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We show possible transverse-momentum-dependent parton distribution functions (TMDs) for spin-1
hadrons including twist-3 and twist-4 functions in addition to the leading twist-2 ones by investigating all
the possible decomposition of a quark correlation function in the Lorentz-invariant way. The Hermiticity
and parity invariance are imposed in the decomposition; however, the time-reversal invariance is not used
due to an active role of gauge links in the TMDs. Therefore, there exist time-reversal-odd functions in
addition to the time-reversal even ones in the TMDs. We list all the functions up to twist-4 level because
there were missing terms associated with the light cone vector n in previous works on the twist-2 part and
there was no correlation-function study in the twist-3 and twist-4 parts for spin-1 hadrons. We show that 40
TMDs exist in the tensor-polarized spin-1 hadron in twists 2—4. Some expressions of twist-2 structure
functions are modified from previous derivations due to the new terms with 7, and we find 30 new structure
functions in twists 3 and 4 in this work. Since time-reversal-odd terms of the collinear correlation function
should vanish after integrals over the partonic transverse momentum, we obtain new sum rules for the time-
reversal-odd structure functions, [ @*kzg,r = [ d*kphy, = [ d*krhyp; = 0. In addition, we indicate that
new transverse-momentum-dependent fragmentation functions exist in tensor-polarized spin-1 hadrons.
The TMDs are rare observables to find explicit color degrees of freedom in terms of color flow, which
cannot be usually measured because the color is confined in hadrons. Furthermore, the studies of TMDs
enable us not only to find three-dimensional structure of hadrons, namely, hadron tomography including
transverse structure, but also to provide unique opportunities for creating interesting interdisciplinary
physics fields such as gluon condensates, color Aharonov-Bohm effect, and color entanglement. The tensor
structure functions may not be easily measured in experiments. However, high-intensity facility such as the
Thomas Jefferson National Accelerator Facility, the Fermilab Main Injector, and future accelerators like
electron-ion collider may probe such observables. In addition, since the Nuclotron-based Ion Collider
fAcility focuses on spin-1 deuteron structure functions, there is a possibility to study the details of polarized
structure functions of the deuteron at this facility.

DOI: 10.1103/PhysRevD.103.014025

I. INTRODUCTION

It had been taken for granted that the proton spin consists
of three quark spins in the naive quark model. However, the
European Muon Collaboration experiment found that
the quark contribution accounts for only 20%-30%
of the proton spin [1], and the rest should be carried by
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gluon-spin and partonic orbital-angular-momentum (OAM)
contributions [2]. In order to figure out the partonic OAM
contributions, one needs to study three-dimensional (3D)
structure functions which include generalized parton dis-
tributions (GPDs) [3], generalized distribution amplitudes
(GDAs or timelike GPDs) [4], and transverse-momentum-
dependent parton distributions (TMDs) [5].

The TMDs indicate the parton distributions as the
function of the partonic transverse momentum k7 in
addition to the longitudinal momentum fraction x. The
color flow appears explicitly in the TMDs, although it does
not show up easily in other observables because of the color
confinement. They have interesting application to other
fields of physics, such as the gluon condensate [6], color
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Aharonov-Bohm effect [7,8], and color entanglement [9].
The TMD studies are new tools to investigate the color
degrees of freedom and to explore new interdisciplinary
fields beyond standard hadron physics.

The TMDs have been investigated for the spin-1/2
proton; however, spin-1 hadrons and nuclei such as the
deuteron have new interesting aspects due to the spin-1
nature. In the charged lepton scattering, there are four
collinear structure functions b;_, in the deuteron in
addition to the ones for the nucleon [10,11]. Among them,
the leading-twist functions are b; and b,, which are related
with each other by the Callan-Gross type relation 2xb; =
b, in the scaling limit Q*> — co. These structure functions
are expressed by tensor-polarized parton distribution func-
tions (PDFs). In addition, there is the gluon transversity
distribution [12] in the leading twist. For b, there were
measurements by the HERMES Collaboration [13]; how-
ever, the magnitude and x dependence of b; are very
different from conventional convolution calculations based
on a standard deuteron model with D-state admixture
[14,15]. Furthermore, the HERMES data indicated a finite
sum [ dxb;(x) = [0.35 £ 0.10(stat) = 0.18(sys)] [13],
which indicates a finite tensor-polarized antiquark distri-
bution according to the parton-model sum rule [16]
[ dxby(x) = —lim,_o 3 tFo(1) + Y, €7 [ dxé7q;(x),
where F (1) is the electric quadrupole form factor of the
hadron and 67¢; is the tensor-polarized antiquark distribu-
tion. The first term vanishes, so that a finite sum of b,
indicates a finite tensor-polarized antiquark distribution.
The vanishing first term comes from the fact that the
valence-quark number does not depend on the tensor
polarization, whereas it depends on the flavor in the
Gottfried sum (1/3) [17].

Since the finite b; sum indicates a new topic on tensor-
polarized antiquark distributions and the standard
convolution-model distribution for b; is very different
from the HERMES data [14], a new high-energy spin
physics field could be foreseen by investigating tensor-
polarized structure functions. Experimentally, there is an
experimental proposal to measure b, accurately measured
at Thomas Jefferson National Accelerator Facility (JLab)
[18] and tensor-polarized PDFs could be measured at
Fermilab by the SpinQuest (E1039) experiment [19] by
the proton-deuteron Drell-Yan (DY) process with the
tensor-polarized deuteron target [20]. The proton-deuteron
Drell-Yan formalism was given in Ref. [21], and tensor-
polarized spin asymmetries were estimated in Ref. [22]
based on the parametrization for the tensor-polarized PDFs
of Ref. [23]. There were also GPD studies on the spin-1
deuteron and p meson [24] and fragmentation-function
studies on spin-1 hadrons [25].

On the gluon transversity, there is an experimental
plan to measure it at JLab [12] and there is a possibility
to study it at Fermilab by using the proton-deuteron Drell-
Yan process with the linearly polarized deuteron [26].

Furthermore, there are possibilities at NICA (Nuclotron-
based lon Collider fAcility) [27] and GSI-FAIR (Gesellschaft
fiir Schwerionenforschung-Facility for Antiproton and Ion
Research). Since the spin-1/2 proton and neutron in the
deuteron cannot contribute to the gluon transversity, it is an
appropriate quantity to find new hadron physics beyond the
simple bound system of the nucleons.

These b, and gluon transversity distribution are collinear
functions as the function of x. In this work, we investigate
possible TMDs for spin-1 hadrons especially by consider-
ing the tensor polarization. The TMDs are generally
defined from the quark correlation function. The quark
correlation function and its relations to PDFs were inves-
tigated for the spin-1/2 nucleon in Refs. [28,29], and
additional terms were studied in Ref. [21] for the spin-1
deuteron. The quark TMD correlation function was decom-
posed into possible terms by considering Lorentz invari-
ance, Hermiticity, and parity conservation in Refs. [30,31]
for spin-1/2 proton, and then the TMDs were introduced by
integrating the correlation function over the minus com-
ponent of the quark light cone momentum.

Much progress has been made in the TMD studies
based on these works; however, it was found later that
the decomposition of the quark correlation function in
Refs. [21,28,30,31] was not complete. The quark correla-
tion function depends on the light cone vector n, which is
defined in Eq. (4), due to the gauge link or the Wilson line
W(0, £|n) which guarantees the color gauge invariance of
the correlation function [32-34] as defined later in Egs. (2),
(6), and (8). The vector n specifies the direction along the
gauge link. The complete decomposition of the quark
correlation function was made by introducing 20 new
terms which are associated with the light cone vector n
for the spin-1/2 nucleon in Ref. [34]. Even though these
new terms in the correlation function do not give rise to
new TMDs at the leading-twist level, they bring new
observables in the semi-inclusive deep inelastic scattering
(SIDIS) which are expressed by the new twist-3 TMDs
[33]. The new terms in the correlation function also affect
relations of the collinear PDFs. For example, several
Lorentz invariance relations for the PDFs were obtained
[35] based on the decomposition of the quark correlation
function in Refs. [30,31], and these relations were modified
if one considered the complete decomposition of the
correlation function [32,36]. Moreover, the Wandzura-
Wilczek relation [37] was reinvestigated in Refs. [38,39],
it was found that the Wandzura-Wilczek relation was not
satisfied due to another new twist-3 term.

These additional terms due to n were studied for the spin-
1/2 nucleon [34]. The purpose of this work is to derive new
TMDs associated with n for spin-1 hadrons up to the twist-
4 level. As for a stable spin-1 hadron or nucleus for
experiments, the deuteron is the most simple and stable
particle. It is known that there are additional structure
functions in the spin-1 deuteron in comparison with the
spin-1/2 nucleon, since both vector polarization and tensor
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polarization are available in the deuteron. The tensor
polarization does not exist for the spin-1/2 nucleon, and
it could be used to investigate new aspects in the deuteron.
The deuteron is a weakly bound state of proton and
neutron. However, the spin-1/2 proton and neutron do
not contribute directly to the tensor structure, which is
an interesting aspect in studying the deuteron’s tensor
polarizations.

