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We show possible transverse-momentum-dependent parton distribution functions (TMDs) for spin-1
hadrons including twist-3 and twist-4 functions in addition to the leading twist-2 ones by investigating all
the possible decomposition of a quark correlation function in the Lorentz-invariant way. The Hermiticity
and parity invariance are imposed in the decomposition; however, the time-reversal invariance is not used
due to an active role of gauge links in the TMDs. Therefore, there exist time-reversal-odd functions in
addition to the time-reversal even ones in the TMDs. We list all the functions up to twist-4 level because
there were missing terms associated with the light cone vector n in previous works on the twist-2 part and
there was no correlation-function study in the twist-3 and twist-4 parts for spin-1 hadrons. We show that 40
TMDs exist in the tensor-polarized spin-1 hadron in twists 2–4. Some expressions of twist-2 structure
functions are modified from previous derivations due to the new terms with n, and we find 30 new structure
functions in twists 3 and 4 in this work. Since time-reversal-odd terms of the collinear correlation function
should vanish after integrals over the partonic transverse momentum, we obtain new sum rules for the time-
reversal-odd structure functions,

R
d2kTgLT ¼ R

d2kThLL ¼ R
d2kTh3LL ¼ 0. In addition, we indicate that

new transverse-momentum-dependent fragmentation functions exist in tensor-polarized spin-1 hadrons.
The TMDs are rare observables to find explicit color degrees of freedom in terms of color flow, which
cannot be usually measured because the color is confined in hadrons. Furthermore, the studies of TMDs
enable us not only to find three-dimensional structure of hadrons, namely, hadron tomography including
transverse structure, but also to provide unique opportunities for creating interesting interdisciplinary
physics fields such as gluon condensates, color Aharonov-Bohm effect, and color entanglement. The tensor
structure functions may not be easily measured in experiments. However, high-intensity facility such as the
Thomas Jefferson National Accelerator Facility, the Fermilab Main Injector, and future accelerators like
electron-ion collider may probe such observables. In addition, since the Nuclotron-based Ion Collider
fAcility focuses on spin-1 deuteron structure functions, there is a possibility to study the details of polarized
structure functions of the deuteron at this facility.

DOI: 10.1103/PhysRevD.103.014025

I. INTRODUCTION

It had been taken for granted that the proton spin consists
of three quark spins in the naive quark model. However, the
European Muon Collaboration experiment found that
the quark contribution accounts for only 20%–30%
of the proton spin [1], and the rest should be carried by

gluon-spin and partonic orbital-angular-momentum (OAM)
contributions [2]. In order to figure out the partonic OAM
contributions, one needs to study three-dimensional (3D)
structure functions which include generalized parton dis-
tributions (GPDs) [3], generalized distribution amplitudes
(GDAs or timelike GPDs) [4], and transverse-momentum-
dependent parton distributions (TMDs) [5].
The TMDs indicate the parton distributions as the

function of the partonic transverse momentum kT in
addition to the longitudinal momentum fraction x. The
color flow appears explicitly in the TMDs, although it does
not show up easily in other observables because of the color
confinement. They have interesting application to other
fields of physics, such as the gluon condensate [6], color
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Aharonov-Bohm effect [7,8], and color entanglement [9].
The TMD studies are new tools to investigate the color
degrees of freedom and to explore new interdisciplinary
fields beyond standard hadron physics.
The TMDs have been investigated for the spin-1=2

proton; however, spin-1 hadrons and nuclei such as the
deuteron have new interesting aspects due to the spin-1
nature. In the charged lepton scattering, there are four
collinear structure functions b1−4 in the deuteron in
addition to the ones for the nucleon [10,11]. Among them,
the leading-twist functions are b1 and b2, which are related
with each other by the Callan-Gross type relation 2xb1 ¼
b2 in the scaling limit Q2 → ∞. These structure functions
are expressed by tensor-polarized parton distribution func-
tions (PDFs). In addition, there is the gluon transversity
distribution [12] in the leading twist. For b1, there were
measurements by the HERMES Collaboration [13]; how-
ever, the magnitude and x dependence of b1 are very
different from conventional convolution calculations based
on a standard deuteron model with D-state admixture
[14,15]. Furthermore, the HERMES data indicated a finite
sum

R
dxb1ðxÞ ¼ ½0.35� 0.10ðstatÞ � 0.18ðsysÞ� [13],

which indicates a finite tensor-polarized antiquark distri-
bution according to the parton-model sum rule [16]R
dxb1ðxÞ ¼ −limt→0

5
24
tFQðtÞ þ

P
i e

2
i

R
dxδTq̄iðxÞ,

where FQðtÞ is the electric quadrupole form factor of the
hadron and δTq̄i is the tensor-polarized antiquark distribu-
tion. The first term vanishes, so that a finite sum of b1
indicates a finite tensor-polarized antiquark distribution.
The vanishing first term comes from the fact that the
valence-quark number does not depend on the tensor
polarization, whereas it depends on the flavor in the
Gottfried sum (1=3) [17].
Since the finite b1 sum indicates a new topic on tensor-

polarized antiquark distributions and the standard
convolution-model distribution for b1 is very different
from the HERMES data [14], a new high-energy spin
physics field could be foreseen by investigating tensor-
polarized structure functions. Experimentally, there is an
experimental proposal to measure b1 accurately measured
at Thomas Jefferson National Accelerator Facility (JLab)
[18] and tensor-polarized PDFs could be measured at
Fermilab by the SpinQuest (E1039) experiment [19] by
the proton-deuteron Drell-Yan (DY) process with the
tensor-polarized deuteron target [20]. The proton-deuteron
Drell-Yan formalism was given in Ref. [21], and tensor-
polarized spin asymmetries were estimated in Ref. [22]
based on the parametrization for the tensor-polarized PDFs
of Ref. [23]. There were also GPD studies on the spin-1
deuteron and ρ meson [24] and fragmentation-function
studies on spin-1 hadrons [25].
On the gluon transversity, there is an experimental

plan to measure it at JLab [12] and there is a possibility
to study it at Fermilab by using the proton-deuteron Drell-
Yan process with the linearly polarized deuteron [26].

Furthermore, there are possibilities at NICA (Nuclotron-
based Ion Collider fAcility) [27] and GSI-FAIR (Gesellschaft
für Schwerionenforschung-Facility for Antiproton and Ion
Research). Since the spin-1=2 proton and neutron in the
deuteron cannot contribute to the gluon transversity, it is an
appropriate quantity to find new hadron physics beyond the
simple bound system of the nucleons.
These b1 and gluon transversity distribution are collinear

functions as the function of x. In this work, we investigate
possible TMDs for spin-1 hadrons especially by consider-
ing the tensor polarization. The TMDs are generally
defined from the quark correlation function. The quark
correlation function and its relations to PDFs were inves-
tigated for the spin-1=2 nucleon in Refs. [28,29], and
additional terms were studied in Ref. [21] for the spin-1
deuteron. The quark TMD correlation function was decom-
posed into possible terms by considering Lorentz invari-
ance, Hermiticity, and parity conservation in Refs. [30,31]
for spin-1=2 proton, and then the TMDs were introduced by
integrating the correlation function over the minus com-
ponent of the quark light cone momentum.
Much progress has been made in the TMD studies

based on these works; however, it was found later that
the decomposition of the quark correlation function in
Refs. [21,28,30,31] was not complete. The quark correla-
tion function depends on the light cone vector n, which is
defined in Eq. (4), due to the gauge link or the Wilson line
Wð0; ξjnÞ which guarantees the color gauge invariance of
the correlation function [32–34] as defined later in Eqs. (2),
(6), and (8). The vector n specifies the direction along the
gauge link. The complete decomposition of the quark
correlation function was made by introducing 20 new
terms which are associated with the light cone vector n
for the spin-1=2 nucleon in Ref. [34]. Even though these
new terms in the correlation function do not give rise to
new TMDs at the leading-twist level, they bring new
observables in the semi-inclusive deep inelastic scattering
(SIDIS) which are expressed by the new twist-3 TMDs
[33]. The new terms in the correlation function also affect
relations of the collinear PDFs. For example, several
Lorentz invariance relations for the PDFs were obtained
[35] based on the decomposition of the quark correlation
function in Refs. [30,31], and these relations were modified
if one considered the complete decomposition of the
correlation function [32,36]. Moreover, the Wandzura-
Wilczek relation [37] was reinvestigated in Refs. [38,39],
it was found that the Wandzura-Wilczek relation was not
satisfied due to another new twist-3 term.
These additional terms due to nwere studied for the spin-

1=2 nucleon [34]. The purpose of this work is to derive new
TMDs associated with n for spin-1 hadrons up to the twist-
4 level. As for a stable spin-1 hadron or nucleus for
experiments, the deuteron is the most simple and stable
particle. It is known that there are additional structure
functions in the spin-1 deuteron in comparison with the
spin-1=2 nucleon, since both vector polarization and tensor
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polarization are available in the deuteron. The tensor
polarization does not exist for the spin-1=2 nucleon, and
it could be used to investigate new aspects in the deuteron.
The deuteron is a weakly bound state of proton and
neutron. However, the spin-1=2 proton and neutron do
not contribute directly to the tensor structure, which is
an interesting aspect in studying the deuteron’s tensor
polarizations.
As for theoretical studies, the spin-1 TMDs were inves-

tigated in Refs. [21,40,41] and T-even TMDs were calcu-
lated in an effective hadron model for the ρ meson [42].
However, the terms associated with the light cone vector n
were not included in the decomposition of the quark-quark
correlation function in Ref. [40]. Since these new terms
could have a significant impact on the structure-function
studies in the spin-1 hadrons, we show the complete
decomposition of the quark correlation function for the
spin-1 hadrons in this paper. In this paper, the transverse-
momentum-dependent quark correlation function and par-
ton distribution functions are explained in Sec. II. Next,
possible TMDs are obtained by decomposing the quark
correlation function in Sec. III. Then, our studies are
summarized in Sec. IV.

II. TRANSVERSE-MOMENTUM-DEPENDENT
PARTON DISTRIBUTION FUNCTIONS

In this section, we introduce the TMDs and discuss
motivations for investigating the TMDs. First, the three-
dimensional structure functions are explained as a field of
hadron tomography from generalized TMDs and Wigner
functions as generating functions in Sec. II A. The quark
correlation function is introduced with proper gauge
links, which play an important role in the TMD physics
in Sec. II B. We show that the color flows, expressed by the
gauge links, are different in the SIDIS and DY processes.
This fact leads to the sign change in the time-reversal-odd
quark TMDs. The time-reversal properties of the quark
correlation function are discussed in Sec. II C.

