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The LHCb pentaquarks—the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ—have been theorized to be ΣcD̄ and
ΣcD̄� S-wave molecules. Here, we explore the possibility that two of these pentaquarks—the Pcð4440Þ and
Pcð4457Þ—contain in addition a Λcð2595ÞD̄ component in the P-wave. We will analyze the effects of
this extra channel within two effective field theories: the first one will be a standard contact-range effective
field theory, and the second one will include the nondiagonal pion dynamics connecting the ΣcD̄� and
Λcð2595ÞD̄ channels, which happens to be unusually long ranged. The impact of the coupled-channel
dynamics between the ΣcD̄� and Λcð2595ÞD̄ components is modest at best for the Pcð4440Þ and Pcð4457Þ,
which will remain predominantly ΣcD̄� molecules. However, if the quantum numbers of the Pcð4457Þ are
JP ¼ 1

2
−, the coupled-channel dynamics is likely to induce the binding of a Λð2595ÞD̄ S-wave molecule

(coupled to ΣcD̄� in the P-wave) with JP ¼ 1
2
þ and a mass similar to the Pcð4457Þ. If this is the case, the

Pcð4457Þ could actually be a double peak containing two different pentaquark states.

DOI: 10.1103/PhysRevD.103.014023

I. INTRODUCTION

The discovery of three pentaquark peaks—the Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ—by the LHCb Collaboration [1]
raises the question of what is their nature. A commonly
invoked explanation is that they are ΣcD̄ and ΣcD̄� bound
states [2–9], which comes naturally from the closeness of
the pentaquark peaks to the corresponding baryon-meson
thresholds and also from the existence of theoretical
predictions predating their observation [10–16]. Yet the
evidence that they are molecular is mostly circumstantial
at the moment, and other explanations might very well be
possible [17–21].
In this paper, we will explore a modified molecular

interpretation of the Pcð4440Þ and Pcð4457Þ pentaquarks
and the consequences it entails. Of course, the fundamental
idea will still be that these two pentaquarks are hadronic
bound states, but besides the standard ΣcD̄� interpretation,
we will also consider the existence of a Λcð2595ÞD̄ (Λc1D̄
from now on) component for the Pcð4440Þ and Pcð4457Þ.

In the isospin-symmetric limit, the ΣcD̄� and Λc1D̄ thresh-
olds are located at 4462.2 and 4459.5 MeV, respectively,
very close to the masses of the Pcð4440Þ and Pcð4457Þ.
Thus, it is natural to wonder whether the Λc1D̄ channel
plays a role in the description of the pentaquarks.
This idea was originally proposed by Burns [8], who

conjectured that the Λc1D̄ component might be important
for the binding of molecular pentaquarks. Later, it was
realized that the pion-exchange dynamics mediating the
D̄�Σc → D̄Λc1 transition is unusually long ranged and in
practice takes the form of a 1=r2 potential [22]. This is
indeed a really interesting potential in the sense that it can
display discrete scale invariance when attractive enough
[23–25], which in turn opens the possibility of the existence
of hadronic molecules for which there is a geometric
spectrum reminiscent of the Efimov effect in the three-
boson system [26]. For the hidden charm pentaquarks, the
strength of the 1=r2 potential is probably not enough
to trigger a geometric molecular spectrum [22], yet this
might very well happen in other two-hadron molecular
systems. Recently, Burns and Swanson have considered the
D̄�Σc → D̄Λc1 pion-exchange dynamics beyond its long-
distance behavior, leading to the conclusion that the
Pcð4457Þ might not be a 1

2
− D̄�Σc S-wave molecular state

but a 1
2
þ D̄Λc1 one instead [8].

The present paper delves further into the consequences
that a D̄Λc1 component will have for the pentaquark
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spectrum. For this, we formulate two effective field theories
(EFTs): a pionless EFT and a half-pionful EFT. By half-
pionful, we denote an EFT which includes the unusually
long-ranged pion dynamics of the D̄�Σc → D̄Λc1 transi-
tion, for which the characteristic length scale is between 10
and 20 fm, but does not include the pion dynamics of the
D̄�Σc system, which has a range in between 1 and 2 fm. We
find that the addition of the D̄Λc1 channel is inconsequen-
tial if the quantum numbers of the Pcð4440Þ and Pcð4457Þ
molecular pentaquarks are 1

2
− and 3

2
−, respectively.

However, if the quantum numbers of the Pcð4457Þ penta-
quark are 1

2
− instead, then the existence of a partner state

with a similar mass and quantum numbers 1
2
þ is very likely.

That is, the Pcð4457Þ might be a double peak, as happened
with the original Pcð4450Þ pentaquark discovered in
2015 [27].
The manuscript is structured as follows. In Sec. II, we

explain how to describe the D̄Σc, D̄Σ�
c, and D̄Λc1 inter-

actions within a pionless contact-range EFT. In Sec. III,
we introduce the half-pionful theory, in which we include
the pion exchange transition potential in the D̄Σ�

c-D̄Λc1
channel. In Sec. IV, we revisit the description of the LHCb
pentaquark trio within the previous two EFTs. Finally, in
Sec. V, we present our conclusions.

II. PIONLESS THEORY

In this section, we will derive the lowest-order (LO)
contact-range interaction for the D̄�Σc-D̄Λc1 system. By
pionless theory, we specifically refer to an EFT in which
pions are subleading, instead of an EFT without pions;
while the latter is the usual meaning of pionless in the
nuclear sector (see, e.g., Refs. [28,29]), in the hadronic
sector we are often constrained to LO calculations. Thus, it
makes sense to use the word pionless to describe the LO
EFT only, which is the part of the theory that we will be
using. For formulating the LO contact-range Lagrangian,
we will find it convenient to use the light-quark notation
explained in detail in Ref. [30], which has been previously
used in the literature, e.g., in Refs. [16,31]. In contrast with
the standard superfield notation (see, for instance, Ref. [32]
for a clear exposition) in which we combine heavy hadrons
with the same light-quark spin into a unique superfield, in
the light-quark notation, we simply write the interactions in
terms of the light-quark spin degrees of freedom within the
heavy hadrons. Of course, both notations are equivalent,
but for nonrelativistic problems, the light-quark notation is
easier to use.

A. D̄Σc and D̄�Σc channels

The D̄ and D̄� charmed antimesons are Q̄q states where
the light quark q and heavy antiquark Q̄ are in the S-wave.
From heavy-quark spin symmetry, we expect the heavy-
antiquark to effectively behave as a static color source,
which in practical terms means that the wave function of the

light quark is independent of the total spin of the S-wave
heavy meson. That is, the light-quark wave function (the
“brown muck”) of the D̄ and D̄� charmed antimesons is
the same [modulo corrections coming from the heavy-
antiquark massmQ, which scale asΛQCD=mQ, withΛQCD ∼
ð200–300Þ MeV the QCD scale]. Two possible formalisms
to express this symmetry are the standard heavy-superfield
notation and the light-subfield notation. In the former, we
combine the D̄ and D̄� field into a single superfield [32],

HQ̄ ¼ 1ffiffiffi
2

p ½D̄þ σ⃗ · ⃗D̄
��; ð1Þ

where the superfield is well behaved with respect to heavy-
antiquark rotations

HQ̄ → eiS⃗H ·θ⃗HQ̄; ð2Þ

with S⃗H representing the heavy-antiquark spin operator
and θ⃗ representing the rotation axis and angle. Thus, the
combination of H†

Q̄ and HQ̄ superfields in the Lagrangian

effectively results in invariance with respect to heavy-
antiquark rotations, i.e., to heavy-antiquark spin.
Conversely, in the light-subfield (or light-quark) nota-

tion, we prescind of writing down the heavy antiquark
explicitly and instead express everything in terms of the
effective light-quark degrees of freedom within the
charmed antimeson and the light-quark spin operator,

D̄; D̄� → qL; σ⃗L; ð3Þ

where qL represents an effective light-quark subfield, i.e., a
field with the quantum numbers of the light quark within
the charmed antimeson.1 Then, we write down explicit
rules for transforming the light-quark spin operator into
charmed antimeson spin operators

hD̄jσ⃗LjD̄i ¼ 0; ð4Þ

hD̄jσ⃗LjD̄�i ¼ ϵ⃗1; ð5Þ

hD̄�jσ⃗LjD̄�i ¼ S⃗1; ð6Þ

where ϵ⃗1 is the polarization vector of the D̄� meson and S⃗1
is the spin-1 matrices.
Regarding the Σc and Σ�

c charmed baryons, their quark
content is Qqq where the qq diquark has light spin SL ¼ 1
and the system is in the S-wave. The structure of the

1The qL field does not represent an actual light-quark field q,
but the effective field that results from ignoring the heavy-quark
spin degree of freedoms within the charmed antimeson.
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S-wave charmed baryons is independent of whether the
baryon spin is S ¼ 1

2
(Σc) or 3

2
(Σ�

c). In the standard heavy-
superfield notation, this is taken into account by defining
the superfield [33]

S⃗Q ¼ 1ffiffiffi
3

p σ⃗Σc þ Σ⃗�
c; ð7Þ

which has good heavy-quark rotation properties, while in
the light-quark notation, we simply write everything in
terms of the light-diquark subfield aL (i.e., the qq pair) and
its light-spin operator

Σc;Σ�
c → aL; S⃗L; ð8Þ

where aL is the field representing the effective light-diquark
degrees of freedom (with quantum numbers JP ¼ 1þ, i.e.,
an axial vector), with the translation rules

hΣcjS⃗LjΣci ¼
2

3
σ⃗2; ð9Þ

hΣcjS⃗LjΣ�
ci ¼

1ffiffiffi
3

p S⃗2; ð10Þ

hΣ�
cjS⃗LjΣ�

ci ¼
2

3
Σ⃗2; ð11Þ

where σ⃗2 are the Pauli matrices as applied to the charmed
baryon Σc, S⃗ is a set of the matrices representing the spin-1

2

to spin-3
2
transition (which can be consulted in Ref. [34]),

and Σ⃗2 are the spin-3
2
matrices.

With these ingredients, the interaction between a D̄
charmed antimeson and a Σc charmed baryon can be easily
written as

L1 ¼ Caðq†LqLÞða†LaLÞ þ Cbðq†Lσ⃗LqLÞ · ða†LS⃗LaLÞ; ð12Þ

which leads to the nonrelativistic contact-range potential

VC1 ¼ Ca þ Cbσ⃗L1 · S⃗L2: ð13Þ

This potential can be particularized for the two cases of
interest for us in the present work, the D̄Σc and D̄�Σc
systems

VC1ðD̄ΣcÞ ¼ Ca; ð14Þ

VC1ðD̄�ΣcÞ ¼ Ca þ Cb
2

3
S⃗1 · σ⃗2; ð15Þ

which we will use for the Pcð4312Þ and the D̄�Σc
components of the Pcð4440Þ and Pcð4457Þ, respectively.

