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We extend our relativistic theory of electroweak properties of composite systems to describe
simultaneously the gravitational form factors of hadrons. The approach is based on a version of the
instant-form relativistic quantum mechanics and makes use of the modified impulse approximation. We
exploit the general method of the relativistic invariant parametrizaton of local operators to write the energy-
momentum tensor of a particle with an arbitrary spin. We use the obtained results to calculate the
gravitational form factors of the pion assuming pointlike constituent quarks. All but one parameters of our
first-principle model were fixed previously in works on electromagnetic form factors. The only free
parameter, Dq, is a characteristic of the gravitational form factor of a constituent quark. The derived form
factors of the pion satisfy the constraints given by the general principles of the quantum field theory of
hadron structure. The calculated gravitational form factors and gravitational mean-square radius are in a
reasonable agreement with known results.
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I. INTRODUCTION

The probably most fundamental information about a
particle is contained in the matrix elements of its energy-
momentum tensor (EMT). So, it is clear that the gravita-
tional form factors (GFFs) of hadrons that enter the EMT
matrix elements and their dependence on the square of the
momentum transfer t are in the focus of investigations (see,
e.g., [1–5] and references therein). These form factors
contain the information about the distribution of mass, spin,
and internal forces inside the hadron. These forces are
connected with the additional global characteristic of a
particle, the so-calledD term of the EMT matrix. The study
[6] of the structure of the elements of the EMT matrix and
of their Lorentz-covariant decomposition in terms of the
form factors gives the limitations at t → 0 that mean that
the form factor DðtÞ is not constrained (not even at t ¼ 0)
by general principles and the value D ¼ Dð0Þ is therefore
not known for (nearly) any particle (see also [7,8]).
At present one obtains the information about the GFF

mainly from the hard-exclusive processes described in

terms of unpolarized generalized parton distribution
(GPD). Particularly, in Ref. [9] (see also Ref. [10]) it is
shown that GPD, derived from processes, gives the infor-
mation on the space distribution of strong forces that act on
quarks and gluons inside hadrons. The link of gravitational
form factors with GPD gives a possibility of obtaining the
data on these form factors using the hard-exclusive proc-
esses. The first results for nucleon GFFs were obtained
through the analysis of JLab data [5]. The data for the pion
form factors were extracted from the experiment of the
collaboration Belle at KEKB [11,12].
It is worth noting that the model-independent extraction

of GPD from the experimental data is a difficult long-term
problem. So, today the theoretical estimation of the GFF,
including D-term, is usually obtained in the framework of
different model approaches. We mention here only the
publications that are strictly related to the present paper
while more general information can be found, for example,
in the reviews [1–4].
The pion electromagnetic and gravitational form

factors are obtained from GPD in the Nambu–Jona-
Lasino (NJL) model [13,14]. The authors show, in par-
ticular, that the light-cone mass radii for the pion are almost
twice smaller than the light-cone charge radii (see also
[15]). The calculated light-cone mass radius agrees with the
value obtained through a phenomenological extraction
from KEKB data [12]. Note that the NJL model as
well as the model of our approach contains gluons only
implicitly.
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Different approaches based on various forms of
dispersion relations (see, e.g., [16,17] and references
therein), that is on quite general principles of the quan-
tum-field theory, can be considered as “maximal model-
independent” approaches. TheD term was calculated using
unsubtracted t-channel dispersion relations for the deeply
virtual Compton scattering amplitudes [16].
In connection with the first experimental results for the

GFFs of nucleons [5], the gravitational characteristics of
these particles were calculated. The dependence of EMTon
the long-ranged electromagnetic interaction was investi-
gated in Ref. [18]. Using a simple model it was shown that
in the case of the long-ranged forces in the proton one needs
a sophisticated theory of the D-term construction. There is
a possibility that theD-term is ill defined and even singular.
They propose the exploiting of the fixed-t dispersion
relations for deep virtual Compton scattering as in
Ref. [10] to avoid this difficulty. It is of interest that in
the free-field model, as was shown in Refs. [19,20], the
D-term for the fermion with spin 1=2 is of a dynamical
nature and vanishes for the free fermion. The interaction
inclusion gives rise to the D-term of a fermion with an
internal structure, the nucleon. Recently [21] the results of
[3] have been extended to the different frames where the
nucleon has a nonvanishing average momentum.
The authors of [22] use the Skyrme model which

respects the chiral symmetry and provides a practical
realization of the large-Nc picture of baryons described
as solitons of mesonic fields. The EMT form factors are
consistently described (see, e.g., [23] and references
therein) in the bag model in the large-Nc limit. It is
important to mention the recent results for the GFFs as
obtaibed from the lattice QCD (see, e.g., [24,25] and the
references therein), and the study using an approach based
on the light-cone sum rules [26], and in the light-cone quark
model [27].
Different theoretical approaches to the GFFs of hadrons

give different results and the absence of the model-
independent extracted data makes it impossible to choose
between them. We believe that in such a situation, a theory
which is intrinsically self-consistent theory and describes as
large set of the physical characteristics and systems as
possible is welcome. This motivates the extension of the
relativistic theory of the electromagnetic properties of
composite systems developed previously to the calculation
of the GFF of the pion.
The goal of the present paper is twofold. First, we extend

our relativistic model of the electromagnetic structure of
composite systems to include their gravitational character-
istics. Second, we derive the pion GFFs using our previous
calculations of electroweak properties of hadrons.
The model [28,29] was successfully used for various

composite two-particle systems, namely, the deuteron [30],
the pion [31–34], the ρ meson [35–37] and the kaon [38].
This model had predicted, with surprising accuracy, the

values of the form factor FπðQ2Þ, which were measured
later in JLab experiments (see the discussion in Ref. [33]):
all new measurements followed the predicted curve.
Another advantage of the approach is matching with the
QCD predictions in the ultraviolet limit, when constituent-
quark masses are switched off, as expected at high energies.
The model reproduces correctly not only the functional
form of the QCD asymptotics, but also the numerical
coefficient; see Refs. [32,34,38] for details. The method
allows for an analytic continuation of the pion electromag-
netic form factor from the spacelike region to the complex
plane of momentum transfers and gives good results for the
pion form factor in the timelike region [39].
Now we show that besides electroweak properties of

composite systems, our approach can be used to calculate
their gravitational characteristics. Even in a simple version
of our approach (with the pointlike quarks and the two-
particle wave functions of the harmonic oscillator) the
results agree well with other calculations and with scarce
measurements. The only free parameter that we add to the
model is the constituent-quark Dð0Þ ¼ Dq. This parameter
is constrained from the pion mean-square radius. Despite
uncertainties in the latter, Dq is fixed to a narrow interval
which makes it possible to predict the GFFs at nonzero
momentum transfers. Using the obtained results we calcu-
late the values of the static gravitational characteristics of the
pion and obtain A and D form factors as functions of
momentum transfer up to 1 GeV2. Note that the new
parameter is not used in the calculation of the A term, its
value is a direct prediction of our previous approach. The
form factors calculated through our nonperturbative method
satisfy all the constraints given by the general principles of
the quantum-field theory of hadron structure [6–8].
The approach that we use is a particular variant of the

theory based on the classical paper by P. Dirac [40], so-
called relativistic Hamiltonian dynamics or relativistic
quantum mechanics (RQM). It can be formulated in
different ways or in different forms of dynamics. The main
forms are the instant form, point form and light-front
dynamics. Here we are dealing with instant-form (IF)
RQM. The properties of different forms of RQM dynamics
are discussed in the reviews [41–44]. Today the theory is
largely used as a basis of the nonperturbative approaches to
the particles structure.
The presentation of the matrix elements of EMT in terms