A. Hadron tomography by three-dimensional
structure functions

Until recently, hadron structure had been investigated by
electromagnetic form factors and parton distribution func-
tions (PDFs). However, recent studies focus on 3D aspects
including the transverse structure in addition to the longi-
tudinal one along the hadron-momentum direction. The 3D
structure studies were originally motivated for finding the
origin of nucleon spin including the partonic orbital-
angular momenta (OAM). The OAM contribution to the
nucleon spin should be probed by one of 3D structure
functions, especially the GPDs. However, the hadron
tomography, namely, the 3D structure of hadrons, has
deeper meaning in the sense that it could probe gravita-
tional form factors of hadrons without relying on explicit
graviton interactions [4]. The hadron tomography has

been investigated by three types of structure functions,
TMDs, GPDs, and GDAs (or timelike GPDs). They are
obtained from the generating functions called generali-
zed transverse-momentum-dependent parton distributions
(GTMDs) and the Wigner functions as illustrated in Fig. 1.
The TMDs are obtained by taking the forward limit Δ → 0,
where Δ is the momentum transfer from the initial hadron to
the final one (Δ ¼ P0 − P), and the GPDs are obtained by
integrating the GTMDs over the parton’s transverse momen-
tum k⃗T . TheGDAs are related to theGPDsby the s-t crossing,
where s and t are Mandelstam variables.

B. Quark correlation functions and color flow

The TMDs and collinear PDFs are defined from the
quark correlation function

Φ½c�
ij ðk; P; S; TÞ ¼

Z
d4ξ
ð2πÞ4 e

ik·ξ

× hP; S; Tjψ̄ jð0ÞW½c�ð0; ξÞψ iðξÞjP; S; Ti;
ð1Þ

which is illustrated in Fig. 2. It may be denoted as Φ½c�
q=H;ij

with q ¼ u; d; s;…, but we abbreviated the notations on the
quark flavor q and the hadronH. The correlation function is
related to the amplitude to extract a parton from a hadron
and then to insert it into the hadron at a different spacetime
point ξ. Here, ψ is the quark field, ξ is a four-dimensional
space-time coordinate, k and P are the quark and hadron
momenta, S and T are vector and tensor polarizations of the

FIG. 1. Three-dimensional structure functions (TMD, GPD,
GDA) from the generalized transverse-momentum-dependent
parton distribution (GTMD) and the Wigner function, together
with the form factor and parton distribution function.

FIG. 2. Quark correlation function Φ with the quark (hadron)
momentum k (P) and the hadron vector and tensor polarizations S
and T, respectively.
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hadron, andW½c�ð0; ξÞ is called the gauge link or the Wilson
line so as to satisfy the color gauge invariance. It is defined
by the path-ordered exponential (P)

W½c�ð0; ξÞ ¼ P exp

�
−ig

Z
ξ

0;c
dξ · AðξÞ

�
: ð2Þ

The gauge link indicates gluon interactions between quarks
for satisfying the gauge invariance. Here, c indicates the
integral path, and AμðξÞ is AμðξÞ ¼ Aa

μðξÞta by including
the SU(3) generator ta expressed by the Gell-Mann matrix
λa as ta ¼ λa=2 with the color index a. The antiquark
correlation function is defined in the same way [26].
The TMDs and collinear PDFs for quarks are then given

by the quark correlation functions as [26]

Φ½c�ðx; kT; P; S; TÞ ¼
Z

dkþdk−Φ½c�ðk; P; S; TjnÞ

× δðkþ − xPþÞ;

Φðx; P; S; TÞ ¼
Z

d2kTΦ½c�ðx; kT; P; S; TÞ; ð3Þ

where kT is the quark transverse momentum, Φ½c�ðx; kT;
P; S; TÞ is the transverse-momentum-dependent correlation
function which is related later to the TMDs, and
Φðx; P; S; TÞ is the collinear correlation function. The light
cone � momenta are defined by a� ¼ ða0 � a3Þ= ffiffiffi

2
p

, and
the light cone vectors n and n̄ are given by

nμ ¼ 1ffiffiffi
2

p ð1; 0; 0;−1Þ; n̄μ ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ: ð4Þ

The integral path depends on the light cone direction n−,
which is explicitly shown as the n dependence in Eq. (3).
We note that there is no link-path dependence c in the
collinear correlation functionΦðx; P; S; TÞ as shown in this
section. From Eqs. (1) and (3), the transverse-momentum-
dependent correlation function is expressed as

Φ½c�
ij ðx; kT; P; S; TÞ

¼
Z

dξ−d2ξT
ð2πÞ3 eik

þξ−−ik⃗T ·ξ⃗T

× hP; S; Tjψ̄ jð0ÞW½c�ð0; ξjnÞψ iðξÞjP; S; Tiξþ¼0; ð5Þ

with the plus light cone momentum kþ ¼ xPþ by taking
the hadron momentum direction as the third axis.
The details of the gauge link for the SIDIS are, for

example, explained in Ref. [43]. Resummations of proc-
esses with intermediate gluons, as typically shown in Fig. 3,
lead to the gauge link [5,43–46]. Here, the gauge link
W½c�ð0; ξjnÞ for the TMD correlation function in the SIDIS
process (c ¼ þ) is given by

W½þ�ð0; ξjnÞ ¼ ½0; 0⃗T ;∞; 0⃗T �½∞; 0⃗T ;∞; ξ⃗T �
× ½∞; ξ⃗T ; ξ−; ξ⃗T �ξþ¼0: ð6Þ

Here, the notation ½a−; a⃗T ; b−; b⃗T � (or doted as Wða; bjnÞ)
indicates the gauge line connecting a ¼ ðaþ ¼ 0; a−; a⃗TÞ
to b ¼ ðbþ ¼ 0; b−; b⃗TÞ along the straight light cone
direction of ξ− (namely, plus direction of n−), and
½a−; a⃗T ; b−; b⃗T � (Wða; bjξ⃗TÞ) is the link along the transverse
direction ξ⃗T ,

Wða; bjnÞ ¼ ½a−; a⃗T ; b−; b⃗Tð¼ a⃗TÞ�

≡ P exp

�
−ig

Z
b−

a−
dξ−AþðξÞ

�
ξþ¼aþ¼bþ
ξT¼a⃗T¼b⃗T

;

Wða; bjξ⃗TÞ ¼ ½a−; a⃗T ; b−ð¼ a−Þ; b⃗T �

≡ P exp
�
−ig

Z
b⃗T

a⃗T

dξ⃗T · A⃗TðξÞ
�
ξ�¼a�¼b�

: ð7Þ

The superscript ½þ� of W½þ� in Eq. (6) indicates the integral
path along the plus direction in the coordinate ξ− in the first
link step. The final expression for the link path of Eq. (6) is
shown in (a) of Fig. 4. The path c ¼ þ consists of the three
gauge links. The path dependence of the gauge link is
important in TMD physics, as we show the difference
between the TMDs of the SIDIS and the Drell-Yan process
in the following.
A typical Drell-Yan process H1 þH2 → γ� þ X

(γ� → μ−μþ) with an intermediate gluon is shown in
Fig. 5. We note that the gluon exchange occurs in the
initial state, whereas it does in the final state in the SIDIS
[47] as shown in Fig. 3. It leads to the path difference in the

FIG. 3. A typical semi-inclusive DIS process γ� þH → hþ X
(l → γ�l0, l ¼ e or μ) with a gluon interaction in the final state.

(a) (b)

FIG. 4. Gauge link for (a) semi-inclusive DIS with the spacelike
correlation function Φ½þ� and (b) Drell-Yan process with the
timelike correlation function Φ½−�.
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gauge link and subsequently in the sign difference in both
TMDs. The cross sections of these SIDIS and Drell-Yan
processes are calculated [5,43,46], and it was found that the
color flows in the opposite light cone direction between the
SIDIS and Drell-Yan processes. Therefore, the gauge link
for the Drell-Yan process (c ¼ −) is given by

W½−�ð0; ξjnÞ ¼ ½0; 0⃗T ;−∞; 0⃗T �½−∞; 0⃗T ;−∞; ξ⃗T �
× ½−∞; ξ⃗T ; ξ−; ξ⃗T �ξþ¼0; ð8Þ

as shown in Fig. 4(b). We notice that the gauge links of the
SIDIS and Drell-Yan are opposite in the ξ− direction, which
results in the sign change in the time-reversal-odd TMDs as
shown in Eq. (16). The superscript ½−� indicates the integral
path of the first link step along the minus direction in the
coordinate ξ−.
If the transverse momentum is integrated as in Eq. (3),

the collinear correlation function of Eq. (5) becomes

Φijðx; P; S; TÞ

¼
Z

dξ−

2π
eixP

þξ−

× hP; S; Tjψ̄ jð0ÞWð0; ξjnÞψ iðξÞjP; S; Tiξþ¼0;ξ⃗T¼0
; ð9Þ

where kþ ¼ xPþ is used. Since the gauge link is the
straight line from ξ− ¼ 0 to ξ− with ξþ ¼ 0 and ξ⃗T ¼ 0,

these collinear functions are not dependent on the gauge-
link path like the TMDs and a process-dependent relation
like Eq. (16) does not exist. The color flow can be probed
only if transverse-momentum-dependent observables are
investigated.

C. Existence of time-reversal-odd structure functions
and their color-flow dependence

Here, we show properties of the TMD correlation
function under the time reversal for defining time reversal
even and odd functions. However, one should note that the
existence of the time-reversal-odd functions does not mean
the violation of the time-reversal invariance as explained in
this subsection.
The parity and time reversal mean the transformations of

the space-time coordinate as

Parity∶ xμ ¼ ðt; x⃗Þ → ðt;−x⃗Þ;
Time reversal∶ xμ ¼ ðt; x⃗Þ → ð−t; x⃗Þ: ð10Þ

The parity (P) is a unitary operator and the time-reversal (T)
is an antiunitary one [48,49]. The antiunitary means anti-
linear with the unitarity. Namely, it satisfies the relations

Antilinear∶TðajAiþbjBiÞ ¼ a�TjAiþb�TjBi;
Hermite conjugate∶ hAjT†jBi ¼ hTAjBi�; ð11Þ

where the definition of the Hermite conjugate is different
from the usual definition hAjO†jBi ¼ hOAjBi for the linear
operator O. The momentum (P), spin (S), and tensor (T)
transform under parity and time-reversal transformations as
shown in Table I, where P̄μ and T̄μν are defined by

P̄μ ≡ ðP0;−P⃗Þ ¼ gμαPα; T̄μν ¼ gμαgνβTαβ: ð12Þ

Under the parity and time reversal, the transformations of the
quark field ψðξÞ and the gluon field AμðξÞ [43,50,51] are

FIG. 5. A typical Drell-Yan process H þH0 → γ� þ X
(γ� → μ−μþ) with a gluon interaction in the initial state.

