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We present an exact computation of effective Hamiltonians for an elementary model obtained from the
Yukawa theory by going to the limit of bare fermions being infinitely heavy and bare bosons being at rest
with respect to the fermions that emit or absorb them. The coupling constant can be arbitrarily large. The
Hamiltonians are computed by solving the differential equation of the renormalization group procedure for
effective particles (RGPEP). Physical fermions, defined in the model as eigenstates of the effective
Hamiltonians, are obtained in the form of an effective fermion dressed with a coherent state of effective
bosons. The model computation illustrates the method that can be used in perturbative computations of
effective Hamiltonians for realistic theories. It shows the mechanism by which the perturbative expansion
and Tamm-Dancoff approximation increase in accuracy along the RGPEP evolution.
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I. INTRODUCTION

Complexity of relativistic quantum field theory (QFT)
implies a need for approximate computational methods.
One needs a systematic scheme for improving their
accuracy. That is the case in computing observables using
expansion in powers of a small coupling constant, solving
eigenvalue problems using a limited basis in the space of
states or using renormalization group methods. A combi-
nation of all three of these techniques requires a clear-cut
pattern to follow. Such pattern can only be provided by an
exactly solvable model, because one needs the exact
solution to unambiguously assess accuracy of the approxi-
mate calculations. On the other hand, to obtain an exactly
solvable model, one has to simplify a theory. A compro-
mise needs to be struck between simplifying and obtaining
a helpful pattern.
This paper presents a novel, exact renormalization group

computation of effective Hamiltonians in a model that
results from drastic but precisely specified simplifications
of QFT, so that one can see the steps that would have to be
reconstructed in an analogous computation of the effective
Hamiltonians and their spectra in QFT. The presentation is
thus quite limited but it includes enough of the QFT
features for addressing the issues of high orders of
perturbation theory, few-body approximations in the

Fock space, renormalization-group improvements, and
the form of effective Hamiltonians that change, but not
limit the number of interacting field quanta.
The computation presented in this paper concerns a

model that is obtained by drastically simplifying the
Yukawa theory. The simplifications made here partly
resemble the ones that Wilson adopted in formulating
his approach to renormalization using a Yukawa-like model
[1], but they go much further. As a result, the ultraviolet
divergences of a local theory are eliminated at the outset.
This is useful because the goal of the presented compu-
tation is not to find the ultraviolet counterterms using the
triangle of renormalization [2], as it was in Wilson’s case,
but to deal with the issue of computation of an effective
theory Hamiltonian after the right counterterms have
already removed the divergences. The model computation
includes a pattern of handling terms that are analogous to
the finite parts of counterterms.
It should be stressed that the history of models that

incorporate elements of the Yukawa theory and are helpful
in understanding renormalization in QFT beyond the weak-
coupling expansion have a long history [3]. There are
exactly solvable models among them, e.g., [4]. Also, a
model may employ some elements of the Yukawa theory
formalism and be exactly solvable without encountering
any need for renormalization. For example, a class of two-
level models for a system of a fixed number of fermions,
whose Hamiltonians can be written using bilinear products
of fermion creation and annihilation operators, could be
solved exactly. One takes advantage of the SU(2) symmetry
associated with the two levels [5,6] or uses the symmetry of
the model’s boson representation [7]. One can even show
that such fermion systems exhibit thermalization when they
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are weakly coupled to a boson bath [8]. This variety of
models that can be solved suggests to the author it should
be clearly stated that the main purpose here is different. It is
to apply a recently formulated renormalization group
equation for Hamiltonians of QFT, to a simplified, one-
level model for fermions coupled to bosons in a way that is
analogous to theYukawa theory coupling. In themodel case,
an exact operator solution to the equation is obtained in the
form of a whole family of effective Hamiltonians that are
strictly equivalent. They all act in an infinite dimensional
Fock space. Their common spectrum is obtained as a
byproduct of the solution to the renormalization group
equation. Comparisons and comments concerning the most
similarmodels known to the author are provided in Sec.VIII.
The model used here is defined using the front form (FF)

of Hamiltonian dynamics [9] instead of the instant form
(IF) used in [1]. It is known that to obtain the Wilson model
from the front form of Yukawa theory one needs to consider
the limit of fermions that are much heavier than the
momentum cutoff parameter [10], say Λ. Here, in addition,
also the boson mass is assumed much greater than Λ. This
limit is called the static limit, since bosons emitted or
absorbed by fermions do not move with respect to their
source. Further, the model we use does not include isospin,
which leads to a significant simplification: only four
distinct operators appear in the effective Hamiltonians.
This feature will become clear in the course of computa-
tion. Despite these far reaching simplifications, the model
interaction Hamiltonian changes the number of bosons and
the number of Fock components involved in the dynamics
is infinite.
To compute the effective Hamiltonians, we use the

method called the renormalization group procedure for
effective particles (RGPEP). The RGPEP differs concep-
tually from the Wilson renormalization group procedure.
Namely, instead of integrating out high-energy modes in
the basis of the space of states in which the Hamiltonian
acts, one changes the basis in the space of operators to
which the Hamiltonian belongs. In other words, the
Hamiltonian is seen as an element of the operator space
formed by normal-ordered polynomials of bare creation
and annihilation operators. The change of basis in the space
of such polynomials is obtained by replacing the bare
creation and annihilation operators with the analogous ones
for the effective quanta of fields, called effective particles;
see Sec. III for details. In perturbation theory, the effective
particle operators are polynomials in terms of the bare
particle operators and vice versa [11]. The interactions of
effective particles are limited by the running cutoff Λ that
provides an upper bound on the magnitude of the invariant
mass change that an interaction can cause. The RGPEP
evolution of the computed Hamiltonians describes the
variation of their form with the running cutoff.
The RGPEP employs the rules of the similarity renorm-

alization group procedure for Hamiltonians [12,13] and

takes advantage of the double-commutator feature of
Wegner’s flow equation for Hamiltonian matrices [14].
In application to local QFT, the RGPEP has been recently
illustrated in [15], which also includes references to the
previous works. However, in all these examples, one is
forced to use the approximations that are not under precise
control, such as the mentioned earlier weak-coupling
expansion [2] or a limitation on a number of virtual
particles, called the Tamm-Dancoff (TD) approximation
[16,17]. These approximations obscure the core features of
the RGPEP in the context of realistic theories. In contrast,
the exact RGPEP computation of effective Hamiltonians
in the model described here is quite transparent and the
result has a clear interpretation in terms of the Fock-space
image of physical states.
The RGPEP equation we solve, see Eq. (15), determines

the evolution of Hamiltonians using not the cutoff parameter
Λ itself, but the parameter that is denoted by t and
corresponds to Λ−2. Thus, t varies from zero for the initial
Hamiltonian to infinity for its final, diagonal form, in which
all mass-changing interaction terms disappear. The ability to
diagonalize Hamiltonians is the key design feature of the
RGPEP equation. Quite generally, the design secures that the
first-order solution of the RGPEP evolution equation results
in vertex form factors whose width in momentum variables
varies with t. Thewidth tends to infinity or some cutoff value
when t → 0 and to zero when t → ∞. In QFT, these form
factors regulate singularities of the local interactions, e.g., see
[15], and can be thought of as corresponding to a finite size of
the effective particles.However, in themodel solved here, the
situation ismuch simpler because of the static limit. One only
obtains a running-coupling constant, denoted by gt, instead
of a function ofmomentum, since the interacting particles are
at rest with respect to each other.
The paper is organized in the following way. Section II

describes the model Hamiltonian, cf. [3]. The model is
derived in the FF of dynamics using the static limit of the
Yukawa theory in Sec. II A. It is rewritten in a more familiar
energy notation of the IF of dynamics in Sec. II B.
Section III describes solution of the RGPEP equations.
First, the equations design is explained in Sec. III A and
then the discussion of solutions follows in Sec. III B.
Operators that create and annihilate effective particles
are derived in Sec. IV, with final formulas in Sec. IVA.
The exact spectrum of the model Hamiltonian in the Fock-
space representation is given in Sec. V. The issue of
approximate computations is addressed in the remaining
part of the paper. Section VI discusses the weak-coupling
expansion. The TD approximation is discussed in Sec. VII.
Subsequently, Sec. VIII introduces the concept of effective
TD Hamiltonian matrices, including comments and com-
parisons to related work on similar models. Section IX
briefly outlines the ways of comparing the model solution
with realistic theories. Section X concludes the paper and
reviews motivation for studies of QFT using the RGPEP.
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II. MODEL HAMILTONIAN