of form factors, the invariant parametrization, is an impor-
tant part of model approaches to gravitational character-
istics of particles. The majority of authors use the
parametrization given by Pagels [45] (see also [46]). The
parametrization [45] was constructed in an almost phe-
nomenological way using an analogy with the investiga-
tions performed in connection with the self-stress of the
electron. It is valid for the simplest cases of spin 0 and 1=2
and cannot be directly extended to systems with higher
spins, when more general special methods are needed
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(see [4,47]). We use the general method of the relativistic
invariant parametrization of the matrix elements of the
local operators established in Ref. [47]. The parametriza-
tion is written in the canonical basis, so it is natural to call
it the canonical parametrization. Certainly, this method of
obtaining a parametrization is not unique (see the discus-
sion in Ref. [4]). With the use of the method [47] the
invariant parametrization was obtained for systems with
arbitrary spin in the cases with diagonal [28,29,48] and
nondiagonal [49] total angular momenta. In the present
paper we give the general formulas, although for the actual
calculation we use only the form factors for systems of spin
0(the pion), spin 1=2 (the constituent quark) and for the
system of two free constituent quarks. The form factors
obtained by the canonical parametrization can be expressed
in terms of the largely accepted one-particle GFFs [3,45].
As an important part, our approach contains the con-

struction of the EMT matrix element of the system of two
free particles with spins 1=2, momenta p⃗1; p⃗2 and spin
projections m1, m2, that is the two-particle system having
quantum numbers of the pion. We construct the EMT in the
basis with separated center-of-mass motion [50] jP⃗; ffiffiffi

s
p i,

where P ¼ p1 þ p2; s ¼ P2 is the invariant mass squared
and P, p1 and p2 are 4-vectors. We refer to the corre-
sponding form factors as to the free two-particle GFFs.
These form factors are the functions of the invariant masses
of the two-particle system in the initial and the final states
and depend on the momentum-transfer square as a param-
eter. They are the regular generalized functions, the dis-
tributions corresponding to the functionals given by the
two-dimensional integrals over the invariant masses [28].
To construct the pion GFFs we use a modified impulse

approximation (MIA) (see Refs. [28,29] and the review
[44]). In contrast to the baseline impulse approximation,
MIA is formulated in terms of the form factors and not in
terms of the EMToperator itself. So, in MIA the pion GFFs
are presented as functionals given by the free two-particle
form factors on the set of the two-quark wave functions of
the pion. The necessity of using the distributions was
justified in the case of the electroweak interaction in
[28,29,48] (see also [6,44]).
The rest of the paper is organized as follows. In Sec. II

we construct the matrix elements of the EMTof the particle
with an arbitrary spin and, in particular, with spins 0 and
1=2. Section III presents the construction of the EMT
matrix element for the system of two free spin 1=2 particles
with total quantum numbers of the pion and the explicit
forms of corresponding form factors. In Sec. IV we give a
brief account of RQM and MIA and derive the formulae for
the pion GFFs. In Sec. V we discuss the important role of
the relativistic effects in the pion GFFs behavior. We
calculate the static limits of the GFFs and of their
derivatives, obtain the mean square radius and the values
of the form factors up to 1 GeV2. We briefly conclude and
discuss the results in Sec. VI.

II. THE ENERGY-MOMENTUM TENSOR MATRIX
ELEMENTS FOR A PARTICLE WITH AN

ARBITRARY SPIN

In this section we describe the general procedure of
parametrization of the EMT matrix element for a particle
with mass M and spin j. To write EMT in terms of
gravitational form factors we make use of the method
[47]. Because of translational invariance it is sufficient to
consider only the following matrix element:

hp⃗; mjTμνð0Þjp⃗0; m0i; ð1Þ

where p⃗0; p⃗ are the particle moments, m0; m are the spin
projections in the initial and final states, respec-
tively; p02 ¼ p2 ¼ M2.
The normalization condition for the state vectors in (1) is

hp⃗; mjp⃗0; m0i ¼ 2p0δðp⃗ − p⃗0Þδmm0 ; ð2Þ

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p⃗2

p
. We have exploited the general

method of parametrization of matrix elements of local
operators developed in [47] to construct the matrix ele-
ments of the operator of the electromagnetic current (see,
e.g., [28,29,44]). Upon formulation of this method the
canonical basis in the Hilbert space was used. From the
point of view of group theory the parametrization
procedure represents the realization of the known Wigner-
Eckart theorem on the Poincaré group [48]. The para-
metrization represents the procedure of separation of the
reduced matrix elements (form factors) which are invariant
with respect to transformations of the Poincaré group. The
main idea of the canonical parametrization can be formu-
lated as follows. Objects of two types should be constructed
from the variables in the vectors in the Hilbert space in (1):
(1) The set of linearly independent matrices in spin

projections in the initial and final states. At the same
time this set represents the set of linearly indepen-
dent Lorentz scalars (scalars and pseudoscalars).
This set describes the EMT matrix elements non-
diagonal with respect to m, m0 and the behavior of
the matrix elements under discrete space-time trans-
formations.

(2) The set of linearly independent objects with the
same tensor dimension as the operator. In our
case (1) this is a 4-tensor of the rank two. This
set describes the behavior of the matrix elements
under Lorentz transformations.

The matrix element of the operator is written as the sum
of all possible products of objects of the first type and
objects of the second type. The coefficients of the elements
of this sum are the desired reduced matrix elements, that is
form factors. The obtained linear combination is modified
if additional constraints, for example, conservation laws,
are imposed on the EMT operator.
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To construct a Lorentz-invariant matrix in spin
projections we use the well-known 4-pseudovector of
(see, e.g., [51]):

Γ0ðpÞ ¼ ðp⃗ j⃗Þ; Γ⃗ðpÞ ¼ Mj⃗þ p⃗ðp⃗ j⃗Þ
p0 þM

;

Γ2 ¼ −M2jðjþ 1Þ: ð3Þ

Under the Lorentz transformations pμ ¼ Λμ
νp0ν, the oper-

ator of the 4-spin (3) is transformed according to the
representation of the small group:

ΓμðpÞ ¼ Λμ
νD

j
wðp; p0ÞΓνðp0ÞDj

wðp0; pÞ; ð4Þ

where Λμ
ν is the matrix of a Lorentz transformation and

Dj
wðp; p0Þ is the transformation operator from the small

group, the matrix of three-dimensional rotation. The
Lorentz-transformation matrix in our case is of the form

Λμ
ν ¼ δμν þ 2

M2
pμp0

ν −
ðpμ þ p0μÞðpν þ p0

νÞ
M2 þ pλp0

λ

: ð5Þ

It can be shown using (4) that matrix elements of the
operator Dj

wðp; p0ÞΓμðp0Þ transform as the 4-pseudovector
and matrix elements of the operators Dj

wðp; p0ÞpμΓμðp0Þ
and p0

μΓμðpÞDj
wðp; p0Þ as 4-pseudoscalars. Thus, the set of

linearly independent scalars composed of the vectors
pμ; p0μ and the pseudovector Γμðp0Þ contains not only
diagonal (with respect to spin projections) terms, but
nondiagonal terms, too. Note, that the pseudovector
ΓμðpÞDj

wðp; p0Þ does not enter the set of scalars. Its linear
dependence can be shown if we use relation (4) and the
explicit form of the matrix Λμ

ν (5). After simple calculations
we obtain

ΓμðpÞDj
wðp; p0Þ ¼ Dj

wðp; p0Þ
�
Γμðp0Þ

−
pμ þ p0μ

M2 þ pμp0μ ½pνΓνðp0Þ�
�
: ð6Þ

Since p0
μΓμðp0Þ ¼ 0, the desired set of linear independent

matrices (that is the set of independent Lorentz scalars) is
given by 2jþ 1 elements