As for theoretical studies, the spin-1 TMDs were inves-
tigated in Refs. [21,40,41] and T-even TMDs were calcu-
lated in an effective hadron model for the p meson [42].
However, the terms associated with the light cone vector n
were not included in the decomposition of the quark-quark
correlation function in Ref. [40]. Since these new terms
could have a significant impact on the structure-function
studies in the spin-1 hadrons, we show the complete
decomposition of the quark correlation function for the
spin-1 hadrons in this paper. In this paper, the transverse-
momentum-dependent quark correlation function and par-
ton distribution functions are explained in Sec. II. Next,
possible TMDs are obtained by decomposing the quark
correlation function in Sec. III. Then, our studies are
summarized in Sec. IV.

II. TRANSVERSE-MOMENTUM-DEPENDENT
PARTON DISTRIBUTION FUNCTIONS

In this section, we introduce the TMDs and discuss
motivations for investigating the TMDs. First, the three-
dimensional structure functions are explained as a field of
hadron tomography from generalized TMDs and Wigner
functions as generating functions in Sec. II A. The quark
correlation function is introduced with proper gauge
links, which play an important role in the TMD physics
in Sec. II B. We show that the color flows, expressed by the
gauge links, are different in the SIDIS and DY processes.
This fact leads to the sign change in the time-reversal-odd
quark TMDs. The time-reversal properties of the quark
correlation function are discussed in Sec. II C.

A. Hadron tomography by three-dimensional
structure functions

Until recently, hadron structure had been investigated by
electromagnetic form factors and parton distribution func-
tions (PDFs). However, recent studies focus on 3D aspects
including the transverse structure in addition to the longi-
tudinal one along the hadron-momentum direction. The 3D
structure studies were originally motivated for finding the
origin of nucleon spin including the partonic orbital-
angular momenta (OAM). The OAM contribution to the
nucleon spin should be probed by one of 3D structure
functions, especially the GPDs. However, the hadron
tomography, namely, the 3D structure of hadrons, has
deeper meaning in the sense that it could probe gravita-
tional form factors of hadrons without relying on explicit
graviton interactions [4]. The hadron tomography has

[PDF (Parton Distribution Function)|
[dxdk, % d%k,, A0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘GTMD W (x, ky, A)—=—> Wigner W (x, k;, ;)

At >0

Idzk,

3D structure
functions

GPD (Generalized Parton Distribution)

—sor— GDA (Generalized Distribution Amplitude)

A—0

[TMD (Transverse M tum Dependent) parton distribution]|

FIG. 1. Three-dimensional structure functions (TMD, GPD,
GDA) from the generalized transverse-momentum-dependent
parton distribution (GTMD) and the Wigner function, together
with the form factor and parton distribution function.

been investigated by three types of structure functions,
TMDs, GPDs, and GDAs (or timelike GPDs). They are
obtained from the generating functions called generali-
zed transverse-momentum-dependent parton distributions
(GTMDs) and the Wigner functions as illustrated in Fig. 1.
The TMDs are obtained by taking the forward limit A — 0,
where A is the momentum transfer from the initial hadron to
the final one (A = P’ — P), and the GPDs are obtained by
integrating the GTMDs over the parton’s transverse momen-

tum I;T. The GDAs are related to the GPDs by the s-7 crossing,
where s and ¢ are Mandelstam variables.

B. Quark correlation functions and color flow

The TMDs and collinear PDFs are defined from the
quark correlation function

4
(€] B d*é
o (k,P,S,T)=
lj( ’ ) /(2”)4

x (P, S, T|j;(0)W' (0, &)y, (&)|P, S, T),
(1)

[c]

q/H.,ij
with g = u, d, s, ..., but we abbreviated the notations on the
quark flavor g and the hadron H. The correlation function is
related to the amplitude to extract a parton from a hadron
and then to insert it into the hadron at a different spacetime
point &. Here, v is the quark field, £ is a four-dimensional
space-time coordinate, k and P are the quark and hadron
momenta, S and 7 are vector and tensor polarizations of the

ik

which is illustrated in Fig. 2. It may be denoted as @

FIG. 2. Quark correlation function @ with the quark (hadron)
momentum k (P) and the hadron vector and tensor polarizations S
and T, respectively.
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hadron, and W!<l(0, £) is called the gauge link or the Wilson
line so as to satisfy the color gauge invariance. It is defined
by the path-ordered exponential (P)

WEI(0,€) = Pexp [—ig [ e A(é)]. 2)

0,c

The gauge link indicates gluon interactions between quarks
for satisfying the gauge invariance. Here, ¢ indicates the
integral path, and A,(&) is A,(£) = A5 (&)t by including
the SU(3) generator ¢* expressed by the Gell-Mann matrix
A% as t* = A?/2 with the color index a. The antiquark
correlation function is defined in the same way [26].

The TMDs and collinear PDFs for quarks are then given
by the quark correlation functions as [26]

@ (x, kp, P, S, T) = / dk*dk= @I (k, P, S, T|n)
x &(kT — xPT),

®(x,P,S,T) = / k@ (x, kr, P, S, T), (3)

where k; is the quark transverse momentum, ®!!(x, k7,
P, S, T) is the transverse-momentum-dependent correlation
function which is related later to the TMDs, and
®(x, P, S,T) is the collinear correlation function. The light
cone + momenta are defined by a* = (a° £ ¢*)/V/2, and
the light cone vectors n and 7 are given by

1 1
nt =—=(1,0,0,-1), n=—=(1,0,0,1). (4
75(1.0.0.-1) 7(10.0.1). (4

The integral path depends on the light cone direction n~,
which is explicitly shown as the n dependence in Eq. (3).
We note that there is no link-path dependence c¢ in the
collinear correlation function ®(x, P, S, T) as shown in this
section. From Egs. (1) and (3), the transverse-momentum-
dependent correlation function is expressed as

@) (x,kr, P, S, T)

_ /df_aafT ikt & —ikr ks
(27)°

X (P, S, Ty ;(0)WI(0, &|n)y(&)|P, S, T) sy, (5)

with the plus light cone momentum k™ = xP* by taking
the hadron momentum direction as the third axis.

The details of the gauge link for the SIDIS are, for
example, explained in Ref. [43]. Resummations of proc-
esses with intermediate gluons, as typically shown in Fig. 3,
lead to the gauge link [5,43-46]. Here, the gauge link
WIl(0, &|n) for the TMD correlation function in the SIDIS
process (¢ = +) is given by

FIG. 3. A typical semi-inclusive DIS process y* + H - h + X
(¢ = y*¢', ¢ = e or u) with a gluon interaction in the final state.

W0, &n) = [0,07; 00, 07][00, O7; 00, &
X [oong;g_’gT]f+:0' (6)

Here, the notation [a~, dy; b~. by] (or doted as W(a, b|n))
indicates the gauge line connecting a = (a* =0,a™, dy)
to b= (b"=0,b", I;T) along the straight light cone
direction of &~ (namely, plus direction of n~), and
[a=,dp; b=, by] (W(a, b|E;))is the link along the transverse
direction ET,

W(a, bln) = [a_vaT;b_7gT(: ar)]

b
= Pexp [—ig/ d«f‘AJr(cf)} .
- e

-

W(a,b|é;) = [a=.dr; b~ (= a”). by

br - -

=pewp |- [ dEr- i) L)
ar E—at=b*
The superscript [+] of Wl in Eq. (6) indicates the integral
path along the plus direction in the coordinate £~ in the first
link step. The final expression for the link path of Eq. (6) is
shown in (a) of Fig. 4. The path ¢ = + consists of the three
gauge links. The path dependence of the gauge link is
important in TMD physics, as we show the difference
between the TMDs of the SIDIS and the Drell-Yan process
in the following.

A typical Drell-Yan process H;+H, -y +X
(y* > u~u") with an intermediate gluon is shown in
Fig. 5. We note that the gluon exchange occurs in the
initial state, whereas it does in the final state in the SIDIS
[47] as shown in Fig. 3. It leads to the path difference in the

& ._‘_I I = ®
T - + '

(a) (b)
FIG. 4. Gauge link for (a) semi-inclusive DIS with the spacelike

correlation function ®*) and (b) Drell-Yan process with the
timelike correlation function @/,

014025-4



TRANSVERSE-MOMENTUM-DEPENDENT PARTON DISTRIBUTION ...