The model Hamiltonian we consider is obtained from the
Yukawa theory using results of Ref. [10]. In that work,
Eq. (2.1) displays the canonical front-form Hamiltonian of
Yukawa theory that has the structure

Hc ¼ Hf þHb þHfb þ ½other terms�; ð1Þ

where Hf stands for the Hamiltonian of free fermions of
mass m,

Hf ¼
X
σ

Z
½p�m

2 þ p⊥2

pþ b†pσbpσ; ð2Þ

Hb denotes a free Hamiltonian for bosons of mass μ,

Hb ¼
X
σ

Z
½p� μ

2 þ p⊥2

pþ a†pap; ð3Þ

Hfb is the fermion-boson interaction term,

Hfb ¼ g
X
σ1;σ2

Z
½p1p2p3�δc:aū1Γu2

× b†p1σ1ða†p3
þ ap3

Þbp2σ2 : ð4Þ

The bracket [other terms] indicates the terms that disappear
in comparison with the first three in the limit of the fermion
mass m → ∞. The symbol [p] conventionally denotes
the measure d2p⊥dpþθðpþÞ=½2pþð2πÞ3� and δa:c is
2ð2πÞ3δ3ðPc − PaÞ, where Pc and Pa denote the total þ
and ⊥ momenta of the bare particles that are created and
annihilated by the interaction, respectively. Fermion spin-
ors are denoted by u1 and u2 and the matrix Γ is set to 1.
The coupling constant is denoted by g. Further model
construction steps use only the first three terms in Eq. (1).

A. The static limit

As a result of steps fully described in [10], the
Hamiltonian H ¼ Hf þHb þHfb is altered in a way that
leads to a formula resembling Eq. (2.17) in that reference.
One considers a fermion eigenstate of H that carries an
arbitrary momentum Pþ and P⊥ and a fixed value of spin
projection on z-axis. The state is a combination of the Fock
component with one bare fermion in the same spin state and
infinitely many Fock components each of which contains
one bare fermion and some natural number of bare bosons.
The fermion mass eigenvalue is written as M ¼ mþ E,
where E=m ≪ 1. Every boson kinematic momentum in a
Fock component with n bosons is parametrized according
to the rule

pþ
n;i ¼ yn;iPþ; ð5Þ

p⊥
n;i ¼ yn;iP⊥ þ κ⊥n;i; ð6Þ

where 0 < i ≤ n. The corresponding fermion momentum is
given by

pþ
n ¼ xnPþ; ð7Þ

p⊥
n ¼ xnP⊥ − κ⊥n;i… − κ⊥n;i; ð8Þ

where

xn ¼ 1 − yn;1… − yn;n: ð9Þ

In the absence of bosons, the bare fermion carries the whole
Pþ and P⊥. Approximations described in [10] are based on
the conditions that force κ⊥n;i ≪ m and

P
n
i¼1 yn;i ≪ 1. A

sufficient condition is provided by imposing a cutoff that
forces all bosons to only have momenta relative to the
fermion that are negligible in comparison with the fer-
mion mass.
The interaction Hamiltonian Hfb is supplied with a

cutoff form factor, denoted below by fΛ. One assumes that
Λ ≪ m. The cutoff function enforces the condition
jP2

c − P2
aj < Λ2 ≪ m2, where Pc and Pa denote the free

total four-momenta of created and annihilated particles,
respectively. In consequence, all the fractions yi defined
above tend to 0 and the fermion fractions xn → 1. The
resulting Hamiltonian that determines the mass eigenvalue
M for a physical fermion, see Eqs. (2.16) and (2.17) in [10],
takes the form

Hfermion ¼ mb†bþH1b†b; ð10Þ

where b denotes annihilation operator for a bare fermion at
rest and only one spin projection on z-axis. The operatorH1

is the boson Hamiltonian associated with the states that
contain one bare fermion,

H1 ¼
Z

½q�
�
ð1=2Þ

�
qþ þ μ2 þ q⊥2

qþ

�
a†qaq

þ gfΛðqÞða†q þ aqÞ
�
: ð11Þ

The boson momenta in all Fock sectors are identified
according to the same relations qþ ¼ yn;im and q⊥ ¼ κ⊥n;i.
The half of the round bracket in Eq. (11) equals energy
of a boson with momentum q⃗ in which 2qz ¼ qþ−
ðμ2 þ q⊥2Þ=qþ. It is possible to determine the allowed
momenta for bosons, including the sampling that Wilson
adopted, by choosing the function fΛðqÞ. At this point, one
can further proceed as in [10] and show that when the initial
Yukawa theory includes isospin, theHamiltonian one obtains
in place of H1 also includes isospin and matches the model
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Hamiltonian studied in [1]. In what follows, a different path
is taken.
The next great simplification step we make here, which

was not made in [10], is to assume that the boson mass μ is
also much larger than the cutoff Λ on jq⃗j. This assumption
implies that the bosons cannot move with respect to the
fermion that emits or absorbs them. In the limit Λ=μ → 0,
the Hamiltonian H1 involves only bosons that are practi-
cally at rest relative to the fermion. One replaces all bosons
nearly at rest with respect to the fermion by just one static
boson mode, for which q⊥ ¼ 0 and qþ ¼ μ. We consider
the model in which μ=m → 0. Finally, one can allow the
static bosons to appear in the model also without a fermion.
This way one arrives at the Hamiltonian of a model for
which the exact effective Hamiltonians are computed using
the RGPEP in the sections that follow.

B. Intuitive notation

The model Hamiltonian introduced in the previous
section is rewritten here using an intuitive notation that
does not require familiarity with the front form of dynamics
and instead relies on the intuition rooted in the IF of
dynamics,

H ¼ Efb†bþ Eba†aþ gEIb†ða† þ aÞb; ð12Þ

where Ef, Eb, and EI are the fermion, boson, and
interaction energy parameters, g is a coupling constant,
while b and a are annihilation operators for the static
fermion and boson, respectively. These operators and their
Hermitian conjugates are normalized to obey the standard
(anti)commutation relations, of which the only nonzero
ones are

fb; b†g ¼ 1; ð13Þ

½a; a†� ¼ 1: ð14Þ

The Hamiltonian describes fermions of just one spin state
and preserves their number, which can only be 0 or 1. The
number of bosons is neither specified nor limited and it
varies as a result of interactions.
In states with the fermion number equal zero, the

interaction vanishes and the spectrum matches the one of
a Hamiltonian for free bosons at rest, Hb ¼ Eba†a, with
eigenvaluesEbn ¼ nEb, where n is zero or a natural number.
The corresponding normalized eigenstates of Hb are
jni ¼ ðn!Þ−1=2a†nj0i. In states with the fermion number
equal 1, theHamiltonian changes the boson number by 1 and
the distribution of bosons needs to be computed.
We apply the RGPEP to this model in the remaining part

of this work. This means that instead of directly evaluating
all of the Hamiltonian eigenvalues and eigenstates in terms
of bare quanta, one introduces creation and annihilation
operators for effective bosons and fermions and computes

the effective Hamiltonians for them. The eigenstates of
these effective Hamiltonians are then found in terms of the
basis in the Fock space that is constructed using the creation
operators of the effective particles instead of the bare ones.
The exercise is meant worth carrying out since one can
unfold the simplifications used in deriving H of Eq. (12)
and look at the dynamics of Yukawa theory anew from the
perspective of the model computation.

