show how the new term νTrðm�U −mU†Þ appears in the effective action at fixed ν even if we start from an
effective theory at fixed θ which only includes standard terms. To simplify we neglect all terms except the mass and the L7

term of [20]. We make use the relation ZθðmÞ ¼ Zθ¼0ðmeiθ=NfÞ [11] and start from

ZθðmÞ∼
Z
SUðNfÞ

dμðŨÞexp
�
1

2
VΣmTrðe−iθ=Nf Ũþeiθ=Nf Ũ†Þ−4Vm2B2

0L7Tr2ðe−iθ=Nf Ũ−eiθ=Nf Ũ†Þ
�
; ð20Þ

with B0 ¼ Σ
F2
π
[20]. We now integrate as in (12)

ZνðmÞ ∼ 1

2π

Z
π

−π
dθe−iνθ

Z
SUðNfÞ

dμðŨÞ

× exp

�
1

2
VΣmTrðe−iθ=Nf Ũ þ eiθ=Nf Ũ†Þ − 4Vm2B2

0L7Tr2ðe−iθ=Nf Ũ − eiθ=Nf Ũ†Þ
�
: ð21Þ

In this form Zν is expressed using standard terms. However, we can shift the integration variable

θ ¼ θ0 þ i
x
2
Trðe−iθ0=Nf Ũ − eiθ

0=Nf Ũ†Þ; ð22Þ

and choose x ¼ 16mNfB2
0L7=Σ ∼ 1=

ffiffiffiffi
V

p
, such that the contribution from the standard mass term is canceled. With this

change of variables we obtain

ZνðmÞ ∼ 1

2π

Z
π

−π
dθ0e−iνθ0

Z
SUðNfÞ

dμðŨÞ

× exp

�
8mB2

0L7

Σ
Trðe−iθ0=Nf Ũ þ eiθ

0=Nf Ũ†Þ þ 1

2
VΣmTrðe−iθ0=Nf Ũ þ eiθ

0=Nf Ũ†Þ
�

× exp

�
νm

16NfB2
0L7

Σ
Trðe−iθ0=Nf Ũ − eiθ

0=Nf Ũ†Þ
�
: ð23Þ

(The first term in the second line is the Jacobian.) After the
integrationoverθ0 and Ũ the partition function in the standard
representation, (21), is equal to the partition functionwith the
new term, (23), to the order we work at. Again the different
formulations are similar to how asymptotic series may have
different but equivalent expressions [27].
The LEC of the new term is proportional to L7 which

according to best fits [29] is nonzero. We therefore
conclude that new term is relevant for the effective action
for continuum QCD at fixed topology. The new equivalent
formulation of the EFT can perhaps be useful in determin-
ing the low energy constant L7. In particular we stress that
in the new formulation (23) the squared trace in (21) is
changed for terms linear in the Goldstone field.

IX. GENERALIZATIONS

The fixed ν spurion analysis allows us to identify a
family of new terms in the effective action at fixed
topology. All we need to ensure is that the action must
respect parity and that volumes NL þ NR and NL − NR

FIG. 2. The eigenvalue density ρ5ðλ5Þ (blue solid), the distri-
bution of the chiralities ρ5;χðλ5Þ (red dashed) and the symmetrized

version ρðsÞ5;χðλ5Þ (black dotted), form ¼ 0, a ¼ 0.1=
ffiffiffi
n

p
, n ¼ 100,

wt ¼ 1, wm ¼ 0 and ν ¼ 2. Note that ρðsÞ5;χðλ5Þ is fully dominated
by the near topological modes.
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must only enter to first power such that the action is
extensive. For example νTrðm�U −mU†ÞTrðm�U þmU†Þ
is a perfectly valid higher order term in the continuum
effective action at fixed topology.
Related we may ask if the shift of variable as in (14) and

(22) is unique or if there are other possibilities. On this end
we note that the shift of variable (22) is Hermitian, respects
the standard spurion structure and is parity odd. Other shifts
are possible and as long as they respect this all new terms
generated automatically conserve the fixed ν spurion rules.
Finally we note that effective actions for QCD where

topology is directly linked to the Goldstone field has a long
history, see eg. [30], but we stress that the terms considered
here are of a different nature.