Dj
wðp; p0ÞðipμΓμðp0ÞÞn; n ¼ 0; 1; 2…; 2j: ð7Þ

The imaginary unit i2 ¼ −1 is introduced for self-
adjointness of the obtained scalar operators (7). The self-
adjointness property can be proved using the relation
following from (6):

p0
μΓμðpÞDj

wðp; p0Þ ¼ −Dj
wðp; p0ÞpμΓμðp0Þ: ð8Þ

The number of linearly independent scalars in (7) is limited
by the fact that the product containing more than 2j
numbers of factors Γμðp0Þ is reduced to the products of
smaller number of factors, i.e., is not linearly independent.
For even n the obtained objects in (7) are scalars, and for
odd n they are pseudoscalars.
In the decomposition of the matrix element (1) we make

use of the metric pseudotensor gμν and the rank 2 tensors,
that should be constructed from the variables on which the
state vectors in (1) do depend. Using the available variables
in the state vectors of the particle, it is possible to construct
one pseudovector Γμðp0Þ (3) and three independent vectors:

Kμ ¼ ðp − p0Þμ; K0
μ ¼ ðpþ p0Þμ;

Rμ ¼ ϵμνλρpνp0 λΓρðp0Þ: ð9Þ

Here ϵμνλρ is the absolutely antisymmetric pseudotensor
of rank 4, ϵ0123 ¼ −1. For the matrix elements of the
operators in (9) to transform as the 4-vector, it is necessary
to multiply them by Dj

wðp; p0Þ from the left [in analogy
with (7)].
The matrix element (1) is written in terms of all possible

products of vectors (9), pseudovector Γμðp0Þ, and pseudo-
tensor gμν. Each of these objects is multiplied by a sum of
linearly independent scalars (7). The coefficients in such a
decomposition are just form factors, or reduced matrix
elements.
Taking into account the symmetry properties of the EMT

the parametrization of the matrix element (1) can be written
in the form:

hp⃗; mjTðπÞ
μν ð0Þjp⃗0; m0i ¼

X
m00

hmjDj
wðp; p0Þjm00i

× hm00jτμνð0Þjm0i; ð10Þ

where

τμνð0Þ ¼ G1K0
μK0

ν þG2ΓμΓν þG3ðK0
μΓν þ ΓμK0

νÞ
þG4ðK0

μRν þ RμK0
νÞ þG5ðRμΓν þ ΓμRνÞ

þG6KμKν þ G7gμν þG8ðKμΓν þ ΓμKνÞ
þG9ðK0

μKν þ KμK0
νÞ þ G10ðKμRν þ RμKνÞ;

ð11Þ

Gi ¼
X
n

ginðtÞðipμΓμðp0ÞÞn: ð12Þ

In (12), ginðtÞ are the invariant coefficients, form factors,
t ¼ K2 is momentum-transfer square and Γμ ¼ Γμðp0Þ.
Let us impose some additional physical conditions on the

operator (10).
(1) The requirement of self-adjointness. It is easy to

show, making use of (8), that the self-adjointness for
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the right-hand side (rhs) of (10) requires a modifi-
cation of the pseudovector Γμ with the help of the
quantities introduced by (7), (9); namely:

Γμ → Γ̃μ ¼ Γμðp0Þ −
�
Kμ

K2
þ K0μ

K02

�
½pμΓμðp0Þ�: ð13Þ

Note that this modification (13) does not affect
the Lorentz scalars (7). The requirement of self-
adjointness also results in the multiplication of the
terms containingG4,G5,G8,G9 by the imaginaryunit.

(2) The conservation law for EMT, TμνKμ ¼ 0, gives the
following conditions to be imposed on the Lorentz
scalars,

G8 ¼ G9 ¼ G10 ¼ 0: ð14Þ

The conservation law requires also the following
changes:

G6 → −G6; G7 → tG6 ð15Þ

(3) The parity-conservation condition gives limitations
for the summation in (7). Namely, in G1, G2, G4, G6

the values of n are even while inG3,G5 they are odd.
The limits of summations are the following: for G1,
G6 they are 0 ≤ n ≤ 2j; for G3, G4 they are 0 ≤ n ≤
2j − 1; for G2, G5 they are 0 ≤ n ≤ 2j − 2. Sum-
ming is limited by the fact that each term in
the decomposition (11) contains no more than 2j
factors Γðp0Þ.

So, the most general parameterization of the matrix
element (10) has the following form if the above constraints
are taken into account:

τμνð0Þ ¼
1

2
G1K0

μK0
ν þ G2Γ̃μΓ̃ν þ G3ðK0

μΓ̃ν þ Γ̃μK0
νÞ

þ iG4ðK0
μRν þ RμK0

νÞ þ iG5ðRμΓ̃ν þ Γ̃μRνÞ
þG6ðtgμν − KμKνÞ; ð16Þ

where the summation is limited as is pointed above and the
factor 1=2 before G1 is a result of the normalization
condition: the static limit of EMT should be equal to
the mass.
Let us use the obtained general parametrization in the

case of spin 0. Now for the pion EMT we have:

hp⃗jTðπÞ
μν ð0Þjp⃗0i ¼ 1

2
GðπÞ

10 ðtÞK0
μK0

ν

þGðπÞ
60 ðtÞ½tgμν − KμKν�; ð17Þ

The pion GFFs in canonical parametrization (17) are
connected with commonly used (see, e.g., [3]) by the
following relations:

GðπÞ
10 ðtÞ ¼ AðπÞðtÞ; GðπÞ

60 ðtÞ ¼ −
1

2
DðπÞðtÞ: ð18Þ

In the case of spin 1=2, Eq. (16) gives the following
result which we will use below as the constituent-quark
EMT canonical parametrization:

hp;mjTðqÞ
μν ð0Þjp0; m0i ¼

X
m00

hmjD1=2
w ðp; p0Þjm00i

× hm00jð1=2ÞgðqÞ10 ðtÞK0
μK0

ν

þ igðqÞ40 ðtÞ½K0
μRν þ RμK0

ν�
þ gðqÞ60 ðtÞ½tgμν − KμKν�jm0i; ð19Þ

These GFFs in the canonical parametrization (19) can be
written in terms of commonly used GFFs for particles of
spin 1=2 in the form

gðqÞ10 ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t=4M2
p

×

��
1 −

t
4M2

�
AðqÞðtÞ þ 2

t
4M2

JðqÞðtÞ
�
; ð20Þ

gðqÞ40 ðtÞ ¼ −
1

M2

JðqÞðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t=4M2

p
�
; ð21Þ

gðqÞ60 ðtÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
4M2

r
DðqÞðtÞ: ð22Þ

In the following section we generalize the method of
construction of the EMT matrix elements, given above, to
composite systems.