PHYS. REV. D 103, 014025 (2021)

FIG. 5. A H+H -y +X

typical Drell-Yan process
(y* = u~p™) with a gluon interaction in the initial state.

gauge link and subsequently in the sign difference in both
TMDs. The cross sections of these SIDIS and Drell-Yan
processes are calculated [5,43,46], and it was found that the
color flows in the opposite light cone direction between the
SIDIS and Drell-Yan processes. Therefore, the gauge link
for the Drell-Yan process (¢ = —) is given by

W0, &ln) = [0,07; —00, 07][—00, O7; —c0. &7
X [—OO, ETa é_v ET]#:*:O’ (8)

as shown in Fig. 4(b). We notice that the gauge links of the
SIDIS and Drell-Yan are opposite in the £~ direction, which
results in the sign change in the time-reversal-odd TMDs as
shown in Eq. (16). The superscript [—| indicates the integral
path of the first link step along the minus direction in the
coordinate &,

If the transverse momentum is integrated as in Eq. (3),
the collinear correlation function of Eq. (5) becomes

<I),~j(x,P, S, T)

_ [d& ixPtE
_/ 27 ¢

x (P, S, T|; (0)W(0, Eln)wi(§)|P. S, T)s oz o (9)

where kT = xP" is used. Since the gauge link is the
straight line from &~ =0 to &~ with £&© =0 and ET =0,

TABLE 1.

these collinear functions are not dependent on the gauge-
link path like the TMDs and a process-dependent relation
like Eq. (16) does not exist. The color flow can be probed
only if transverse-momentum-dependent observables are
investigated.

C. Existence of time-reversal-odd structure functions
and their color-flow dependence

Here, we show properties of the TMD correlation
function under the time reversal for defining time reversal
even and odd functions. However, one should note that the
existence of the time-reversal-odd functions does not mean
the violation of the time-reversal invariance as explained in
this subsection.

The parity and time reversal mean the transformations of
the space-time coordinate as

Parity: x* = (t,%) — (1, —X),

Time reversal: x* = (£,X) - (—t,X). (10)
The parity (97) is a unitary operator and the time-reversal (9")
is an antiunitary one [48,49]. The antiunitary means anti-
linear with the unitarity. Namely, it satisfies the relations

Antilinear: I (a|A) +b|B)) =a*T|A) +b*T|B),
Hermite conjugate: (A|7|B) = (T A|B)*, (11)
where the definition of the Hermite conjugate is different
from the usual definition (A|0'|B) = (OA|B) for the linear
operator O. The momentum (P), spin (S), and tensor (7

transform under parity and time-reversal transformations as
shown in Table I, where P# and T are defined by
Pt = (PO’ _ﬁ) = gMaPa’ pr = gﬂagyﬂTu/}' (12)

Under the parity and time reversal, the transformations of the
quark field y(&) and the gluon field A, (&) [43,50,51] are

Properties under Hermite, parity, and time-reversal transformations. The spin S, tensor 7, and light cone vector n are

abbreviated in @ (x, k) for simplicity because their transformations are shown in ®(k, P, S, T|n). The charge conjugation is
C = iy?y" so that the time-reversal factor is 7 = —iysC = iy'y>. The time-reversal invariance condition is not imposed for the
correction functions due to the gauge link; however, we show the time-reversal properties in this table to understand the T-even and odd

properties in our formalism.

Quantity Hermite Parity Time reversal

PH PH PH

SH —SH SH

THY T;,w T/ﬂz

y(2) Py(O)F" =1"w(®) Ty()T" = (=irsOw(-9)
A8 An(8) = A, (&) PALE)PT = A,(8) TAE)T" =A,(=)
W(a, b) Wi(a,b) = W(b,a) PW(a,b)P" = W(a,b) ITW(a,b)T" = W(-a,-b

®(k,P,S,T|n) ®(k,P.S.T|n) =y’ ®(k.P,S.Tn)y’ ®(k,P,S.T|n) = y°®(k,P,-5.T|)y’ @ (k.P.S.T|n
O (x kr) = '@ (x, kp )y

ol (x, kr) P (x, k) = J’OQ’M (x, kT)J/O
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shown in Table I, together with the Hermite conjuga-
tion for A,(&). Here, the charge conjugation C is given by
C = iy*y°, so that the overall factor is 7 = —iysC = iy'y>.

From the transformations of the gluon field, the gauge
link W(a, b) should have the transformations in Table I.
These relations mean that the link paths are changed due to
the space-time coordinate changes a, b — a, b (or —a, —b)
[43,52]. The y° factors, for example, in the Hermiticity
relation are obtained simply by taking the Hermite con-
jugate of the correlation function in Eq. (1). The trans-
formations for the TMD correlation function ®*/(x, k7)
are then given in Table I, so that the time reversal trans-
forms ®!*! to @7} and vice versa. The T-even and T-odd
TMD functions are then defined by

(T-even] (x’ kT) = [(I)H] (x, kT) + @l (X, kT)]y

N = N =

(T-even] (X, kT) — [(I)['*‘] (x, kT) — @l (X, kr)] (13)

If the transverse moment ®*¥(x) is defined by
o H) = [Pkt (14)

they are given by the T-odd quark-gluon correlation

function ®L % (x, x) as [43]

L (x) = dI U (x) + 2@ (x, x).  (15)

These different link paths give rise to sign differences in the
time-reversal-odd TMD functions. The second term of this

equation (<D[GT -odd)u ) comes from the soft gluon (k;r = 0)and
it is called gluonic-pole matrix. It suggests that the single
spin asymmetries, such as the Sivers effect, originate from
this term, as proposed by Qiu and Sterman [53]. Here, the
Sivers function is one of the TMDs and it indicates the
difference between a unpolarized quark distribution in
the nucleon polarized transversely to its momentum and
the one with opposite polarization. The T-odd TMDs exist
in the single spin asymmetries in SIDIS by the form

@, (x) and in the Drell-Yan by ®)%(x) [43]. This
fact leads to the sign change in the T-odd quark TMD
functions [54],

fsiis (x, k%")T-odd = —fpy(x, k%‘)T-odd' (16)

The difference comes from the fact that the color inter-
actions are in the final state for the SIDIS and in the initial
state for the Drell-Yan as shown in Figs. 3 and 5, res-
pectively. It leads to the difference on the color-flow path
between Egs. (6) and (8).

The color is confined in hadrons, so that the color
degrees of freedom usually does not appear explicitly in
physical observables. However, depending on the color-flow

direction, the T-odd TMDs are different in sign. The TMD
case is a rare and special occasion to investigate the color
flow, namely, the color degrees of freedom, in hadron
physics. It was predicated theoretically that the TMDs
are different in sign between the SIDIS and the Drell-
Yan process. In fact, there are already experimental
indications on this new phenomenon in the Sivers
functions. About the experimental signatures on the sign
change in the TMDs, it was suggested in the spin
asymmetry of the reaction p + p — W*/Z% + X by the
STAR Collaboration [55] and the spin asymmetry of 7~ +
p— utu~ +X by the COMPASS Collaboration [56].
Further confirmations on these effects are needed by
future accurate experiments.

III. RESULTS ON TMDS FOR
TENSOR-POLARIZED
SPIN-1 HADRONS

We derive possible quark TMDs for tensor-polarized
spin-1 hadrons in this section by the decomposition of the
quark correlation function in terms of kinematical factors in
the Lorentz-invariant manner. In particular, we find new
terms associated with the light cone vector 7 in this work.
First, we try to obtain all the possible terms in the expansion
of the quark TMD correlation function in Sec. III A by
considering a tensor-polarized spin-1 hadron. Then, proper-
ties of each expansion term are discussed on Hermiticity,
parity, time reversal, chirality, and twist in Sec. III B. Next,
our guideline is explained for assigning various TMD
notations in Sec. III C, and we show possible twist-2, 3,
and 4 quark TMDs in Secs. III D, I E, and III F, respec-
tively. A brief summary is given on the new TMDs and
possible new fragmentation functions are explained in
Sec. I G. The new terms associated with n modify the
relations in the twist-2 TMDs, which were obtained in the
previous work [40]. In addition, we show that there are new
twist-3 and 4 TMD:s in this work.

A. Decomposition of quark correlation function

For spin-1/2 nucleon, the spin density matrix is para-
metrized with the spin vector which contains three param-
eters. However, due to the spin-1 nature, the spin density
matrix of the spin-1 hadron, such as the deuteron, is
determined by spin tensor in addition to the spin vector.
There are five parameters in the spin tensor part, and the
spin-vector part of spin-1 hadron is the same as the one of
the spin-1/2 nucleon.

For expressing polarizations of the spin-1 hadron, its
density matrix is given by spin vector and tensor terms
as [26,40]

1 3
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Here, X; are 3 x 3 spin matrices for the spin-1 hadron, and
X;; are spin tensors defined by X;; = (£,X; +X,X;)/2 —
(2/3)I6;; with the 3 x 3 identity matrix 1. The spin vector
and tensor are parametrized as

S = (S);’S}%’SL)’

—2S1L + SPy Srr Sir
= S?T _%SLL - S7r S{T (18)
Sir Sir 1811

in the rest frame of the spin-1 hadron. The parameters S$7
and S} indicate transverse polarizations of the hadron, and
S; does the longitudinal polarization. The parameter S;;
indicates the tensor polarization along the longitudinal axis
as shown in Ref. [40], and S77 (S77") indicate polarization
differences along the axes between the longitudinal and
transverse directions (along the transverse axes). The linear
polarizations are parts of the tensor polarizations. These
tensor and linear polarizations are schematically shown in
the Appendix of Ref. [40].