B. D̄�Σc − D̄Λc1 transition

Now, we will consider the D̄ð�ÞΣð�Þ
c to D̄ð�ÞΛð�Þ

c1 transi-
tions, which are necessary for the description of the D̄Λc1
component in the Pcð4440Þ and Pcð4457Þ pentaquarks.
First, we will consider the structure of the Λc1 and Λ�

c1
P-wave charmed baryons (where Λ�

c1 refers to the
Λcð2625Þ), which are Qqq states in which the spin of
the light-quark pair is SL ¼ 0 and their orbital angular
momentum is LL ¼ 1, yielding a total angular momentum
of JL ¼ 1. In practice, this means that there is no sub-
stantial difference (except for parity) between the descrip-
tion of the Σc, Σ�

c and Λc1, Λ�
c1 charmed baryons either in

terms of heavy-superfield or light-subfield notations. In the
superfield notation, we will write [35]

R⃗Q ¼ 1ffiffiffi
3

p σ⃗Λc1 þ Λ⃗�
c1; ð16Þ

while in the light-quark notation, we use

Λc1;Λ�
c1 → vL; L⃗L; ð17Þ

with vL representing the light-diquark pair (with quantum
numbers JP ¼ 1−, i.e., a vector field) and L⃗L being the
spin-1 matrices, where we use a different notation than
in the S-wave charmed-baryon case to indicate that the
angular momentum comes from the orbital angular
momentum of the light-quark pair. This does not entail
any operational difference, with the translation rules being

hΛc1jL⃗LjΛc1i ¼
2

3
σ⃗2; ð18Þ

hΛc1jL⃗LjΛ�
c1i ¼

1ffiffiffi
3

p S⃗2; ð19Þ

hΛ�
c1jL⃗LjΛ�

c1i ¼
2

3
Σ⃗2; ð20Þ

which are analogous to these of the Σc, Σ�
c baryons; see

Eqs. (9)–(11).
With these ingredients, we are ready to write the

D̄ð�ÞΣð�Þ
c → D̄ð�ÞΛð�Þ

c1 transition Lagrangian. If for simplicity
we limit ourselves to the subset of operators generating a
D → D� transition, we find that at lowest order there are
two independent relevant operators, which for convenience
we write as

L2 ¼ Daðq†Lσ⃗LqLÞ · ðv†L∇
↔
aLÞ

þ iDbðq†Lσ⃗LqLÞ · ðv†LJ⃗L ×∇↔aLÞ þ C:C:; ð21Þ

with ∇↔ ¼ ð∇⃗ − ∇⃖Þ and where J⃗L refers to the spin-1
matrices as applied between the light-diquark axial and
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vector fields within the S- and P-wave charmed baryons.
The translation rules for the J⃗L operator happen to be

hΣcjJ⃗LjΛci ¼
2

3
σ⃗2; ð22Þ

hΣcjJ⃗LjΛ�
ci ¼

1ffiffiffi
3

p S⃗2; ð23Þ

hΣ�
cjJ⃗LjΛ�

ci ¼
2

3
Σ⃗2; ð24Þ

which are analogous to Eqs. (9)–(11) and (18)–(20), except
that now the initial and final baryon states are different
(either the S- to P-wave baryon transition or vice versa).
Other operators choices are possible in the Lagrangian of
Eq. (21), but the present one is particularly useful because
the Da term is pionlike, while the Db term is ρ-like; they
are similar to what we could get from the exchange of a
pion and a ρ, respectively, as we explain in the Appendix
The potential we obtain is

VC2ð1 → 2Þ ¼ þDaσ⃗L1 · q⃗þ iDbq⃗ · ðσ⃗L1 × J⃗L2Þ; ð25Þ

while in the other direction, it is

VC2ð2 → 1Þ ¼ −Daσ⃗L1 · q⃗þ iDbq⃗ · ðσ⃗L1 × J⃗L2Þ; ð26Þ

whereDa andDb are real in the convention we have used to
write the potentials. It is important to notice that VC2 is a
nondiagonal potential and can be redefined by a phase

VC2ð1 → 2Þ → eþiϕVC2ð1 → 2Þ; ð27Þ

VC2ð2 → 1Þ → e−iϕVC2ð2 → 1Þ; ð28Þ

in which case the potential is still self-adjoint. In the
convention above, the p-space partial wave projection is
purely real, while the r-space partial wave projection is
purely imaginary. To avoid the inconveniences originating
from this fact, when working in coordinate space, we will
automatically add the phase ϕ ¼ �π for the nondiagonal
potential to be real.
Phenomenologically, we expect theDa andDb couplings

to represent the exchange of a pseudoscalar and vector
mesons, respectively. However, there is no short-range
contribution directly attributable to a pseudoscalar meson;
pion exchange is excessively long ranged as to be included
in the contact-range potential. For taking this into account,
we will devise a power counting in which the Da coupling
is a subleading-order contribution, while Db remains
leading. Thus, the effective potential we will use from
now on will be

VC2 ¼ iDbq⃗ · ðσ⃗L1 × S⃗L2Þ: ð29Þ

C. D̄Λc1 channel

Finally, we consider the D̄ð�ÞΛð�Þ
c1 system, which enters

the description of the Pcð4440Þ and Pcð4457Þ as an
additional (P-wave) component of the wave function.
Yet, this meson-baryon system is particularly relevant for
a theoretical pentaquark with quantum numbers JP ¼ 1

2
þ,

for which the most important meson-baryon component of
the wave function will be D̄Λc1 in the S-wave.
The lowest-order interaction in the D̄�Λ�

c1 system hap-

pens to be formally identical to the one for the D̄ð�ÞΣð�Þ
c

system, that is,

L3 ¼ Eaðq†LqLÞðv†LvLÞ þ Ebðq†Lσ⃗LqLÞ · ðv†LL⃗LvLÞ; ð30Þ

which leads to the potential

VC3 ¼ Ea þ Ebσ⃗L1 · L⃗L2: ð31Þ

If we particularize to the D̄Λc1 molecule, we will end up
with

VC3ðD̄Λc1Þ ¼ Ea; ð32Þ

which is a really simple potential, where the coupling Ea is
unknown.

D. Partial-wave projection

For the partial-wave projection of the contact-range
potentials (and the one pion exchange (OPE) potential
later on), we will use the spectroscopic notation 2Sþ1LJ to
denote a state with spin S, orbital angular momentum L,
and total angular momentum J. For the pentaquarks states,
we are considering—Pc, Pc

0, and P�
c—the relevant partial

waves are

Pc

�
1

2

−
�
∶2S1=2ðD̄ΣcÞ; ð33Þ

Pc
0
�
1

2

þ�
∶2S1=2ðD̄Λc1Þ − 2P1=2ðD̄�ΣcÞ − 4P1=2ðD̄�ΣcÞ;

ð34Þ

P�
c

�
1

2

−
�
∶2S1=2ðD̄�ΣcÞ − 2P1=2ðD̄Λc1Þ; ð35Þ

P�
c

�
3

2

−
�
∶4S3=2ðD̄�ΣcÞ − 2P3=2ðD̄Λc1Þ; ð36Þ

where we indicate the relevant meson-baryon channels
within parentheses.
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E. Momentum-space representation

For the momentum-space representation, we simply
project the relevant contact-range potential into the partial
waves of interest. For the Pc (D̄Σc) pentaquark, we simply
have

hp0jVðPcÞjpi ¼ Ca: ð37Þ

Next, for the two P�
c configurations (J ¼ 1

2
, 3
2
), we have

hp0jV
�
P�
c;
1

2

�
jpi ¼

0
B@Ca − 4

3
Cb

2ffiffi
3

p 2Db
3
p

2ffiffi
3

p 2Db
3
p0 0

1
CA; ð38Þ

hp0jV
�
P�
c;
3

2

�
jpi ¼

0
B@ Ca þ 2

3
Cb − 1ffiffi

3
p 2Db

3
p

− 1ffiffi
3

p 2Db
3
p0 0

1
CA: ð39Þ

Finally, for the P0
c (D̄Λc1) pentaquark, we have

hp0jVðP0
cÞjpi ¼

0
BBBBB@

Ea − 2ffiffi
3

p 2Db
3
p −

ffiffi
2
3

q
2Db
3
p

− 2ffiffi
3

p 2Db
3
p0 0 0

−
ffiffi
2
3

q
2Db
3
p0 0 0

1
CCCCCA;

ð40Þ

which can be simplified to a two-channel form if we take
into account that the two P-wave D̄�Σc components can
adopt the configuration

2ffiffiffi
6

p jD̄�Σcð2P1=2Þi þ
1ffiffiffi
3

p jD̄�Σcð4P1=2Þi; ð41Þ

which maximizes the strength of the transition potential and
we end up with

hp0jVðP0
cÞjpi ¼

 
Ea −

ffiffiffi
2

p
2Db
3
p

−
ffiffiffi
2

p
2Db
3
p0 0

!
: ð42Þ

Notice that this simplification is only possible for the
pionless theory at LO; if we include pion exchanges or
other effects, we will have to revert to the original three-
channel representation.

F. Coordinate-space representation

We obtain the r-space contact-range potential from
Fourier-transforming the p-space one,

Vðr⃗Þ ¼
Z

d3q⃗
ð2πÞ3 Vðq⃗Þe

−iq⃗·r⃗; ð43Þ

which in the case of the VC1 and VC3 potentials leads to

VC1ðr⃗Þ ¼ ðCa þ Cbσ⃗L1 · S⃗L2Þδð3Þðr⃗Þ; ð44Þ

VC3ðr⃗Þ ¼ðEa þ Ebσ⃗L1 · L⃗L2Þδð3Þðr⃗Þ: ð45Þ

For the VC2 potential, which contains one unit of orbital
angular momentum, the transformation is a bit more
involved, resulting in

VC2ð1 → 2Þ ¼ ½þiDaσ⃗L1 · ∇⃗ −Db∇⃗ · ðσ⃗L1 × J⃗L2Þ�δð3Þðr⃗Þ;
ð46Þ

which can be further simplified by rewriting

∇⃗δð3Þðr⃗Þ ¼ r̂∂rδ
ð3Þðr⃗Þ; ð47Þ

leading to

VC2ð1 → 2Þ ¼ ½þiDaσ⃗L1 · r̂ −Dbr̂ · ðσ⃗L1 × J⃗L2Þ�∂rδ
ð3Þðr⃗Þ:
ð48Þ

This last expression is particularly useful because the
partial wave projection of the σ⃗L1 · r̂ and r̂ · ðσ⃗L1 × J⃗L2Þ
is identical to their p-space versions. Finally, we redefine
VC2ð1 → 2Þ by a phase to end up with a purely real
potential:

VC2ð1 → 2Þ → −iVC2ð1 → 2Þ: ð49Þ

With the previous conventions and the power counting,
we use (for which Da is a subleading-order effect), we end
up with the r-space potentials

Vðr⃗;PcÞ ¼ Caδ
ð3Þðr⃗Þ; ð50Þ

V

�
r⃗;P�

c;
1

2

�
¼
 
Ca − 4

3
Cb

2ffiffi
3

p 2Db
3
∂r

2ffiffi
3

p 2Db
3
∂r 0

!
δð3Þðr⃗Þ; ð51Þ

V

�
r⃗;P�

c;
3

2

�
¼
 

Ca þ 2
3
Cb − 1ffiffi

3
p 2Db

3
∂r

− 1ffiffi
3

p 2Db
3
∂r 0

!
δð3Þðr⃗Þ; ð52Þ

Vðr⃗;P0
cÞ ¼

 
Ea −

ffiffiffi
2

p
2Db
3
∂r

−
ffiffiffi
2

p
2Db
3
∂r 0

!
δð3Þðr⃗Þ; ð53Þ

where for the P0
c pentaquark we have written the simplified

two-channel version of the potential.