III. THE EMT MATRIX ELEMENTS FOR A
SYSTEM OF TWO FREE PARTICLES
WITH PION QUANTUM NUMBERS

Our relativistic approach to form factors of composite
systems of interacting components makes use of form
factors of corresponding free systems. So, to obtain GFFs
of a composite system we need to construct GFFs that
describe the gravitational properties of a system of two free
constituents, the two-particle system as a whole having
quantum numbers of the composite system under consid-
eration. We call the GFFs of the two-particle system
without interaction the free gravitational two-particle form
factors. The form factors of a composite system of two
interacting particles are written in our approach in terms of
free two-particle form factors and wave functions exploit-
ing modified impulse approximation (MIA). This approxi-
mation was first formulated in the case of electroweak
properties of hadrons in our papers [28,29] (see also the
review [44]).
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EMToperator Tð0Þ
μν ð0Þ for a system of two free particles is

of the form

Tð0Þ
μν ð0Þ ¼ T1μν ⊗ Ið2Þ ⊕ T2μν ⊗ Ið1Þ: ð23Þ

Here T1;2μν are EMTs of the particles, and Ið1;2Þ are the
identity operators in one-particle Hilbert-state spaces of the
particles. The following set of two-particle vectors can be
chosen as the basis:

jp⃗1; m1; p⃗2; m2i ¼ jp⃗1m1i ⊗ jp⃗2m2i; ð24Þ

where p⃗1; p⃗2 are the 3-momenta of particles,m1,m2 are the
projections of spins to the z axis, the normalization of one-
particle vectors is given in (2). In terms of matrix elements
in the basis (24), the relation (23) is rewritten as the sum of
matrix elements of one-particle EMT operators

hp⃗1; m1; p⃗2; m2jTð0Þ
μν ð0Þjp⃗0

1; m
0
1; p⃗

0
2; m

0
2i

¼ hp⃗1; m1jp⃗0
1; m

0
1ihp⃗2; m2jT2μνð0Þjp⃗0

2; m
0
2i

þ ð1 ↔ 2Þ: ð25Þ

Each of the matrix elements of the one-particle EMT in (25)
can be written in terms of GFFs (19) (see, e.g., [28,29,50]).
Along with this basis (24), we consider the basis in

which the motion of the center of mass of two particles is
separated ([28,29,50]):

jP⃗; ffiffiffi
s

p
; J; l; S;mJi;

hP⃗; ffiffiffi
s

p
; J; l; S; mJjP⃗0;

ffiffiffiffi
s0

p
; J0; l0; S0; mJ0 i

¼ NCGδ
ð3ÞðP⃗ − P⃗0Þδð ffiffiffi

s
p

−
ffiffiffiffi
s0

p
Þ

× δJJ0δll0δSS0δmJmJ0 ;

NCG ¼ ð2P0Þ2
8k

ffiffiffi
s

p ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2;M2Þ

p
2

ffiffiffi
s

p ; ð26Þ

where Pμ ¼ ðp1 þ p2Þμ, P2
μ ¼ s,

ffiffiffi
s

p
is the invariant mass

of the system of two particles, l is the orbital momentum in
the center-of-mass system (c.m.s.), S⃗2 ¼ ðS⃗1 þ S⃗2Þ2 ¼
SðSþ 1Þ; S is the total spin in c.m.s., J is the total angular
momentum, mJ is the projection of the total angular
momentum, M is the constituent mass, and λða; b; cÞ ¼
a2 þ b2 þ c2 − 2ðabþ acþ bcÞ. The basis (26) is related
to the basis (24) by the Clebsch-Gordan decomposition for
the Poincaré group. The corresponding decomposition of a
direct product (24) of two irreducible representations of the
Poincaré group into irreducible representations (26) for
particles with spin 1=2 has the form [50] (see also [44]):

jp⃗1; m1; p⃗2; m2i
¼

X
jP⃗; ffiffiffi

s
p

; J; l; S; mJi
× hJmJjSlmSmliY�

lml
ðϑ;φÞhSmSj1=21=2m̃1m̃2i

× hm̃1jD1=2
w ðP; p1Þjm1ihm̃2jD1=2

w ðP; p2Þjm2i; ð27Þ

where p⃗ ¼ ðp⃗1 − p⃗2Þ=2, p ¼ jp⃗j, ϑ;φ are the spherical
angles of the vector p⃗ in c.m.s., Ylml

is the spherical
function, hSmSj1=21=2m̃1m̃2i and hJmJjSlmSmli are the
Clebsh-Gordan coefficients of the group SUð2Þ,
hm̃jD1=2

w ðP; pÞjmi is the matrix of the three-dimensional
spin rotation, that is necessary for the relativistic invariant
summation of the particle spins. The sums go over all
discrete variables, m̃1, m̃2,ml,mS, l, S, J,mJ. To obtain the
basis where the center-of-mass motion is separated we
invert the decomposition (27):

jP⃗; ffiffiffi
s

p
; J; l; S;mJi

¼
X
m1m2

Z
dp⃗1

2p10

dp⃗2

2p20

jp⃗1; m1; p⃗2; m2i

× hp⃗1; m1; p⃗2; m2jP⃗;
ffiffiffi
s

p
; J; l; S; mJi; ð28Þ

with the Clebsh-Gordan coefficient

hp⃗1; m1; p⃗2; m2jP⃗;
ffiffiffi
s

p
; J; l; S; mJi

¼
ffiffiffiffiffi
2s

p
½λðs;M2;M2Þ�−1=22P0δðP − p1 − p2Þ

×
X

hm1jD1=2
w ðp1; PÞjm̃1ihm2jD1=2

w ðp2; PÞjm̃2i
× h1=21=2m̃1m̃2jSmSiYlml

ðϑ;φÞhSlmSmljJmJi;

the sum being over m̃1; m̃2; ml; mS.
We use below the basis (28) with pion quantum numbers

J ¼ l ¼ S ¼ 0:

jP⃗; ffiffiffi
s

p
; 0; 0; 0; 0i ¼ jP⃗; ffiffiffi

s
p i: ð29Þ

We construct the EMT matrix element in the basis (28)
for quantum numbers given above using the general
method of parametrization of Sec. II. Using (10)–(12),
(16) we obtain the parametrization which is analogous to
that for zero spin (17):

hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i

¼1

2
Gð0Þ

10 ðs;t;s0ÞA0
μA0

νþGð0Þ
60 ðs;t;s0Þ½tgμν−AμAν�; ð30Þ

where Gð0Þ
i0 ðs; t; s0Þ; i ¼ 1, 6 are free two-particle GFFs,
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Aμ ¼ ðP − P0Þμ; A2 ¼ t;

A0
μ ¼

1

ð−tÞ ½ðs − s0 − tÞPμ þ ðs0 − s − tÞP0
μ�:

It is easy to show that all the imposed constraints are
satisfied.
It is possible to derive the equations analogous to (30) for

free two-particle systems with different quantum numbers.
Such constructions were obtained in [28,29,35,50] in the
context of the parametrization of the matrix elements of
electroweak currents.

Note that the objects Gð0Þ
i0 ðs; t; s0Þ; i ¼ 1, 6, in general,

are generalized functions (distributions), defined on a space
of test functions (see, e.g., [52], and also [6,28,29,48]), and
so the static limits at t → 0 are to be understood in a weak
sense. The functionals generated by free two-particle form
factors on the space of the two-quark wave functions of
pion give the corresponding pion GFFs in MIA (see
Sec. IV below).
The free two-particle form factors in (30) can be written

in terms of one-particle GFFs realizing the parametrization
of the matrix elements (25), namely, in terms of the form
factors of constituent quarks (19), (20)–(22). Using the
decomposition (28), we obtain the matrix element (30) in
the following form,

hP; ffiffiffi
s

p jTð0Þ
μν ð0ÞjP0;

ffiffiffiffi
s0

p
i

¼
XZ

dp⃗1

2p10

dp⃗2

2p20

dp⃗0
1

2p0
10

dp⃗0
2

2p0
20

hP; ffiffiffi
s

p jp⃗1; m1; p⃗2; m2i

× ½hp⃗1; m1jp⃗0
1; m

0
1ihp2; m2jTð2Þ

μν ð0Þjp0
2; m

0
2i

þ hp⃗2; m2jp⃗0
2; m

0
2ihp1; m1jTð1Þ

μν ð0Þjp0
1; m

0
1i�

× hp⃗0
1; m

0
1; p⃗

0
2; m

0
2jP0;

ffiffiffiffi
s0

p
i; ð31Þ

where the sums are over the variables m1; m2; m0
1; m

0
2.