X. SUMMARY

Our analysis of a new RMM for lattice QCD with a
positive definite analogue of the Wilson term has revealed a
new term in effective actions at fixed topology. We have
extended spurion analysis to fixed topology and used this to
show that the term is the first in a new family of terms.
While the new terms were discovered in the context of the
EFT at nonzero lattice spacing we have shown that they are
relevant even for the effective theory of continuum QCD. In
particular, we have explicitly shown how the new terms at
fixed topology can arise starting from an effective action at
fixed θ including only standard terms. The effective theory
including the new term has been used to discuss the effect
of order a improvement as well as to obtain new insights in
the spectral contributions to the axial anomaly. Both of
these insights have been obtained by explicitly deriving the
relevant spectral correlation functions using the super-
symmetric technique.
It would be most interesting to explore if the formulation

of the effective theory with the new term present can be
used to obtain better bounds on the physical parameters

which appear as low energy constants in the effective
theory.
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APPENDIX A: PROPERTIES OF THE WILSON
DIRAC OPERATOR IN LATTICE QCD

For completeness this Appendix reviews some of the
properties of the Wilson Dirac operator following the
setup described in [15]. In 4 dimensional lattice QCD
we discretize the Euclidean spacetime with some lattice
spacing a such that we consider a lattice T ⊂ R4. The
spinor fields ψðxÞ live on the lattice sites and take values in
C4 ⊗ CNc , where Nc is the number of colors in the SUðNcÞ
gauge symmetry. We can further equip this space of spinor
function with an inner product

hψ1jψ2i≡ a4
X
x∈T

ψ1ðxÞ†ψ2ðxÞ: ðA1Þ

The gauge field resides on the bonds of the lattice as
parallel transporters UμðxÞ taking values in the gauge
group. In particular UμðxÞ parallel transports a spinor from
xþ aeμ to x, where eμ is a unit vector in the μth direction.
This allows us to write covariant forward (backward)
difference operators

∇þ
μ ψðxÞ ¼ UμðxÞψðxþ aeμÞ − ψðxÞ;

∇−
μ ψðxÞ ¼ ψðxÞ −Uμðx − aeμÞ†ψðx − aeμÞ: ðA2Þ

We can then compute the Hermitian conjugate of ∇þ
μ with

respect to the inner product (A1)

hψ1j∇þ
μ ψ2i ¼ a4

X
x∈T

ψ1ðxÞ†ðUμðxÞψ2ðxþ aeμÞ − ψ2ðxÞÞ

¼ a4
X
x∈T

½ðUμðxÞ†ψ1ðxÞÞ†ψ2ðxþ aeμÞ − ψ1ðxÞ†ψ2ðxÞ�

¼ a4
X
x∈T

ðUμðx − aeμÞ†ψ1ðx − aeμÞ − ψ1ðxÞÞ†ψ2ðxÞ ¼ h−∇−
μ ψ1jψ2i; ðA3Þ

where we shifted the sum in the last line. A similar
computation holds for ∇−

μ and hence we have
ð∇�

μ Þ† ¼ −∇∓
μ . This implies that ∇μ ¼ 1

2
ð∇−

μ þ∇þ
μ Þ is

anti-Hermitian ð∇μÞ† ¼ −∇μ which further renders the
Dirac operator =∇ ¼ γμ∇μ anti-Hermitian (in Euclidian
signature γμ are Hermitian). We can define the covariant
“Laplacian” Δ that occurs in the Wilson term