G. Regularization and renormalization

The contact-range potentials we are using are not well
defined unless we include a regulator to suppress the
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unphysical high-momentum components of the potential.
For the p-space version of the potential, this is done with
the substitution

hp0jVCjpi → hp0jVC;Λjpif
�
p0

Λ

�
f

�
p
Λ

�
; ð54Þ

with fðxÞ a regulator function, for which we will choose
a Gaussian, fðxÞ ¼ e−x

2

. For the r-space version of the
potential, we will use a delta-shell regulator

δð3Þðr⃗Þ → δðr − RcÞ
4πR2

c
; ð55Þ

∂rδ
ð3Þðr⃗Þ → 3

Rc

δðr − RcÞ
4πR2

c
; ð56Þ

with Rc the coordinate-space cutoff, where the 3=Rc factor
in the derivative of the delta is chosen for its Fourier
transform to be either p or p0 in the Rc → 0 limit after the
partial wave projection.

H. Dynamical equation

For finding the location of the bound states, we have to
iterate the r- or p-space potentials that we have obtained
within a dynamical equation. For the r-space potential, we
will solve the reduced Schrödinger equation

−u00aþ
X
b

2μbVabðrÞubðrÞþ
LaðLaþ 1Þ

r2
uaðrÞ ¼−γ2auaðrÞ;

ð57Þ
where a and b are indices we use to represent the different
channels in the molecules we are considering as detailed in
Eqs. (33)–(36), while Vab is the potential between two
channels, see Eqs. (50)–(53), which is regularized as in
Eqs. (55) and (56). The reduced mass, angular momentum,
and wave number of a given channel a are represented by
μa, La, and γa. In turn, the wave number is given by

γa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μaðMthðaÞ −MÞ

q
, with MthðaÞ the mass of the two-

hadron threshold for channel a and M the mass of the
molecular pentaquark we are predicting.
For the p-space potential, we will solve the Lippmann-

Schwinger equation as applied to the pole of the T-matrix,
that is,

ϕaðp⃗Þ ¼
X
b

Z
d3q⃗
ð2πÞ3

hp⃗jVabjq⃗i
MthðbÞ −M − q2

2μb

ϕbðq⃗Þ; ð58Þ

where a and b represent the channel; ϕa is the vertex
function for channel a (where the vertex function is related
to the residue of the T-matrix); Vab is the potential between
two channels, see Eqs. (37)–(40), which is regularized
according to Eq. (54); and M is the mass of the molecular

pentaquark, whileMthðaÞ and μa are the two-hadron thresh-
old and the reduced mass for a given channel a.

III. HALF-PIONFUL THEORY

The exchange of one pion between the D̄�Σc and D̄Λc1
channels has the particularity that its range is extremely
enhanced. The reason is that the pion in the ΣcΛc1π and
D�Dπ vertices can be emitted or absorbed almost on the
mass shell, resulting in an improved range. Besides, owing
to the opposite parity of the Σc and Λc1 baryons, the pion
exchange in this vertex is in the S-wave. In combination
with the standard P-wave pion in the vertex involving the
charmed mesons, the outcome is that, instead of having a
central and tensor forces with orbital angular momentum
L ¼ 0 and 2, respectively, we end up with a vector force
with L ¼ 1. The long-range behavior of the vector force is
1=r2, i.e., an inverse square-law potential, which can trigger
a series of interesting theoretical consequences when the
strength of the potential is above a certain critical value
[22]. Yet, as explained in Ref. [22], this is probably not the
case for the LHCb pentaquarks as hadronic molecules.
Now, we begin by writing the pion-exchange

Lagrangians for the Σc to Λc1 transition in the heavy
superfield notation:

LHHπ ¼
g1ffiffiffi
2

p
fπ

Tr½H†
Q̄τaσ⃗ · ∇⃗πaHQ̄�; ð59Þ

LRSπ ¼
h2
fπ

R⃗†
Qta∂0πa · S⃗Q þ C:C:; ð60Þ

which are obtained from the nonrelativistic limits of the
Lagrangians of Refs. [32,35]. The light-quark notation
version happens to be trivial,

LqLqLπ ¼
g1ffiffiffi
2

p
fπ

q†Lτaσ⃗L · ∇⃗πaqL; ð61Þ

LeLdLπ ¼
h2
fπ

v†Lta∂0πaaL þ C:C: ð62Þ

From the previous Lagrangians, we can derive the OPE
potential in momentum space, which reads as follows,

VOPEðq⃗; 1 → 2Þ ¼ g1h2ffiffiffi
2

p
f2π

τ⃗1 · ⃗t2
ωπσ⃗L1 · q⃗
q⃗2 þ μ2π

; ð63Þ

where we are indicating that this is the transition potential

in the D̄ð�ÞΣð�Þ
c → D̄ð�ÞΛð�Þ

c1 direction. The operator τ⃗1 · ⃗t2 ¼ffiffiffi
3

p
for total isospin I ¼ 1

2
and 0 otherwise. The equivalent

expression in coordinate space can be obtained by Fourier
transforming the previous expression, where in addition we
include a phase to follow the convention of having a purely
real transition potential,
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VOPEðr⃗; 1 → 2Þ ¼ τ⃗1 · ⃗t2σ⃗L1 · r̂WEðrÞ; ð64Þ

with WE defined as

WEðrÞ ¼
g1h2ωπμ

2
π

4π
ffiffiffi
2

p
f2π

e−μπr

μπr

�
1þ 1

μπr

�
: ð65Þ

For the couplings, we have taken g1 ¼ 0.59 (as deduced
from the D� → Dπ and D� → Dγ decays [36,37]),
h2 ¼ 0.63 (from the analysis of Ref. [38], where h2
is extracted from ΓðΛc1 → ΣcπÞ as measured by CDF
[39]), fπ ¼ 130 MeV, and ωπ ≃ ðmðΛc1Þ −mðΣ1ÞÞ≃
ðmðD�Þ −mðDÞÞ ≃mπ , with mπ ¼ 138 MeV. Finally,
μπ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − ω2
π

p
≃ 0, a value we will further discuss in

the following lines.

A. Infrared regularization

In the μπ → 0 limit, which is close to the physical
situation we are dealing with and will probably represent
a good approximation of it, the previous OPE potential
becomes a 1=r2 infinite-range potential. In particular, the
p-space potential reads

VOPEðq⃗; 1 → 2Þ → g1h2ffiffiffi
2

p
f2π

τ⃗1 · ⃗t2
ωπσ⃗L1 · q⃗

q⃗2
; ð66Þ

while for the r-space potential, we can take this approxi-
mation into account within the function WE,

WEðrÞ →
g1h2ωπ

4π
ffiffiffi
2

p
f2π

1

r2
: ð67Þ

Of course, this is merely an approximation. What is actually
happening is that the modulus of the effective pion mass jμπj
will be in general considerably smaller than the pion mass
mπ (or any other hadronic scale for that matter). We have
jμπj ∼ ð10–20Þ MeV, its concrete value depending on the
specific particle channel under consideration. In a few
particle channels, μπ is purely imaginary, indicating the
possibility of decay into the D̄Σcπ channel, and in others, it

is real. A detailed treatment of these difference is, however,
outside the scope of the present manuscript.
Here, we will opt for the much easier treatment we were

describing above, that is, to assume that μπ ¼ 0. For taking
into account that the range of the OPE potential is actually
not infinite, we will include an infrared cutoff. For the
partial-wave projection of OPE in momentum space, we
will introduce an infrared cutoff ΛIR in the following way,

hp0jVOPEjpi → hp0jVOPEjpiθðjq−j − ΛIRÞθðjqþj − ΛIRÞ;
ð68Þ

with q−¼p−p0 and qþ ¼ pþ p0, with the infrared cutoff
chosen within the cutoff window ΛIR ¼ ð10–20Þ MeV,
which corresponds with the size of the modulus of the
effective pion mass. In coordinate space, the inclusion of
the infrared cutoff RIR will be considerably simpler

VOPEðr⃗Þ → VOPEðr⃗ÞθðRIR − rÞ; ð69Þ

where we will take RIR ¼ ð10–20Þ fm.
Actually, the effect of this infrared cutoff is only

important if the strength of the 1=r2 potential is equal to
or larger than the critical value triggering a geometric
spectrum. This does not happen for any of the pentaquarks
we are considering, at least with the currently known values
of the couplings g1 and h2. However, in the P0

c pentaquark,
the strength is not far away from that critical value [22],
indicating that in this case the results will have a larger
dependence on the infrared cutoff.

B. Partial-wave projection

The partial-wave projection of the OPE potential is
trivial for its coordinate-space representation; owing to
its clear separation into a radial and angular piece—
Eq. (64)—it merely requires considering the partial wave
projection of the vector operator σ⃗L1 · r⃗, which we already
showed in Table I.
For the momentum-space representation of the potential,

the partial-wave projection is a bit more complex, yet it can
be written as

TABLE I. Matrix elements of the vector operators for the partial waves we are considering in this work.