The substitution of (30), one-particle matrix elements of
EMT (19), and the Clebsh-Gordan coefficiemts (28) for
J ¼ l ¼ S ¼ 0 in (31) gives the desired free two-particle
GFFs. The integrals in (31) are written in the coordinate
frame with P⃗0 ¼ 0; P⃗ ¼ ð0; 0; PÞ. The Dw-functions for
spin 1=2 are of the form [53]:

D1=2
w ðp1; p2Þ ¼ cosðω=2Þ − 2iðk⃗ ˆj⃗Þ sinðω=2Þ;

k⃗ ¼ ½p⃗1p⃗2�
j½p⃗1p⃗2�j

;

ω ¼ 2 arctan
j½p⃗1p⃗2�j

ðp10 þM1Þðp20 þM2Þ − ðp⃗1p⃗2Þ
;

ð32Þ

where ˆj⃗ is the operator of the particle spin written in terms
of the Pauli matrices. In the chosen coordinate system, two

Dw-functions in the rhs of (31) become unity matrices and
the other are written with the use of (32). The sum of the
rotations around the same axis is obtained following the
prescription:

D1=2
w ðω1ÞD1=2

w ðω2Þ ¼ D1=2
w ðω1 þ ω2Þ: ð33Þ

After performing the convolution of both sides, first, with
the tensor A0μA0ν, second, with gμν, and the integrations and
summations, we obtain the system of two algebraic

equations for the free form factors Gð0Þ
i0 ðs; t; s0Þ; i ¼ 1, 6:

1

2
Gð0Þ

10

�
λðs; t; s0Þ

t

�
2

− λðs; t; s0ÞGð0Þ
60

¼ 1

2
A

�
1

2

h
gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ

i
ðsþ s0 − tÞ2 cosðω1 þω2Þ

−M
h
gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ

i
ξðs; t; s0Þðsþ s0 − tÞ sinðω1 þω2Þ

−
h
gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ

i
λðs; t; s0Þ cosðω1 þω2Þ

�
; ð34Þ

1

2
Gð0Þ

10

�
λðs; t; s0Þ
ð−tÞ

�
þ 3tGð0Þ

60

¼ 1

2
A

�
1

2

h
gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ

i
ð4M2 − tÞ cosðω1 þ ω2Þ

þ 3t
h
gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ

i
cosðω1 þ ω2Þ

�
; ð35Þ

where A ¼ Aðs; t; s0Þ ¼ 2Rðs; t; s0Þλðs; t; s0Þ,

Rðs; t; s0Þ ¼ ðsþ s0 − tÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2Þðs0 − 4M2Þ

p

×
ϑðs; t; s0Þ

½λðs; t; s0Þ�3=2 ;

ξðs; t; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðM2λðs; t; s0Þ þ ss0tÞ

q
;

ω1 and ω2 are the Wigner spin-rotation parameters:

ω1 ¼ arctan
ξðs; t; s0Þ

M½ð ffiffiffi
s

p þ ffiffiffiffi
s0

p Þ2 − t� þ ffiffiffiffiffiffi
ss0

p ð ffiffiffi
s

p þ ffiffiffiffi
s0

p Þ ;

ω2 ¼ arctan
αðs; s0Þξðs; t; s0Þ

Mðsþ s0 − tÞαðs; s0Þ þ
ffiffiffiffiffiffi
ss0

p
ð4M2 − tÞ ;

αðs; s0Þ ¼ 2M þ ffiffiffi
s

p þ
ffiffiffiffi
s0

p
, ϑðs; t; s0Þ ¼ θðs0 − s1Þ−

θðs0 − s2Þ, θ is the Heaviside function.

s1;2 ¼ 2M2 þ 1

2M2
ð2M2 − tÞðs − 2M2Þ

∓ 1

2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−tÞð4M2 − tÞsðs − 4M2Þ

q
;
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gðu;d̄Þi0 ðtÞ; i ¼ 1, 4, 6 the GFFs of u- and d̄- quarks,
respectively. The cutting off by the Heaviside functions
in (34), (35) gives the kinematically available region in the
plane of invariant variables ðs; s0Þ (see, e.g., [44]).
The formal solution of the system (34), (35) is of the

form:

Gð0Þ
10 ðs; t; s0Þ ¼

Rðs; t; s0Þt
λðs; t; s0Þ

×

�
1

2

h
gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ

i
½ð4M2 − tÞλðs; t; s0Þ

þ 3tðsþ s0 − tÞ2� cosðω1 þ ω2Þ
− 3Mt

h
gðuÞ40 ðtÞ þ gðd̄Þ40 ðtÞ

i

× ξðs; t; s0Þðsþ s0 − tÞ sinðω1 þ ω2Þ
�
;

ð36Þ

Gð0Þ
60 ðs;t;s0Þ¼

1

2
Rðs;t;s0Þ

×

�
1

2

h
gðuÞ10 ðtÞþgðd̄Þ10 ðtÞ

i
½ðsþs0− tÞ2

þð4M2− tÞλðs;t;s0Þ=t�cosðω1þω2Þ
−M

h
gðuÞ40 ðtÞþgðd̄Þ40 ðtÞ

i

×ξðs;t;s0Þðsþs0− tÞsinðω1þω2Þ

þ2
h
gðuÞ60 ðtÞþgðd̄Þ60 ðtÞ

i
λðs;t;s0Þcosðω1þω2Þ

�
:

ð37Þ

Note that the system (34), (35) is ill-defined at t → 0: the
corresponding determinant is zero for t ¼ 0. So, the
solution for the form factor (37) does not exist at t ¼ 0,
and the weak limit at t → 0 of the form factor (37),
considered as a regular generalized function on the
space of the test functions, is infinite. The singularity
∼1=t is contained in the term with quark form factors

gðuÞ10 ðtÞ þ gðd̄Þ10 ðtÞ.
Let us argue that the occurrence of this singularity does

not discard the approach but rather puts it into the general
trend. To clarify the physical meaning of the singularity in
the case of the free two-particle system, we consider the
expression for the mean-square mechanical radius [3] in the
following form:

hr2imech ¼ lim
R→∞

R
R
0 d3rr2ð2

3
sðrÞ þ pðrÞÞR

R
0 d3rð2

3
sðrÞ þ pðrÞÞ ; ð38Þ

where sðrÞ and pðrÞ are the longitudinal and transverse
mechanical stresses in a system, correspondingly.

The fact that the form factors (36), (37) describe the
properties of a system of two pointlike particles without
interaction between them, means that there are no mechani-
cal stresses in the system. If we let sðrÞ and pðrÞ in (38) be
constant, and then let these constants vanish, we would
obtain that the mechanical MSR in the system is infinite.
On the other hand, this MSR is of the form [3],

hr2imech ¼
6

DðtÞ
dD
dt

				
t¼0

; ð39Þ

where DðtÞ is a functional generated by a regular distri-
bution (37) on the suitable space of test functions.
The Eq. (39), in analogy to (38), gives the infinity for the

value of the mechanical MSR if the functional DðtÞ, and,
consequently, the distribution (37), are singular at the
point t ¼ 0. So, we conclude that it is adequate to use
the free two-particle form factor with singularity (37) for
calculations.
Now we include the interaction in this system and derive

the pionD form factor using MIA (see Sec. IV). To obtain a
finite mechanical MSR of the pion, we need to regularize
(37) in the vicinity of the point t ¼ 0, that is to find a
closely related nonsingular function which gives similar
physical results. Here we choose to appeal to the non-
relativistic case. For the simplest variant of our relativistic
composite model that we use in the present paper it is
sufficient to present an ansatz for constructing the free two-
particle form factor in a small neighbourhood of t ¼ 0 and
to show that the construction has a narrow range of choice.
The main point is the fact that in the nonrelativistic limit

of (37) the first two terms vanish. So, the limit does not
contain the singularity and is defined by the third term with

quark form factors gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ, having the following
form,