Δ≡X
μ

ð∇þ
μ Þ†∇þ

μ ; ðA4Þ

which is clearly Hermitian and semi positive-definite as

hψ jΔψi ¼
X
μ

h∇þ
μ ψ j∇þ

μ ψi ≥ 0: ðA5Þ

Finally, we can state the full Wilson Dirac operator

DW ¼ γμ
�
1

a
∇μ

�
þ a

2

�
1

a2
Δ
�
: ðA6Þ
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APPENDIX B: FROM RMM TO EFT

In this Appendix we give details on how to derive the EFT from the RMM. As above we consider the random matrix
model defined in Eq. (1) and first rewrite the determinant as fermionic Gauss integral

Zν ∝
Z

dWdAdBdΨdetνAAdetνBB exp ½−ðnþ ν=2ÞðTrWW† þ TrAþ TrBÞ�

× exp ½TrðMRΨðRÞ†ΨðRÞ þMLΨðLÞ†ΨðLÞÞ − aTrAΨðRÞΨðRÞ† − aTrBΨðLÞΨðLÞ† �
× exp ½−TrWΨðLÞΨðRÞ† þ TrWΨðRÞΨðLÞ† �; ðB1Þ

where ΨðR=LÞ has indices in both flavor and “RMT” space i.e., ΨðRÞ
if with i ¼ 1;…; n and f ¼ 1;…; Nf. Further we write

ΨðLÞΨðRÞ† as shorthand for ΨðLÞ
if ΨðRÞ�

jf and ΨðLÞ†ΨðRÞ for ΨðLÞ�
if ΨðRÞ

ig . One can now show through series expansion that

detð1n þΨðRÞΨðRÞ†Þ ¼ det−1ð1Nf
þΨðRÞ†ΨðRÞÞ, where the inverse is due to the anticommutative nature of the Ψs. We can

then solve the integrals over A and B using
R
HermþðnÞ dA detν Ae−TrAC ∝ det−ν−n C and the W-integral using standard

Gaussian integrals

Zν ∝
Z

dΨdet−νA−n½ðnþ ν=2Þ1þ aΨðRÞ†ΨðRÞ�det−νB−n−ν½ðnþ ν=2Þ1þ aΨðLÞ†ΨðLÞ�

× exp

�
−

1

nþ ν=2
TrΨðLÞΨðRÞ†ΨðRÞΨðLÞ† þ TrðMRΨðRÞ†ΨðRÞ þMLΨðLÞ†ΨðLÞÞ

�
: ðB2Þ

Using the superbosonization formula we exchange ΨðR=LÞ†ΨðR=LÞ → ðnþ ν=2ÞUR=L ∈ ðnþ ν=2ÞUðNfÞ and simulta-
neously factor out ðnþ ν=2Þ of the determinants as

Zν ∝
Z
UðNfÞ⊗2

dμðURÞdμðULÞdet−nURdet−n−νULdetνAþnð1þ aURÞdetνBþnþνð1þ aULÞ

× exp

��
nþ ν

2

�
ðTrURUL þ TrðMRUR þMLULÞÞ

�
: ðB3Þ

We can then shift the integral as UL → U−1
R UL followed UR →

ffiffiffiffiffiffiffi
UL

p
UR and identify U ¼ UR and Ua ¼ UL

Zν ∝
Z
UðNfÞ⊗2

dμðUÞdμðUaÞdetνUdet−n−ν=2UadetνAþnð1þ a
ffiffiffiffiffiffi
Ua

p
UÞdetνBþnþνð1þ aU−1

ffiffiffiffiffiffi
Ua

p
Þ

× exp

��
nþ ν

2

�
ðTrUa þ TrðMR

ffiffiffiffiffiffi
Ua

p
U þMLU−1

ffiffiffiffiffiffi
Ua

p
ÞÞ
�
: ðB4Þ

After that a saddlepoint approximation can be performed around Ua ¼ 1, where we use the counting MR ∼ML ∼ a ∼ 1ffiffi
n

p .