Molecule Partial waves JP σ⃗L1 · r̂ r̂ · ðσ⃗L1 × S⃗L2Þ
D̄Λc1-D̄�Σc

2S1=2-2P1=2-4P1=2
1
2
þ 0

BBB@
0 þ 1ffiffi

3
p −

ffiffi
2
3

q
þ 1ffiffi

3
p 0 0

−
ffiffi
2
3

q
0 0

1
CCCA

0
BBB@

0 2iffiffi
3

p i
ffiffi
2
3

q
− 2iffiffi

3
p 0 0

−i
ffiffi
2
3

q
0 0

1
CCCA

D̄�Σc-D̄Λc1
2S1=2-2P1=2

1
2
− �

0 1ffiffi
3

p
1ffiffi
3

p 0

� �
0 − 2iffiffi

3
p

þ 2iffiffi
3

p 0

�
D̄�Σc-D̄Λc1

4S3=2-2P3=2
3
2
− �

0 1ffiffi
3

p
1ffiffi
3

p 0

� �
0 þ iffiffi

3
p

− iffiffi
3

p 0

�
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hp0ðS0L0
J0ÞjVjpðSLJÞi ¼

g1h2ffiffiffi
2

p
f2π

τ⃗1 · ⃗t2ωπhS0L0
J0jσ⃗L1 · q̂jSLJi

× hp0ðL0Þj 1jq⃗j jpðLÞi; ð70Þ

where the matrix elements of the vector operator are again
to be found in Table I, to which we have to add the partial
wave projection of the 1=jq⃗j potential:

hp0ð1Þj 1jq⃗j jpð0Þi ¼
2π

p0

�
1þ p02 − p2

2pp0 log

����pþ p0

p − p0

����
�
;

hp0ð0Þj 1jq⃗j jpð1Þi ¼
2π

p

�
1þ p2 − p02

2pp0 log

����pþ p0

p − p0

����
�
: ð71Þ

Of course, we still supplement the previous expressions
with the infrared cutoff of Eq. (68).

IV. PENTAQUARK TRIO REVISITED

In this section, we consider the description of the
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ pentaquarks within
the EFTs proposed in this work. We will begin by
reviewing their standard molecular interpretations as
D̄Σc and D̄Σ�

c bound states, and then we will move to
the novel molecular interpretation in which the D̄Λc1
channel is included as an explicit degree of freedom for
the Pcð4440Þ and Pcð4457Þ pentaquarks. The prediction of
a D̄Λc1 bound state is contingent on an unknown coupling
constant, Ea. For dealing with this issue, we will consider
two different estimations of the value of this coupling and
the predictions they will entail.

A. Standard molecular interpretation

We begin by reviewing the standard molecular inter-
pretation of Ref. [5], in which the pentaquarks were
considered to be D̄Σc and D̄�Σc molecules (without any
D̄Λc1 component) described by a pionless EFT. This
pionless EFT is equivalent to using the VC1 contact-range
potential of Eq. (13), which contains two independent
couplings Ca and Cb. The original procedure [5] for
determining these two couplings was as follows:

(i) Use the Pcð4440Þ and Pcð4457Þ as D̄�Σc molecules
to determine the Ca and Cb couplings.

(ii) Postdict the Pcð4312Þ as a D̄Σc molecule, and
compare with its experimental location.

For convenience, we will modify the previous procedure in
this manuscript:

(i) Use the Pcð4312Þ and Pcð4457Þ as D̄Σc and D̄�Σc
molecules to determine the Ca and Cb couplings.

(ii) Postdict the Pcð4440Þ as a D̄�Σc molecule, and
compare with its experimental location.

This choice guarantees that the prediction of the pentaquark
trio remain all below their respective meson-baryon thres-
holds; the later inclusion of the D̄Λc1 channel can in a few

instances move the Pcð4457Þ a bit above the threshold for
hard cutoffs if we fit the couplings as in Ref. [5].
Now, for the D̄�Σc molecules, there are two spin

configurations, J ¼ 1
2
and 3

2
, but we do not know which

one corresponds to each of the pentaquarks. As a conse-
quence, we consider two scenarios, A0 and B0:
(a) in scenario A0, the Pcð4440Þ has J ¼ 1

2
, while the spin

of the Pcð4457Þ is J ¼ 3
2
,

(b) in scenario B0, the Pcð4440Þ has J ¼ 3
2
, while the spin

of the Pcð4457Þ is J ¼ 1
2
,

where we use the subscript “zero” to indicate that this is the
base case in which the D̄Λc1 channel is not included. Then,
we postdict the location of the Pcð4440Þ in each scenario,
resulting in

MA0
¼ 4440.1ð4434.5Þ MeV; ð72Þ

MB0
¼ 4449.6ð4447.6Þ MeV ð73Þ

for the p-space Gaussian regulator with Λ ¼ 0.5ð1.0Þ GeV
and

MA0
¼ 4438.9ð4433.8Þ MeV; ð74Þ

MB0
¼ 4449.3ð4447.5Þ MeV ð75Þ

for the r-space delta-shell regulator with R ¼ 1.0ð0.5Þ fm.
These numbers are to be compared with the experimental
value M ¼ ð4440.3� 1.3þ4.1

−4.6Þ MeV, which indicates that
scenario A0 is preferred over scenario B0 (particularly for
softer cutoffs). This coincides with the conclusions of the
previous pionless EFT of Ref. [5]. Yet, it should be noted
that this is a LO calculation, and hence we should expect a
sizable truncation error, which can be estimated by com-
paring the predictions at different cutoffs, for instance.
The cutoff variation indicates aΔM ¼ 2.0–5.6 MeV uncer-
tainty for the masses of the pentaquarks; see Eqs. (72)–(75).
Once we consider this uncertainty, both scenarios A and B
happen to be compatible with the experimental location of
the pentaquarks. For comparison purposes, we notice that
EFT calculations including the D̄�Σc pion dynamics [7,9],
which we have considered here to be a subleading-order
effect and thus part of ΔM, tend to prefer scenario B.

B. Novel molecular interpretation

Now, we explore the novel molecular interpretation we
propose, in which the Pcð4312Þ is a D̄Σc molecule while
the Pcð4440Þ and Pcð4457Þ are D̄�Σc-D̄Λc1 molecules.
The contact-range piece of the potential for the pionless
and half-pionful EFTs is given by Eqs. (37)–(39), which
contain three independent coupling constants (Ca, Cb,
and Db). Finally, we conjecture the existence of a D̄Λc1
S-wave molecule, which we call the P0

c and for which the
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contact-range piece of the potential is given by Eq. (40),
which includes a new coupling (Ea).
Of these four couplings, we can determine three of

them—Ca, Cb, and Db—from the masses of the three
pentaquarks. The procedure we will follow is:

(i) Use the Pcð4312Þ as a D̄Σc molecule to determine
the Ca coupling.

(ii) Use the Pcð4440Þ and Pcð4457Þ as D̄�Σc-D̄Λc1
molecules to determine the Cb and Db couplings.

(iii) If there is no solution for the previous procedure, we
will set Db ¼ 0, and, as in the uncoupled-channel
case, we will determine Cb from the condition of
reproducing the Pcð4457Þ pole.

(iv) Finally, we determine for which values of Ea the P0
c

(the conjectured S-wave D̄Λc1 molecule) binds and
compare these values with expectations from naive
dimensional analysis (NDA).

As in the standard molecular interpretation, we have two
possible scenarios which we now call A1 and B1, where A1

(B1) corresponds to the Pcð4457Þ being a J ¼ 3
2

(1
2
)

molecule. We will further subdivide the scenario A1 (B1)
into a pionless and a half-pionful version, which we
will denote Aπ

1 (Bπ
1) and Aπ

1 (Bπ
1), respectively. It happens

that the couplings can be compared with NDA, in particular
Db and Ea; the Db comparison can provide an indirect
estimation of the likelihood of scenarios A1 and B1,
while Ea will provide the binding likelihood of the P0

c
pentaquark.
To illustrate this idea, we can consider the pionless

p-space calculation, which for Λ ¼ 0.5 GeV in scenario Aπ
1

and Bπ
1 gives

Ca ¼ −2.17 fm2; ð76Þ

Cb ¼ þ0.55 fm2 ðAπ
1Þ; ð77Þ

Db ¼ þ0.00 fm2 ðAπ
1Þ; ð78Þ

Cb ¼ −0.85 fm2 ðBπ
1Þ; ð79Þ

Db ¼ þ0.99 fm2 ðBπ
1Þ: ð80Þ

This translates into the following condition for the P0
c to

bind

Ea ≤ −1.13 fm2 ðAπ
1Þ; ð81Þ

Ea ≤ þ0.04 fm2 ðBπ
1Þ; ð82Þ

which in scenario Aπ
1 requires the coupling Ea to be

attractive, while scenario Bπ
1 will lead to binding even for

a slightly repulsive coupling. For the calculation, we have
used the following values for the masses of the hadrons
involved, mðDÞ ¼ 1867.22 MeV, mðD�Þ ¼ 2008.61 MeV,

mðΣcÞ ¼ 2453.54 MeV, mðΛc1Þ ¼ 2592.25 MeV, which
are the isospin averages of the PDG values [40].
A complete list of the couplings can be consulted in

Table III for the different EFTs and regulators considered
in this work. Independently of the choice of regulator and
cutoff, the binding of the P0

c pentaquark is much more
probable in scenario B1 (pionless or half-pionful). In
scenario A1, there is no pair of values for the Cb and Db
couplings that simultaneously reproduces the Pcð4440Þ and
Pcð4457Þ pentaquarks, and thus we have set Db ¼ 0
and followed the same procedure as in scenario A0 to
determine Cb. We will further comment on why this
happens later on in this section.
Now, we can compare the previous numbers with the

NDA estimation of the expected size of a contact-range
coupling,

jCl;l0 j ∼ jcl;l0 j
4π

Mlþl0þ2
; ð83Þ

where l, l0 are the angular momenta of the initial and final
states that the contact-range potential couples,M is the hard
scale of the theory, and cl;l0 ∼Oð1Þ is a numerical factor of
order 1 related to the partial wave projection. The origin of
this estimation deserves further discussion. On the one
hand, we have the 1=Mlþl0þ2 scaling, which comes from the
canonical dimension of the contact-range coupling, i.e.,
½Cl;l0 � ¼ ½mass�−l−l0−2. On the other hand, the numerical
factors can be deduced from different heuristical argu-
ments. Here, we will consider a simple argument based on
matching the Cl;l0 coupling with the Fourier transform of an
unknown, generic short-range potential characterized by
the hard-range scale M, i.e.,

VSðrÞ ¼ MgðMrÞe−Mr; ð84Þ

where we are ignoring further dependence on the angular
momentum for simplicity. The exponential decay indicates
that this potential is generated by the exchange of a meson
of mass M at short distances, while gðxÞ is a function that
depends on the details of the interaction with that meson.
We expect Cl;l0 to be proportional to the Fourier transform
of VS at low energies, i.e.,

Cl;l0plp0l0 ∝ lim
p;p0→0

hp0ðl0ÞjVSjpðlÞi; ð85Þ

with the partial wave projection of the Fourier transform
given by

hp0ðl0ÞjVSjpðlÞi ¼ 4πil−l
0
Z

dr r2jlðprÞVSðrÞjl0 ðp0rÞ;