III. COMPUTATION OF THE EFFECTIVE
HAMILTONIAN

In the model considered here, the RGPEP equations for a
family of renormalized Hamiltonians, labeled by parameter
t, can be written in the operator form,

d
dt

Ht ¼ ½Gt;Ht�; ð15Þ

Gt ¼ ½Hf þHb;Ht�; ð16Þ

where Gt is called the generator. The initial condition at
t ¼ 0 is provided by H of Eq. (12), which is denoted for
that reason as H0. Hf equals Efb†b.
Equations (15) and (16) resemble Wegner’s flow equa-

tions that describe the evolution of band-diagonal
Hamiltonian matrices as functions of their width on energy
scale; the width decreases as t increases [14]. There are two
differences. One is that Eq. (15) cannot be represented
exactly by finite matrices, because the commutation rela-
tions for a and a† cannot. The other one is that the generator
Gt is a commutator of Ht with the sum Hf þHb that does
not depend on t, cf. [18]. In the Wegner generator, the
Hamiltonian matrix is commuted with its diagonal part that
varies with t. It should be noted that Eq. (15) is written for
the operator Ht that only contains t-independent creation
and annihilation operators for bare particles, which are
replaced by the corresponding t-dependent operators for
effective particles in order to obtain the renormalized
Hamiltonians Ht; see below.

A. Design of Eqs. (15) and (16)

Design of Eqs. (15) and (16) originates in the idea that
one can consider the Hamiltonian eigenvalue problems in
local QFT in terms of some kind of effective quanta instead
of the bare ones. The change from bare to effective quanta
is motivated by the concept that the effective quanta interact
in a so much less violent way than the bare quanta do that
the eigenvalue problem may be convergent in the effective
Fock-space basis, even if it does not exhibit convergence in
the bare Fock-space basis. The appearance of convergence
is a consequence of the vertex factors that emerge in
solutions of Eq. (15). Emergence of such factors is the
feature of double-commutator equations like Eq. (15) with
the generator given by Eq. (16). The model application
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discussed here shows this feature in a simplified way, see
below, and demonstrates how convergence in the effective
Fock-space basis improves with increase of t.
The key examples of physical elementary particle

systems in terms of which one can think about the design
of Eqs. (15) and (16) are hadrons. In QCD, represented in
terms of bare quanta, hadrons are complex mixtures of
infinitely many quarks and gluons that are confined. In the
particle tables, most of the known hadrons are classified as
bound states of just a few constituent quarks. The design of
the RGPEP equations can be described as aiming at the
derivation of a mathematically precise connection between
these two pictures of hadrons.
The creation and annihilation operators for effective

particles are defined using a unitary transformation of the
form

qt ¼ U tqU
†
t ; ð17Þ

where q stands for the operators a, a†, b, or b†, and

U†
t ¼ T exp

�Z
t

0

dτ Gτ

�
: ð18Þ

The symbol T denotes ordering in τ. The Hamiltonian
operator

Ht ¼ U tHtU
†
t ð19Þ

is defined to be the same as the initial one,Ht ¼ H0, butHt
is expressed in terms of the effective particle operators at,
a†t , bt, and b

†
t instead of the initial operators a, a†, b, and b†

that correspond to t ¼ 0. Thus, in Ht, the coefficients of
products of the effective creation and annihilation operators
are different from the coefficients of products of the
corresponding initial operators in H0. The coefficients in
Ht contain factors that follow from the double-commutator
structure of Eq. (15). These factors are obtained in the
process of solving Eq. (15). They emerge in a way similar
to the emergence of the band-diagonal matrices from the
Wegner flow equation.
If the model were divergent, as it is the case for bare

Hamiltonians in local QFT, H0 would be supplied with the
counterterms that would be computed from the condition
that the coefficients of effective particle operators in Ht for
any finite, fixed value of t are not sensitive to the adopted
regularization of the divergences. Since the model
Hamiltonian of Eq. (12) does not generate divergences,
the computation of counterterms to divergent expressions is
not needed and this aspect of local QFT is not illustrated in
the model solution. The divergence counterterm computa-
tion in QFT significantly complicates the RGPEP pro-
cedure with a lot of details that depend on the adopted
regularization. These largely arbitrary details obstruct
the conceptual view of the method while the model

computation makes it clear. Counterterms appear in the
model computation only in a finite form, which is analo-
gous to the appearance of the unknown finite parts of the
divergence counterterms in local QFT.

B. Solution of Eq. (15)

In order to solve Eq. (15), one writes

Ht ¼ ðEf þ δEftÞb†bþ Eba†a

þ gtEIb†ða† þ aÞb; ð20Þ

where the subscript t indicates dependence on that argu-
ment. Only four distinct Fock-space operators appear in
this formula because no other operators are generated from
the initial condition of Eq. (12). Using a dot to indicate the
derivative, one obtains Eq. (15) in the form

δ _Eftb†bþ _gtEIb†ða† þ aÞb
¼ ½Gt; ðEf þ δEftÞb†bþ Eba†a

þ gtEIb†ða† þ aÞb�; ð21Þ

Gt ¼ gtEbEIb†ða† − aÞb: ð22Þ

The generator takes the simple form since the fermion
number is conserved by the interaction. Evaluation of the
commutator on the right-hand side of Eq. (21) yields

δ _Eftb†bþ _gtEIb†ða† þ aÞb
¼ −gtE2

bEIb†ða† þ aÞb
− 2g2t EbE2

I b
†b: ð23Þ

Equating coefficients in front of the same operators on both
sides, one gets

δ _Eft ¼ −2g2t EbE2
I ; ð24Þ

_gt ¼ −gtE2
b: ð25Þ

These are ordinary differential equations and solving them
leads to the solution of Eq. (15) in the form

Ht ¼ ½Ef þ g2tΔt�b†bþ Eba†a

þ gtEIb†ða† þ aÞb; ð26Þ

where

gt ¼ ge−E
2
bt; ð27Þ

Δt ¼ð1 − e2E
2
btÞE2

I =Eb: ð28Þ

This result shows that the increase of t from zero to infinity
causes the effective fermion-boson coupling constant gt to
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decrease exponentially fast from its initial value g to zero at
the rate given by an inverse of the boson energy squared.
This is the promised suppression of interactions by the
vertex factor. One obtains the vertex factor in this model
solely in the form of a varying coupling constant gt instead
a whole form factor that is a function of momentum and
energy transfer between quanta in the vertex. The simpli-
fication occurs because the model contains only static
modes for fermions and bosons.
The boson energy Eb stays constant as a function of t.

The fermion energy, Ef þ g2tΔt, evolves from the initial
value Ef to the final fermion eigenvalue energy

Ef∞ ¼ lim
t→∞

Ef þ g2tΔt ¼ Ef − g2E2
I =Eb: ð29Þ

It seems that Ef∞ may be negative. However, it could only
happen outside the range of approximations made in the
model, where the fermion energy Ef is assumed much
larger than the boson energy Eb and much larger than the
energy change due to the interaction, gEI , while Eb and EI
are of similar magnitude. Therefore, for any fixed value of
g, one only considers Ef much larger than g2E2

I =Eb.