Thus we expand as Ua ¼ 1þ iffiffi
n

p H − 1
2nH

2 þ � � � with H Hermitian and collect terms up to 1ffiffi
n

p

Zν ≈
Z

dμðUÞdHdetνU

× exp
�
N
2
TrðMðaÞ

R U þU−1MðaÞ
L Þ − na2

2
TrðU2 þ U−2Þ

�

× exp

�
na3

3
TrðU3 þ U−3Þ þ wtν

a
2
TrðU − U−1Þ

�

× exp

�
−
1

2
TrH2 þ i

ffiffiffi
n

p
2

TrðHðMðaÞ
R U þ U−1MðaÞ

L ÞÞ
�

× exp

�
−

i
6

ffiffiffi
n

p TrH3 −
1

8
TrðH2ðMðaÞ

R U þ U−1MðaÞ
L ÞÞ − i

ffiffiffi
n

p
a2

2
TrðHðU2 þ U−2ÞÞ

�
; ðB5Þ
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where we define νA − νB ¼ wtνþ ν, νa þ νb ¼ wm and the shifted mass matrix MðaÞ
R=L ¼ MR=L þ aþ wMa=N. We can

then shift the integral in H by the linear term (it is sufficient to shift by the linear term in the third line) and expand
the 1ffiffi

n
p -suppressed terms

Zν ∝
Z

dμðUÞdHdetνU

× exp

�
N
2
TrðMðaÞ

R U þ U−1MðaÞ
L Þ − na2

2
TrðU2 þ U−2Þ

�

× exp

�
na3

3
TrðU3 þ U−3Þ þ wtνa

2
TrðU −U−1Þ

�

× exp

�
−
1

2
TrH2 −

n
8
TrððMðaÞ

R U þU−1MðaÞ
L Þ2Þ

�

×

�
1 −

n
48

TrððMðaÞ
R U þ U−1MðaÞ

L Þ3Þ − 1

8
TrðH2ðMðaÞ

R U þ U−1MðaÞ
L ÞÞ

þ n
32

TrððMðaÞ
R U þ U−1MðaÞ

L Þ3Þ þ na2

4
TrððMðaÞ

R U þU−1MðaÞ
L ÞðU2 þ U−2ÞÞ

�
; ðB6Þ

where we neglected odd powers of H as they vanish due to symmetry (after the shift). The average over H is essentially a
constant h1i ¼ 1 and a nontrivial term hTrH2Ai ¼ NfTrA so that we get after re-exponentiation

Zν ∝
Z

dμðUÞdetνU exp

��
N
2
þ Nf

8

�
TrðMðaÞ

R U þ U−1MðaÞ
L Þ − Na2

4
TrðU2 þU−2Þ

�

× exp

�
−
N
16

TrðMðaÞ
R U þ U−1MðaÞ

L Þ2 þ N
192

TrðMðaÞ
R U þ U−1MðaÞ

L Þ3
�

× exp

�
Na2

8
TrðMðaÞ

R U þU−1MðaÞ
L ÞðU2 þ U−2Þ þ Na3

6
TrðU3 þ U−3Þ þ wtνa

2
TrðU − U−1Þ

�
: ðB7Þ

APPENDIX C: THE SUPERSYMMETRIC
TECHNIQUE

In order to obtain the various spectral correlation
functions ρχ , ρ5, etc. from a given effective theory, we
employ the so called supersymmetric (SUSY) technique;
see eg. [31,32]. The actual partition function of interest has
Nf flavors. The idea of SUSY is to add two valance flavors,
one of fermionic statistics and one of bosonic with masses
and axial massesm, z and m0, z0, respectively. The partition
function including the new valence flavors takes the form