ð86Þ

with jlðxÞ the spherical Bessel function and VS the short-
range potential. From these two formulas, we can easily
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trace back the 4π and cl;l0 factors in Eq. (83); the 4π is
simply a trivial consequence of writing the Fourier trans-
form in the partial wave basis, while the cl;l0 factor comes
from the interplay between the low-momentum behavior of
the spherical Bessel functions and the exponential decay of
the short-range potential. For instance, if we consider the
short-range S-wave and S-to-P-wave potentials generated
by the exchange of a meson, the general form of the short-
range potential VS will probably be a Yukawa for the
S-wave case and a derivative of a Yukawa for the S-to-P-
wave transition [in the line of Eq. (65)]. If this is the case,
the g functions in Eq. (84) will take the form

gSðxÞ ∝
1

x
and gSPðxÞ ∝

1

x

�
1þ 1

x

�
; ð87Þ

which leads to the numerical factors cS ∝ 1 and cSP ∝ 1.
Other arguments might lead to different estimations of the
cl;l0 factors, but we will expect most of them to converge
toward cl;l0 ¼ Oð1Þ. For a recent review about NDA in
EFTs, we recommend Ref. [41], which further points out to
cl;l0 ¼ Oð1Þ. But we observe that most arguments are
devoted to S-wave contact-range couplings, with compa-
ratively less effort invested in the naturalness of the l; l0 ≠ 0
cases. The exception is Halo EFT [42], which is, however,
focused on the more interesting non-natural cases. The
bottom line is that the NDA estimates for CS are more well
established than for CSP and thus conclusions based on the
naturalness of CSP are less robust than the ones based
on CS.
Here, we will choose cl;l0 ¼ 1 for simplicity. For

hadrons, we expect M ∼ 1 GeV, which gives us the
following estimations for an S-wave and S-to-P wave
counterterms:

jCNDA
S j ∼ 0.49 fm2 and jCNDA

SP j ∼ 0.10 fm3: ð88Þ

From this, we see that Ca is unnatural (see Table II), which
is to be expected for the coupling of a two-body system that
binds [28,43], while Cb andDb are closer to natural, though
this depends on the cutoff. This is particularly true for Db,
see Table III, which is close to its NDA estimate for Λ ¼
1.0 GeV but not so for Λ ¼ 0.5 GeV. This might be very
well related to our choice ofM ∼ 1 GeV for the hard scale,
though; had we chosen a smaller M, we would have ended
up with a stronger case for the naturalness of Db (particu-
larly because of the 1=M3 scaling). Besides this, we can
appreciate that in scenario A1 the binding of the P0

c
pentaquark is possible but not particularly probable, as
the size of the coupling Ea that is required to bind is larger
than the NDA expectation. In contrast, in scenario B1, the
coupling Ea required to bind falls well within what is
expected from NDA. Thus, in this second case, binding
seems to be much more likely.

Regarding the P0
c pentaquark, we can deduce its probable

mass from the NDA estimation of the Ea coupling,
provided this coupling is attractive:

ENDA
a ≃ −

4π

M2
: ð89Þ

Within scenario B1, this estimation of the coupling con-
sistently generates a shallow P0

c close to the D̄Λc1 thresh-
old, where the concrete predictions can be consulted in
Table IV. Of course, the question is whether it is sensible to
assume that the Ea coupling is attractive. We will examine
the validity of this assumption in the next few lines.

C. Can we further pinpoint the location
of the P0

c pentaquark?

Regarding Ea, it will be useful not only to determine its
sign but also its size beyond the NDA estimation we have
already used to argue the existence of the P0

c pentaquark.
From arguments regarding the saturation of contact-range
couplings by light mesons [34,44], the light-meson con-
tributions to Ea can be divided into two components,

Ea ¼ ES
a þ EV

a ; ð90Þ

which correspond to the scalar (σ) and vector (ω) meson
contributions. The scalar and vector contributions are
attractive and repulsive (ES

a < 0 and EV
a > 0), respectively.

At first sight, this ambiguous result seems to indicate that
we cannot determine the sign of Ea, yet this would be

TABLE II. The contact-range couplings Ca, Cb, and Ea when
the D̄�Σc and D̄Λc1 channels do not couple. Ca and Cb are
obtained from the condition of reproducing the mass of the
Pcð4312Þ and Pcð4457Þ as molecular pentaquarks in p and r
space (as indicated by type of cutoff: Λ and Rc). Scenario A (and
its variants) corresponds to considering that the spin parities of
the Pcð4440Þ and Pcð4457Þ are JP ¼ 1

2
− and 3

2
−, respectively,

while scenario B corresponds to the opposite identification. Ecrit
a

is the critical value of the Ea coupling required for the uncoupled
D̄Λc1 system to bind.

Scenario Λ ðGeVÞ Ca ðfm2Þ Cb ðfm2Þ Ecrit
a ðfm2Þ

A0 0.5 −2.17 þ0.55 −1.13
A0 1.0 −0.80 þ0.13 −0.57

B0 0.5 −2.17 −0.27 −1.13
B0 1.0 −0.80 −0.07 −0.57

Scenario Rc ðfmÞ Ca ðfm2Þ Cb ðfm2Þ Ecrit
a ðfm2Þ

A0 0.5 −0.81 þ0.14 −0.58
A0 1.0 −2.16 þ0.53 −1.18

B0 0.5 −0.81 −0.07 −0.58
B0 1.0 −2.16 −0.26 −1.18
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premature. As a matter of fact, the same situation would
have arisen had we applied this argument to the two-
nucleon system, but it happens that the deuteron binds.
The reason is that the scalar meson contributions have a
longer range than the vector meson ones, leading to net
attraction.
This seems to be the case not only in the two-nucleon

system but also in the D̄Λc case; according to a recent
calculation in the one-boson-exchange model [45], the D̄Λc
system is not far away from binding. In fact, had we
adapted the recent one-boson exchange model of Ref. [46]

(originally intended for the D̄ð�ÞΣð�Þ
c molecules) to the D̄Λc1

system, the system would not have bound, yet its two-body
scattering length a2 would have probably been unnaturally
large

aOBE2 ðD̄Λc1Þ ¼ −24.1þ20.7
−∞ðþ9.5Þ fm; ð91Þ

where the errors are computed as in Ref. [46] and are
compatible with binding2 (the lower error indicates that the
scattering length changes sign, hence the −∞, and that in
that case its value would be þ9.5 fm). This reinforces
the conclusions derived from Ref. [45] for the D̄Λc case.
That is, we expect Ea < 0 and close to the value required to
have a shallow bound state in the absence of coupling with
the D̄�Σc channel. All this makes the P0

c pentaquark very
likely in scenario B1, as we will now show with explicit
calculations.
If we now describe the D̄Λc1 two-body system in a

pionless EFT, the coupling Ea can be determined from the
value of the scattering length that we have already
computed within the OBE model, leading to

Ea ¼ −1.09þ0.21
−0.18ð−0.55þ0.06

−0.04Þ fm2; ð92Þ

TABLE III. The contact-range couplings Ca, Cb and Db from
the condition of reproducing the mass of the Pcð4312Þ and
Pcð4457Þ as molecular pentaquarks in p and r space (as indicated
by type of cutoff: Λ and Rc). Scenario A (and its variants)
corresponds to considering that the spin-parities of the Pcð4440Þ
and Pcð4457Þ are JP ¼ 1

2
− and 3

2
−, respectively, while scenario B

corresponds to the opposite identification. For the half-pionful
EFT, i.e., scenarios Aπ

1 and B
π
1 , the number displayed corresponds

to the softer infrared cutoff, i.e., ΛIR¼10MeV and RIR ¼ 20 fm,
while the number in parenthesis represents the difference with
ΛIR ¼ 20 MeV and RIR ¼ 10 fm in the last significant digit
(if any). Ecrit

a is the critical value of the Ea coupling required for
the coupled D̄Λc1 system to bind.

Scenario Λ ðGeVÞ Ca ðfm2Þ Cb ðfm2Þ Db ðfm3Þ Ecrit
a ðfm2Þ

Aπ
1 0.5 −2.17 þ0.55 0 −1.13

Aπ
1 1.0 −0.80 þ0.12 0 −0.57

Bπ
1 0.5 −2.17 −0.85 0.99 þ0.04

Bπ
1 1.0 −0.80 −0.15 0.13 −0.40

Aπ
1 0.5 −2.17 þ0.57 0 −1.04ð2Þ

Aπ
1 1.0 −0.80 þ0.15 0 −0.50ð1Þ

Bπ
1 0.5 −2.17 −0.76 1.01 þ0.18ð1Þ

Bπ
1 1.0 −0.80 −0.11 0.12 −0.35

Scenario Rc ðfmÞ Ca ðfm2Þ Cb ðfm2Þ Db ðfm3Þ Ecrit
a ðfm2Þ

Aπ
1 0.5 −0.81 þ0.12 0 −0.51

Aπ
1 1.0 −2.16 þ0.51 0 −1.06

Bπ
1 0.5 −0.81 −0.14 0.09 −0.42

Bπ
1 1.0 −2.16 −0.75 0.66 −0.15

Aπ
1 0.5 −0.81 0.15 0 −0.52ð2Þ

Aπ
1 1.0 −2.16 0.55 0 −1.10ð8Þ

Bπ
1 0.5 −0.81 −0.17 0.09 −0.38ð2Þ

Bπ
1 1.0 −2.16 −0.68 0.67 −0.09ð8Þ

TABLE IV. The mass of the P0
c pentaquark as deduced from the

NDA estimate of the Ea coupling (assuming it is attractive) in
scenarios A1 and B1, both in the pionless and half-pionful
theories. For reference, the D̄Λc1 threshold is located at
4459.5 MeV in the isospin-symmetric limit. Ecrit

a has the same
meaning as in Table III.