IV. EFFECTIVE PARTICLES

Solution for the operator Ht in Eq. (26) is transformed
into the Hamiltonian for effective particles using the
operator U t according to Eq. (19). The result is

Ht ¼ ðEf þ g2tΔtÞb†t bt þ Eba
†
t at

þ gtEIb
†
t ða†t þ atÞbt; ð30Þ

where bt and at are given by Eq. (17). Knowing Gt in
Eq. (22), one obtains from Eq. (18) that

U†
t ¼ ectb

†ða†−aÞb ¼ 1þ ½ectða†−aÞ − 1�b†b; ð31Þ

where

ct ¼ ðg − gtÞEI=Eb: ð32Þ

Therefore,

at ¼ að1 − b†t btÞ þ b†t abt; ð33Þ

bt ¼ ectða†−aÞb: ð34Þ

Analogous formulas hold for creation operators a†t and b†t ,
obtained by Hermitian conjugation.

A. Effective particle operators

It is visible in Eq. (33) that the effective boson operators
at are equivalent to the bare ones in the subspace of Fock
space without effective fermions, for in that case bt ≡ 0.

In the subspace that contains one effective fermion, one has
b†t bt ≡ 1 and is left with

at1 ¼ b†t abt ð35Þ

and a corresponding relation for a†t1. Evaluation yields

at1 ¼ ðaþ ctÞb†b; ð36Þ

and a†t1 is obtained by conjugation.
In summary, the annihilation operator for effective

fermion, bt, is given by Eq. (34), and the annihilation
operator for an effective boson is

at ¼ aþ ctb†b; ð37Þ

where ct is given by Eq. (32). The corresponding creation
operators are obtained by Hermitian conjugation. Using
these results, one can check by a direct calculation that the
effective Hamiltonian Ht of Eq. (30) is equal to the initial
Hamiltonian H ¼ H0 of Eq. (12).

V. EXACT SPECTRUM IN THE FOCK SPACE

One observes that there are three ways of seeking the
model Hamiltonian spectrum. In the first way, one uses the
Hamiltonian expressed in terms of the initial particle
operators that correspond to t ¼ 0. In the second way,
one uses the Hamiltonian expressed in terms of effective
particle operators for some finite value of the RGPEP
parameter t. The third way is reduced to inspection of the
effective Hamiltonian with t ¼ ∞. The respective forms of
one and the same Hamiltonian H ¼ H0 of Eq. (12) are

H0 ¼ Efb†bþ Eba†aþ gEIb†ða† þ aÞb; ð38Þ

Ht ¼ ðEf þ g2tΔtÞb†t bt þ Eba
†
t at

þ gtEIb
†
t ða†t þ atÞbt; ð39Þ

H∞ ¼ Efermionb
†
∞b∞ þ Eba

†
∞a∞; ð40Þ

where Δt is given in Eq. (28). Taking into account the
commutation relations that the operators with t ¼ ∞ obey,
one sees that the eigenvalues are

Efermion ¼ lim
t→∞

ðEf þ g2tΔtÞ ð41Þ

¼ Ef − g2E2
I =Eb; ð42Þ

En bosons ¼ nEb; ð43Þ

Efermionþn bosons ¼ Efermion þ nEb; ð44Þ

and the corresponding normalized eigenstates are
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jfermioni ¼ b†∞j0i; ð45Þ

jn bosonsi ¼ 1ffiffiffiffiffi
n!

p a†n∞ j0i; ð46Þ

jfermionþ n bosonsi ¼ 1ffiffiffiffiffi
n!

p a†n∞b†∞j0i; ð47Þ

where j0i denotes the model Hamiltonian ground state that
contains no physical particles. According to Eqs. (33)
and (34),

b∞ ¼ egðEI=EbÞða†−aÞb; ð48Þ

a∞ ¼ aþ gðEI=EbÞb†b: ð49Þ

A physical fermion state is composed of the bare
fermion and a coherent state of bosons. Since a† − a ¼
a†t − at ¼ a†∞ − a∞, one can speak of the coherent state of
bare as well as effective or physical bosons. The n-boson
eigenstates without a fermion are the same as if the
interaction were absent.

VI. WEAK-COUPLING EXPANSION

In the weak-coupling expansion, one hopes to gain some
insight concerning solutions of a theory assuming that the
coupling constant in the interaction terms is a very small
number. After evaluating some quantity of interest using
expansion in powers of an infinitesimal coupling, one can
check how large the coupling would have to be for the
result to match data. Then there comes the question of how
large the remaining terms in the expansion are.
In the model with the coupling constant g not very small,

such procedure is not viable as an approximation method
for obtaining eigenstates of the Hamiltonian H in terms of
bare particle operators that appear in its formH0. This form
corresponds to the Yukawa theory expressed in terms of
bare degrees of freedom. Although the fermion eigenvalue
Ef∞ is just a quadratic function of g and one might hope
that an expansion up to terms order g2 may be sufficient, the
fermion eigenstate contains terms with all powers of the
product g times the bare boson creation operator acting on
the vacuum state.
Quite different situation is encountered when one uses

the Hamiltonian in its form Ht with E2
bt sufficiently large

for gt of Eq. (27) to be small. The eigenstates without a
fermion are just free effective bosons created by a†t from the
vacuum state. The eigenstates with a fermion are given by
b†t j0i plus admixtures of effective bosons that are created
from the fermion state with strength gt instead of g. One
sees in Eq. (27) that gt can be small for arbitrarily large g
when t is made sufficiently large. In that case, the fermion
state can be approximated well by using the expansion in
powers of gt.

The mechanism described above can be illustrated by the
perturbative expansion up to second order for the fermion
energy eigenvalue and the corresponding eigenstate. In
general, a perturbative expansion is obtained by writing

jψi ¼ ðψ00 þ ψ01 þ ψ02 þ � � �Þb†t j0i
þ ðψ10 þ ψ11 þ ψ12 þ � � �Þa†t b†t j0i
þ ðψ20 þ ψ21 þ ψ22 þ � � �Þa†t a†t b†t j0i þ � � � ; ð50Þ

where ψmn ∼ gnt . The eigenvalue problem reads

Htjψi ¼ ðE0 þ E1 þ E2 þ � � �Þjψi; ð51Þ

where En is of order gnt . Assuming that the dominant
coefficient in front of b†t j0i is ψ00 of order 1, one can limit
the effective Fock-space expansion to only three terms: one
effective fermion, one effective fermion and one effective
boson, and one effective fermion and two effective bosons.
Coefficients of the components with more effective par-
ticles are of order gnt with n > 2. By projecting both sides
of Eq. (51) on these three basis states, one obtains three
equations. Projection on the component b†t j0i yields

0 ¼ ðEf þ g2tΔt − E0 − E1 − E2 − � � �Þ
× ðψ00 þ ψ01 þ ψ02 þ � � �Þ
þ gtEIðψ10 þ ψ11 þ ψ12 þ � � �Þ: ð52Þ

Projection on a†t b
†
t j0i leads to

0 ¼ ðEf þ g2tΔt − E0 − E1 − E2 − � � �Þ
× ðψ10 þ ψ11 þ ψ12 þ � � �Þ
þ Ebðψ10 þ ψ11 þ ψ12 þ � � �Þ
þ gtEIðψ00 þ 2ψ20 þ ψ01 þ 2ψ21 þ � � �Þ: ð53Þ