TABLE I. Properties under Hermite, parity, and time-reversal transformations. The spin S, tensor T, and light cone vector n are
abbreviated in Φ½��ðx; kTÞ for simplicity because their transformations are shown in Φðk; P; S; TjnÞ. The charge conjugation is
C ¼ iγ2γ0 so that the time-reversal factor is T ¼ −iγ5C ¼ iγ1γ3. The time-reversal invariance condition is not imposed for the
correction functions due to the gauge link; however, we show the time-reversal properties in this table to understand the T-even and odd
properties in our formalism.

Quantity Hermite Parity Time reversal

Pμ P̄μ P̄μ

Sμ −S̄μ S̄μ

Tμν T̄μν T̄μν

ψðξÞ PψðξÞP† ¼ γ0ψðξ̄Þ TψðξÞT† ¼ ð−iγ5CÞψð−ξ̄Þ
AμðξÞ A†

μðξÞ ¼ AμðξÞ PAμðξÞP† ¼ Āμðξ̄Þ TAμðξÞT† ¼ Āμð−ξ̄Þ
Wða; bÞ W†ða; bÞ ¼ Wðb; aÞ PWða; bÞP† ¼ Wðā; b̄Þ TWða; bÞT† ¼ Wð−ā;−b̄Þ
Φðk; P; S; TjnÞ Φ†ðk; P; S; TjnÞ ¼ γ0Φðk; P; S; TjnÞγ0 Φðk; P; S; TjnÞ ¼ γ0Φðk̄; P̄;−S̄; T̄jn̄Þγ0 Φ�ðk; P; S; TjnÞ ¼ ð−iγ5CÞΦðk̄; P̄; S̄; T̄jn̄Þð−iγ5CÞ
Φ½��ðx; kTÞ Φ½��†ðx; kTÞ ¼ γ0Φ½��ðx; kTÞγ0 Φ½��ðx; kTÞ ¼ γ0Φ½��ðx; k̄TÞγ0 Φ½���ðx; kTÞ ¼ ð−iγ5CÞΦ½∓�ðx; k̄TÞð−iγ5CÞ
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shown in Table I, together with the Hermite conjuga-
tion for AμðξÞ. Here, the charge conjugation C is given by
C ¼ iγ2γ0, so that the overall factor is T ¼ −iγ5C ¼ iγ1γ3.
From the transformations of the gluon field, the gauge

link Wða; bÞ should have the transformations in Table I.
These relations mean that the link paths are changed due to
the space-time coordinate changes a; b → ā; b̄ (or −ā;−b̄)
[43,52]. The γ0 factors, for example, in the Hermiticity
relation are obtained simply by taking the Hermite con-
jugate of the correlation function in Eq. (1). The trans-
formations for the TMD correlation function Φ½��ðx; kTÞ
are then given in Table I, so that the time reversal trans-
forms Φ½þ� to Φ½−� and vice versa. The T-even and T-odd
TMD functions are then defined by

Φ½T-even�ðx; kTÞ ¼
1

2
½Φ½þ�ðx; kTÞ þΦ½−�ðx; kTÞ�;

Φ½T-even�ðx; kTÞ ¼
1

2
½Φ½þ�ðx; kTÞ −Φ½−�ðx; kTÞ�: ð13Þ

If the transverse moment Φ½��μðxÞ is defined by

Φ½��μ
∂ ðxÞ ¼

Z
d2kTk

μ
TΦ½��ðx; kTÞ; ð14Þ

they are given by the T-odd quark-gluon correlation

function Φ½T-odd�μ
G ðx; xÞ as [43]

Φ½��μ
∂ ðxÞ ¼ Φ½T-even�μ

∂ ðxÞ � πΦ½T-odd�μ
G ðx; xÞ: ð15Þ

These different link paths give rise to sign differences in the
time-reversal-odd TMD functions. The second term of this

equation (Φ½T-odd�μ
G ) comes from the soft gluon (kþg ¼ 0) and

it is called gluonic-pole matrix. It suggests that the single
spin asymmetries, such as the Sivers effect, originate from
this term, as proposed by Qiu and Sterman [53]. Here, the
Sivers function is one of the TMDs and it indicates the
difference between a unpolarized quark distribution in
the nucleon polarized transversely to its momentum and
the one with opposite polarization. The T-odd TMDs exist
in the single spin asymmetries in SIDIS by the form

Φ½þ�μ
∂ ðxÞ and in the Drell-Yan by Φ½−�μ

∂ ðxÞ [43]. This
fact leads to the sign change in the T-odd quark TMD
functions [54],

fSIDISðx; k2TÞT-odd ¼ −fDYðx; k2TÞT-odd: ð16Þ

The difference comes from the fact that the color inter-
actions are in the final state for the SIDIS and in the initial
state for the Drell-Yan as shown in Figs. 3 and 5, res-
pectively. It leads to the difference on the color-flow path
between Eqs. (6) and (8).
The color is confined in hadrons, so that the color

degrees of freedom usually does not appear explicitly in
physical observables. However, depending on the color-flow

direction, the T-odd TMDs are different in sign. The TMD
case is a rare and special occasion to investigate the color
flow, namely, the color degrees of freedom, in hadron
physics. It was predicated theoretically that the TMDs
are different in sign between the SIDIS and the Drell-
Yan process. In fact, there are already experimental
indications on this new phenomenon in the Sivers
functions. About the experimental signatures on the sign
change in the TMDs, it was suggested in the spin
asymmetry of the reaction p⃗þ p → W�=Z0 þ X by the
STAR Collaboration [55] and the spin asymmetry of π− þ
p⃗ → μþμ− þ X by the COMPASS Collaboration [56].
Further confirmations on these effects are needed by
future accurate experiments.

III. RESULTS ON TMDS FOR
TENSOR-POLARIZED
SPIN-1 HADRONS

We derive possible quark TMDs for tensor-polarized
spin-1 hadrons in this section by the decomposition of the
quark correlation function in terms of kinematical factors in
the Lorentz-invariant manner. In particular, we find new
terms associated with the light cone vector n in this work.
First, we try to obtain all the possible terms in the expansion
of the quark TMD correlation function in Sec. III A by
considering a tensor-polarized spin-1 hadron. Then, proper-
ties of each expansion term are discussed on Hermiticity,
parity, time reversal, chirality, and twist in Sec. III B. Next,
our guideline is explained for assigning various TMD
notations in Sec. III C, and we show possible twist-2, 3,
and 4 quark TMDs in Secs. III D, III E, and III F, respec-
tively. A brief summary is given on the new TMDs and
possible new fragmentation functions are explained in
Sec. III G. The new terms associated with n modify the
relations in the twist-2 TMDs, which were obtained in the
previous work [40]. In addition, we show that there are new
twist-3 and 4 TMDs in this work.

A. Decomposition of quark correlation function

For spin-1=2 nucleon, the spin density matrix is para-
metrized with the spin vector which contains three param-
eters. However, due to the spin-1 nature, the spin density
matrix of the spin-1 hadron, such as the deuteron, is
determined by spin tensor in addition to the spin vector.
There are five parameters in the spin tensor part, and the
spin-vector part of spin-1 hadron is the same as the one of
the spin-1=2 nucleon.
For expressing polarizations of the spin-1 hadron, its

density matrix is given by spin vector and tensor terms
as [26,40]

ρ ¼ 1

3

�
1þ 3

2
SiΣi þ 3TijΣij

�
: ð17Þ
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Here, Σi are 3 × 3 spin matrices for the spin-1 hadron, and
Σij are spin tensors defined by Σij ¼ ðΣiΣj þ ΣjΣiÞ=2 −
ð2=3ÞIδij with the 3 × 3 identity matrix I. The spin vector
and tensor are parametrized as

S ¼ ðSxT; SyT; SLÞ;

T ¼ 1

2

0
BB@

− 2
3
SLL þ SxxTT SxyTT SxLT
SxyTT − 2

3
SLL − SxxTT SyLT

SxLT SyLT
4
3
SLL

1
CCA ð18Þ

in the rest frame of the spin-1 hadron. The parameters SxT
and SyT indicate transverse polarizations of the hadron, and
SL does the longitudinal polarization. The parameter SLL
indicates the tensor polarization along the longitudinal axis
as shown in Ref. [40], and Sx;yLT (Sxx;xyTT ) indicate polarization
differences along the axes between the longitudinal and
transverse directions (along the transverse axes). The linear
polarizations are parts of the tensor polarizations. These
tensor and linear polarizations are schematically shown in
the Appendix of Ref. [40].
The covariant forms of Sμ and Tμν of a spin-1 hadron are

generally expressed as [22,40]

Sμ ¼ SL
Pþ

M
n̄μ − SL

M
2Pþ nμ þ SμT;

Tμν ¼ 1

2

�
4

3
SLL

ðPþÞ2
M2

n̄μn̄ν −
2

3
SLLðn̄fμnνg − gμνT Þ

þ 1

3
SLL

M2

ðPþÞ2 n
μnν þ Pþ

M
n̄fμSνgLT

−
M
2Pþ nfμSνgLT þ SμνTT

�
; ð19Þ

where afμbνg indicates the symmetrized combination
afμbνg ¼ aμbν þ aνbμ, and M is the hadron mass.
The general expression of the correlation function