Scenario Λ ðMeVÞ Ecrit
a ðfm2Þ ENDA

a ðfm2Þ MNDAðP0
cÞ

Aπ
1 0.5 −1.13 −0.49 � � �

Aπ
1 1.0 −0.57 −0.49 � � �

Bπ
1 0.5 þ0.04 −0.49 4457.0

Bπ
1 1.0 −0.40 −0.49 4457.9

Aπ
1 0.5 −1.04ð2Þ −0.49 � � �

Aπ
1 1.0 −0.50ð1Þ −0.49 � � �

Bπ
1 0.5 þ0.18ð1Þ −0.49 4456.3

Bπ
1 1.0 −0.35 −0.49 4457.0

Scenario Rc ðfmÞ Ecrit
a ðfm2Þ ENDA

a ðfm2Þ MNDAðP0
cÞ

Aπ
1 0.5 −0.58 −0.49 � � �

Aπ
1 1.0 −1.18 −0.49 � � �

Bπ
1 0.5 −0.42 −0.49 4458.1

Bπ
1 1.0 −0.15 −0.49 4458.2

Aπ
1 0.5 −0.52ð2Þ −0.49 � � �

Aπ
1 1.0 −1.10ð8Þ −0.49 � � �

Bπ
1 0.5 −0.38ð2Þ −0.49 4457.3

Bπ
1 1.0 −0.09ð8Þ −0.49 4457.7

2The calculation assumes that the D̄ and Λc1 hadrons are
stable, which is not the case for the latter, but neither is this detail
important as we take the scattering length as a proxy for
determining the amount of attraction in the two-body system.
The cutoff is taken as in Ref. [46], i.e., Λ ¼ 1.119þ0.190

−0.094 GeV,
while the couplings of the Λc1 and Σc baryons to the σ and ω
happen to be identical. Finally, Λc1 does not couple to the ρ,
owing to isospin.
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for Λ ¼ 0.5ð1.0Þ GeV if we do the calculations in p space,
or alternatively

Ea ¼ −1.10þ0.21
−0.19ð−0.56þ0.06

−0.05Þ fm2; ð93Þ

for Rc ¼ 1.0ð0.5Þ fm in r space. As already explained, this
extracted value of the coupling is enough to guarantee a
binding in scenario B1, both in the pionless and pionful
versions. This would lead to a P0

c that is bound by
ð4–9Þ MeV depending on the case. The predicted locations
can be found in Table V, where we have not only considered
scenario B1 (for which binding is more probable) but also
scenario A1 (for which binding can still happen in the half-
pionful case). We can appreciate that in scenario B1 the
predictions are very similar, independently of the cutoff or
whether the calculation has been done in r or p space. For a
more graphical comparison, we have included Fig. 1, which
shows the dependence of the binding energy on the
coupling Ea for the half-pionful theory in momentum
space for scenarios A1 and B1. We have chosen this
particular calculation as the representative case, as the

other three possible calculations in scenarios A1 and B1

would yield similar results (except that in the pionless
theory scenario A1 requires a larger jEcrit

a j to bind). In Fig. 1,
we also indicate the most probable values of Ea and the
binding energy of the P0

c within a square.
At this point, it is important to notice that the estimations

of the Ea coupling discussed here are not only close to
binding for the D̄Λc1 system but are also compatible with it
once we take into account the theoretical uncertainties. This
is not only true for the Ea coupling derived from the OBE
model. For Λ ¼ 1.0 GeV, the NDA estimation of Ea is not
far away from the critical value required for binding, i.e.,
jENDA

a j ¼ 0.49 fm2 to be compared with Ecrit
a ¼−0.57 fm2.

The bottom line is that, though the previous discussions
have focused on scenario B, for which binding is more
probable, the P0

c pentaquark could also exist in scenario A.
That is, the difference between scenarios A and B regarding
a possible D̄Λc1 bound state is merely one of likelihood.

D. Can scenario A be discarded?

A preliminary examination of the different determina-
tions of the couplings presented in Table III reveals that
Db ¼ 0 in scenario A. The reason for this is that in general
it is not possible to exactly reproduce the masses of the two
D̄�Σc pentaquarks in this scenario. This seems counterin-
tuitive at first, but actually there are good reasons for this
to be the case, which have to do with coupled-channel
dynamics and which we will explain below. Of course, we
stress here that we are referring to the exact matching of the
three known pentaquark masses with the three parameters
of the present EFT; provided Db is smaller than its NDA
estimate, the pentaquark trio is still well reproduced
(particularly if we consider the experimental errors in
the masses).
First, we will consider a molecular pentaquark PQ in the

heavy-quark limit, in which the masses of the charmed
hadrons diverge and we can ignore the kinetic energy of the
hadrons. In this limit, the binding energy of a molecular
pentaquark is given by

BPQ
¼ −hVSi; ð94Þ

where hVSi is the expected value of the S-wave potential
and where we have taken the convention that the binding
energy BPQ

is a positive number, thus the minus sign in
front of hVSi. Now, we consider the case where the
molecular pentaquark contains an additional P-wave com-
ponent, for which the coupled-channel potential reads

VPQ
¼
�

VS λVSP

λVSP 0

�
; ð95Þ

with VSP the S-to-P-wave transition potential and λ a
number describing the strength of the transition potential.

TABLE V. The mass of the P0
c pentaquark as deduced from the

Ea coupling extracted from the OBE model in scenarios A1 and
B1, both in the pionless and half-pionful theory. For comparison,
we remind the reader that the location of the D̄Λc1 threshold in
the isospin symmetric limit is 4459.5 MeV. Ecrit

a has the same
meaning as in Table III.

Scenario Λ ðGeVÞ Ecrit
a ðfm2Þ EOBE

a ðfm2Þ MOBEðP0
cÞ

Aπ
1 0.5 −1.13 −1.09þ0.21

−0.19 � � �
Aπ
1 1.0 −0.57 −0.55þ0.06

−0.04 � � �

Bπ
1 0.5 þ0.04 −1.09þ0.21

−0.19 4451.2þ2.3
−2.2

Bπ
1 1.0 −0.40 −0.55þ0.06

−0.04 4455.2þ2.7
−2.2

Aπ
1 0.5 −1.04ð2Þ −1.09þ0.21

−0.19 4459.5†−0.6
Aπ
1 1.0 −0.50ð1Þ −0.55þ0.06

−0.04 4459.2†−0.6

Bπ
1 0.5 þ0.18 −1.09þ0.21

−0.18 4450.3þ2.4
−2.1

Bπ
1 1.0 −0.35 −0.55þ0.06

−0.04 4454.2þ2.7
−2.3

Scenario Rc ðfmÞ Ecrit
a ðfm2Þ EOBE

a ðfm2Þ MOBEðP0
cÞ

Aπ
1 0.5 −0.58 −0.56þ0.06

−0.05 � � �
Aπ
1 1.0 −1.18 −1.10þ0.21

−0.19 � � �

Bπ
1 0.5 −0.42 −0.56þ0.06

−0.05 4455.2þ2.7
−2.6

Bπ
1 1.0 −0.15 −1.10þ0.21

−0.19 4452.1þ2.5
−2.6

Aπ
1 0.5 −0.52ð2Þ −0.56þ0.06

−0.05 4459.2ð2Þ†−1.0
Aπ
1 1.0 −1.10ð8Þ −1.10þ0.21

−0.19 4459.5†−0.6

Bπ
1 0.5 −0.38ð2Þ −0.56þ0.06

−0.05 4454.3þ2.7
−2.4

Bπ
1 1.0 −0.09ð8Þ −1.10þ0.21

−0.19 4451.5þ2.6
−2.5
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If λ is small, the effect of the coupled-channel dynamics on
the binding of the pentaquarks can be estimated in
perturbation theory, leading to

BPQ
¼ −hVSi − λ2hVSPG0VSPi þOðλ3Þ; ð96Þ

where G0 is the two-hadron propagator, which in the static
limit (infinitely heavy hadrons) reduces to

G0 ¼
1

MPQ
−MP

th
¼ 1

ΔP ; ð97Þ

with MPQ
the mass of the heavy pentaquark, MP

th the
location of the P-wave threshold, and ΔP the energy gap.
This simplifies the S-to-P-wave contribution to

BPQ
¼ −hVSi − λ2

hðVSPÞ2i
ΔP þOðλ3Þ; ð98Þ

which will increase the binding energy provided that
ΔP < 0, which happens to be the case.3

The parameter λ is useful because it is proportional to the
nondiagonal elements of the potentials in Eqs. (38)–(40).
Thus, we have

λ2 ∝ f6; 4; 1g; ð99Þ

for the P0
c, P�

cð1=2Þ, and P�
cð3=2Þ pentaquarks, respectively.

The actual effect of the P-wave channel also depends on the
inverse of the mass gap, i.e.,

ΔBPQ
∝ −

λ2

ΔP ; ð100Þ

which implies that the impact of the D̄Λc1 channel will be
larger in the Pcð4457Þ pentaquark than in the Pcð4440Þ one
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FIG. 1. Binding energy in scenarios A1 and B1 (p space) of the prospective P0
c pentaquark depending on the size of the

coupling Ea. The square indicates what we consider to be the most probable values of the coupling Ea and the binding
energy of the P0

c pentaquark; it comprises the values of Ea from the NDA to the OBE estimations, i.e., Eqs. (89) and (92). For
scenario A1, the binding window is rather limited, 0–0.03 (0–0.3) MeV for Λ ¼ 0.5ð1.0Þ GeV, where binding does not happen
unless jEaj is above the critical values listed in Table V. For scenario B1, the most probable binding window is about 3.2–9.2
(2.5–5.3) MeV for Λ ¼ 0.5ð1.0Þ GeV. For simplicity, we have only shown the half-pionful theory in momentum space (Aπ

1 and
Bπ
1), as the other cases considered in this work yield similar results (with the curves moving a bit toward the right in the

pionless case).

3Notice that we are assuming an attractive S-wave
potential—hVSi < 0—and that we always have hðVSPÞ2i ≥ 0.
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(ΔP ¼ −2.2 and −19.2 MeV, respectively). However, once
we take into account the finite mass of the hadrons, the
effect of the mass gap on the Pcð4457Þ will diminish in
relative terms as it will be softened owing to the kinetic
energy contributions.
In scenario A, the Pcð4440Þ and Pcð4457Þ are already

well reproduced before including the D̄Λc1 channel; i.e.,
the choice Db ¼ 0 is compatible with the experimental
location of the pentaquarks without further modifications.
Thus, it comes as no surprise that scenarios A0 and A1 are
indistinguishable from the point of view of the couplings.
Another factor to consider is the hyperfine splitting
between the P�

cð1=2Þ and P�
cð3=2Þ pentaquarks, which in

scenario A0 is

MA0

�
3

2

�
−MA0

�
1

2

�
¼ 17.2ð22.8Þ MeV; ð101Þ

for the p-space Gaussian regulator with Λ¼0.5ð1.0ÞMeV,
or

MA0

�
3

2

�
−MA0

�
1

2

�
¼ 18.5ð24.0Þ MeV ð102Þ

for the r-space delta-shell regulator with Rc ¼ 1.0ð0.5Þ fm.
This is to be compared with the experimental splitting
jΔj ¼ 17.0þ6.4

−4.7 MeV, where we have combined the errors
of the pentaquark masses in quadrature. Now, it happens
that the inclusion of the D̄Λc1 channel widens the hyperfine
splitting, as can be checked with the following calculation:

(i) determine the Ca coupling from the location of the
Pcð4312Þ as a D̄Σc bound state (as usual),

(ii) fix the coupling Db to a predetermined value,
(iii) determine Cb from the location Pcð4457Þ as a

D̄�Σc-D̄Λc1 bound state,
(iv) calculate the location of the Pcð4440Þ,

which is very similar to the procedures we have been
following for scenarios A0 and B0. The splitting we obtain
for scenario A can be consulted in Fig. 2, where for
simplicity we have only shown the pionless calculation
in p space (the other calculations being qualitatively
equivalent to this one). As can be appreciated in Fig. 2,
the magnitude of the splitting grows withDb, which in turn
explains why it was not possible to find a solution in
scenario A1. However, once we consider the errors in the
pentaquark masses, scenario A is still compatible with the
experimental location of the pentaquarks for small values
of the coupling Db. For the case of Λ ¼ 0.5ð1.0Þ GeV,
scenario A is compatible with experiment provided
jDbj < 0.58ð0.02Þ fm3, which is to be compared with
the NDA estimate jDNDA

b j ¼ 0.10 fm3. This indicates that
NDA and scenario A are compatible for Λ ¼ 0.5 GeV, but
not for Λ ¼ 1.0 GeV.