The covariant forms of $¥ and T#* of a spin-1 hadron are
generally expressed as [22,40]

P Mo
S =S M St 4 ST
1[4 Pty 2 _ v
THY — 5 |:§SLL (Mz) atnY __SLL(n{ﬂnl/} — d,;, )
1 M )
+§SLL(P+) ntn" —l——n{S}
M Y
_—2P+ n{ S} +STT:|’ (19)

where al#b*} indicates the symmetrized combination
al"p’} = a*b¥ + a*b*, and M is the hadron mass.

The general expression of the correlation function
®(k,P,S,T) contains three parts: unpolarized, vector-
polarized, and tensor-polarized terms. The unpolarized
and vector-polarized distributions in the spin-1 hadron
are exactly the same as the relevant ones in the spin-1/2
nucleon; however, we briefly explain past studies on the
quark correlation function for the nucleon. First, the quark
correlation function was decomposed into nine terms by
imposing Hermiticity, parity invariance, and time-reversal

|

Ay

Az Ais
DOk, P,T|n) = ﬁTkk +—=Tubl + Tkkk""

Ag A
O'Pkak + ATy, +—0 T +ﬁ

invariance in Ref. [29]. Then, the quark TMD correlation
function was decomposed in Refs. [30,31] by introducing
T-odd terms, and there are 12 terms with coefficients
denoted as A; — A,. This decomposition was constructed
with the vectors P, S, and k.

However, this decomposition was not complete because
the quark correlation function depends on the vector n
through the gauge link W(0,&|n). Therefore, the addi-
tional terms which depend on n were investigated in
Refs. [32-34,38,39], and 20 new terms were found and
they are denoted as B; — B,. Therefore, there are 32 terms
in total for the quark correlation function in the spin-1/2
nucleon. These new terms of n are important for under-
standing all the TMDs, collinear PDFs, and their relations.
Relations among the PDFs were derived by using the
Lorentz invariant decomposition of the correlation func-
tion, so that they were often called “Lorentz-invariance
relations” [35]. These relations were modified due to the
existence of these new terms [32,36]. Furthermore, another
new twist-3 term appeared and it invalidated the Wandzura-
Wilczek relation of the twist-2 level [38,39]. On the other
hand, these new terms also introduced new TMDs such as
er(x, k%), f#(x, k%), and g*(x, k%) for the nucleon [32-34,
38]. The unpolarized and vector polarized terms in the
quark correlation function of the spin-1 hadron are the same
as the ones in the nucleon, and these 32 terms had been
already studied [32,38].

In this work, we focus on the tensor-polarized part which
does not exist in the spin-1/2 nucleon. The quark TMD
correlation function of a spin-1 hadron was investigated in
Ref. [21] by adding T-even terms to the nine terms in the
nucleon case [29]. The T-odd terms should be also
considered together with proper tensor polarizations
[40], so that there are eight new terms in total in the tensor
part, where the relevant coefficients were named as
A13—Ayg. On the collinear PDFs of a spin-1 hadron, there
are also studies in possible hadron-tensor terms, helicity
amplitudes, and operator forms [11,12,57].

However, the terms with the vector n, which are found
for the spin-1/2 nucleon, need to be added also in the
formalism of the spin-1 hadron, namely, in the tensor-
polarization part. We formulate these new terms in this
work to find possible TMDs. Including these n terms, we
express the tensor part of quark correlation function
®(k, P, T|n) for the spin-1 hadron as

Ok Tkv

A By M BzzM3 . BouM : B,
T2 PRy rsT o t3 l Tkn + P-n)? T,,+ 7. nM‘?”kPn ik (i7s) +W€”kP"T (irs) +p—;7{T’<k
Bz6M 327M Bog By M? Bsg By M? B%zMz
2 ﬂ kn 3 ﬂTnn P kn D \2 PTnn + kan 2 k nn T}m
( n) (P-n) (P-n) (P-n)
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B33 Bi4 BysM? Bss
JvPk T JvPn T 3 uvPn T ukPn T
+P'I’l8 7/4]/5 Dn+P'I’l€ yﬂ}/S yk—i_(P'I’l) € 7;475 yn_i_P'l’lM & 7/47/5 kk
By ByyM? B39 ByM?
+ 5@ yrsThn + &y ysTon + ysT e + 5T e "
(P . n) H (P . n)3 H ( 2 H ( )3 H
By BpM ByuM BysM? Bys
T g CP e T 2 P-np 5 0Pk + P MO'PnTkk +W0-PnTkn t 0 3 P-n) 50pnTnn + P MﬁknTkk
ByM BygM’ ByM BsoM’ 2, BsiM Bs;M
+ mdknTkn +—0 P-n)’ 50kl +—5— P ﬂ,,T”k + n)? o TH" + P o,pT" + P oI, (20)

where the notation X, = X, k" is used for brevity with the
tensor X as o* = i[y*,y"]/2, T*, or the antisymmetric
tensor %’ and k could be replaced by n or P. We listed
only the tensor terms proportional to the tensor polarization
T* in Eq. (19). Here, we use the convention £°'23 = 41 so
as to agree with expressions in Ref. [40]. In deriving this
equation, the Hermiticity and parity-invariance relations in
Table I are imposed for the correlation function; however,
the time-reversal invariance is not a necessary condition
due to the existence of the gauge link.

The first eight terms (A3—A,q) were already obtained in
Ref. [40], and they generated all the leading-twist TMDs.
There are 40 terms in the tensor part of the quark correlation
function, and 32 of them (B,;—Bs,) are dependent on the
vector n. Therefore, the new terms, which we found in this
work, are these 32 terms B,;—Bs,.

In general, the coefficients A; (i =1-20) and B;
(i = 1-52) depend on the scalars k- P, k%, P-n, and
k-n. In order to keep ®(k,P,T|n) invariant when the
vector n is replaced by An as a scale change, A; and B;
should be functions of k% and the ratios, k - n/P-n and
k- P [39]. The quark and hadron momenta k£ and P are
expressed by two lightlike vectors n and 7 as

M?
_ pti
Pt =P n"+2P+n/’,

M?(o —
k- :xPJrﬁ”—i-%n” R (21)
where k3(= —k7), o, and 7 are given by
2k - P k?
K = (7 + x* — xo)M?, o= 5 T=an
(22)

Here, x is the light cone momentum fraction carried by
the quark.

The kr-dependent correlation function is obtained by
integrating ®(k, P, T|n) over k~,

mLhﬂj:/ﬁk®w¢me (23)

The TMD correlation function ®(x, ks, T) is used to
describe the hard processes such as the semi-inclusive
DIS and Drell-Yan process. Using the TMD correla-
tion function of Eq. (23), we define the trace of TMD
function by

1
(. k. T) = 5 Tr(®(x. kr. T)T], (24)

where I' is a gamma matrix. We reiterate that this correction
function is only for the tensor-polarization (7') part, and the
unpolarized and vector-polarized (S) terms are not included
because they have been already investigated in previous
works [34,38].

B. Properties of Hermiticity, parity,
time reversal, chirality, and twist

Each term of the expansion in Eq. (20) satisfies the
Hermiticity and parity invariance in Table I. The time-
reversal invariance is not imposed because of the active role
of the gauge link in the TMDs. We explain the details on the
conditions of Hermiticity, parity invariance, time-reversal
invariance, chirality, and twist in the following.

1. Hermiticity
The Hermiticity condition ®'(V,A,T) =y°®(V,A,T)y°,
where V is a Lorentz vector, A is an axial vector, and 7 is a

tensor, is satisfied because of the relations (T')" = y°I'y° by
taking I as

Ly# y#ys. iys. o™, (25)
where 1 is the 4 x 4 identity matrix.

2. Parity invariance

The parity-invariance relation indicates ®(V,A,T) =
PP®(V,—A, T)y°, which is satisfied, for example, because
of the relation 'Yy’ =¥ for the vector V¥ and
72 (=ysA)y? = ysA for the axial vector A%, We may note
that the term &*X¥% = g/ X Y 7, is an axial vector, so
that ysy,e*"% and iyse"*"* terms satisfy the parity
invariance. Here, X, Y, and Z are Lorentz vectors. In fact,
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we have the relation y°(iyse" XY Z)y0 = jyseVXYZ. How-
ever, the pseudoscalar term iys is not allowed due to the
relation y°(iy5)y® = —iys. In the same way, the pseudo-
scalar term VX7 is not allowed. The term £**¥Z with the
axial vector A# exists because of y0(e-AXTYZ))0 — (AXYZ
The term X' =o¢/X,Y, is allowed under the parity

invariance because of y%¢*¥y? = ¢X¥  so that various

o™ terms exist in Eq. (20). These discussions are summa-
rized as the properties under the parity transformation,

. . : VXYZ XYZ
P-even: 1,V,ysA,iysV - A, iyse JYSYuEE
XYZ XYz XY AX
v XY XYL XYy sohX

P-odd: iys, A, VX7 e XVZ AKX jyooXY . (26)

Since the parity invariance is imposed in the correlation
function, the parity-odd terms do not appear in Eq. (20).