Gð0Þ
60nrðk; t; k0Þ ¼ 2

h
gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ

i ϑðk; t; k0Þ
kk0

ffiffiffiffiffiffiffiffiffið−tÞp ;

ϑðk; t; k0Þ ¼ θðk0 − jk −
ffiffiffiffiffiffiffiffiffi
ð−tÞ

p
=2jÞ

− θðk0 − ðkþ
ffiffiffiffiffiffiffiffiffi
ð−tÞ

p
=2ÞÞ: ð40Þ

The quantity Gð0Þ
60nrðk; t; k0Þ is, in fact, a free nonrelativistic

two-particle form factor, the nonrelativistic analog of
the form factor (30), (37). The weak limit of the form
factor (40) at t → 0 is finite.
We require, first, that the nonrelativistic limit of the

regularized construction for the free two-particle form
factor near t ¼ 0 coincides with (40). Further, we take
into account the fact that, usually, nonrelativistic models
give reasonable results at low momentum transfer. So, we
require, secondly, that our relativistic ansatz gives in MIA
for pion at low t the results close to nonrelativistic results.
This requirement means, in particular, that the assumed
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construction depends on the quark form factors gðuÞ60 ðtÞ þ
gðd̄Þ60 ðtÞ only. In this case, if gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ → 0, then the
construction, as well as the nonrelativistic expression (40),
goes to zero. Both these requirements are satisfied by the
third term in (40). So, we choose our ansatz in the form,

Gð0Þ
60 ðs; t; s0Þ ¼ Gð0aÞ

60 ðs; t; s0Þ ¼ Rðs; t; s0Þλðs; t; s0Þ
× ½gðuÞ60 ðtÞ þ gðd̄Þ60 ðtÞ� cosðω1 þ ω2Þ; ð41Þ

where Gð0aÞ denotes the functions that appear as a result of
the supposition.
It is clear that even for the chosen assumption, based on

the nonrelativistic limit, the actual proposed form is not
unique. It is possible to add to (41) some arbitrary functions
which do not change its nonrelativistic limit (40). However,
the second condition requires that the contribution of these
functions near t ¼ 0 is small: the results have to be close to
the nonrelativistic case. This means that qualitatively the
added terms must not change the result. So, in what follows
we use (37) for the pion D-form factor at finite values of t,
but in the vicinity of the point t ¼ 0 we make use of (41).

IV. GRAVITATIONAL FORM FACTORS OF PION
IN MODIFIED IMPULSE APPROXIMATION

To obtain the GFFs of pion we use instant form (IF) of
RQM ([40–43]). The details of our version for composite
systems can be found in the review ([44]). In RQM the
interaction operator is included in the generators of the
Poincaré group, the commutation relations of the algebra
being preserved. We include the interaction in the algebra
of the Poincaré group following the procedure of [54]:

M̂0 → M̂I ¼ M̂0 þ V̂; ð42Þ

here M̂0 is the operator of the invariant mass for a free
system, V̂ is interaction operator, and M̂I the mass operator
for the system with interaction.
The wave function of the system of interacting particles

in IF RQM is defined as the eigenfunction of the following
complete set of the operators:

M̂2
I ðor M̂IÞ; Ĵ2; Ĵ3;

ˆP⃗; ð43Þ

here Ĵ2 is the operator of the square of the total angular
moment, Ĵ3 is the operator of the projection of the total

angular moment on the z axis and ˆP⃗ is the operator of the
total momentum.

In the IF RQM the operators Ĵ2; Ĵ3;
ˆP⃗ coincide with

corresponding operators for the composite system without
interaction and only the term M̂2

I ðM̂IÞ is interaction
depending. The two-quark wave function of pion in the

basis given by the complete set of vectors (26), (28), (29)
diagonalizes (43) and has the form:

hP⃗; ffiffiffi
s

p jp⃗i ¼ NCδðP⃗ − p⃗ÞφðkÞ;

NC ¼
ffiffiffiffiffiffiffiffi
2p0

p ffiffiffiffiffiffiffiffiffi
NCG

4k

r
; ð44Þ

The wave function of intrinsic motion is the eigenfunction
of the operator M̂2

I ðM̂IÞ and in the case of two particles of
equal masses is

φðkðsÞÞ ¼ ffiffiffi
s4

p
uðkÞk;

Z
u2ðkÞk2dk ¼ 1; ð45Þ

The normalization factors in (45) correspond to the
transition to the relativistic density of states

k2dk →
k2dk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p : ð46Þ

The decomposition of the matrix element (17) of the pion
EMT in terms of the complete set of the vectors (26), (28),
(29) is

hp⃗jTðπÞ
μν ð0Þjp⃗0i

¼
Z

dP⃗dP⃗0

NCGN0
CG

d
ffiffiffi
s

p
d

ffiffiffiffi
s0

p
hp⃗jP⃗; ffiffiffi

s
p i

× hP⃗; ffiffiffi
s

p jTðπÞ
μν ð0ÞjP⃗0;

ffiffiffiffi
s0

p
ihP⃗0;

ffiffiffiffi
s0

p
jp⃗0i; ð47Þ

where hP⃗0;
ffiffiffiffi
s0

p
jp⃗0i is the wave function in the sense of IF

RQM (44). We obtain

hp⃗jTðπÞ
μν ð0Þjp⃗0i

¼
Z

NCN0
C

NCGNCG
0 d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞ

× hp⃗; ffiffiffi
s

p jTðπÞ
μν ð0Þjp⃗0;

ffiffiffiffi
s0

p
iφðs0Þ: ð48Þ

The matrix element of the tensor in (48) is to be considered
as a Lorentz-covariant generalized function [28,29,48,52]),
that has a meaning only under the integral. The integral
itself presents a functional giving a regular distribution. The
decomposition of the tensor in the integral in terms of
tensors which were used in the decomposition in the left-
hand side (lhs) of (48) entering (17) is

NCN0
C

NCGN0
CG

hp⃗; ffiffiffi
s

p jTðπÞ
μν ð0Þjp⃗0;

ffiffiffiffi
s0

p
i

¼ 1

2
G̃10ðs; t; s0ÞK0

μK0
ν þ G̃60ðs; t; s0Þ½tgμν − KμKν�;

ð49Þ
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here G̃i0ðs; t; s0Þ; i ¼ 1, 6 are the Lorentz-invariant regular
distributions. A rigorous proof of the importance of
distributions in the interpretation of the decomposition
analogous to (49) in the case of electromagnetic current
was given in [28,29]. After substituting of (17) and (49) in
the lhs and rhs of (48), respectively, we obtain pion GFFs in
the form of functionals:

GðπÞ
i0 ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞG̃i0ðs; t; s0Þφðs0Þ;

i ¼ 1; 6: ð50Þ

The main point now is the calculation of the function
G̃i0ðs; t; s0Þ. To obtain similar form factors describing
electroweak structure of composite hadrons it is customary
exploit the so-called impulse approximation (IA) (see, e.g.,
the review [42]). Let us demonstrate the meaning of IA
extending the approach to GFF. These form factors
characterize the scattering cross section of a projectile
by a composite system in the process of graviton exchange.
So, the EMT in this case can be written in the following

form:

T ¼
X
k

TðkÞ þ
X
khm

TðkmÞ þ � � � ; ð51Þ

where the first term presents the sum of one-particle EMTs,
the second term presents the sum of two-particle EMT, and
so on. The first sum describes the scattering of a projectile
by each independent constituent, the second sum describes
the scattering by two constituents simultaneously and so
on. The standard IA leaves in (51) only the first term:

T ≈
X
k

TðkÞ: ð52Þ

Note that in the approximation (52) the operators in the
instant form RQM does not satisfy the Lorentz-covariance
conditions and the conservation law [42].
To study the electroweak structure of hadrons, we had

proposed [28,29] the modified impulse approximation
(MIA). Constructing MIA for GFFs we change the form
factors G̃i0ðs; t; s0Þ in (50) for free two-particle GFFs (30):
in the invariant part of the decomposition (48), (49) we
throw off the contribution of the simultaneous scattering by
two and more constituents and take into account only
scattering by free two-constituent system.
The covariant part of the decomposition (48)–(50) is not

changed by MIA and so, the Lorentz-covariance conditions
and the conservation law for the EMT matrix element (48)
are not broken. This happens because in MIA the con-
tribution of the second term in (51) is partially taken into
account in a self-consistent way.