For scenario B, the hyperfine splitting is

MB0

�
3

2

�
−MB0

�
1

2

�
¼ −7.7ð−9.7Þ MeV; ð103Þ

for the p-space Gaussian regulator with Λ¼0.5ð1.0ÞMeV,
or

MB0

�
3

2

�
−MB0

�
1

2

�
¼ −8.1ð−10.4Þ MeV; ð104Þ

for the r-space delta-shell regulator with Rc ¼ 1.0ð0.5Þ fm,
to be compared with the −17.0 MeV figure which we
obtain from the experimental masses. The inclusion of the
D̄Λc1 channel actually increases the absolute magnitude of
the mass splitting, thus improving the agreement between
theory and experiment. This can be seen in Fig. 3, where
we show the hyperfine splitting as a function of the
coupling Db for scenario B. The details of the calculation
are analogous to the ones we followed for Fig. 2.
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FIG. 2. Hyperfine splitting of the Pcð4440Þ and Pcð4457Þ
pentaquarks in scenario A as a function ofDb. We define the mass
splitting as Δ ¼ MðP�

cð32ÞÞ −MðP�
cð32ÞÞ, the sign of which is

positive (negative) in scenario A (B). The blue band and blue line
represent the experimental hyperfine splitting jΔj ¼ 17.0þ6.4

−4.7 .
For simplicity, we have done the calculation in the pionless EFT
for Λ ¼ 0.5 and 1 GeV, with the other EFT variations yielding
similar results.
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Compatibility with the size of the experimental splitting
is possible for 0.70 fm3 < jDbj < 1.26 fm3 (0.08 fm3 <
jDbj < 0.17 fm3) for Λ ¼ 0.5ð1.0Þ GeV. This indicates
that scenario B agrees with the NDA estimates of Db for
Λ ¼ 1.0 GeV, while for Λ ¼ 0.5 GeV, it requires a Db
seven times the NDA estimate.
At this point, we observe that the NDA estimates for Db

seem to be better respected for Λ ¼ 1.0 GeV than for
Λ ¼ 0.5 GeV.We are not only referring to Figs. 2 and 3 but
also to the couplings in Table III. Actually, this might be
related to a series of factors, the most important one
probably being that naturalness of contact-range inter-
actions beyond S-waves has been rarely dealt with in the
literature, except in Halo EFT [42] as previously noted.
However, there are at least two reasons to revise the NDA
estimates for Db upward. The first one has to do with the
numerical factors in front ofDb. The NDA estimate for Cl;l0

implicitly assumes a contact-range potential normalized as

hp0ðl0ÞjVCjpðlÞi ¼ Cl;l0p0l0pl: ð105Þ

In contrast, the D̄�Σc → D̄Σc transition potentials contain a
factor in front of the coupling

hp0ð0ÞjVCjpð1Þi ¼ λ
2

3
ffiffiffi
3

p Dbp; ð106Þ

with λ a numerical factor that can be deduced from Eq. (99).
Combining all the factors, this indicates that the NDA
value of Db should be 1.1–2.6 times the value of CNDA

SP ¼
0.10 fm3, depending on which pentaquark we use as a
reference. The second reason has to do with the choice of a
hard scale M, for which we previously took the 1 GeV
figure. Had we takenM ¼ mρ withmρ ¼ 770 MeV the rho
meson mass, we would have arrived at CNDA

SP ¼ 0.21 fm3,
i.e., twice the estimation for M ¼ 1 GeV. Putting all these
pieces together would suggest DNDA

b ¼ ð0.10–0.55Þ fm3.
But there could also be unaccounted for reasons for Db to
be smaller. The bottom line is that we still require external
input to decide which scenario is more probable, be it
phenomenological studies or further experiments.
Here, it is important to mention that the two theoretical

scenarios we have presented (A and B) are but a subset of
all the possible scenarios. We have three molecular explan-
ations [P�

cð1=2Þ, P�
cð3=2Þ, and P0

c] for two pentaquarks,
which gives a total of six possible scenarios instead of the
two we are considering. But with the exception of scenarios
A and B, it is not possible to determine the value of the
couplings in other cases. For instance, had we assumed that
the Pcð4440Þ is the J ¼ 3

2
D̄�Σc molecule and Pcð4457Þ is

the J ¼ 1
2
D̄Λc1 one, i.e., the scenario originally proposed

in Ref. [8], we would have ended with three unknown
couplings (Cb, Db, and Ea) for two pentaquarks. Though
this limitation might indeed be overcome by invoking
NDA, the resulting analysis is considerably more involved
than in scenarios A and B, and thus we have decided not to
consider them in this work.
Another factor that we have not taken into account in

the present analysis is the effect of the D̄Λ�
c1 channel,

which lies about 20 MeV above the D̄Λc1 threshold. The
D̄Λ�

c1 channel can mix with the J ¼ 3
2
D̄�Σc one, inducing a

bit of extra attraction in this later case. However, from
Eq. (100) and the larger mass gap for the D̄Λ�

c1 channel
(ΔP ¼ −55.0 MeV versus −19.2 MeV for the D̄Λc1 one
for scenario B), we expect this effect to be fairly modest.

V. CONCLUSIONS

In this paper, we have considered the impact of the D̄Λc1
channel for the description of the Pcð4440Þ and Pcð4457Þ
pentaquarks. Within the molecular picture, the standard
interpretation of the Pcð4440Þ and Pcð4457Þ states is that
they are D̄�Σc bound states. This is motivated by the
closeness of the D̄�Σc threshold to the location of the
two pentaquark states. But the same is true for the D̄Λc1
threshold, which naturally prompts the question of what is
the contribution of this channel to the description of the
pentaquarks [8,22,47].
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FIG. 3. Hyperfine splitting of the Pcð4440Þ and Pcð4457Þ
pentaquarks in scenario B as a function of Db. The conventions
are identical as in Fig. 2, to which we refer for further details.
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For answering this question, we have analyzed the
inclusion of D̄Λc1 channel from the EFT perspective.
We find that the importance of the D̄Λc1 channel depends
on which are the quantum numbers of the Pcð4440Þ and
Pcð4457Þ pentaquarks; in the standard molecular inter-
pretation (D̄�Σc), their quantum numbers can be either
JP ¼ 1

2
− or 3

2
−, but we do not know which quantum

numbers correspond to which pentaquark. There are two
possibilities: that the Pcð4440Þ and Pcð4457Þ are, res-
pectively, the JP ¼ 1

2
− and 3

2
− D̄�Σc molecules, or vice

versa. The first possibility, which we call scenario A,
corresponds to the standard expectation that hadron masses
increase with spin. The second possibility, scenario B,
represents the opposite pattern, which has recently been
conjectured to be a property of hadronic molecules [44].
In scenario A, the inclusion of the D̄Λc1 channel is

inconsequential for the description of the molecular
pentaquarks; the D̄Λc1 can effectively be ignored, as the
transition potential between the D̄Λc1 → D̄�Σc channels is
required to be weak if we want to reproduce the three
known pentaquarks. However, this is not the case in
scenario B, where the inclusion of the D̄Λc1 channel can
potentially have important consequences on the pentaquark
spectrum. In this case, the coupling between the D̄Λc1 and
D̄�Σc channels might very well be strong enough to
facilitate the binding of the D̄Λc1 system in the S-wave,
as happened in Ref. [8]. Right now, there is no experimental
determination of the quantum numbers of the pentaquarks,
with different theoretical explorations favoring different
scenarios. We see a preference toward A in Refs. [5,6] and
toward B in Refs. [7,9,48,49], though other scenarios are
possible; for instance, in Ref. [8], the 1

2
− D̄�Σc pentaquark

does not bind. Within the molecular picture, there seems to
be a tendency for pionless theories to favor A, while
theories that include pion exchange effects tend to fall
into scenario B.
If scenario B happens to be the one preferred by nature,

the prospects for the JP ¼ 1
2
þ D̄Λc1 molecule to bind are

good; though the fate of this bound state is ultimately
contingent on the unknown short-distance details of the
interaction, phenomenological arguments indicate a mod-
erate attraction between the D̄ meson and Λc1 baryon at
short distances. If this is the case and this molecule binds, it
might very well be that the Pcð4457Þ is a double peak,
containing both a D̄�Σc and a D̄Λc1 molecule with opposite
parities. If scenario A is the one that actually describes the
pentaquarks, the JP ¼ 1

2
þ pentaquark cannot be discarded

either—there is the possibility that it binds even without
coupling to the D̄�Σc channel—but is less likely to exist,
nonetheless.
Yet, we stress the exploratory nature of the present

manuscript: the EFT framework requires experimental input

and a series of assumptions for it to be able to generate
predictions. Indeed, there could be three pentaquarks inde-
pendently of the quantum numbers of the experimentally
observed ones, with scenario B merely being the
case for which this possibility is more probable. In this
regard, it would be very welcome to have phenomenological
explorations of the D̄Λc1 interaction and the D̄Λc1 → D̄�Σc
transition.
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APPENDIX: PION- AND RHO-LIKE COUPLINGS

In this Appendix, we discuss the possible sources of
saturation of the Da and Db contact-range couplings that
mediate the D̄�Σc → D̄Λc1 transition.
Regarding the coupling Da, its similarity with the

exchange of a pseudoscalar is evident from a direct
comparison to the contact-range potential of Eq. (25) for
Db ¼ 0, that is,

VC2ðaÞð1 → 2Þ ¼ þDaσ⃗L1 · q⃗; ðA1Þ

and the OPE potential of Eq. (63). Saturation of the Da
coupling from a derivative pseudoscalar meson such as the
pion will lead to the approximation [34,44]