3. Time reversal

The time-reversal property is given in Table I as
O (V,A,T)=Td(V,A, T)T~' where 7 =—iysC=
iy'y? =T" =771 = —T* [50]. Because of the y-matrix
relation 7y*7 ' = y#T = p#*, the term Y = V y* satisfies
the time-reversal relation 7 Y7 ! = V*, so that it is called
T-even term. In the same way, the scalar term (1 without a y
matrix) and the other ones (ysA, 75V, iyseVX¥%, iysc4¥)
satisfy the time-reversal-invariance relation, and they are
T-even terms. We may note that the imaginary i exists as
iys, whereas it does not exist in ysy*, because of the
Hermiticity requirement ®' = y0®y?.

However, the time-reversal relation is not satisfied for the
terms with 6X¥, "XYZ_ and the others. For example, since
the tensor ¢* has the property 76**7 ~! = —(5*)* under
the time reversal, the term ¢X” has the relation 76X 77! =
—(o*")* with the negative sign. This relation is same for the
iyso®¥ term. Therefore, they are called T-odd terms due to
the negative sign. They are summarized as follows:

T-even: 1,V,ysA, iyse" Y iyse?X, ...,
T-odd: iys, o™, iysoXY iysV - A, eVXVZ,

eXVZ oy XVZ (27)

Yu
Among them, the terms iys, iyso™?, e"*'% and y,&**'* are
ruled out by the parity invariance, so that they do not appear
in Eq. (20). From this time-reversal classification, the
expansion terms of Eq. (20) have the T-even and T-odd
properties as

T-even terms: A13_15,A17, 321_32,

T-odd terms : A16’ AIS—ZO’ B33_52. (28)

Just in case, we also list the time-reversal properties in the
unpolarized and vector polarization cases in Ref. [34] as

T-even terms: A1_3,A6_11, Bl? 311_20,

T-odd terms: A4_5 s A127 BZ—]O' (29)

4. Chirality

The TMDs and PDFs are also classified by the chiral
property. Structure functions of a hadron are given by the
imaginary part of forward scattering amplitudes by the
optical theorem, so that the TMDs and PDFs are expressed
by parton-hadron forward scattering amplitudes in Fig. 2.
The quark transversity distribution /; (or denoted as Azq)
is associated with the quark spin-flip (4; = +, 4 = —)
amplitude, so that it is called a chiral-odd distribution. This
distribution is defined by the matrix element with the y
matrix term, iys0*Y, as shown in Eq. (12) of Ref. [26]. At
high energies, the helicity is conserved for the vector (y*)
and axial-vector (ysy*) interactions. We define the right-
handed and left-handed fermion states as yp = 1/2(1 —y5)y
and y; = 1/2(1 + ys)y, which correspond to the helicity
+1 and —1 states, respectively, at high energies where the
fermion masses are neglected. For example, the relation
Pty =y vty 4+ wry*w g 1s satisfied due to the anticom-
mutation relation {ys, 7} = 0 and there is no cross term like
W y*wg. This relation is also the same for the axial vector
current ysy*. These facts suggest that the quark helicities
should be conserved in high-energy strong, electromagnetic,
and weak interactions. However, the situation is different in
terms with even number of y matrices. The helicity is not
conserved for scalar (1), axial (ys), tensor ¢**, and axial-
tensor (iys0"*) terms. For example, the relation becomes
wly = wwr + wry . Therefore, the chiral-even and odd y
matrices are classified as

y-even: y* ysy*,
y-odd: 1,iys, 0", iysc"”. (30)
Using this classification on the chiral property, we obtain the
chiral-even and chiral-odd terms of Eq. (20) as
x-even terms: A5, A7, Az, Bas a0,
x-odd terms: A3, Aj, A1g_19,A21_24, Bai_s2-  (31)
The chiral properties in the unpolarized and vector polari-
zation cases in Ref. [34] are also listed as
y-even terms: A,_3,A¢_g, A2, B1, By, B7_14,
y-odd terms: Ay, A5, Ag_yy, By_3, Bs_g, Bis—20- (32

5. Twist of the TMDs

Let us take the frame where the hadron’s longitudinal
momentum is much larger than the hadron mass, namely,
P* > M, by taking the hadron momentum direction as the
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third axis as given in Eq. (21), and then consider the
charged-lepton deep inelastic scattering from the hadron.
This frame could correspond to the center-of-momentum
frame between the virtual photon emitted from the lepton
and the hadron. Then, P is related to the scale Q2 by the
relation P+ ~ /Q%/(2x(1 + x)) ~ O(Q) by neglecting the
hadron mass.

In the operator-product expansion, the structure func-
tions are classified by the twist, which is the operator mass
dimension minus the operator spin [57]. This twist controls
the scaling behavior of the structure functions as Q2
becomes larger. The leading-twist is two and the lead-
ing-twist structure functions or the TMDs in this work have
scaling behavior with the order of O(1), and the twist-3 and
4 ones are O(1/Q) and O(1/Q?), respectively. Because of
Pt ~ 0(Q), the leading twist-2 TMDs are defined in the
TMD correlation functions as the terms of O(1) as shown
in Sec. III D. On the other hand, the twist-3 and twist-4
TMDs are given as the terms of O(1/P") and O(1/(P")?)
as shown in Secs. IIIE and III F.

C. Guideline for assigning TMD notations

We follow the TMD notations of Refs. [34,40] as much as
possible; however, there are new TMDs which need to be
defined in this work. The twist-2 TMDs were already named
for the tensor-polarized spin-1 hadron in Ref. [40], and the
same notations are used in twist 2. However, all the twist-3
and twist-4 TMDs are new ones for the tensor-polarized
spin-1 hadron, so that new names should be assigned. In the
twist-3 part, our notations are given in the similar spirit to
the twist-3 TMDs of the spin-1/2 nucleon in Ref. [34]. In
twist 4, the TMD names are given by replacing all the twist-2
subscripts 1 (such as in f;;) by twist-4 ones 3 (f3;,). The
general guideline is the following.

(1) The TMD function names f, g, and % are assigned to
the unpolarized, longitudinal, and transverse quark
polarizations by taking traces of Eq. (24) with y™,
v7s, and ic'Ty5 (or '), respectively, in the twist-2
case. The quark operators @y w, wytysw, and
Wwic'Tysy are related to the unpolarized (U), longi-
tudinally polarized, and transvsere polarization (T)
of a quark in the twist-2 case as given in Ref. [26].
However, the twist-3 and twist-4 TMDs indicate
three and four parton correlations, so that they are
not related to these quark distributions. Therefore,
the distributions f, g, and & are assigned depending
on the operator forms as shown in Tables IV and V1.

(2) The subscript 1 in the TMDs, such as f;;, is
assigned for the twist-2 TMDs. The subscript 3 is
used for the twist-4 TMDs like f5;;; however, the
subscript 2 is not conventionally used for expressing
the twist-3 TMDs.

(3) The subscripts LL, SL, and TT are given if TMDs
appear with the spin parameters S;;, S;7, and Sz,

respectively, in the traces of the TMD correlation
functions of Eq. (24). For example, f1,;, f1.7, and
fir7 are defined in Eq. (33) in this way.

(4) The superscript L (F1)is given if a TMD exists with
the partonic transverse momentum kiT (i=1,2).In
addition, the superscript ' (F’) is assigned if two
similar polarization and momentum factors exist
within the same TMD correlation function ®1. If
both F+ and F’ exist, the superscript L is assigned
for the term with the partonic transverse-momen-
tum (k;) term of the order of (k;)? or (k7)? in
traces of TMD correlation functions. An example
is hi;,; in Eq. (33). However, although the
corresponding F’ does not exist, the F* could
be used even in the order of (k;)!, and its example
is hi;;. The TMDs with ' are assigned in the
leading order of k7, namely, O((k7)°) or O((ks)").
An example is 4}, , in Eq. (33). In general, new
TMDs F are defined from the TMDs F+ and F’
by the relation of Eq. (36), so that the TMD lists
are shown by the two-independent TMDs F and
F+ without F’ in Tables II, IV, and VI. If both F
and F* exist, the meaning of F and F* is more
clearly shown in Eq. (35). The function F* [e.g.,
hi;, in BEq. (35)] is given as the term with a
kinematical factor which vanishes by the IQT
integration. The other function F (e.g., hy;r) is
assigned for the remaining part.

(5) There are exceptions for the above assignment of L.
The superscript L is not written conventionally for
firrs firrs 91> 9177, (also the twist-4 distributions
favrs farr, gser, and garp), although they accom-
pany ky factors in the correlation functions.