In MIA, the pion GFFs (50) are written in the form:

GðπÞ
i0 ðtÞ ¼

Z
d

ffiffiffi
s

p
d

ffiffiffiffi
s0

p
φðsÞGð0Þ

i0 ðs; t; s0Þφðs0Þ;

i ¼ 1; 6; ð53Þ

where Gð0Þ
i0 ðs; t; s0Þ are free two-particle form factors (30),

given by (36), (37), (41).
In the following section, the details of calculation of pion

GFFs using (53) and the corresponding results are given.

V. RESULTS OF CALCULATIONS

In what follows we use the conventional notations of
A, J, and D form factors (see, e.g., [3]) and the linking
relations (18), (20)–(22).
To obtain the pion form factor A we use directly the

Eqs. (18), (53), (36) while in the case of the form factor D,
which is ill defined, we involve an anzatz described in
detail in Sec. III. We obtain the pion D form factor in the
vicinity of t ¼ 0 using (18), (53) and assuming (41) [the
form factorDðπaÞðtÞ]. For the overall description of the pion
D form factor we need to join smoothly this function
DðπaÞðtÞ with the solution for finite values of t given by
(18), (53), (37). We describe this procedure in detail later.
Let us list first the relativistic effects contained in (53).

The contributions of the J form factors of the constituent

quarks (gðqÞ40 ðtÞ) to the pion A (GðπÞ
10 ðtÞ) andD (GðπÞ

60 ðtÞ) form
factors are a consequence of pure relativistic effect of spin
rotation. These contributions vanish if we set ω1;2 in (36),
(37) equal to zero. The contribution of quark A form factor

gðqÞ10 ðtÞ to pion D form factor (37) is of relativistic
origin, too.
To obtain numerical results for pion GFFs in our model

(53), (36), (37), we need some parameters to be used as an
input. We suppose that u- and d- quarks have one and the
same gravitational structure and so, we have to set three
quark GFFs as functions of momentum transfer square. It is
also necessary to choose a model two-quark wave function
of pion (45), and to fix the mass of light quark, M.
In the present work we consider the simplest case, that of

pointlike constituent quarks. This means that instead of
quark form factors, we use their standard static moments:

AðqÞðtÞ ¼ AðqÞð0Þ ¼ 1; JðqÞðtÞ ¼ JðqÞð0Þ ¼ 1

2
;

DðqÞðtÞ ¼ DðqÞð0Þ ¼ Dq; q ¼ u; d̄; ð54Þ

where Dq is the D-term of the constituent quark.
We had shown [31] that the results of calculations for

electromagnetic form factors depend weakly on the actual
form of the two-quark wave function in pion. Here we
choose for (45) the wave function of the ground state
of harmonic oscillator which ensures square-law quark
confinement,
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uðkÞ ¼
�

4ffiffiffi
π

p
b3

�
1=2

exp

�
−

k2

2b2

�
: ð55Þ

Here b is the parameter of the model along with the quark-
massM. The best results for electroweak properties of light
mesons [31–39] were obtained for the following values of
these parameters:

M ¼ 0.22 GeV; b ¼ 0.35 GeV: ð56Þ

In what follows we fix these values also for the calculation
of pion GFFs. So, to derive the pion GFFs we need to fix
only the constituent-quark D-term (54).
The mean-square radius (MSR) of pion we define as

follows (see [3] and the original paper [47]):

hr2πi ¼ 6AðπÞ0ð0Þ − 3

2M2
π
DðπÞð0Þ; ð57Þ

where Mπ ¼ 0.13957 GeV is the pion mass. Note that the
standard condition AðπÞð0Þ ¼ 1 is fulfilled automatically.
For the interval of possible data for the pion MSR we

adopt the interval that can be calculated using the results
listed in the review [3], namely:

hr2πimin ¼ 65.38 GeV−2;

hr2πimax ¼ 69.52 GeV−2: ð58Þ

To obtain this interval of MSR values in our approach, we
require in addition the parameter Dq (54) to be in the
following region of approximately the same relative spread

Dq ¼ −0.1435� 0.0045: ð59Þ

The interval of values of the pion D-term corresponding to
the chosen interval of the quark D-term (59) is

DðπÞð0Þmin ¼ −0.905; DðπÞð0Þmax ¼ −0.851: ð60Þ

The equations for the form factor AðπÞðtÞ do not contain
the parameter Dq. So, the derivative of the A form factor of
pion at t ¼ 0 is defined by the parameters (56) fixed in our
model approach to the pion electroweak form factors and
has a predictive nature. This value is obtained numerically
using (18), (53):

AðπÞ0ð0Þ ¼ 0.0408 GeV−2: ð61Þ

The results of calculation of the pion A form factor are
presented in Figs. 1 and 2. Note that Fig. 1 demonstrates, in
particular, that the relativistic spin rotation effect gives an
essential contribution to A form factor. This effect is purely
kinematical and thus takes place for any model wave
function. The effect changes essentially the slope of A

form factor at zero t and, as a consequence, the value of the
pion gravitational radius (57), (61). This fact emphasizes
the importance of the corresponding theory to be essentially
relativistic.
As we have mentioned above recently the data on the

pion GFFs was extracted from the experiment [11] for the
first time in [12]. In Fig. 2 we compare our results for pion
A form factor with those given in [12]. The results are in a
qualitative agreement, however the slope of our A form
factor is smaller. Note that we choose here the simplest
variant of the model confining ourselves to pointlike
constituent quarks. If we depart from this condition, the
quark form factors would give the additional decreasing of
the pion form factor and would ameliorate the agreement.
To calculate the pion D form factor we need first to join

smoothly the function DðπaÞðtÞ defined in the vicinity of

FIG. 1. Gravitational A form factor of pion. Full line (red)—the
full result; dashed line (blue)—the contribution of the A

form factors gðqÞ10 of the constituent quarks; short-dashed line

(magenta)—the contribution of the quark J form factors gðqÞ40

(relativistic spin rotation effect).

FIG. 2. Our A form factor of pion [full line (red)] in comparison
with the result of the authors of [12]. Their A form factor of
pion is normalized to its value at zero t (double-dot-dashed,
green) line.
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t ¼ 0 by (18), (53) and the suggestion (41) with the
solution for finite values of t given by (18), (53), (37).
The smooth joint is possible because the function DðπaÞðtÞ
in the vicinity of zero is defined up to order of ∼t. Let us
give some details of the procedure. First, we add toDðπaÞðtÞ
a cubic polynomial, which vanish at t → 0, with the
coefficients a, b, c that are to be defined by the joint
conditions:

DðπaÞðtÞ þ að−tÞ þ bð−tÞ2 þ cð−tÞ3: ð62Þ

We require the form factor (62) to be joint smoothly with
the form factor for finite t at a point t ¼ tc. The coefficients
a, b, c and the point tc can be calculated unambiguously if
the following conditions are satisfied.
(1) The derivative of the function (62) satisfies the

following constraints obtained in [12] (see also [3]):

DðπaÞ0ð0Þ
DðπaÞð0Þ ¼ 2.88 ∼ 3.31 GeV−2: ð63Þ

(2) The values of the two functions coincide at the point
t ¼ tc, as well as the values of their first derivatives.