Φðk; P; S; TÞ contains three parts: unpolarized, vector-
polarized, and tensor-polarized terms. The unpolarized
and vector-polarized distributions in the spin-1 hadron
are exactly the same as the relevant ones in the spin-1=2
nucleon; however, we briefly explain past studies on the
quark correlation function for the nucleon. First, the quark
correlation function was decomposed into nine terms by
imposing Hermiticity, parity invariance, and time-reversal

invariance in Ref. [29]. Then, the quark TMD correlation
function was decomposed in Refs. [30,31] by introducing
T-odd terms, and there are 12 terms with coefficients
denoted as A1 − A12. This decomposition was constructed
with the vectors P, S, and k.
However, this decomposition was not complete because

the quark correlation function depends on the vector n
through the gauge link Wð0; ξjnÞ. Therefore, the addi-
tional terms which depend on n were investigated in
Refs. [32–34,38,39], and 20 new terms were found and
they are denoted as B1 − B20. Therefore, there are 32 terms
in total for the quark correlation function in the spin-1=2
nucleon. These new terms of n are important for under-
standing all the TMDs, collinear PDFs, and their relations.
Relations among the PDFs were derived by using the
Lorentz invariant decomposition of the correlation func-
tion, so that they were often called “Lorentz-invariance
relations” [35]. These relations were modified due to the
existence of these new terms [32,36]. Furthermore, another
new twist-3 term appeared and it invalidated the Wandzura-
Wilczek relation of the twist-2 level [38,39]. On the other
hand, these new terms also introduced new TMDs such as
e⊥T ðx; k2TÞ, f⊥T ðx; k2TÞ, and g⊥ðx; k2TÞ for the nucleon [32–34,
38]. The unpolarized and vector polarized terms in the
quark correlation function of the spin-1 hadron are the same
as the ones in the nucleon, and these 32 terms had been
already studied [32,38].
In this work, we focus on the tensor-polarized part which

does not exist in the spin-1=2 nucleon. The quark TMD
correlation function of a spin-1 hadron was investigated in
Ref. [21] by adding T-even terms to the nine terms in the
nucleon case [29]. The T-odd terms should be also
considered together with proper tensor polarizations
[40], so that there are eight new terms in total in the tensor
part, where the relevant coefficients were named as
A13–A20. On the collinear PDFs of a spin-1 hadron, there
are also studies in possible hadron-tensor terms, helicity
amplitudes, and operator forms [11,12,57].
However, the terms with the vector n, which are found

for the spin-1=2 nucleon, need to be added also in the
formalism of the spin-1 hadron, namely, in the tensor-
polarization part. We formulate these new terms in this
work to find possible TMDs. Including these n terms, we
express the tensor part of quark correlation function
Φðk; P; TjnÞ for the spin-1 hadron as

Φðk;P;TjnÞ ¼ A13

M
Tkk þ

A14

M2
Tkk=PþA15

M2
Tkk=kþ

A16

M3
σPkTkk þA17Tkνγν þ

A18

M
σνPTkν þA19

M
σνkTkν

þA20

M2
εμνPkγμγ5Tνk þ

B21M
P · n

Tkn þ
B22M3

ðP · nÞ2 Tnn þ
B23

P · nM
εμkPnTμkðiγ5Þ þ

B24M
ðP · nÞ2 ε

μkPnTμnðiγ5Þ þ
B25

P · n
=nTkk

þ B26M2

ðP · nÞ2=nTkn þ
B27M4

ðP · nÞ3=nTnn þ
B28

P · n
=PTkn þ

B29M2

ðP · nÞ2=PTnn þ
B30

P · n
=kTkn þ

B31M2

ðP · nÞ2=kTnn þ
B32M2

P · n
γμTμn
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þ B33

P · n
εμνPkγμγ5Tνn þ

B34

P · n
εμνPnγμγ5Tνk þ

B35M2

ðP · nÞ2 ε
μνPnγμγ5Tνn þ

B36

P · nM2
εμkPnγμγ5Tkk

þ B37

ðP · nÞ2 ε
μkPnγμγ5Tkn þ

B38M2

ðP · nÞ3 ε
μkPnγμγ5Tnn þ

B39

ðP · nÞ2 =nγ5Tμkε
μkPn þ B40M2

ðP · nÞ3 =nγ5Tμnε
μkPn

þ B41

P · nM
σPkTkn þ

B42M
ðP · nÞ2 σPkTnn þ

B43

P · nM
σPnTkk þ

B44M
ðP · nÞ2 σPnTkn þ

B45M3

ðP · nÞ3 σPnTnn þ
B46

P · nM
σknTkk

þ B47M
ðP · nÞ2 σknTkn þ

B48M3

ðP · nÞ3 σknTnn þ
B49M
P · n

σμnTμk þ B50M3

ðP · nÞ2 σμnT
μn þ B51M

P · n
σμPTμn þ B52M

P · n
σμkTμn; ð20Þ

where the notation Xμk ≡ Xμνkν is used for brevity with the
tensor X as σμν ¼ i½γμ; γν�=2, Tμν, or the antisymmetric
tensor εμναβ, and k could be replaced by n or P. We listed
only the tensor terms proportional to the tensor polarization
Tμν in Eq. (19). Here, we use the convention ε0123 ¼ þ1 so
as to agree with expressions in Ref. [40]. In deriving this
equation, the Hermiticity and parity-invariance relations in
Table I are imposed for the correlation function; however,
the time-reversal invariance is not a necessary condition
due to the existence of the gauge link.
The first eight terms (A13–A20) were already obtained in

Ref. [40], and they generated all the leading-twist TMDs.
There are 40 terms in the tensor part of the quark correlation
function, and 32 of them (B21–B52) are dependent on the
vector n. Therefore, the new terms, which we found in this
work, are these 32 terms B21–B52.
In general, the coefficients Ai (i ¼ 1–20) and Bi

(i ¼ 1–52) depend on the scalars k · P, k2, P · n, and
k · n. In order to keep Φðk; P; TjnÞ invariant when the
vector n is replaced by λn as a scale change, Ai and Bi

should be functions of k2 and the ratios, k · n=P · n and
k · P [39]. The quark and hadron momenta k and P are
expressed by two lightlike vectors n and n̄ as

Pμ ¼ Pþn̄μ þ M2

2Pþ nμ;

kμ ¼ xPþn̄μ þM2ðσ − xÞ
2Pþ nμ þ kμT; ð21Þ

where k2Tð¼ −k⃗2TÞ, σ, and τ are given by

k2T ¼ ðτ þ x2 − xσÞM2; σ ≡ 2k · P
M2

; τ≡ k2

M2
:

ð22Þ

Here, x is the light cone momentum fraction carried by
the quark.
The kT-dependent correlation function is obtained by

integrating Φðk; P; TjnÞ over k−,

Φðx; kT; TÞ ¼
Z

dk−ΦðP; k; TjnÞ: ð23Þ

The TMD correlation function Φðx; kT; TÞ is used to
describe the hard processes such as the semi-inclusive
DIS and Drell-Yan process. Using the TMD correla-
tion function of Eq. (23), we define the trace of TMD
function by

Φ½Γ�ðx; kT; TÞ≡ 1

2
Tr½Φðx; kT; TÞΓ�; ð24Þ

where Γ is a gamma matrix. We reiterate that this correction
function is only for the tensor-polarization (T) part, and the
unpolarized and vector-polarized (S) terms are not included
because they have been already investigated in previous
works [34,38].

B. Properties of Hermiticity, parity,
time reversal, chirality, and twist

Each term of the expansion in Eq. (20) satisfies the
Hermiticity and parity invariance in Table I. The time-
reversal invariance is not imposed because of the active role
of the gauge link in the TMDs.We explain the details on the
conditions of Hermiticity, parity invariance, time-reversal
invariance, chirality, and twist in the following.

1. Hermiticity

The Hermiticity condition Φ†ðV;A;TÞ¼ γ0ΦðV;A;TÞγ0,
where V is a Lorentz vector, A is an axial vector, and T is a
tensor, is satisfied because of the relations ðΓÞ† ¼ γ0Γγ0 by
taking Γ as

1; γμ; γμγ5; iγ5; σμν; ð25Þ

where 1 is the 4 × 4 identity matrix.

2. Parity invariance

The parity-invariance relation indicates ΦðV; A; TÞ ¼
γ0ΦðV̄;−Ā; T̄Þγ0, which is satisfied, for example, because
of the relation γ0=̄Vγ0 ¼ =V for the vector Vμ and
γ0ð−γ5=̄AÞγ0 ¼ γ5=A for the axial vector Aμ. We may note
that the term εμXYZ ¼ εμναβXνYαZβ is an axial vector, so
that γ5γμε

μXYZ and iγ5εVXYZ terms satisfy the parity
invariance. Here, X, Y, and Z are Lorentz vectors. In fact,
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we have the relation γ0ðiγ5εV̄ X̄ Ȳ Z̄Þγ0 ¼ iγ5εVXYZ. How-
ever, the pseudoscalar term iγ5 is not allowed due to the
relation γ0ðiγ5Þγ0 ¼ −iγ5. In the same way, the pseudo-
scalar term εVXYZ is not allowed. The term εAXYZ with the
axial vector Aμ exists because of γ0ðεð−ĀÞX̄ Ȳ Z̄Þγ0 ¼ εAXYZ.
The term σXY ¼ σμνXμYν is allowed under the parity
invariance because of γ0σX̄ Ȳγ0 ¼ σXY , so that various
σμν terms exist in Eq. (20). These discussions are summa-
rized as the properties under the parity transformation,

P-even∶ 1; =V; γ5=A; iγ5V · A; iγ5εVXYZ; γ5γμεμXYZ;

γμε
μXYZ; εAXYZ; σXY; iγ5σAX; � � � ;

P-odd∶ iγ5; =A; εVXYZ; γμεμXYZ; σAX; iγ5σXY;…: ð26Þ
Since the parity invariance is imposed in the correlation

function, the parity-odd terms do not appear in Eq. (20).