(6) The superscript ' is not written if similar functions
exist in separate correlation functions ®"! and @2,
In the traces for the twist-3 TMD correlation func-
tions @'l and @) in Eq. (46), the k; dependence
is the same order O((ky)') for hi;, so one may
assign hi}l) and hi;z). Similar expressions appeared
in the twist-3 part of the nucleon, and they were
already named as & and h7 in Ref. [34]. Following
such a convention, we write them as ;7 and hi; in
Eq. (46). In this equation, h;; and hi; are also
written in the same manner in Eq. (46), although
they have the same dependence of O((k7)?). In the
same way, e, 1, 77, ey, and ez are assigned in @
and @lirs],

D. Twist-2 TMDs for a tensor-polarized
spin-1 hadron

The leading twist TMDs for a tensor-polarized spin-1
hadron are defined by taking I' = y*, yTys, and 6" in
Eq. (24), and we obtain
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N S;ir-k
Pl ](7@ kr,T) = fioo(x, k2T)SLL = fir(x, sz) “t T

M
+ frrr(x, k7) W
) Scru€r kry
M
STTypk/])"‘c’J;ykTy
M? ’

’

Olrtrs] (X, kr, T) = gipr(x, k%

+ girr(x. k)

S,k ;
M L+ Py (x, k%)SLT
Ky Sir - kr

MZ

i
Sirkr;

O (x, ky, T) = hiyy (x,kF)

- hllLT(x’ k%)

— Ry (x, k%)

+ iz (x, k%)TMT7

(33)
where i and j indicate the transverse indices i =1, 2
(j=1,2), & = 8"”"‘ﬂr’zanﬂ is used with the convention
"2 =1, and S;;-ky and ky - Spr - ky are defined by
SLT . kT - SiTkTi - _SlLTle and kT . STT . kT - kTiS;ZTij'
Here, we follow the notations of Ref. [40] for the TMD
expressions in twist 2. In Ref. [40], the trace with ic'*ys
was taken instead of o'T: however, both formalisms
are equivalent by considering the relation ic"ys =
—e"’“"‘ﬂaaﬂ/ 2 [51]. Therefore, if @75 is calculated, the
same equation is obtained by the replacements X’ — eiTij
with X' = ki, S, and S{,ky; in @) of Eq. (33). There
are ten TMDs in the leading-twist level, as already found in
Ref. [40]. However, their relations to the expansion
coefficients are modified due to the existence of the new
terms B,;_s, associated with the tensor structure and the
lightlike vector n, as we find in Egs. (37)-(39).

The two TMDs K}, ; (K,;7) and hi; ; (hiy;) are similar
notations. Because of the relation

Kikr - Spr = €iTiijle€leSLTm + k385 (34)
the other functions %,; 7 and &7y could be defined instead

of i, and I, In fact, the correlation function @ in
Eq. (33) is rewritten as

‘ SI kikd. — St kr/2

+ hyprSip + hipp =L TMz LT

(S i = STz /2) k)
M3 '

Strkr

+ iy

(35)

TABLE II. List of twist-2 quark TMDs for a spin-1 hadron in
terms of the quark and hadron polarizations. The square brackets
[ ] indicate chiral-odd distributions and the others are chiral-even
ones.

Quark

U(r) L(r*rs) T(ic"ys/c"")
Hadron T-even T-odd T-even T-odd T-even T-odd
U fi [hi]
L giL [hf_L]
T i gir (1], [hi7]
LL flLL [hf_LL}
LT firr giLt (M7 [hllLT]
TT Sirr qirT (hirr]s [hizr)

Here, we define the new functions without ' and L as

k2
F(x,k3) = F'(x,k%) — Z—A/TIZFL(x, k%), (36)
where F = ;7 and 77 in the twist 2 and k2 = —k2, as

this relation was written for the unpolarized TMD (f, f7,
and f1) in Ref. [52]. We note in Eq. (36) that the A{; ; and

hi; terms vanish by the ky integration. It leads to the sum
rule for fi;7 in Eq. (57). Therefore, two of these three
functions hy 7, h; 7, and hi; ; (also hypp, K7y, and hiz;)
are independent, so that one could choose two of them
depending on one’s preference in defining the TMDs in
Eq. (33). Similar relations appear in twist-3 and twist-4
cases, so that we use Eq. (36) as the general relation for the
TMD F in terms of F' and F*.

Calculating traces in Eq. (24) with the new correlation
function of Eq. (20), we express the twist-2 TMDs in
Eq. (33) in terms of the coefficients A; and B;. First, the
unpolarized quark TMDs in @] are given as

+

P
Funleok) =7 [ (A + 3,

+2(Ay7 + Byg + xB3g) (0 — 2x)
+ 4(By9 + xB3; + B3,)],

fior(x.k}) = —P* / dk™[(A14 + xA5) (6 — 2x)
+ A7 + Bog + xBy),

firr(x.k7) = P* / dk= (A4 + xAss), (37)

where 7, is defined by 7, = 6°> — 6x6 + 27 + 6x%. The
terms of A4, A;s,..., and Bz, are time-reversal even
(T-even) and chiral even (y-even) terms as given in
Egs. (28) and (31), so that these TMDs are T-even and
y-even ones as listed in Table II. In this table, the TMDs
of the unpolarized (U), longitudinally polarized (L), and
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transversely polarized (T) hadron are also listed for show-
ing the complete set of the TMDs of the spin-1 hadron in
addition to the tensor polarizations LL, LT, and TT. As
explained after Eq. (18), the notation LL indicates the
tensor polarization along the longitudinal axis, and the
notations LT and TT are for the polarization differences
shown in the Appendix of Ref. [40].

Next, the longitudinally polarized quark TMDs in @[ 75!
are given as

P+
Gror(x, k) = 5 dk™[Ay(6 — 2x) + 2B33).
g7 (x. k) = —P* / dk~An. (38)

Because of the time-reversal and chiral properties of the A,
and B;; terms, these TMDs are T-odd and y-even distri-
butions as listed in Table II. Third, the transversely
polarized quark TMDs in ®°"] are given as

p+

iy (x,k3) = N dk™[A67, + 2A19(0 — 3X)

+ 2By (0 — 2x) = 2(A1g — 2By — 2B5,)],

P+
By r(x k7)) = 2/ dk™[(Ag + xAj9) (0 — 2x)

+2(Bs; + xBs,)],

hipr(x, k3) = P* / dk~[A(6 = 2x) + Ajg + By,
Wi (x.k7) = _P+/dk_(A18 + xAj),
W (v k2) = —P / dk~Ase. (39)

These TMDs are T-odd and y-odd distributions as shown in
Table II. Here, the TMDs A, and h,pr are listed instead
of h},; and h\;; due to the relation of Eq. (36). In
comparison with previous works [21,40], the new terms
exist in association with the light cone vector n and the
tensor polarizations, namely, the new coefficients B;;_s».
Therefore, the expressions of f1,7, fi.7s 917> hipr> Miprs
and hi;, are modified from previous ones due to the
existence of the new terms, Byg 33, B4y 42, and Bs; 5.
The collinear PDFs are obtained from the TMDs by
integrating them over the partonic transverse momentum as

) = / Pk f(xK2). (40)

Since the time-reversal invariance is satisfied in QCD, the
T-odd collinear PDFs should vanish [34,38,58],

S () 1-0aa = 0, (41)

TABLE III. List of twist-2 quark collinear PDFs for a spin-1
hadron in terms of the quark and hadron polarizations. The square
bracket [] indicates a chiral-odd distribution and the others
are chiral-even ones. The function g;;, h;, and f;;; are often
denoted as g; or Ag, —Arq, and —(2/3)b; or —(2/3)6q [26].*
The asterisk *1 is explained in the main text.

Quark
Hadron U(ry™) L(r*ys) T(ic""ys/o'")
T-even T-odd T-even T-odd T-even T-odd
U i
L 91.(91)
T (]
LL fiee(by)
LT *1
TT

“The functions g,; and f;; are sometimes listed by g; and b,
as for the abbreviated notations of g; , and b, ,. These g, and b,
and also /1, should not be confused with the structure function
themselves including charge-squared factors and coefficient
functions.

although the T-odd TMDs exist in Table II due to the gauge
link including the transverse direction. Therefore, the only
remaining PDFs are f;, g;; (or often denoted as g; or Ag),
hy (Arq), and f;; (by or 6rq) as shown in Table III. The
hy(x) is defined from the TMDs h,; and hi; as h;(x) =
[ &kplhir(x, k%) — k%/(2M?) hiz(x, k%)] [40]. The num-
ber of twist-2 quark distributions is 4 in Table 3 of Ref. [57]
and this number 4 agrees with the existence of four
distributions f4, g;, h;, and f;;; (b;) in Table IIl. The
only tensor-polarized twist-2 PDF is f;; (b, or 67q) which
is associated with the spin-1 nature of the hadron. The
asterisk (1) in Table IIT indicates the following. Because of
the time-reversal invariance, the collinear PDF h ¢ (x)
vanish as shown in Eq. (41). However, since the time-
reversal invariance cannot be imposed in the fragmentation
functions, we should note that the corresponding fragmen-
tation function H,;7(z) [25], as indicated by the replace-
ments of Eq. (56), should exist as a collinear fragmentation
function.