Projection on a†t a
†
t b

†
t j0i produces

0 ¼ 2ðEf þ g2tΔt − E0 − E1 − E2 − � � �Þ
× ðψ20 þ ψ21 þ ψ22 þ � � �Þ
þ 4Ebðψ20 þ ψ21 þ ψ22 þ � � �Þ
þ 2gtEI½ψ10 þ ψ11 þ ψ12 þ � � ��: ð54Þ

Each of these equations contains terms proportional
to powers of gt. Equating coefficients of 1, gt and g2t on
both sides of these equations, one arrives at a set of nine
equations that must be satisfied simultaneously. Assuming
that ψ00 ¼ 1, setting ψ01 ¼ ψ02 ¼ 0 and introducing the
normalization factor N, one obtains

E ¼ Ef −
1

Eb
ðgteE2

btEIÞ2; ð55Þ
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jψi ¼ N

�
b†t j0i −

1

Eb
gtEIa

†
t b

†
t j0i

þ 1

2

�
1

Eb
gtEI

�
2

a†t a
†
t b

†
t j0i

�
: ð56Þ

The term ðgtEIÞ2=Eb in the effective fermion energy in
Eq. (39) cancels the second-order self-interaction term that
results from emission and absorption of an effective boson.
Thus, even though in the model the fermion self-interaction
is finite, the term ðgtEIÞ2=Eb in the effective fermion
energy term in the Hamiltonian Ht appears in the role of
a finite part of the fermion self-interaction counterterm
when the parameter t tends to zero and its inverse plays the
role of a cutoffΛ2. The finite part is positive, vanishes when
Λ → 0 or t → ∞ and implies that in that limit the effective
fermion energy in Ht approaches the physical fermion
eigenvalue Efermion. One could replace the effective fermion
energy term in Ht by the eigenvalue and ignore the self-
interaction effects.

VII. THE TAMM-DANCOFF APPROXIMATION

The idea of the TD approximation [16,17] is to limit the
Hamiltonian eigenvalue problem to a subspace of the Fock
space defined by a limit on the number of virtual particles.
One assumes that the eigenstate components with more
particles than the limiting number have a small probability
and can be neglected in the first approximation. Such
approach was also proposed in the context of solving QCD
in the front form of Hamiltonian dynamics, using the idea
that a suitable renormalization group algorithm, including
the Fock-sector-dependent counterterms, could be used to
identify the dominant features of the dynamics as the limit
on the number of particles is increased. Subsequently, one
could attempt to compute corrections to the dominant
picture using the methods of perturbative expansion and
successive approximations [19], including some form of
the coupling coherence [20].
In case of the RGPEP, the key feature that influences the

accuracy of the TD type of approach to realistic theories is
that instead of the bare, original field quanta one limits the
number of the effective quanta. The idea is illustrated using
Fig. 1. It shows plots of the expected number of virtual
effective bosons in the physical fermion state as a function
of the RGPEP scale parameter t. The plotted value is
defined by

hNti ¼ hfermionja†t atjfermioni; ð57Þ

where the fermion state is given in Eq. (45). Using Eqs. (37)
and (48), one obtains

hNti ¼ g2t ðEI=EbÞ2; ð58Þ

which for EI ¼ Eb yields the expected number of virtual
effective bosons in a physical fermion,

hNti ¼ g2t ¼ g20e
2E2

bðt0−tÞ: ð59Þ

The coupling constant g0 is the value that gt takes when
t ¼ t0. We set the value of t0 to E−2

b , since this value of the
running cutoff corresponds in magnitude to the energy
change associated with emission or absorption of just one
boson. The value of g0 is arbitrary. To provide examples of
the numbers involved, three values of the coupling constant
g0 are arbitrarily selected: 2, 1, and 1=2. The three curves
shown in Fig. 1 correspond to these three values of g0. The
number of virtual bosons in a physical fermion strongly
depends on the value of g0 and these three values are
sufficient to illustrate the dependence. Each of the chosen
values corresponds to a different value of the bare coupling
constant g in Eq. (12), g ¼ eg0.
It is visible in Fig. 1 that approximations of the TD type

with just one or two virtual bosons do not apply in terms of
the bare particles if the coupling constant g0 is not
sufficiently small. For example, if g0 ¼ 2, the expectation
value hN0i is almost 30. However, when t grows, the
expectation value hNti decreases. In the model, where one
possesses the exact solution to the RGPEP equation, Fig. 1
shows that for t exceeding E−2

b the effective interaction
vertex suppression factor can become so small that the
strength of the bare coupling constant is overcome and the
TD approximation represents the physical fermion accu-
rately in terms of a small number of the corresponding
virtual effective particles.

FIG. 1. Expectation value of the number of effective bosons,
see Eq. (57), in the physical fermion eigenstate of Eq. (45) as a
function of the RGPEP scale parameter t. The three curves
correspond to the three values 2, 1, and 1=2 of the coupling
constant g0 in Eq. (59), defined as the effective coupling constant
gt for t equal t0 ¼ 1=E2

b, assuming that the free boson energy Eb

equals the fermion-boson interaction energy parameter EI in the
model Hamiltonian; see Sec. VII. It is visible that the TD
approximation becomes increasingly accurate when t increases,
since hNti decreases exponentially fast with increase of t.
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VIII. TD HAMILTONIAN MATRICES

If the coupling constant gt is sufficiently small and the
parameter t large enough for the RGPEP form factors to
suppress the interaction terms inHt that change the number
of effective particles, then the TD approximation may be
valid. In that case, one can define the effective Hamiltonian
matrices that describe the dynamics in terms of a limited
number of effective Fock-space basis states. We call them
the effective TD Hamiltonian matrices, or just TD matrices,
denoted by HTD t. One can compute them following the
pattern illustrated below in terms of our model.
Consider the Hamiltonian Ht in which the effective,

particle number-changing interaction term is weak enough
to expect that the TD approximation is reasonable. Suppose
one is interested in an approximate computation of observ-
ables for a physical fermion. In the model, the physical
fermion is known exactly. It is represented by the state
jfermioni in Eq. (45). However, in an approximate calcu-
lation in a realistic theory, a physical fermion state would
not be known exactly.
Suppose one expects that the physical fermion state is

dominated by the basis state b†t j0i, while the basis state
a†t b

†
t j0i provides the leading correction. Still smaller

corrections involve the basis states a†nt b†t j0i with n > 1.
To describe the physical fermion state using the TD
approximation, one computes the matrix HTD t that acts
on the coordinates of states in the subspace of the Fock
space that is spanned by the basis states with one effective
fermion and a limited number of effective bosons. If instead
of the physical fermion one were interested in the properties
of states jfermionþ nbbosonsi, one would first compute
Hamiltonian matrixHTD t that acts on the coordinates in the
subspace spanned by the effective basis states a†nb−1t b†t j0i,
a†nbt b†t j0i, and a†nbþ1

t b†t j0i. Corrections would follow from
enlarging the matrix to include coordinates in directions of
basis states with nb � 2 effective bosons, etc.
A simple illustration of the TD approximation is

obtained in case of the physical fermion and the assumption
that the matrix HTD t only acts on the three-dimensional
vectors of coordinates in the Fock subspace spanned by the
basis states b†t j0i, a†t b

†
t j0i and a†2t b†t j0i=

ffiffiffi
2

p
. The first

approximation is obtained by writing

jFermionTDi ¼ xt0b
†
t j0i þ xt1a

†
t b

†
t j0i þ

1ffiffiffi
2

p xt2a
†2
t b†t j0i:

ð60Þ

Then one observes that the physical fermion eigenvalue
problem has the form

Htjψi ¼ ETDjψi; ð61Þ

jψi ¼jFermionTDi þ jnb > 2i; ð62Þ

where jnb > 2i stands for all components with more
effective bosons than 2. Projecting this equation on the
same range of components that appears in Eq. (60), one
obtains the matrix equation

2
64
h2;2 h2;1 0

h1;2 h1;1 h1;0
0 h0;1 h0;0

3
75

2
64
xt2
xt1
xt0

3
75þ

2
64
h2;nb>2

0

0

3
75

¼ ETD

2
64
xt2
xt1
xt0

3
75; ð63Þ

where the matrix elements are

hm;n ¼
1ffiffiffiffiffiffiffiffiffiffi
m!n!

p h0jbtamt Hta
†n
t b†t j0i; ð64Þ

with 0 ≤ m; n ≤ 2. The TD approximation amounts to
setting h2;nb>2 ¼ 0. The effective TD Hamiltonian matrix
is defined by

HTD tmn ¼ hm;n: ð65Þ

Its eigenvalue problem reads

X2
n¼0

HTD tmnxn ¼ ETDxm: ð66Þ

One has

HTD t 22 ¼ Ef þ g2tΔt þ 2Eb; ð67Þ

HTD t 21 ¼ HTD 12 t ¼
ffiffiffi
2

p
gtEI; ð68Þ

HTD t 11 ¼ Ef þ g2tΔt þ Eb; ð69Þ

HTD t 10 ¼ HTD 01 t ¼ gtEI; ð70Þ

HTD t 00 ¼ Ef þ g2tΔt: ð71Þ

The eigenvalues E written in the form E ¼ Ef þ g2tΔt þ
xEb obey the equation

ð2 − xÞð1 − xÞxþ αð2 − 3xÞ ¼ 0; ð72Þ

where α ¼ ðgtEI=EbÞ2. If α were zero due to gt ¼ 0, the
three eigenvalues En ¼ Ef þ g2tΔt þ xnEb with xn ¼ n
would correspond to a free effective fermion and n free
bosons. Assuming that x ¼ nþ yα and neglecting higher
powers of α, one obtains En ¼ Efermion þ nEb for n equal 0
or 1, as expected on the basis of the exact solution given in
Eq. (44), and Eq. (45) or (47), respectively. Higher order
terms in the expansion of x in powers of α can be used to
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compare the TD approximation with the weak-coupling
expansion. Next level of the TD approximation would be
obtained by introducing the component a†3t b†t j0i=

ffiffiffi
6

p
and

neglecting h2;nb>3.
The coordinates xn in realistic theories would not be just

numbers but unknown functions of only 3n relative
momentum variables and discrete quantum numbers of
fermions and bosons. The number of momentum argu-
ments would be the same in the nonrelativistic and
relativistic theories because the total momentum of the
eigenstates drops out from the TD matrix problem and the
eigenvalues E are solely the masses squared of the physical
systems.
One can use Eq. (63), ignoring h2;nb>2, to evaluate the

Fock-space coordinate xt2 in terms of the coordinates xt1
and xt0 using a fully nonperturbative Gaussian elimination
or the so-called R operation, the latter when either the
boson energy Eb is large [21] or gt is small. The Gaussian
elimination yields

xt2 ¼
1

ETD − h2;2
h2;1xt1; ð73Þ

which can be put into the remaining two equations. The
result is

�
h1;1 þ h1;2

1
ETD−h2;2

h2;1 h1;0

h0;1 h0;0

��
xt1
xt0

�
ð74Þ

¼ ETD

�
xt1
xt0

�
: ð75Þ

This is the TD matrix eigenvalue problem including the
fermion self-interaction in the fermion-boson component.
Note that the eigenvalue ETD appears on both sides of the
problem, which requires a nonperturbative matching of its
left-hand side value with its value on the right-hand side. If
instead of the Gaussian elimination one used the operation
R [21] in expansion up to second power of the coupling
constant gt, including the perturbative orthogonality and
normalization corrections, then the eigenvalue ETD in
Eq. (74) on the left-hand side would be replaced by
Ef þ Eb. Even though in this case the left-hand side matrix
would only contain terms of order up to g2t , the eigenstates
would depend on gt in a way specific to the particular TD
approximation. The issue would then be what changes
occur when one attempts to improve the approximation by
including more effective particles or higher powers of gt in
the TD Hamiltonian matrices. An example of a phenom-
enological study based on the hypothesis that gauge bosons
obtain an effective mass is presented in [22] in the case of
description of baryons using heavy-flavor QCD.
Examples of perturbative and TD approximations

described above and in Secs. VI and VII in the exactly

solvable model can be used in assessing convergence of
similar approximations in more complex cases. Consider
the numerical studies of eigenvalue problems for TD
Hamiltonian matrices obtained using bare quanta in the
Yukawa and Yukawa-like theories, such as reported in
[23,24] and references therein. The same theories can be
considered in the limit of fermion and boson masses much
larger than the cutoff parameters, irrespective of the form of
regularization. One can limit numerical calculations, where
the quantum degrees of freedom are discrete, to a single
mode for all quanta involved, precisely as it is done here in
the Yukawa theory to obtain our model Hamiltonian. In that
setup, the TD Hamiltonian matrices one would obtain
would resemble the ones in our model. One can compare
the accuracy and convergence measures adopted in [23,24]
with exact results shown in Fig. 1.
In our model case, the bare coupling constant g ¼ eg0,

see Eq. (27), determines the expectation value for the
number of bare bosons, hN0i, in the exact fermion
eigenstate. For g small, a small hN0i is expected.
However, for g order

ffiffiffiffiffiffi
4π

p
∼ 3.5, which corresponds to

the conventional coupling constant g2=ð4πÞ ∼ 1, Fig. 1
shows that the expected number of bare bosons exceeds 30.
It is stated in [23,24] that in theories considered there one
achieves convergence using TD matrices with three or four
bosons for quite large coupling constants. It would hence
be of interest to find out what mechanism is at work by
which the inclusion of additional interactions and motion of
bare bosons with respect to bare fermions improves the
convergence so significantly. Convergence for the electro-
magnetic form factors may be less indicative of the number
of bosons needed because the contributions of the Fock
components with n constituents at large momentum trans-
fers may quickly decrease with n [25].
The fact that the TD matrix eigenvalue problems are

particularly suitable as a tool for seeking approximate
solutions to QFT in the FF of Hamiltonian dynamics
originates in the special circumstance that the momentum
component pþ is conserved by the interactions and cannot
be negative, in a sharp distinction from the momentum
component pz in the IF of dynamics, which can have both
signs. As a result, discretization of momenta in a box on a
front divides the available total momentum Pþ of an
eigenstate of a FF Hamiltonian into a definite number of
pieces, say K. Each Fock-space constituent of an eigenstate
must carry a natural number of units Pþ=K. Therefore, the
number of constituents is limited from above by K, which
ties the maximal number of constituents in the TD
approximation to the resolution of momentum discretiza-
tion, K. This is the basis of the so-called discretized light-
cone quantization (DLCQ) [26–28].
The DLCQ method has been applied to the Yukawa

theory [29]. Divergences were regulated using the Pauli-
Villars method that introduces additional massive fields.
To obtain solvable models, the masses of quanta of the
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additional fields were set equal to those of the correspond-
ing physical ones [30]. Similar DLCQ computations were
also carried out in a solvable model that closely resembles
the Yukawa theory of heavy fermions [31,32]. That model
was used in [31] to introduce the concept of “clothed”
particles. The clothed particle was defined using an exact
solution for a state of a single particle. An analogous
solution was recovered using DLCQ. In these examples, the
DLCQ methods were found useful for constructing low-
mass states in which the mean number of bare constituents
was small.
As resulting from simplifications of one and the same