3. Time reversal

The time-reversal property is given in Table I as
Φ�ðV; A; TÞ ¼ T ΦðV̄; Ā; T̄ÞT −1 where T ¼ −iγ5C ¼
iγ1γ3 ¼ T † ¼ T −1 ¼ −T � [50]. Because of the γ-matrix
relation T γμT −1 ¼ γμT ¼ γ̄μ�, the term =V ¼ Vμγ

μ satisfies
the time-reversal relation T =̄VT −1 ¼ =V�, so that it is called
T-even term. In the same way, the scalar term (1 without a γ
matrix) and the other ones (γ5=A, γ5=V, iγ5εVXYZ, iγ5σAX)
satisfy the time-reversal-invariance relation, and they are
T-even terms. We may note that the imaginary i exists as
iγ5, whereas it does not exist in γ5γ

μ, because of the
Hermiticity requirement Φ† ¼ γ0Φγ0.
However, the time-reversal relation is not satisfied for the

terms with σXY , εVXYZ, and the others. For example, since
the tensor σμν has the property T σμνT −1 ¼ −ðσ̄μνÞ� under
the time reversal, the term σXY has the relation T σX̄ ȲT −1 ¼
−ðσXYÞ� with the negative sign. This relation is same for the
iγ5σXY term. Therefore, they are called T-odd terms due to
the negative sign. They are summarized as follows:

T-even∶ 1; =V; γ5=A; iγ5εVXYZ; iγ5σAX;…;

T-odd∶ iγ5; σXY; iγ5σXY; iγ5V · A; εVXYZ;

γμε
μXYZ; γ5γμεμXYZ;…: ð27Þ

Among them, the terms iγ5, iγ5σXY , εVXYZ, and γμεμXYZ are
ruled out by the parity invariance, so that they do not appear
in Eq. (20). From this time-reversal classification, the
expansion terms of Eq. (20) have the T-even and T-odd
properties as

T-even terms∶ A13−15; A17; B21−32;

T-odd terms∶ A16; A18−20; B33−52: ð28Þ
Just in case, we also list the time-reversal properties in the
unpolarized and vector polarization cases in Ref. [34] as

T-even terms∶ A1−3; A6−11; B1; B11−20;

T-odd terms∶ A4−5; A12; B2−10: ð29Þ

4. Chirality

The TMDs and PDFs are also classified by the chiral
property. Structure functions of a hadron are given by the
imaginary part of forward scattering amplitudes by the
optical theorem, so that the TMDs and PDFs are expressed
by parton-hadron forward scattering amplitudes in Fig. 2.
The quark transversity distribution h1 (or denoted as ΔTq)
is associated with the quark spin-flip (λi ¼ þ, λf ¼ −)
amplitude, so that it is called a chiral-odd distribution. This
distribution is defined by the matrix element with the γ
matrix term, iγ5σμν, as shown in Eq. (12) of Ref. [26]. At
high energies, the helicity is conserved for the vector (γμ)
and axial-vector (γ5γμ) interactions. We define the right-
handed and left-handed fermion states as ψR¼1=2ð1−γ5Þψ
and ψL ¼ 1=2ð1þ γ5Þψ , which correspond to the helicity
þ1 and −1 states, respectively, at high energies where the
fermion masses are neglected. For example, the relation
ψ̄γμψ ¼ ψ̄Lγ

μψL þ ψ̄Rγ
μψR is satisfied due to the anticom-

mutation relation fγ5; γμg ¼ 0 and there is no cross term like
ψ̄Lγ

μψR. This relation is also the same for the axial vector
current γ5γμ. These facts suggest that the quark helicities
should be conserved in high-energy strong, electromagnetic,
and weak interactions. However, the situation is different in
terms with even number of γ matrices. The helicity is not
conserved for scalar (1), axial (γ5), tensor σμν, and axial-
tensor (iγ5σμν) terms. For example, the relation becomes
ψ̄1ψ ¼ ψ̄LψR þ ψ̄RψL. Therefore, the chiral-even and odd γ
matrices are classified as

χ-even∶ γμ; γ5γμ;

χ-odd∶ 1; iγ5; σμν; iγ5σμν: ð30Þ

Using this classification on the chiral property, we obtain the
chiral-even and chiral-odd terms of Eq. (20) as

χ-even terms∶ A14−15; A17; A20; B25−40;

χ-odd terms∶ A13; A16; A18−19; A21−24; B41−52: ð31Þ

The chiral properties in the unpolarized and vector polari-
zation cases in Ref. [34] are also listed as

χ-even terms∶ A2−3; A6−8; A12; B1; B4; B7−14;

χ-odd terms∶ A1; A4−5; A9−11; B2−3; B5−6; B15−20: ð32Þ

5. Twist of the TMDs

Let us take the frame where the hadron’s longitudinal
momentum is much larger than the hadron mass, namely,
Pþ ≫ M, by taking the hadron momentum direction as the
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third axis as given in Eq. (21), and then consider the
charged-lepton deep inelastic scattering from the hadron.
This frame could correspond to the center-of-momentum
frame between the virtual photon emitted from the lepton
and the hadron. Then, Pþ is related to the scale Q2 by the
relation Pþ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=ð2xð1þ xÞÞ

p
∼OðQÞ by neglecting the

hadron mass.
In the operator-product expansion, the structure func-

tions are classified by the twist, which is the operator mass
dimension minus the operator spin [57]. This twist controls
the scaling behavior of the structure functions as Q2

becomes larger. The leading-twist is two and the lead-
ing-twist structure functions or the TMDs in this work have
scaling behavior with the order ofOð1Þ, and the twist-3 and
4 ones are Oð1=QÞ and Oð1=Q2Þ, respectively. Because of
Pþ ∼OðQÞ, the leading twist-2 TMDs are defined in the
TMD correlation functions as the terms of Oð1Þ as shown
in Sec. III D. On the other hand, the twist-3 and twist-4
TMDs are given as the terms of Oð1=PþÞ and Oð1=ðPþÞ2Þ
as shown in Secs. III E and III F.

C. Guideline for assigning TMD notations

We follow the TMD notations of Refs. [34,40] as much as
possible; however, there are new TMDs which need to be
defined in this work. The twist-2 TMDs were already named
for the tensor-polarized spin-1 hadron in Ref. [40], and the
same notations are used in twist 2. However, all the twist-3
and twist-4 TMDs are new ones for the tensor-polarized
spin-1 hadron, so that new names should be assigned. In the
twist-3 part, our notations are given in the similar spirit to
the twist-3 TMDs of the spin-1=2 nucleon in Ref. [34]. In
twist 4, the TMD names are given by replacing all the twist-2
subscripts 1 (such as in f1LL) by twist-4 ones 3 (f3LL). The
general guideline is the following.
(1) The TMD function names f, g, and h are assigned to

the unpolarized, longitudinal, and transverse quark
polarizations by taking traces of Eq. (24) with γþ,
γþγ5, and iσiþγ5 (or σiþ), respectively, in the twist-2
case. The quark operators ψ̄γþψ , ψ̄γþγ5ψ , and
ψ̄iσiþγ5ψ are related to the unpolarized (U), longi-
tudinally polarized, and transvsere polarization (T)
of a quark in the twist-2 case as given in Ref. [26].
However, the twist-3 and twist-4 TMDs indicate
three and four parton correlations, so that they are
not related to these quark distributions. Therefore,
the distributions f, g, and h are assigned depending
on the operator forms as shown in Tables IV and VI.

(2) The subscript 1 in the TMDs, such as f1LL, is
assigned for the twist-2 TMDs. The subscript 3 is
used for the twist-4 TMDs like f3LL; however, the
subscript 2 is not conventionally used for expressing
the twist-3 TMDs.

(3) The subscripts LL, SL, and TT are given if TMDs
appear with the spin parameters SLL, SLT , and STT ,

respectively, in the traces of the TMD correlation
functions of Eq. (24). For example, f1LL, f1LT , and
f1LT are defined in Eq. (33) in this way.

(4) The superscript⊥ (F⊥) is given if a TMD exists with
the partonic transverse momentum kiT (i ¼ 1, 2). In
addition, the superscript 0 (F0) is assigned if two
similar polarization and momentum factors exist
within the same TMD correlation function Φ½Γ�. If
both F⊥ and F0 exist, the superscript ⊥ is assigned
for the term with the partonic transverse-momen-
tum (kT) term of the order of ðkTÞ2 or ðkTÞ3 in
traces of TMD correlation functions. An example
is h⊥1LT in Eq. (33). However, although the
corresponding F0 does not exist, the F⊥ could
be used even in the order of ðkTÞ1, and its example
is h⊥1LL. The TMDs with 0 are assigned in the
leading order of kT , namely, OððkTÞ0Þ or OððkTÞ1Þ.
An example is h01LT in Eq. (33). In general, new
TMDs F are defined from the TMDs F⊥ and F0
by the relation of Eq. (36), so that the TMD lists
are shown by the two-independent TMDs F and
F⊥ without F0 in Tables II, IV, and VI. If both F
and F⊥ exist, the meaning of F and F⊥ is more
clearly shown in Eq. (35). The function F⊥ [e.g.,
h⊥1LT in Eq. (35)] is given as the term with a

kinematical factor which vanishes by the k⃗T
integration. The other function F (e.g., h1LT) is
assigned for the remaining part.

(5) There are exceptions for the above assignment of ⊥.
The superscript ⊥ is not written conventionally for
f1LT , f1TT , g1LT , g1TT , (also the twist-4 distributions
f3LT , f3TT , g3LT , and g3TT), although they accom-
pany kT factors in the correlation functions.

(6) The superscript 0 is not written if similar functions
exist in separate correlation functionsΦ½Γ1� andΦ½Γ2�.
In the traces for the twist-3 TMD correlation func-
tions Φ½σ−þ� and Φ½σij� in Eq. (46), the kT dependence
is the same order OððkTÞ1Þ for h⊥LT, so one may

assign h⊥ð1Þ
LT and h⊥ð2Þ

LT . Similar expressions appeared
in the twist-3 part of the nucleon, and they were
already named as hT and h⊥T in Ref. [34]. Following
such a convention, we write them as hLT and h⊥LT in
Eq. (46). In this equation, hTT and h⊥TT are also
written in the same manner in Eq. (46), although
they have the same dependence of OððkTÞ0Þ. In the
sameway, eLT , e⊥LT , eTT , and e⊥TT are assigned inΦ½1�

and Φ½iγ5�.

D. Twist-2 TMDs for a tensor-polarized
spin-1 hadron

The leading twist TMDs for a tensor-polarized spin-1
hadron are defined by taking Γ ¼ γþ, γþγ5, and σiþ in
Eq. (24), and we obtain
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Φ½γþ�ðx; kT; TÞ ¼ f1LLðx; k2TÞSLL − f1LTðx; k2TÞ
SLT · kT

M

þ f1TTðx; k2TÞ
kT · STT · kT

M2
;

Φ½γþγ5�ðx; kT; TÞ ¼ g1LTðx; k2TÞ
SLTμε

μν
T kTν

M

þ g1TTðx; k2TÞ
STTμρk

ρ
Tε

μν
T kTν

M2
;

Φ½σiþ�ðx; kT; TÞ ¼ h⊥1LLðx; k2TÞ
SLLkiT
M

þ h01LTðx; k2TÞSiLT

− h⊥1LTðx; k2TÞ
kiTSLT · kT

M2

− h01TTðx; k2TÞ
SijTTkTj
M

þ h⊥1TTðx; k2TÞ
kT · STT · kT

M2

kiT
M

; ð33Þ

where i and j indicate the transverse indices i ¼ 1, 2
(j ¼ 1, 2), εμνT ¼ εμναβn̄αnβ is used with the convention
ε0123 ¼ 1, and SLT · kT and kT · STT · kT are defined by
SLT · kT ¼ SiLTkTi ¼−SiLTkiT and kT ·STT · kT ¼ kTiS

ij
TTkTj.