Zν
Nfþ1j1 ¼

Z
D½Aμ�νe−SYM½Aμ� detðDW þmþ γ5zÞ

detðDW þm0 þ γ5z0Þ

×
YNf

f¼1

detðDW þmfÞ; ðC1Þ

where the path integral is taken over the sector of
topological index ν. The main observation is that in the
limit m0 → m and z0 → z the partition function (C1)
coincides with the original without valence flavors. Thus

we can derive certain statistics with respect to the original
ensemble by differentiating Zν

Nfþ1j1 with respect tom and z

and subsequently taking the aforementioned limit. In
particular we can calculate the following resolvents:

Σðm; zÞ ¼ lim
m0→m
z0→z

∂
∂m logZν

Nfþ1j1

¼
�
Tr

1

DW þmþ γ5z

�
; ðC2Þ

Σ5ðm; zÞ ¼ lim
m0→m
z0→z

∂
∂z logZ

ν
Nfþ1j1

¼
�
Tr

γ5

DW þmþ γ5z

�
¼

�
Tr

1

D5 þ z

�
: ðC3Þ

From the resolvents we can directly obtain the spectral
correlation functions. As an example we work out the
relation for ρ5ðλ5Þ, i.e., the spectral density of
D5 ¼ γ5ðDW þmÞ. As D5 is Hermitian we can write the
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expression for Σ5 in the eigenbasis of D5, letting z ¼
−λ5 − iϵ we have

Σ5ðm; z ¼ −λ5 − iϵÞ ¼
�X

k

1

λ5k − λ5 − iϵ

�

¼ iπ

�X
k

δðλ5k − λ5Þ
�
þ…; ðC4Þ

where we use the Sokhotski-Plemelj theorem and
“…” denotes the real part. This immediately gives us the
relation

ρ5ðλ5Þ≡
�X

k

δðλ5 − λ5kÞ
�

¼ 1

π
ImΣ5ðm; z ¼ −λ5 þ iϵÞ: ðC5Þ

Similarly for D5 one can derive the following relation:

ρ5;χðλÞ≡
�X

k

δðλ5 − λ5kÞhψ5
kjγ5jψ5

ki
�

¼ 1

π
ImΣðm; z ¼ −λ5 þ iϵÞ: ðC6Þ

For the Wilson operator we can also compute the distri-
bution of the real eigenvalues of DW weighted by either the
sign or the value of the chirality yielding ρχðλÞ [9] and
ρcont;χðλÞ

ρχðλÞ≡
� X

k∶λk∈R
δðλ − λkÞsignhψkjγ5jψki

�

¼ 1

π
ImΣðm ¼ −λ; z ¼ −iϵÞ; ðC7Þ

ρcont;χðλÞ≡
� X

k∶λk∈R
δðλ − λkÞhψkjγ5jψki

�

¼ 1

π
ReΣðm ¼ −iλ − ϵ; z ¼ 0Þ: ðC8Þ

In particular we can use the above to derive spectral
densities of chiral effective theories, where the partition
function is expressed as a integral over the Goldstone
manifold UðNfÞ.
To accommodate for the valance flavors we extend the

integration manifold toGlðNf þ 1j1Þ [32]. The Lagrangian
of (6) is effectively promoted to being supersymmetric
by replacing traces and determinants with their SUSY
counterparts, i.e., Tr → Str and det → Sdet. This leaves the
question of parametrization of U ∈ GlðNf þ 1j1Þ and its
accompanying measure. For simplicity we consider the
quenched case Nf ¼ 0 and use the parametrization of [32]

U¼
�
eiθ 0

0 es

�
exp

�
0 α

β 0

�
; dμðUÞ¼ dθ

2π
dsdβdα; ðC9Þ

with θ ∈ ½−π; π�, s ∈ ð−∞;∞Þ and α, β Grassmannian.
Hence we arrive at the SUSY integral representation of the
graded partition function