Yukawa theory, the applications of the DLCQ mentioned
above allow one to pin point basic features by which the
RGPEP and DLCQ approaches differ. These features are
visible in Eqs. (38)–(40) of Sec. V. They display three
distinct operator forms of the same Hamiltonian that acts in
the model Fock space.
Equation (38) corresponds to the initial, one might say,

canonical Hamiltonian of a theory without counterterms.
This operator provides the starting point for the RGPEP,
which is set up at the scale parameter t ¼ 0. Since the
model is ultraviolet finite, no ultraviolet divergences need
to be countered.
Equation (39) displays the same Hamiltonian written in

terms of creation and annihilation operators for the effective
particles that correspond to an arbitrary positive value of the
finite scale parameter t, as described in Sec. IV. The
formula displays an effective fermion-boson interaction
term and a fermion self-interaction term. The Hamiltonian
has the universal form of a polynomial function of effective
particle operators. The polynomial coefficients and oper-
ators are the computed functions of t. The self-interaction
term vanishes at t ¼ 0 because there are no counterterms
needed in the initial Hamiltonian. If instead the initial
Hamiltonian led to divergences in any term of Ht for any
finite t, one would compute the counterterms at t ¼ 0 by
demanding that the divergences in Ht are eliminated. The
model is too simple to illustrate in detail what is done in
the RGPEP regarding computation of counterterms when
the initial Hamiltonian is divergent. However, detailed
perturbative illustrations are available in an asymptotically
free example of a scalar theory in 5þ 1 dimensions [33]
and in a general derivation of formulas for relativistic
Hamiltonians of effective particles in QFT [34]. Here it
is only noted that in the presence of divergent self-
interactions, the self-interaction term would include a free,
finite part of the corresponding counterterm. That part
would be adjusted by comparison with experiment and may
be constrained by demands of symmetry that the resulting
theory is meant to possess.
Equation (40) is an expression of the same model

Hamiltonian in terms of the operators that create
physical states from the vacuum state. A state of a single
physical particle is an eigenstate of the Hamiltonian.

The formula (40) is obtained in the limit t → ∞.
The effective creation and annihilation operators labeled
by ∞ correspond to the physical particles of the model.
Generally, H∞ that comes out of solving the RGPEP
equation could involve mixing of eigenstates within degen-
erate multiplets that in addition to the Hamiltonian eigen-
values are labeled by the eigenvalues of other operators that
commute with Ht, such as a component of the angular
momentum, spin, isospin, or a similar quantity. Our model
Hamiltonian form of Eq. (40) corresponds to both the
concept of clothed particles in [31] and the DLCQ solutions
for single physical particle states. It is visible in Eq. (40)
that the model of Eq. (12) is too simple to produce
interactions between the effective particles that correspond
to t ¼ ∞ and match physical ones as single-particle states.
It is worth stressing that the effective particles for t → ∞ do
not have to correspond to the physical ones. This is
important for considerations that involve the concept of
confinement; see below and Sec. X.
It is now clear that the RGPEP and DLCQ computations

discussed above differ significantly. The RGPEP produces
a whole family of equivalent effective Hamiltonians. The
DLCQ does not produce such a family. It does label
Hamiltonian matrices with the resolution K and the trans-
verse momentum cutoff, introduced by the Pauli-Villars
masses. However, these are the regularization parameters.
The resolution K and the Pauli-Villars masses are meant to
be sent to infinity in order to obtain solutions of a theory.
They are not the finite parameters analogous to the RGPEP
t on which the physical quantities do not depend; see
Sec. V. Each member of the family labeled by t is expressed
using a different choice of degrees of freedom in one and
the same theory, which means using different creation and
annihilation operators, or different quantum field operators
that are built from them. Solving the TD Hamiltonian
matrix eigenvalue problems in terms of bare quanta for
which t ¼ 0 may be very difficult numerically because of
involvement of many basis states in the dynamics, as is
illustrated in the model by Fig. 1. An effective Hamiltonian
with a finite t that is adjusted to the scale of the physical
quantity of interest is dominated by the effective basis states
of a similar scale. An approximate but accurate description
of the quantity of interest is simpler to achieve that way
than by keeping all bare basis states in a computation that
requires handling of all variables of the theory up to the
cutoffs. The model example illustrates this feature solely in
terms of the magnitude of the effective coupling constant
that decreases as t increases and thus weakens the coupling
between different effective Fock components that corre-
spond to the parameter t. In contrast, the DLCQ approach
attempts to solve the theory directly in terms of the degrees
of freedom present in the quantum Hamiltonian in its initial
form, analogous to Eq. (38), i.e., the one that is obtained by
quantization of a local theory.
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Our model example makes it also clear that the concept
of clothed particles mentioned above differs from the
RGPEP concept of scale-dependent effective particles.
The clothed particles approach is based on writing a
Hamiltonian in terms of operators associated with the
physical particles instead of the bare ones. In the
RGPEP language, the idea is to replace the gradual
evolution from t ¼ 0 to t ¼ ∞ by a single jump. Such
replacement is not available in any closed form in complex
theories for which one does not have any exact solutions.
Notably, in case of confinement, the required physical
particles are not supposed to exist. The issue is relevant to
the ultimate DLCQ limit K → ∞ that appears to be related
to questions concerning the vacuum, which is assumed to
carry pþ ¼ 0. The RGPEP approach is conceptually differ-
ent from the clothed particle approach. Its equations can be
solved for effective operators making various guesses or
approximations and the resulting effective particles do not
have to be identified with any physical, individually
observable objects. The effective Hamiltonians Ht can
be studied in terms of their predictions for quantities
accessible experimentally. For an example of such attempt
in heavy-flavor QCD, see [22].
Another basic feature that distinguishes the RGPEP

example from the DLCQ examples mentioned above is
that the number of quantum degrees of freedom stays the
same in the effective theory for all values of t, including the
canonical theory at t ¼ 0. However, the interaction terms in
Ht evolve with t as the RGPEP Eq. (15) dictates. If the
initial theory were divergent, the ultraviolet counterterms
would be computed in the process of solving Eq. (15) and
they would be inserted in the initial condition at t ¼ 0.
They would thus not be constructed by adding degrees of
freedom like in the Pauli-Villars approach. Instead, the
demand on the RGPEP evolution that for finite t it yields
finite effective Hamiltonians Ht would be used to deter-
mine the missing counterterms in H0.
Finally, it should be observed that in the nonrelativistic

contexts of condensed matter physics, addressed broadly
in [35], as well as in nuclear physics theory developed in
[36] and elsewhere, similar Wegner-like equations and
corresponding TD Hamiltonian matrix eigenvalue prob-
lems appear that resemble the ones obtained by applying
the RGPEP to the model Hamiltonian of Eq. (12) or other
model Hamiltonians of analogous nature, cf. [37].
According to the rule that the same equations have the
same solutions, no matter what their interpretation is, and
in view of the discussion of this section, it becomes clear
that the RGPEP concept of effective particles developed in
particle physics and explicitly illustrated using the elemen-
tary Eq. (39), can be introduced in the other branches of
physical theory as well. For example, one can attempt to
introduce a whole family of scale-dependent effective
electron operators that include phonon operators in a
model of a condensed-matter medium or effective nucleon

operators that include meson operators in a model of a
nucleus.