Here, we follow the notations of Ref. [40] for the TMD
expressions in twist 2. In Ref. [40], the trace with iσiþγ5
was taken instead of σiþ; however, both formalisms
are equivalent by considering the relation iσμνγ5 ¼
−εμναβσαβ=2 [51]. Therefore, if Φ½iσiþγ5� is calculated, the

same equation is obtained by the replacements Xi → εijT Xj

with Xi ¼ kiT , S
i
LT , and SijTTkTj in Φ½σiþ� of Eq. (33). There

are ten TMDs in the leading-twist level, as already found in
Ref. [40]. However, their relations to the expansion
coefficients are modified due to the existence of the new
terms B21−52 associated with the tensor structure and the
lightlike vector n, as we find in Eqs. (37)–(39).
The two TMDs h01LT (h01TT) and h⊥1LT (h⊥1TT) are similar

notations. Because of the relation

kiTkT · SLT ¼ εijT kTjkTlε
lm
T SLTm þ k2TS

i
LT; ð34Þ

the other functions h1LT and h1TT could be defined instead
of h01LT and h01TT . In fact, the correlation function Φ½σiþ� in
Eq. (33) is rewritten as

Φ½σiþ� ¼ h⊥1LL
SLLkiT
M

þ h1LTSiLT þ h⊥1LT
SjLTk

i
Tk

j
T − SiLTk⃗

2
T=2

M2

þ h1TT
SijTTk

j
T

M
þ h⊥1TT

ðSljTTkiTklT − SijTTk⃗
2
T=2ÞkjT

M3
:

ð35Þ

Here, we define the new functions without 0 and ⊥ as

Fðx; k2TÞ≡ F0ðx; k2TÞ −
k2T
2M2

F⊥ðx; k2TÞ; ð36Þ

where F ¼ h1LT and h1TT in the twist 2 and k2T ¼ −k⃗2T , as
this relation was written for the unpolarized TMD (f, f0,
and f⊥) in Ref. [52]. We note in Eq. (36) that the h⊥1LT and

h⊥1TT terms vanish by the k⃗T integration. It leads to the sum
rule for f1LT in Eq. (57). Therefore, two of these three
functions h1LT , h01LT , and h⊥1LT (also h1TT , h01TT , and h⊥1TT)
are independent, so that one could choose two of them
depending on one’s preference in defining the TMDs in
Eq. (33). Similar relations appear in twist-3 and twist-4
cases, so that we use Eq. (36) as the general relation for the
TMD F in terms of F0 and F⊥.
Calculating traces in Eq. (24) with the new correlation

function of Eq. (20), we express the twist-2 TMDs in
Eq. (33) in terms of the coefficients Ai and Bi. First, the
unpolarized quark TMDs in Φ½γþ� are given as

f1LLðx; k2TÞ ¼
Pþ

3

Z
dk−½ðA14 þ xA15Þτx

þ 2ðA17 þ B28 þ xB30Þðσ − 2xÞ
þ 4ðB29 þ xB31 þ B32Þ�;

f1LTðx; k2TÞ ¼ −Pþ
Z

dk−½ðA14 þ xA15Þðσ − 2xÞ

þ A17 þ B28 þ xB30�;

f1TTðx; k2TÞ ¼ Pþ
Z

dk−ðA14 þ xA15Þ; ð37Þ

where τx is defined by τx ¼ σ2 − 6xσ þ 2τ þ 6x2. The
terms of A14; A15;…, and B32 are time-reversal even
(T-even) and chiral even (χ-even) terms as given in
Eqs. (28) and (31), so that these TMDs are T-even and
χ-even ones as listed in Table II. In this table, the TMDs
of the unpolarized (U), longitudinally polarized (L), and

TABLE II. List of twist-2 quark TMDs for a spin-1 hadron in
terms of the quark and hadron polarizations. The square brackets
[ ] indicate chiral-odd distributions and the others are chiral-even
ones.

Quark

UðγþÞ Lðγþγ5Þ Tðiσiþγ5=σiþÞ
Hadron T-even T-odd T-even T-odd T-even T-odd

U f1 ½h⊥1 �
L g1L ½h⊥1L�
T f⊥1T g1T ½h1�; ½h⊥1T �
LL f1LL ½h⊥1LL�
LT f1LT g1LT ½h1LT �; ½h⊥1LT �
TT f1TT g1TT ½h1TT �; ½h⊥1TT �
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transversely polarized (T) hadron are also listed for show-
ing the complete set of the TMDs of the spin-1 hadron in
addition to the tensor polarizations LL, LT, and TT. As
explained after Eq. (18), the notation LL indicates the
tensor polarization along the longitudinal axis, and the
notations LT and TT are for the polarization differences
shown in the Appendix of Ref. [40].
Next, the longitudinally polarized quark TMDs inΦ½γþγ5�

are given as

g1LTðx; k2TÞ ¼ −
Pþ

2

Z
dk−½A20ðσ − 2xÞ þ 2B33�;

g1TTðx; k2TÞ ¼ −Pþ
Z

dk−A20: ð38Þ

Because of the time-reversal and chiral properties of the A20

and B33 terms, these TMDs are T-odd and χ-even distri-
butions as listed in Table II. Third, the transversely
polarized quark TMDs in Φ½σiþ� are given as

h⊥1LLðx; k2TÞ ¼ −
Pþ

3

Z
dk−½A16τx þ 2A19ðσ − 3xÞ

þ 2B41ðσ − 2xÞ − 2ðA18 − 2B42 − 2B52Þ�;

h01LTðx; k2TÞ ¼
Pþ

2

Z
dk−½ðA18 þ xA19Þðσ − 2xÞ

þ 2ðB51 þ xB52Þ�;

h⊥1LTðx; k2TÞ ¼ Pþ
Z

dk−½A16ðσ − 2xÞ þ A19 þ B41�;

h01TTðx; k2TÞ ¼ −Pþ
Z

dk−ðA18 þ xA19Þ;

h⊥1TTðx; k2TÞ ¼ −Pþ
Z

dk−A16: ð39Þ

These TMDs are T-odd and χ-odd distributions as shown in
Table II. Here, the TMDs h1LT and h1TT are listed instead
of h01LT and h01TT due to the relation of Eq. (36). In
comparison with previous works [21,40], the new terms
exist in association with the light cone vector n and the
tensor polarizations, namely, the new coefficients B21–52.
Therefore, the expressions of f1LL, f1LT , g1LT , h⊥1LL, h01LT ,
and h⊥1LT are modified from previous ones due to the
existence of the new terms, B28–33, B41;42, and B51;52.
The collinear PDFs are obtained from the TMDs by

integrating them over the partonic transverse momentum as

fðxÞ ¼
Z

d2kTfðx; k2TÞ: ð40Þ

Since the time-reversal invariance is satisfied in QCD, the
T-odd collinear PDFs should vanish [34,38,58],

fðxÞT-odd ¼ 0; ð41Þ

although the T-odd TMDs exist in Table II due to the gauge
link including the transverse direction. Therefore, the only
remaining PDFs are f1, g1L (or often denoted as g1 or Δq),
h1 (ΔTq), and f1LL (b1 or δTq) as shown in Table III. The
h1ðxÞ is defined from the TMDs h1T and h⊥1T as h1ðxÞ ¼R
d2kT ½h1Tðx; k2TÞ − k2T=ð2M2Þh⊥1Tðx; k2TÞ� [40]. The num-

ber of twist-2 quark distributions is 4 in Table 3 of Ref. [57]
and this number 4 agrees with the existence of four
distributions f1, g1, h1, and f1LL (b1) in Table III. The
only tensor-polarized twist-2 PDF is f1LL (b1 or δTq) which
is associated with the spin-1 nature of the hadron. The
asterisk (�1) in Table III indicates the following. Because of
the time-reversal invariance, the collinear PDF h1LTðxÞ
vanish as shown in Eq. (41). However, since the time-
reversal invariance cannot be imposed in the fragmentation
functions, we should note that the corresponding fragmen-
tation function H1LTðzÞ [25], as indicated by the replace-
ments of Eq. (56), should exist as a collinear fragmentation
function.
In addition to the T-odd functions, some of T-even

functions disappear after the k⃗T integration. For example,
if the correlation function Φ½γþ�ðx; kT; TÞ in Eq. (33) is
integrated to obtain the collinear correlation function

Φ½Γ�ðx; TÞ ¼
Z

d2kTΦ½Γ�ðx; kT; TÞ; ð42Þ

where Γ ¼ γþ here, the second term vanishes, and the third
term also vanishes due to SxxTT ¼ −SyyTT [26], so that the
collinear PDFs f1LTðxÞ and f1TTðxÞ do not exist. In the
same way, the functions g1LT , g1TT , and h1L do not exist in
Table III.

TABLE III. List of twist-2 quark collinear PDFs for a spin-1
hadron in terms of the quark and hadron polarizations. The square
bracket [] indicates a chiral-odd distribution and the others
are chiral-even ones. The function g1L, h1, and f1LL are often
denoted as g1 or Δq, −ΔTq, and −ð2=3Þb1 or −ð2=3ÞδTq [26]. a

The asterisk �1 is explained in the main text.