DðπÞ
a ∝

g1h2ffiffiffi
2

p
f2π

τ⃗1 · ⃗t2
ωπ

μ2π
: ðA2Þ

However, saturation is only known to work if the
regularization scale is close to the mass of the exchanged
meson [50]. Taking into account that the pion is the
lightest meson and that the cutoff range we are using is
Λ ¼ ð0.5–1.0Þ GeV, we do not expect the Da coupling to
receive contributions coming from pion exchange. If we
consider the exchange of heavier mesons, there is no
clear candidate for the exchange of a pseudoscalar
meson in the mass range comprised by our choice of
a cutoff, hence the decision to consider that Da ¼ 0 at
lowest order.
For theDb coupling, the situation is different because the

D̄�Σc → D̄Λc1 transition can happen via rho-exchange.
The relevant Lagrangians read

Lρ1 ¼ gρ1q
†
Lτaρa0qL −

fρ1
4M

ϵijkq
†
LσL;kτa · ð∂iρaj − ∂jρaiÞqL;

ðA3Þ
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Lρ2 ¼
fρ2
2M

v†LtaðJLi∂iρ
0
a − ∂0ρaiÞaL þ C:C: ðA4Þ

where qL, aL, and vL are the light subfields of the Dð�Þ,
Σð�Þ
c , and Λð�Þ

c1 charmed hadrons; ρaμ is the rho meson field,
with μ a Lorentz index (i is used to indicate μ ¼ 1, 2, 3) and
a and isospin index; ta and τa are isospin matrices; gρ1, fρ1,
and fρ2 are coupling constants; and M is a mass scale for
the magnetic and electric dipole terms (i.e., the piece
proportional to fρ1 and fρ2, respectively). The chargelike
term (i.e., the one proportional to gρ1) can contribute to
D̄Σc → D̄Λc1 and D̄�Σc → D̄�Λc1 transitions but not to the
D̄�Σc → D̄Λc1 one, which is of interest for this work. The
magnetic and electric and dipole terms of these Lagrangian
lead to the potential

Vρðq⃗; 1 → 2Þ ¼ fρ1
2M

fρ2
2M

τ⃗1 · ⃗t2
ωρ

q⃗2 þ μ2ρ
q⃗ · ðσ⃗L1 × J⃗L2Þ;

ðA5Þ

where ωρ ≃ ðmðΛc1Þ −mðΣcÞÞ ≃ ðmðD�Þ −mðDÞÞ, μ2ρ ¼
m2

ρ − ω2
ρ and the rest of the terms have the same meaning as

in Eqs. (25) and (63). Finally, the saturation of the Db
coupling by the rho will lead to a value proportional to

DðρÞ
b ∝

fρ1
2M

fρ2
2M

τ⃗1 · ⃗t2
ωρ

μ2ρ
: ðA6Þ

This is why we keep Db as a leading-order effect but
consider Da to be subleading.

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
222001 (2019).

[2] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 100,
051501 (2019).

[3] R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Phys. Rev. D 100,
011502 (2019).

[4] M.-Z. Liu, F.-Z. Peng, M. Sánchez Sánchez, and M. P.
Valderrama, Phys. Rev. D 98, 114030 (2018).

[5] M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sánchez Sánchez,
L.-S. Geng, A. Hosaka, and M. Pavon Valderrama, Phys.
Rev. Lett. 122, 242001 (2019).

[6] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 100,
014021 (2019).

[7] M. Pavon Valderrama, Phys. Rev. D 100, 094028 (2019).
[8] T. Burns and E. Swanson, Phys. Rev. D 100, 114033 (2019).
[9] M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner,

J. A. Oller, and Q. Wang, Phys. Rev. Lett. 124, 072001
(2020).

[10] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. Lett.
105, 232001 (2010).

[11] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. C 84,
015202 (2011).

[12] J.-J. Wu and B. S. Zou, Phys. Lett. B 709, 70 (2012).
[13] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 88, 056012

(2013).
[14] W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, Phys.

Rev. C 84, 015203 (2011).
[15] Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, Chin.

Phys. C 36, 6 (2012).
[16] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 122001

(2015).
[17] M. I. Eides, V. Y. Petrov, and M. V. Polyakov, Mod. Phys.

Lett. A 35, 2050151 (2020).
[18] Z.-G. Wang, Int. J. Mod. Phys. A 35, 2050003 (2020).
[19] G. Yang, J. Ping, and J. Segovia, Phys. Rev. D 101, 074030

(2020).

[20] J. Ferretti and E. Santopinto, J. High Energy Phys. 04 (2020)
119.

[21] F. Stancu, Phys. Rev. D 101, 094007 (2020).
[22] L. Geng, J. Lu, and M. P. Valderrama, Phys. Rev. D 97,

094036 (2018).
[23] M. Bawin and S. Coon, Phys. Rev. A 67, 042712

(2003).
[24] E. Braaten and D. Phillips, Phys. Rev. A 70, 052111

(2004).
[25] H.W. Hammer and B. G. Swingle, Ann. Phys. (Amsterdam)

321, 306 (2006).
[26] V. Efimov, Phys. Lett. 33B, 563 (1970).
[27] R. Aaij et al., Phys. Rev. Lett. 115, 072001 (2015).
[28] U. van Kolck, Nucl. Phys. A645, 273 (1999).
[29] J.-W. Chen, G. Rupak, and M. J. Savage, Nucl. Phys. A653,

386 (1999).
[30] M. Pavon Valderrama, Eur. Phys. J. A 56, 109 (2020).
[31] A. V. Manohar and M. B. Wise, Nucl. Phys. B399, 17

(1993).
[32] A. F. Falk and M. E. Luke, Phys. Lett. B 292, 119

(1992).
[33] P. L. Cho, Nucl. Phys. B396, 183 (1993); B421, 683(E)

(1994).
[34] J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Phys. Rev. D

99, 074026 (2019).
[35] P. L. Cho, Phys. Rev. D 50, 3295 (1994).
[36] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett. 87,

251801 (2001).
[37] A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D

65, 032003 (2002).
[38] H.-Y. Cheng and C.-K. Chua, Phys. Rev. D 92, 074014

(2015).
[39] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 84,

012003 (2011).
[40] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).

PEAKS WITHIN PEAKS AND THE POSSIBLE TWO-PEAK … PHYS. REV. D 103, 014023 (2021)

014023-17

https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevD.98.114030
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevD.100.014021
https://doi.org/10.1103/PhysRevD.100.014021
https://doi.org/10.1103/PhysRevD.100.094028
https://doi.org/10.1103/PhysRevD.100.114033
https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1103/PhysRevLett.124.072001
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1016/j.physletb.2012.01.068
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevC.84.015203
https://doi.org/10.1103/PhysRevC.84.015203
https://doi.org/10.1088/1674-1137/36/1/002
https://doi.org/10.1088/1674-1137/36/1/002
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1142/S0217732320501515
https://doi.org/10.1142/S0217732320501515
https://doi.org/10.1142/S0217751X20500037
https://doi.org/10.1103/PhysRevD.101.074030
https://doi.org/10.1103/PhysRevD.101.074030
https://doi.org/10.1007/JHEP04(2020)119
https://doi.org/10.1007/JHEP04(2020)119
https://doi.org/10.1103/PhysRevD.101.094007
https://doi.org/10.1103/PhysRevD.97.094036
https://doi.org/10.1103/PhysRevD.97.094036
https://doi.org/10.1103/PhysRevA.67.042712
https://doi.org/10.1103/PhysRevA.67.042712
https://doi.org/10.1103/PhysRevA.70.052111
https://doi.org/10.1103/PhysRevA.70.052111
https://doi.org/10.1016/j.aop.2005.04.017
https://doi.org/10.1016/j.aop.2005.04.017
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1016/S0375-9474(99)00298-5
https://doi.org/10.1016/S0375-9474(99)00298-5
https://doi.org/10.1140/epja/s10050-020-00099-8
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0370-2693(92)90618-E
https://doi.org/10.1016/0370-2693(92)90618-E
https://doi.org/10.1016/0550-3213(93)90263-O
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1103/PhysRevD.99.074026
https://doi.org/10.1103/PhysRevD.99.074026
https://doi.org/10.1103/PhysRevD.50.3295
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.92.074014
https://doi.org/10.1103/PhysRevD.92.074014
https://doi.org/10.1103/PhysRevD.84.012003
https://doi.org/10.1103/PhysRevD.84.012003
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001


[41] U. van Kolck, Eur. Phys. J. A 56, 97 (2020).
[42] C. Bertulani, H. Hammer, and U. Van Kolck, Nucl. Phys.

A712, 37 (2002).
[43] M. C. Birse, J. A. McGovern, and K. G. Richardson, Phys.

Lett. B 464, 169 (1999).
[44] F.-Z. Peng, M.-Z. Liu, M. Sánchez Sánchez, and M. P.

Valderrama, Phys. Rev. D 102, 114020 (2020).
[45] R. Chen, A. Hosaka, and X. Liu, Phys. Rev. D 96, 116012

(2017).

[46] M.-Z. Liu, T.-W.Wu,M. Sánchez Sánchez,M. P. Valderrama,
L.-S. Geng, and J.-J. Xie, arXiv:1907.06093.

[47] T. J. Burns, Eur. Phys. J. A 51, 152 (2015).
[48] Y. Shimizu,Y.Yamaguchi, andM.Harada, arXiv:1904.00587.
[49] Y. Yamaguchi, H. García-Tecocoatzi, A. Giachino, A.

Hosaka, E. Santopinto, S. Takeuchi, and M. Takizawa,
Phys. Rev. D 101, 091502 (2020).

[50] E. Epelbaum, U. G. Meissner, W. Gloeckle, and C. Elster,
Phys. Rev. C 65, 044001 (2002).

FANG-ZHENG PENG et al. PHYS. REV. D 103, 014023 (2021)

014023-18

https://doi.org/10.1140/epja/s10050-020-00092-1
https://doi.org/10.1016/S0375-9474(02)01270-8
https://doi.org/10.1016/S0375-9474(02)01270-8
https://doi.org/10.1016/S0370-2693(99)00991-0
https://doi.org/10.1016/S0370-2693(99)00991-0
https://doi.org/10.1103/PhysRevD.102.114020
https://doi.org/10.1103/PhysRevD.96.116012
https://doi.org/10.1103/PhysRevD.96.116012
https://arXiv.org/abs/1907.06093
https://doi.org/10.1140/epja/i2015-15152-6
https://arXiv.org/abs/1904.00587
https://doi.org/10.1103/PhysRevD.101.091502
https://doi.org/10.1103/PhysRevC.65.044001