In addition to the T-odd functions, some of T-even

functions disappear after the I:T integration. For example,
if the correlation function ®'!(x, k;,T) in Eq. (33) is
integrated to obtain the collinear correlation function

oM (x,T) = / Pl ® (x, kp, T), (42)

where I' = y* here, the second term vanishes, and the third
term also vanishes due to S§. = —S%; [26], so that the
collinear PDFs f;(x) and f7r(x) do not exist. In the
same way, the functions g,;r, 9,77, and h;; do not exist in
Table III.
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E. Twist-3 TMDs for a tensor-polarized
spin-1 hadron

a tensor-polarized spin-1 hadron, so that all the following
terms are new ones we found in this work. The twist-3
TMDs with the 1/P" dependence are found by considering
olr'l, oll, @lirs) sl dlo’l, and @), First, the TMDs
with the function name f are defined for the quark operator
type yy'y as

For the spin-1/2 nucleon, the twist-3 TMDs are listed in
the quark correlation function including new terms with
the light cone vector n in Ref. [34]. Here, we list all the
possible twist-3 TMDs in the quark correlation function for
|

; M ki . KiSyr -k Sirkr;
O (. ky. T) = 5% [fﬁ(x, Kp)SLo g+ S k) Sy = fr (e 1) =F0 ot = fip (k) =

M2 M
ky - Sy kp ki
R, k;)w_r],

M? M (43)

These f-type TMDs have T-even and y-even properties. The distributions f; 7, f; 7, and fi7 (frr, frr» and f7;) are related
by the relation of Eq. (36). The TMDs with the name e are assigned for the currents associated with w1y and yiysy as

M Sk kr - Spr-k
ol (x, kp, T) = P [ELL(% k7)Spr — err(x, k7) sz L+ err(x, k7) %} J
_ M Sir.€r kr, S Koy kr,
ol = M [e”(x, IRl SRS )%} (44)

These e-type TMDs have T-even and y-odd properties. The distributions e; ; and e7; are given with the same factors of
O((kr)"); however, we assigned ey for the first one and e, ; for the second as explained in the guideline 6 of Sec. IIl C. The
distributions e;; and e7; are also named in the same way. Next, the g-type TMDs with T-odd and y-even properties are

defined for the current y'ysy as

ij
grij

i M
QUsl(x, kp, T) = pr [—gﬁ (x. k7)1

ij l
erStrjiky

/ , k2
+ Grr(x, k) M

grr(x, k%")eiTjSLTj + grr(x, k7)

Q%T (x, k%)

EirjijSLT “kr
M2

(45)

kr - Str - kr 5iTjij
M? M |

The distributions g; 7, ¢} 7, and gi7 (977, grp» and g77) are related by the relation of Eq. (36). The h-type TMDs with the
T-odd and y-odd properties are given for the currents o~y and o'y as

— M Sir -k kr-Srr -k
Pl ](x, ky,T) = pr |:hLL(x’ k%)SLL —hyr(x, k%) % + hyr(x, k%) TAZT} ’
; M Si kbl — §i. ki SiL kpikl — I kg K
q)[o' ](X, kT’ T) _ F {hir()@ k%) LT TM LTT _ h%T(x, k%) TTRTI TM2 TT™TI T:| ) (46)
The prime marks (') are not assigned for h;; and hpp
because of the guideline 6 in Sec. III C. 1 2\ p+ _ _
There are twenty TMDs in the twist-3 for a tensor- Sir(xky) = =P dk”[Aus(o = 2x) + Bsol,
polarized spin-1 hadron. These TMDs are expressed by the )
expansion coefficients of the correlation function. First, we rr(x, k3) = —P* / dk™Ay7,
obtain the f-type TMDs as
P+ %T<x, k%) = P+ / dk_A15. (47)
fi(xkg) = ?/ dk™[A1s5T, + 245
+2B3y(0 — 2x) + 4B3)] The terms with A5, A7, ..., B3, are T-even and y-even as
pt listed in Egs. (28) and (31), so that these TMDs are T-even
(o, k) = — / dk~[A+ (6 — 2x) + 2B, and y-even properties as shown in Table IV. The e-type
r(e. k) 2 Al ) 2| TMDs are expressed as
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TABLE IV. List of twist-3 quark TMDs for a spin-1 hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square brackets [] indicate chiral-odd distributions and the others are chiral-
even ones. The LL, LT, and TT TMDs are new distributions found in this work.

Quark

Hadron 71 iys s 6l o7t

T-even T-odd T-even T-odd T-even T-odd
U f*el gt [h]
L frled 9r (]
T fr frler.er] 91 91 [hr), [h7]
LL flJ:L ler] giL (heL]
LT Sirs fi_T[eLTv eir] grrs gir [hrr), [hir]
TT fTva%T[eTT’ eZL"T] grr, Q%T (hrr]. [h%T}

pt
err(x.ky) = ?/ dk™[A37, + 2By (6 — 2x) + 4B,

ebr(x K3) = —P / dk~[Ays(0 - 20) + Bayl.

err(x, k) = /dk—AB,
c
err(x, k) = P* / dk~ [323 (x - 5) - 324} ;
err(x, k) = P* / dk™ Bys. (48)

Because of the terms Az, By, ..., Boy, these TMDs have
properties of T-even and y-odd as shown in Table IV.
Second, we obtain the g-type TMDs as

P+
gi(x.k7) = Y/dk_ [3Az0(6 —2x) +4B3; + 2By,

+ B3¢ty + 2B37(0 — 2x) + 4B3g],
+

P
= T/dk_ [Azo(a - 2)C)2
+ 2(B33 + B3s) (0 — 2x) + 4Bss],

Gor(x.k7)

gir(x. k7) = —P* / dk~[Ay + Bsg(0 — 2x) + Bys],

Grr(x. k7) = —P* / dk~ {Azo (g —x) + 334],

grr(x.k3) = P+/dk_B36~ (49)

Because of the terms A,y, ---, Bsg, these TMDs have
properties of T-odd and y-even as shown in Table I'V. Three
new twist-3 TMDs e; 7, err, and g%T are expressed purely
by the new terms B,(_s,.

Third, the h-type TMDs are expressed as

pt
hp(x.k7) —?/dk_{(d—zx)[Ame+2(2A18 +0Ap)]

0= 23) By (o~ 2x)
By, + Bys + xBy7 + Byg)|

43 +XByg)T,
2Bys +2xByg +2Bsy +2Bs; +6Bs,) },

+2(
+2(
+2(B
+4(

P+
hLT(X,k%-) = _T/dk_ [Alé(d— ZX)Z + 2A18 —|—O'A19

+ (6 =2x)(B4; +2By3 +2xBys)

+2(Byy +xBy7 + Byo),

+

P
:—/dk_[Alg(O'—zx) +2352},

P+
hyr(x.k7) :7/ dk™[A16(0 —2x) +2(By3 + xByg)],
Ik (x,12) = P / dk—As. (50)

TABLE V. List of twist-3 quark collinear PDFs for a spin-1
hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square brackets [] indicate
a chiral-odd distribution and the others are chiral-even ones. The
LL and LT PDFs (e;;, fr7) are new distributions found in this
work. The asterisks *2 and %3 are explained in the main text.

Quark
Hadron 71, iys s ol o™t
T-even T-odd T-even T-odd T-even T-odd
U le]
L [h]
T gr
LL [e L L] * 3
LT f LT * 2
TT
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Because of the terms Ay, ..., Bsy, these TMDs have
properties of T-odd and y-odd as shown in Table IV.
Here, the listed functions f;7, frr, hpr, and hyp are
defined from f% ,, for, h) 7, and Ryp, and fip, for. hir,
and hz; by the relation in Eq. (36).

These TMDs are integrated over the quark transverse
momentum I:T, twist-3 collinear PDFs exist as shown in
Table V. In addition to the PDFs e, gy, and h; in the
nucleon, there are new twist-3 PDFs e;; and f;, for the
spin-1 hadron. These two collinear PDFs are new functions
found in this work by integrating the corresponding TMDs

over 1?T. Here, the PDF gr is given by g; = f &’k gy —
k3./(2M?)gf] [34], and f;7(x) is defined by

The asterisks (x2 and *3) in Table V indicate the
following in the same way with x1. Because of the
time-reversal invariance, the collinear PDFs g;;(x) and
hyp(x) do not exist. However, the corresponding new
collinear fragmentation functions G;;(z) and Hj;(z)
should exist [25].