Quark

Hadron UðγþÞ Lðγþγ5Þ Tðiσiþγ5=σiþÞ
T-even T-odd T-even T-odd T-even T-odd

U f1
L g1Lðg1Þ
T ½h1�
LL f1LLðb1Þ
LT �1
TT

aThe functions g1L and f1LL are sometimes listed by g1 and b1
as for the abbreviated notations of g1;q and b1;q. These g1 and b1,
and also h1, should not be confused with the structure function
themselves including charge-squared factors and coefficient
functions.
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E. Twist-3 TMDs for a tensor-polarized
spin-1 hadron

For the spin-1=2 nucleon, the twist-3 TMDs are listed in
the quark correlation function including new terms with
the light cone vector n in Ref. [34]. Here, we list all the
possible twist-3 TMDs in the quark correlation function for

a tensor-polarized spin-1 hadron, so that all the following
terms are new ones we found in this work. The twist-3
TMDs with the 1=Pþ dependence are found by considering
Φ½γi�, Φ½1�, Φ½iγ5� Φ½γiγ5� Φ½σij�, and Φ½σ−þ�. First, the TMDs
with the function name f are defined for the quark operator
type ψ̄γiψ as

Φ½γi�ðx; kT; TÞ ¼
M
Pþ

�
f⊥LLðx; k2TÞSLL

kiT
M

þ f0LTðx; k2TÞSiLT − f⊥LTðx; k2TÞ
kiTSLT · kT

M2
− f0TTðx; k2TÞ

SijTTkTj
M

þ f⊥TTðx; k2TÞ
kT · STT · kT

M2

kiT
M

�
: ð43Þ

These f-type TMDs have T-even and χ-even properties. The distributions fLT , f0LT , and f
⊥
LT (fTT , f0TT , and f

⊥
TT) are related

by the relation of Eq. (36). The TMDs with the name e are assigned for the currents associated with ψ̄1ψ and ψ̄iγ5ψ as

Φ½1�ðx; kT; TÞ ¼
M
Pþ

�
eLLðx; k2TÞSLL − e⊥LTðx; k2TÞ

SLT · kT
M

þ e⊥TTðx; k2TÞ
kT · STT · kT

M2

�
;

Φ½iγ5� ¼ M
Pþ

�
eLTðx; k2TÞ

SLTμε
μν
T kTν

M
− eTTðx; k2TÞ

STTμρk
ρ
Tε

μν
T kTν

M2

�
: ð44Þ

These e-type TMDs have T-even and χ-odd properties. The distributions eLT and e⊥TL are given with the same factors of
OððkTÞ1Þ; however, we assigned e⊥LT for the first one and eLT for the second as explained in the guideline 6 of Sec. III C. The
distributions eTT and e⊥TT are also named in the same way. Next, the g-type TMDs with T-odd and χ-even properties are
defined for the current ψ̄γiγ5ψ as

Φ½γiγ5�ðx; kT; TÞ ¼
M
Pþ

�
−g⊥LLðx; k2TÞSLL

εijT kTj
M

− g0LTðx; k2TÞεijT SLTj þ g⊥LTðx; k2TÞ
εijT kTjSLT · kT

M2

þ g0TTðx; k2TÞ
εijT STTjlk

l
T

M
− g⊥TTðx; k2TÞ

kT · STT · kT
M2

εijT kTj
M

�
: ð45Þ

The distributions gLT , g0LT , and g⊥LT (gTT , g0TT , and g⊥TT) are related by the relation of Eq. (36). The h-type TMDs with the
T-odd and χ-odd properties are given for the currents ψ̄σ−þψ and ψ̄σijψ as

Φ½σ−þ�ðx; kT; TÞ ¼
M
Pþ

�
hLLðx; k2TÞSLL − hLTðx; k2TÞ

SLT · kT
M

þ hTTðx; k2TÞ
kT · STT · kT

M2

�
;

Φ½σij�ðx; kT; TÞ ¼
M
Pþ

�
h⊥LTðx; k2TÞ

SiLTk
j
T − SjLTk

i
T

M
− h⊥TTðx; k2TÞ

SilTTkTlk
j
T − SjlTTkTlk

i
T

M2

�
: ð46Þ

The prime marks ( 0) are not assigned for hLT and hTT
because of the guideline 6 in Sec. III C.
There are twenty TMDs in the twist-3 for a tensor-

polarized spin-1 hadron. These TMDs are expressed by the
expansion coefficients of the correlation function. First, we
obtain the f-type TMDs as

f⊥LLðx; k2TÞ ¼
Pþ

3

Z
dk−½A15τx þ 2A17

þ 2B30ðσ − 2xÞ þ 4B31�;

f0LTðx; k2TÞ ¼
Pþ

2

Z
dk−½A17ðσ − 2xÞ þ 2B32�;

f⊥LTðx; k2TÞ ¼ −Pþ
Z

dk−½A15ðσ − 2xÞ þ B30�;

f0TTðx; k2TÞ ¼ −Pþ
Z

dk−A17;

f⊥TTðx; k2TÞ ¼ Pþ
Z

dk−A15: ð47Þ

The terms with A15; A17;…; B32 are T-even and χ-even as
listed in Eqs. (28) and (31), so that these TMDs are T-even
and χ-even properties as shown in Table IV. The e-type
TMDs are expressed as
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eLLðx; k2TÞ ¼
Pþ

3

Z
dk−½A13τx þ 2B21ðσ − 2xÞ þ 4B22�;

e⊥LTðx; k2TÞ ¼ −Pþ
Z

dk−½A13ðσ − 2xÞ þ B21�;

e⊥TTðx; k2TÞ ¼ Pþ
Z

dk−A13;

eLTðx; k2TÞ ¼ Pþ
Z

dk−
�
B23

�
x −

σ

2

�
− B24

�
;

eTTðx; k2TÞ ¼ Pþ
Z

dk−B23: ð48Þ

Because of the terms A13; B21;…; B24, these TMDs have
properties of T-even and χ-odd as shown in Table IV.
Second, we obtain the g-type TMDs as

g⊥LLðx; k2TÞ ¼
Pþ

3

Z
dk−½3A20ðσ − 2xÞ þ 4B33 þ 2B34

þ B36τx þ 2B37ðσ − 2xÞ þ 4B38�;

g0LTðx; k2TÞ ¼
Pþ

4

Z
dk−½A20ðσ − 2xÞ2

þ 2ðB33 þ B34Þðσ − 2xÞ þ 4B35�;

g⊥LTðx; k2TÞ ¼ −Pþ
Z

dk−½A20 þ B36ðσ − 2xÞ þ B37�;

g0TTðx; k2TÞ ¼ −Pþ
Z

dk−
�
A20

�
σ

2
− x

�
þ B34

�
;

g⊥TTðx; k2TÞ ¼ Pþ
Z

dk−B36: ð49Þ

Because of the terms A20, � � �, B38, these TMDs have
properties of T-odd and χ-even as shown in Table IV. Three
new twist-3 TMDs eLT , eTT , and g⊥TT are expressed purely
by the new terms B20−52.

Third, the h-type TMDs are expressed as

hLLðx;k2TÞ ¼
Pþ

6

Z
dk−fðσ− 2xÞ½A16τxþ 2ð2A18þ σA19Þ�

þ 2ðσ− 2xÞ½B41ðσ− 2xÞ
þ 2ðB42þB44þ xB47þB49Þ�
þ 2ðB43þ xB46Þτx
þ 4ð2B45þ 2xB48þ 2B50þ 2B51þ σB52Þg;

hLTðx;k2TÞ ¼−
Pþ

2

Z
dk−½A16ðσ− 2xÞ2þ 2A18þ σA19

þðσ− 2xÞðB41þ 2B43þ 2xB46Þ
þ 2ðB44þ xB47þB49Þ�;

h⊥LTðx;k2TÞ ¼
Pþ

2

Z
dk−½A19ðσ− 2xÞþ 2B52�;

hTTðx;k2TÞ ¼
Pþ

2

Z
dk−½A16ðσ− 2xÞþ 2ðB43þ xB46Þ�;

h⊥TTðx;k2TÞ ¼−Pþ
Z

dk−A19: ð50Þ

TABLE IV. List of twist-3 quark TMDs for a spin-1 hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square brackets [] indicate chiral-odd distributions and the others are chiral-
even ones. The LL, LT, and TT TMDs are new distributions found in this work.

Quark

Hadron γi; 1; iγ5 γþγ5 σij; σ−þ

T-even T-odd T-even T-odd T-even T-odd

U f⊥½e� g⊥ ½h�
L f⊥L ½eL� g⊥L ½hL�
T fT; f⊥T ½eT; e⊥T � gT; g⊥T ½hT �; ½h⊥T �
LL f⊥LL½eLL� g⊥LL ½hLL�
LT fLT; f⊥LT ½eLT; e⊥LT � gLT; g⊥LT ½hLT �; ½h⊥LT �
TT fTT; f⊥TT ½eTT; e⊥TT � gTT; g⊥TT ½hTT �; ½h⊥TT �

TABLE V. List of twist-3 quark collinear PDFs for a spin-1
hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square brackets [] indicate
a chiral-odd distribution and the others are chiral-even ones. The
LL and LT PDFs (eLL, fLT ) are new distributions found in this
work. The asterisks �2 and �3 are explained in the main text.

Quark

Hadron γi; 1; iγ5 γþγ5 σij; σ−þ

T-even T-odd T-even T-odd T-even T-odd

U ½e�
L ½hL�
T gT
LL ½eLL� �3
LT fLT �2
TT
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Because of the terms A16;…; B52, these TMDs have
properties of T-odd and χ-odd as shown in Table IV.
Here, the listed functions fLT , fTT , hLT , and hTT are
defined from f0LT , f

0
TT , h

0
LT , and h0TT , and f⊥LT , f⊥TT , h⊥LT ,

and h⊥TT by the relation in Eq. (36).
These TMDs are integrated over the quark transverse

momentum k⃗T , twist-3 collinear PDFs exist as shown in
Table V. In addition to the PDFs e, gT , and hL in the
nucleon, there are new twist-3 PDFs eLL and fLT for the
spin-1 hadron. These two collinear PDFs are new functions
found in this work by integrating the corresponding TMDs
over k⃗T. Here, the PDF gT is given by gT ¼ R

d2kT ½g0T −
k2T=ð2M2Þg⊥T � [34], and fLTðxÞ is defined by

fLTðxÞ ¼
Z

d2kTfLTðx; k2TÞ: ð51Þ

The asterisks (�2 and �3) in Table V indicate the
following in the same way with �1. Because of the
time-reversal invariance, the collinear PDFs gLTðxÞ and
hLLðxÞ do not exist. However, the corresponding new
collinear fragmentation functions GLTðzÞ and HLLðzÞ
should exist [25].