(3) The form factor (62) satisfies the condition
DðπaÞðtÞ < 0 that ensures the mechanical stability
of the pion. Note, that the D form factor defined for
finite t does satisfy this condition.

(4) For tc we choose among all possible points satisfy-
ing the conditions 1–3 the point of maximal absolute
value jtcj. This is necessary for the contribution of
singular term∼1=t be minimized at small values of t.

We demonstrate the procedure in Fig. 3, using for the
calculation the minimal value from the interval (63)
and Dq ¼ −0.1435.

We present in Fig. 4 the dependence of the procedure on
the values of the parameter Dq (59) and on the values from
the interval (63). Figure 4 demonstrates the stability of the
procedure. As can be seen in Fig. 4 the result of joining
depends weakly on the value of the quark D-term
from (59). However, the parameters in (62) and the point
of joint tc do depend on the value from (63).
The results of calculation of the pionD form factor using

the Eqs. (18), (37), (53), DðπaÞðtÞ and the separate con-
tributions of the quark A, J, and D form factors are

FIG. 3. The joint of two functions for the pionD form factor for
the middle value from (59) and the minimal value from (63). The
full line (red)—the D form factor (62); the dashed line (blue)—
the solution of (18), (37), (53); the dot-dashed line (black)
—DðπaÞðtÞ; ð−tcÞ ¼ 2.53 GeV2.

FIG. 4. The dependence of the joint D form factor of pion
procedure on the values of the parameter Dq (59) and on the
values from the interval (63). The full line (red)—Dq ¼ −0.1435,
long-dashed line (blue)—Dq ¼ −0.148, short-dashed line
(magenta)—Dq ¼ −0.139. The upper set of curves at
ð−tÞ ∼ 1.5 GeV2—for the minimal value from (63), the lower
set—for the maximal value from (63).

FIG. 5. The pion gravitational D form factor calculated for the
parameters (54), (56) and Dq ¼ −0.1435 (59). The full line
(red)—the total values obtained using (18), (37), (53). Long-
dashed line (blue)—the contribution of quarks A form factors

gðqÞ10 . Short-dashed line (magenta)—the spin rotation effect (the

contribution of the quark J form factor gðqÞ40 ). Dot-dashed line

(black)—the contribution of the quark D form factor gðqÞ60 ; this
curve coincides with DðπaÞðtÞ.
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presented in Fig. 5. One can see from Fig. 5 that the
singularity in the pion D form factor at the point t ¼ 0 is
caused by the term containing the A form factors of the

constituent quarks gðqÞ10 (20), (37). Note also, that, as well as
the pion A form factor, the pion D form factor contains
large contribution of the relativistic spin rotation effect
through the contribution of J form factors of the constituent

quarks gðqÞ40 (21). It is seen that the condition of mechanical
stability of pion DðπÞðtÞ < 0 is fulfilled.
The pion D form factor calculated with the use of (62)

for Dq ¼ −0.1435 and the minimal value of (63) are
compared with the results of the paper [12] in Fig. 6.
Using the results for the pion GFFs we calculate the mass

radius of pion

hr2imass ¼ 6
dAðπÞ

dt

				
t¼0

;

and its mechanical radius defined by (39). To calculate the
mass radius we need only the parameters (54), (56) and so
obtain the strictly fixed by our previous results valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p
¼ 0.1 fm. The chosen interval for Dq gives

for the pion mechanical radius the interval of valuesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imech

p
¼ 0.82–0.88 fm. It is highly probable that the

model with nonpointlike quarks will give larger values for
the radii.
Note, that the slopes of the form factors at t ¼ 0 in Fig. 6

are different. Nevertheless our result for the mechanical
MSR as defined above coincides with that of [12].
Let us make some remarks concerning a possibility of

comparing our results with experimental data.
First, we use an extremely rough approximation—the

pointlike constituent quarks. As it was pointed out and
argued in detail in [55], the accounting for the quark
structure, the full quark form factor, is a necessary part of

efficient describing of the electromagnetic form factors of
hadrons. We use here the simplest model aiming to
demonstrate that relativistic invariant canonical parametri-
zation together with MIA in the framework of IF RQM
does give a real possibility of obtaining the pion GFFs. The
obtained results are reasonable and satisfy all standard
constraints.
Second, today there are no trustworthy results on pion

GFFs unambiguously extracted from precise experimental
data. Although the pion GFFs and gravitational radii were
estimated [12], the errors of the Belle measurements are
large (even at current stage), and the obtained results can be
affected by the experimental errors. Belle II began data
taking with the much higher luminosity SuperKEKB in
2018, and the precise measurements of γ�γ → π0π0 can be
expected since the statistic errors are much larger than the
systematic errors in the previous Belle data [56]. One may
expect more quantitative insights from experiments CLAS
at Jefferson Lab [57], COMPASS at CERN [58] and the
envisioned future Electron-Ion-Collider [59].

VI. CONCLUSION

In this work we extend our relativistic theory of
electroweak properties of composite systems, developed
previously, to describe simultaneously the gravitational
structure of hadrons. The approach is based on a version
of the instant-form relativistic quantum mechanics and
makes use of the modified impulse approximation. We use
the general method of the relativistic invariant parametri-
zaton of local operators to write the energy-momentum
tensor of particle with an arbitrary spin. From the point of
view of group theory the parametrization procedure rep-
resents the realization of the knownWigner-Eckart theorem
on the Poincaré group. We give general formulas and use
for the actual calculation those for systems of spin 0(the
pion), spin 1=2 (the constituent quark) and for the free two-
quark system with total quantum numbers of pion.
To construct the pion GFFs we use the modified impulse

approximation which, in contrast to the baseline impulse
approximation, is formulated in terms of the form factors
and not in terms of the EMToperator itself. The pion GFFs
are presented as functionals given by the free two-particle
form factors on the set of the two-quark wave functions of
the pion.
We calculate the pion GFFs assuming that the quarks are

pointlike. For the two-quark wave function we take the
ground-state wave function of the harmonic oscillator. All
but one parameters of our first-principle model were fixed
previously in works on electromagnetic form factors. The
only free parameter, Dq, is a characteristic of gravitational
form factor of constituent quark, the quark D-term. This
parameter is constrained from the pion mean-square radius
despite large uncertainties in the extraction of the latter
from the experimental data through a phenomenological
approach. We calculate the values of the static gravitational

FIG. 6. The pion D form factor calculated for the quark
parameters (54), (56), Dq ¼ −0.1435 (59) and the minimal value
of (63) in comparison with the results of the paper [12]. The full
line (red)—our result, double-dot-dashed line (green)—the pion
D form factor from [12].
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characteristics of the pion and obtain A and D form factors
as functions of momentum transfer up to 1 GeV2. Note that
the new parameter is not used in the calculation of the A
form factor, its value is a direct prediction of our previous
approach. In the calculation of the DðtÞ form factor we use
the new parameter and also exploit a special procedure
(based on an ansatz) to get rid of a singularity at t ¼ 0. The
important role of the relativistic effects in the pion
gravitational characteristics is discussed in detail. The

calculated gravitational form factors and gravitational
mean-square radii are in a reasonable agreement with the
known results.
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