F. Twist-4 TMDs for a tensor-polarized
spin-1 hadron
The twist-4 TMDs were obtained in Ref. [34] for the
spin-1/2 nucleon. Here, we list all the possible twist-4
quark TMDs for the tensor-polarized spin-1 hadron. The
twist-4 TMDs for the tensor-polarized spin-1 hadron are
defined in the correlation functions ®!, ®F7l and

frr(x) = / Phrfrr(x, k). (51) @ as
|
L M Sir-k kr-Srr -k
ol = p2 Fa (6, k7)Sp = farr(x, k7) LS\/[ L+ Farr(x, k7) %] ’
— M2 I SLT EﬂljkTU STT kpgll’/kTU
Dl 7l = pi2 gar(X, k%)% + garr(x, k%)% )
o M Kk 4 kiSy7 - k Sirkr;
O] = 5 Iy (v K§)S1p 7 Mo (v A3)Sip = gy (e K =0 = By (K =250
kr - Syr - kr ki
+ gy (6 k) = . (52)
|
These relations are proportional to 1/(P*)? as the twist-4 . Pt B
functions. Gar(x, k) = ol [(Azg = 2B39)(0 — 2x)
The f-type TMDs are given by + 2By — 4By,
pr @) =20 [ ak (A - 28 54
farp(x.k3) = 6/dk_{[Al4 + Ais(0 = x)]z, gsrr(x kr) = 2 (A2 = 2B39). (54)

— 2A17(0 - 2x) + 2B25Tx
+2(6 = 2x)[2B56 + Bog + B3y(6 — x))]
+4(2By7 + By — Byy) +4B31(0 — x)},

P+
Far(xik) = = [ k([ + Ais(o = 0)](o - 20
— A7 +2Bys(0 — 2x) + 2By + Byg

+ B3g(c — x)},
farr(x. k7)) = %/dk_[AM +Ajs(6 —x) +2Bys]. (53)

Because of the terms Ay, ..., Bys, these TMDs have
properties of T-even and y-even as shown in Table VI
The g-type TMDs are

These TMDs have the properties of T-odd and y-even as
shown in Table VI. The h-type TMDs are

P+
hsp (x.k3) = ?/ dk™[—A67, + 243
+2A19(20' - 3X) - 2(341 - 2347)((7 - 2x)

+2Bys7, —4(Byy —2Byg — By — Bsy)],
pt
Bar(ed) = [ di (i + Alo - 2))(o-20)
+2[Byo(6 —2x) +2Bso + Bs; + Bsy (6 —x)] },
pt
hspr(x.k3) = —T/dk_ [—Ai6(0—2x) + A9 — By

+2Bys(0 —2x) + 2By],
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TABLE VI. List of twist-4 quark TMDs for a spin-1 hadron in
terms of the hadron polarizations and the operator forms in the
correlation functions. The square brackets [] indicate chiral-odd
distributions and the others are chiral-even ones. The LL, LT, and
TT TMDs are new distributions found in this work.

Quark

Hadron Y~ Y s o'~

T-even T-odd T-even T-odd T-even T-odd
U /3 [h3]
L g3 [h%_L]
T f3r  %r [hsr], [h37]
LL f3LL [h?aLLL]
LT Sfarr 93LT (h3e7), [hag 7]
TT Sfarr 9311 (harr ], [hazy]

p+

Pypr(x,k3) = =— [ dk™[Ajg + A19(0 — x) + 2By,

P+

hapr(x. k7) = dk™[A16 — 2Bg). (55)

These TMDs have the properties of T-odd and y-odd as
shown in Table VI. Here, the functions A3y, i3, 7, and hspr
are defined from hly, Ky, and hyp, and hip, hi; ., and
h37; by the relation in Eq. (36).

These twist-4 TMDs are integrated over I_c} and they
become the collinear PDFs as shown in Table VII. Most
distributions vanish after the integrations. The only twist-4
PDF which is specific to the tensor-polarized spin-1 hadron
is f311, in addition to f3, g3;, and hs;, which exist also for
the spin-1/2 nucleon. The asterisk (x4) in Table VII
indicates that h3;(x) does not exist; however, the corre-
sponding new collinear fragmentation function Hs;7(z)
should exist because the time-reversal invariance does not
have to be imposed [25].

TABLE VII. List of twist-4 quark collinear PDFs for a spin-1
hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square bracket [] indicates
a chiral-odd distribution and the others are chiral-even ones. The
LL PDF (f37;) is a new distribution found in this work. The
asterisk *4 is explained in the main text.

Quark
Hadron & Y7ys o
T-even T-odd T-even T-odd T-even T-odd
U f3
L 93
T [har]
LL VET)
LT *4

G. Summary on new TMDs and possible new
fragmentation functions

We found that there are 40 TMD:s in total for the tensor-
polarized spin-1 hadron, and this number is equal to the one
of the expansion terms in Eq. (20), and they are expressed
by the coefficients A; and B;. The TMDs are T-odd if they
are associated with the gamma matrices y#ys and 6" in the
tensor-polarized case, so that there are 24 T-odd TMDs. In
addition, there are 16 T-even TMDs on the tensor polar-
izations. If the gauge link were neglected in the correlation
function, all the T-odd TMDs do not exist due to the time-
reversal invariance. The ten twist-2 TMDs were studied in
Ref. [40], so we found 30 new TMDs in the twist-3 and
twist-4 parts mainly associated with the light cone vector n
and the tensor polarizations as listed in Tables IV and VI.

The same discussions can be made for the transverse-
momentum-dependent fragmentation functions of spin-1
hadrons by the replacements of the kinematical variables
and the function notations as [40]

Kinematical variables: x, k;,S,T,M,n,y*, 6,
TMD distribution functions: f,g,h,e
U

Kinematical variables: z,kr, S, T),, M, i,y 6",

TMD fragmentation functions: D,G,H, E. (56)

Therefore, new fragmentation functions exist for spin-1
hadrons in addition to the fragmentation functions of
the spin-1/2 nucleon by these simple replacements in
Tables II-VII. Here, S, and T, are spin-vector and tensor
polarizations of the hadron &, and M), is its mass. The
variable z is the momentum fraction given by P, = zk™.
As explained by the asterisks (x1-4) in the collinear
PDF tables, there are the collinear fragmentation functions
Hi17(2), Gir(z), Hpp(z), and H3pp(z), although their
corresponding functions ;. 7(x), gr7(x), hyp(x), and
hspr(x) vanish due to the time-reversal invariance.

H. Integral relations in T-odd TMDs

If we integrate the kp-dependent correlation function
®(x,ky, T) over kg, the T-odd terms should vanish on
account of time-reversal invariance ([ A’k ®r_oqq = 0)
[34,38,58], so that the following sum rules should be satisfied:

/dszhlLT<ka%") =0,
dkrgrr(x, k%) =0,

/dszh’LL X, k ) O,

[ @ata(ei) o (57)
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In the twist-2, although the collinear PDF &, 7(x) vanishes,
its corresponding fragmentation function H,;;(z) exists as
noted in Ref. [25] as the function fzi. These T-odd terms are
proportional to (k7)° or (k;)? in the correlation functions
@[], The terms with (k;)! vanish and the term ky - Sy - ky
also vanishes after integrations, so there is no similar sum
rule for other TMDs. Similar sum rules exist for the TMDs
f17 and h in the spin-1/2 part as shown in Egs. (22) and (23)
of Ref. [38]. We may note that such a sum rule does not exist
for the fragmentation functions since the time-reversal
invariance cannot be imposed on the fragmentation func-
tions, which contain the out-state |P),, S,, X) in its definition
[25,34,40,59].

IV. SUMMARY

The possible TMDs were investigated for tensor-
polarized spin-1 hadrons by the complete decomposition
of the quark correlation function including the light cone
vector n in this work. We found the 32 new terms which
are dependent mainly on the vector n in decomposing the
correlation function, so that there are totally 40 indepen-
dent terms in the tensor-polarized correlation function.
Furthermore, the tensor-polarized TMDs were studied up to
twist-4 level for the spin-1 hadron, and the 40 TMDs are
found in association with the tensor polarization. There
exist ten TMDs in the twist-2 case. Due to the existence of
the new terms (Byg_sp), the twist-2 TMD expressions of
Frees Frors Giwrs Wiz, e, Iigp interms of the expansion
coefficients A; are modified. All the twist-3 and 4 TMDs
(the following 30 TMDs) on the tensor-polarized spin-1
hadron,

Twist-3 TMD:  fi7, er, fors fir €irs €irs frrs s
errs €rrs 9is 9urs i 9rrs 97> M
hirs iz, her, by,

Twist-4 TMD:  f311, f3Lrs f3rrs 9301 9377 h3LLL’ har,
hairs harr, hagrs

are new functions we found in this work. We also found
new sum rules for the TMDs as [ d*krg,r = [ d®krhy, =
f d*kyphs;;, = 0. Integrating these new TMDs, we found
the collinear PDFs,

Twist-3 PDF:  e;;, fir,

Twist-4 PDF:  f3;;,

in this work. In addition, we explained that the correspond-
ing transverse-momentum-dependent fragmentation func-
tions exist for the tensor-polarized spin-1 hadrons.

Recently, the T-odd TMDs attract considerable attention

since they are related to single spin asymmetries in the
proton reactions. The T-odd TMDs in the spin-1 deuteron
are also interesting to be investigated in future. Since there
are projects to investigate the structure functions of the
polarized spin-1 deuteron at JLab, Fermilab, NICA, and
EIC, we hope that these new structure functions will be
experimentally investigated in future.
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