F. Twist-4 TMDs for a tensor-polarized
spin-1 hadron

The twist-4 TMDs were obtained in Ref. [34] for the
spin-1=2 nucleon. Here, we list all the possible twist-4
quark TMDs for the tensor-polarized spin-1 hadron. The
twist-4 TMDs for the tensor-polarized spin-1 hadron are
defined in the correlation functions Φ½γ−�, Φ½γ−γ5�, and
Φ½σi−� as

Φ½γ−� ¼ M2

Pþ2

�
f3LLðx; k2TÞSLL − f3LTðx; k2TÞ

SLT · kT
M

þ f3TTðx; k2TÞ
kT · STT · kT

M2

�
;

Φ½γ−γ5� ¼ M2

Pþ2

�
g3LTðx; k2TÞ

SLTμε
μν
T kTν

M
þ g3TTðx; k2TÞ

STTμρk
ρ
Tε

μν
T kTν

M2

�
;

Φ½σi−� ¼ M2

Pþ2

�
h⊥3LLðx; k2TÞSLL

kiT
M

þ h03LTðx; k2TÞSiLT − h⊥3LTðx; k2TÞ
kiTSLT · kT

M2
− h03TTðx; k2TÞ

SijTTkTj
M

þ h⊥3TTðx; k2TÞ
kT · STT · kT

M2

kiT
M

�
: ð52Þ

These relations are proportional to 1=ðPþÞ2 as the twist-4
functions.
The f-type TMDs are given by

f3LLðx; k2TÞ ¼
Pþ

6

Z
dk−f½A14 þ A15ðσ − xÞ�τx

− 2A17ðσ − 2xÞ þ 2B25τx

þ2ðσ − 2xÞ½2B26 þ B28 þ B30ðσ − xÞÞ�
þ4ð2B27 þ B29 − B32Þ þ 4B31ðσ − xÞg;

f3LTðx; k2TÞ ¼ −
Pþ

2

Z
dk−f½A14 þ A15ðσ − xÞ�ðσ − 2xÞ

− A17 þ 2B25ðσ − 2xÞ þ 2B26 þ B28

þ B30ðσ − xÞg;

f3TTðx; k2TÞ ¼
Pþ

2

Z
dk−½A14 þ A15ðσ − xÞ þ 2B25�: ð53Þ

Because of the terms A14;…; B25, these TMDs have
properties of T-even and χ-even as shown in Table VI.
The g-type TMDs are

g3LTðx; k2TÞ ¼
Pþ

4

Z
dk−½ðA20 − 2B39Þðσ − 2xÞ

þ 2B33 − 4B40�;

g3TTðx; k2TÞ ¼
Pþ

2

Z
dk−ðA20 − 2B39Þ: ð54Þ

These TMDs have the properties of T-odd and χ-even as
shown in Table VI. The h-type TMDs are

h⊥3LLðx;k2TÞ ¼
Pþ

6

Z
dk−½−A16τxþ 2A18

þ2A19ð2σ− 3xÞ− 2ðB41− 2B47Þðσ− 2xÞ
þ2B46τx− 4ðB42− 2B48−B49−B52Þ�;

h03LTðx;k2TÞ ¼
Pþ

4

Z
dk−f½A18þA19ðσ− xÞ�ðσ− 2xÞ

þ 2½B49ðσ− 2xÞþ 2B50þB51þB52ðσ− xÞ�g;

h⊥3LTðx;k2TÞ ¼−
Pþ

2

Z
dk−½−A16ðσ− 2xÞþA19−B41

þ2B46ðσ− 2xÞþ 2B47�;
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h03TTðx; k2TÞ ¼ −
Pþ

2

Z
dk−½A18 þ A19ðσ − xÞ þ 2B49�;

h⊥3TTðx; k2TÞ ¼ −
Pþ

2

Z
dk−½A16 − 2B46�: ð55Þ

These TMDs have the properties of T-odd and χ-odd as
shown in Table VI. Here, the functions h3T , h3LT , and h3TT
are defined from h03T , h

0
3LT , and h03TT and h⊥3T , h⊥3LT , and

h⊥3TT by the relation in Eq. (36).

These twist-4 TMDs are integrated over k⃗T and they
become the collinear PDFs as shown in Table VII. Most
distributions vanish after the integrations. The only twist-4
PDF which is specific to the tensor-polarized spin-1 hadron
is f3LL, in addition to f3, g3L, and h3L which exist also for
the spin-1=2 nucleon. The asterisk (�4) in Table VII
indicates that h3LTðxÞ does not exist; however, the corre-
sponding new collinear fragmentation function H3LTðzÞ
should exist because the time-reversal invariance does not
have to be imposed [25].

G. Summary on new TMDs and possible new
fragmentation functions

We found that there are 40 TMDs in total for the tensor-
polarized spin-1 hadron, and this number is equal to the one
of the expansion terms in Eq. (20), and they are expressed
by the coefficients Ai and Bi. The TMDs are T-odd if they
are associated with the gamma matrices γμγ5 and σμν in the
tensor-polarized case, so that there are 24 T-odd TMDs. In
addition, there are 16 T-even TMDs on the tensor polar-
izations. If the gauge link were neglected in the correlation
function, all the T-odd TMDs do not exist due to the time-
reversal invariance. The ten twist-2 TMDs were studied in
Ref. [40], so we found 30 new TMDs in the twist-3 and
twist-4 parts mainly associated with the light cone vector n
and the tensor polarizations as listed in Tables IV and VI.
The same discussions can be made for the transverse-

momentum-dependent fragmentation functions of spin-1
hadrons by the replacements of the kinematical variables
and the function notations as [40]

Kinematical variables∶ x;kT;S;T;M;n;γþ;σiþ;

TMD distribution functions∶ f;g;h;e

⇓

Kinematical variables∶ z;kT;Sh;Th;Mh; n̄;γ−;σi−;

TMD fragmentation functions∶D;G;H;E: ð56Þ
Therefore, new fragmentation functions exist for spin-1
hadrons in addition to the fragmentation functions of
the spin-1=2 nucleon by these simple replacements in
Tables II–VII. Here, Sh and Th are spin-vector and tensor
polarizations of the hadron h, and Mh is its mass. The
variable z is the momentum fraction given by P−

h ¼ zk−.
As explained by the asterisks (�1–4) in the collinear
PDF tables, there are the collinear fragmentation functions
H1LTðzÞ, GLTðzÞ, HLLðzÞ, and H3LTðzÞ, although their
corresponding functions h1LTðxÞ, gLTðxÞ, hLLðxÞ, and
h3LTðxÞ vanish due to the time-reversal invariance.

H. Integral relations in T-odd TMDs

If we integrate the kT-dependent correlation function
Φðx; kT; TÞ over kT, the T-odd terms should vanish on
account of time-reversal invariance (

R
d2kTΦT-odd ¼ 0)

[34,38,58], so that the following sum rules should be satisfied:

Z
d2kTh1LTðx; k2TÞ ¼ 0;

Z
d2kTgLTðx; k2TÞ ¼ 0;

Z
d2kThLLðx; k2TÞ ¼ 0;

Z
d2kTh3LTðx; k2TÞ ¼ 0: ð57Þ

TABLE VI. List of twist-4 quark TMDs for a spin-1 hadron in
terms of the hadron polarizations and the operator forms in the
correlation functions. The square brackets [] indicate chiral-odd
distributions and the others are chiral-even ones. The LL, LT, and
TT TMDs are new distributions found in this work.

Quark

Hadron γ− γ−γ5 σi−

T-even T-odd T-even T-odd T-even T-odd

U f3 ½h⊥3 �
L g3L ½h⊥3L�
T f⊥3T g3T ½h3T �; ½h⊥3T �
LL f3LL ½h⊥3LL�
LT f3LT g3LT ½h3LT �; ½h⊥3LT �
TT f3TT g3TT ½h3TT �; ½h⊥3TT �

TABLE VII. List of twist-4 quark collinear PDFs for a spin-1
hadron in terms of the hadron polarizations and the operator
forms in the correlation functions. The square bracket [] indicates
a chiral-odd distribution and the others are chiral-even ones. The
LL PDF (f3LL) is a new distribution found in this work. The
asterisk �4 is explained in the main text.

Quark

Hadron γ− γ−γ5 σi−

T-even T-odd T-even T-odd T-even T-odd

U f3
L g3L
T ½h3T �
LL f3LL
LT �4
TT
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In the twist-2, although the collinear PDF h1LTðxÞ vanishes,
its corresponding fragmentation function H1LTðzÞ exists as
noted in Ref. [25] as the function ĥ1̄. These T-odd terms are
proportional to ðkTÞ0 or ðkTÞ2 in the correlation functions
Φ½Γ�. The terms with ðkTÞ1 vanish and the term kT · STT · kT
also vanishes after integrations, so there is no similar sum
rule for other TMDs. Similar sum rules exist for the TMDs
f⊥1T and h in the spin-1=2 part as shown in Eqs. (22) and (23)
of Ref. [38]. We may note that such a sum rule does not exist
for the fragmentation functions since the time-reversal
invariance cannot be imposed on the fragmentation func-
tions, which contain the out-state jPh; Sh; Xi in its definition
[25,34,40,59].

IV. SUMMARY

The possible TMDs were investigated for tensor-
polarized spin-1 hadrons by the complete decomposition
of the quark correlation function including the light cone
vector n in this work. We found the 32 new terms which
are dependent mainly on the vector n in decomposing the
correlation function, so that there are totally 40 indepen-
dent terms in the tensor-polarized correlation function.
Furthermore, the tensor-polarized TMDs were studied up to
twist-4 level for the spin-1 hadron, and the 40 TMDs are
found in association with the tensor polarization. There
exist ten TMDs in the twist-2 case. Due to the existence of
the new terms (B20–52), the twist-2 TMD expressions of
f1LL, f1LT , g1LT , h⊥1LL, h1LT , h⊥1LT in terms of the expansion
coefficients Ai are modified. All the twist-3 and 4 TMDs
(the following 30 TMDs) on the tensor-polarized spin-1
hadron,

Twist-3 TMD: f⊥LL, eLL, fLT , f⊥LT , e1T , e⊥1T , fTT , f⊥TT ,
eTT , e⊥TT , g⊥LL, gLT , g⊥LT , gTT , g⊥TT , h1L,
hLT , h⊥LT , hTT , h⊥TT ,

Twist-4 TMD: f3LL, f3LT , f3TT , g3LT , g3TT , h⊥3LL, h3LT ,
h⊥3LT , h3TT , h⊥3TT ,

are new functions we found in this work. We also found
new sum rules for the TMDs as

R
d2kTgLT ¼ R

d2kThLL ¼R
d2kTh3LL ¼ 0. Integrating these new TMDs, we found

the collinear PDFs,
Twist-3 PDF: eLL, fLT ,
Twist-4 PDF: f3LL,

in this work. In addition, we explained that the correspond-
ing transverse-momentum-dependent fragmentation func-
tions exist for the tensor-polarized spin-1 hadrons.
Recently, the T-odd TMDs attract considerable attention

since they are related to single spin asymmetries in the
proton reactions. The T-odd TMDs in the spin-1 deuteron
are also interesting to be investigated in future. Since there
are projects to investigate the structure functions of the
polarized spin-1 deuteron at JLab, Fermilab, NICA, and
EIC, we hope that these new structure functions will be
experimentally investigated in future.
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