Zν
1j1 ¼

Z
dθ
2π

dsdβSdetνU exp
�
i
N
2
StrðMðaÞ

R U −U−1MðaÞ
L Þ − Na2

4
StrðU2 þ U−2Þ

�

× exp

�
−
N
16

StrðMðaÞ
R U − U−1MðaÞ

L Þ2 − iN
192

StrðMðaÞ
R U −U−1MðaÞ

L Þ3
�

× exp

�
−
iNa2

8
StrðMðaÞ

R U − U−1MðaÞ
L ÞðU2 þU−2Þ − iNa3

6
StrðU3 −U−3Þ

�

× exp

�
iwtνa
2

StrðU þU−1Þ
�
; ðC10Þ

where we shifted the integral as U → iU to ensure con-
vergence [9,22]. At this point it is straightforward, but
rather tedious to expand out the Grassmann part of
the exponent and solve the Grassmann integral. This
leaves the partition function as an integral over the θ
and s, which can be differentiated to find Σ and Σ5. The
remaining two-fold integral can be numerically integrated
to yield the spectral functions ρ5, ρ5;χ , ρχ and ρcont;χ as
described above.

APPENDIX D: THE AXIAL ANOMALY

In this Appendix we use the EFT to discuss the spectral
contributions to the axial anomaly. As shown by Fujikawa
[33] the response of the Fermionic measure to an axial
transformation

jψi → jψ 0i ¼ eiγ5αjψi; hψ j → hψ 0j ¼ hψ jeiγ5α
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includes a nontrivial Jacobian J. Here, we extend the
argument of Fujikawa to nonzero lattice spacing by using
the eigenvalues and eigenvectors,

D5jψ5
ki ¼ λ5kjψ5

ki; ðD1Þ

of the Hermitian Wilson Dirac operator, D5¼γ5ðDWþmÞ.
We follow the proof of Fujikawa and obtain

J ¼ exp

�
−iα

X
k

hψ5
kjγ5jψ5

ki
�
: ðD2Þ

Fujikawa regulates the infinite sum as

J ¼ lim
Λ→∞

exp

�
−iα

X
k

hψ5
kjγ5jψ5

ki expð−λ5k2=Λ2Þ
�
;

where Λ is the width of the regularization. Subsequently, he
reformulates the regulator to show that the sum equals
the topological index ν of the gauge field configuration.
We follow a different path and consider the quantity

X
k

δðλ5 − λ5kÞhψ5
kjγ5jψ5

ki; ðD3Þ

which allows us to turn the sum in the exponent of J into an
integral. To understand the integrand in the exponent, we
introduce the ensemble averaged distribution of the chir-
alities over the spectrum of D5

ρ5;χðλ5Þ≡
�X

k

δðλ5 − λ5kÞhψ5
kjγ5jψ5

ki
�
: ðD4Þ

We have the relation

ρ5;χðλ5Þ ¼
1

π
Im½Σðm; z ¼ −λ5Þ�;

where the Green function of DW is

Σðm; zÞ≡
�
Tr

1

DW þmþ zγ5

�
¼

�
Tr

γ5
D5 þ z

�
: ðD5Þ

Hence we may compute ρ5;χ from the EFT by the
supersymmetry technique as outlined in Appendix C.
The outcome is most interesting: The resulting ρ5;χðλ5Þ
has a 1=λ5 tail for λ5 ≫ m, a. Hence, the Riemannian
way of integrating it would produce a logarithmic diver-
gence instead of reproducing the topological index ν.
One needs to understand the integral over ρ5;χðλ5Þ like a
principal value integral, in particular we need to integrateR∞
0 ρðsÞ5;χðλ5Þdλ5 ¼ ν with

ρðsÞ5;χðλ5Þ≡ ρ5;χðλ5Þ þ ρ5;χð−λ5Þ: ðD6Þ

The integrand is then completely dominated by the topo-
logical peak, as illustrated in Fig. 2, where we also plot the
level density ρ5ðλ5Þ of D5 ¼ γ5ðDW þmÞ [22]. We stress
that this is fully consistent and the natural extension of
Fujikawa’s result.
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