IX. MODEL SOLUTION AND REALISTIC
THEORIES

The model solution illustrates the structure, function, and
purpose of the RGPEP in the context where no divergences
appear. The concept of counterterms only shows up through
the cancellation of the fermion self-interaction energy,
due to emission and absorption of bosons, against the
effective fermion energy in the eigenvalue problem for the
Hamiltonian Ht. The terms that cancel out are finite. The
pattern is analogous to the cancellation between the finite
parts of counterterms and self-interactions in realistic
theories.
The model solution illustrates the weakening of effective

interactions solely in terms of the coupling constant that
decreases as the RGPEP evolution parameter t grows. This
weakening corresponds to the weakening obtained in terms
of the vertex form factors in realistic theories. The model
running-coupling constant corresponds to the vertex form
factor for the specific value of its argument, corresponding
to the invariant mass change caused by the interaction.
Emergence of the RGPEP vertex form factors in the
Yukawa theory is described in [38]. Analogous appearance
of the vertex form factors in the Abelian gauge theory is
shown in [15]. The RGPEP form factors that emerge in the
third-order computation of the effective vertices in a non-
Abelian theory is provided in [39].
Extension of the model solution that would include the

motion of bosons with respect to fermions and hence
produce the associated vertex form factors, would be of
great value. As pointed out earlier, the RGPEP vertex form
factors are expected to be important in the derivation of
effective quark and gluon dynamics in QCD. However,
given the complexity of QCD, one might attempt to first
undo some of the model simplifications made here and
tackle the problem of applying the RGPEP to the Yukawa
theory. To be specific, one may aim at a comprehensive
resolution of the paradox that concerns interactions of
nucleons with pions, and perhaps also other mesons.
Namely, the exchange of just one pion between nucleons
yields the Yukawa potential in second-order perturbation
theory, but the coupling constant one needs to introduce in
order to match the phenomenology is so large that the
standard perturbation theory with local interactions cannot
be valid. Perhaps the large coupling corresponds not to a
canonical Yukawa theory with t ¼ 0 but to the effective
theory in which t corresponds to the pion mass scale and
the vertex form factors make the interaction effectively
quite weak by suppressing it outside the small momentum
transfer range that corresponds to the pion exchange.
The model solution includes a coherent state of bosons

around a fermion. One could ask if the pattern exhibited by
the model could be followed for the purpose of explaining
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if the effective Yukawa theory could describe the pion
cloud around nucleons.
Since the RGPEP suppression of interactions corre-

sponds to the vertex form factors, it makes sense to ask
if any theory that introduces vertex form factors of some
width might correspond to an effective one in the sense of
the RGPEP for a width parameter t matching the form
factor scale. The example of particular interest is provided
by the Nambu and Jona-Lasinio model [40] that to the
author’s best knowledge was never analyzed using the
RGPEP.

X. CONCLUSION

The main import of the elementary model study is that it
illustrates how the RGPEP works in an exactly solvable
model. However, the realistic theories are much more
complex than the model and one cannot predict on the
model basis if the RGPEP can fully provide the means that
are required for unambiguous identification of the corre-
sponding effective Hamiltonians in complex theories. To
find out what can be achieved in that matter, one would
have to focus on the direct application of the RGPEP in
terms of perturbative expansions and TD approximations to
the complex theories. In that context, the model solution is
of value because such approximate methods quickly get
quite convoluted in realistic theories. The value is that one
can use the model as a pattern to follow and to consult with
when calculations get hard to see through. The key example
of a barrier to break is to solve the RGPEP equation up to
the fourth order of perturbation theory in QCD and derive
the corresponding TDHamiltonian matrices. Perhaps this is
the way to obtain the constituent-quark picture of hadrons
from QCD.
The case of quarks in QCD is particularly pressing even

though one can also try to use the RGPEP for addressing
theoretical issues of the Standard Model as a whole. The
idea of constructing effective quarks dates back to early
years of current algebra [41]. As far as the author knows, it
is not fully realized till today, while the particle data tables
[42] continue to classify hadrons mostly in terms of just
two or three quark constituents. States that contain two
more quarks are being added in the same spirit of
constituents. QCD suggests instead that hadrons are built
from practically unlimited numbers of quarks, antiquarks,
and gluons of canonical theory. Despite the great progress
of lattice gauge theory, Gell-Mann’s opinion from twenty
years ago [43] appears still valid: “The mathematical
consequences of QCD have still not been properly
extracted, and so, although most of us are persuaded that
it is the correct theory of hadronic phenomena, a really
convincing proof still requires more work. It may be that it
would be helpful to have some more satisfactory method
of truncating the theory, say by means of collective
coordinates, than is provided by the brute-force lattice
gauge theory approximation!”

The author’s opinion is that the basic difficulty to
overcome before one can address precise phenomenology
that involves fast moving and strongly interacting
hadrons, is to first somehow gain control of the ground
state of the theory. The reason is that all particle states one
considers are meant to be created by action of operators on
that special state. Such control is also desired concerning
spontaneous breaking of symmetries. In the FF of
Hamiltonian dynamics, the vacuum problem is formulated
in a different way than in the IF dynamics; e.g., see [44].
The condition pþ > 0 for all quanta with finite momenta
and nonzero masses can be compared with the condition
that the vacuum state carries zero momentum. The
vacuum state should also be invariant with respect to a
change of an inertial frame of reference. This may be a
large change, such as to the infinite moment frame used
in the parton model. Somehow the vacuum state is limited
to states akin to those with pþ ¼ 0, sometimes called the
FF zero modes.
The vacuum problem of QCD has a long history,

stimulated by the concepts of quark and gluon condensates
and posing questions in cosmology. To gain a perspective,
one can consult the works [45–47]. The leading conden-
sates can be simply incorporated in the FF version of
QCD sum rules [48] using the condition pþ > ϵþ for all
nonvacuum modes while the vacuum modes must have
pþ < ϵþ. The constant ϵþ is treated as infinitesimal. If one
assumed that the states with momenta pþ < ϵþ were
absent, one could even think that the cosmological vacuum
problem may be resolved [49]. However, the dynamics of
modes with pþ < ϵþ is singular and to the author’s best
knowledge it is not understood.
Of course, the exact computation of effective

Hamiltonians for the model of Eq. (12) is only relevant
to the vacuum issue because the computation is used to
illustrate the RGPEP. The point is that the vacuum problem
in the FF Hamiltonians can be turned into a renormalization
group issue according to [2]. Namely, the counterterms to
the cutoff ϵþ → 0 are expected to mimic vacuum effects
and one hopes to finesse dynamical effects due to the latter
that way. The idea is presented in [2] using the FF power
counting and original similarity renormalization group
procedure [12,13]. However, the number and complexity
of terms one obtains turns out difficult to handle using the
similarity procedure. With the RGPEP, the situation is
different because one does not need to directly address the
multitude of matrix elements of many complex operators
that involve initially unknown functions of many momen-
tum variables. Therefore, one can focus instead on behavior
of coefficients in polynomial functions of creation and
annihilation operators for effective particles. Moreover,
the RGPEP equation in QCD that corresponds to
Eq. (15) in our model discussion secures invariance of
the Hamiltonians Ht with respect to seven kinematical
Poincaré symmetries, leaving only three that are dynamical
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and need to be renormalized. Consequently, instead of the
cutoff pþ > ϵþ on the absolute momenta pþ, one can use a
dimensionless cutoff x > ϵ on the ratio x ¼ pþ

1 =p
þ
2 that

momenta of particles 1 and 2 involved in an interaction
term can form.
Exact nonperturbative solutions of the RGPEP equation

in QFT as complex as QCD are not currently foreseeable.
However, one can study the terms that emerge in pertur-
bative expansion using asymptotic freedom, known in the
FF effective particle Hamiltonians to the lowest order only
[39]. The fourth-order calculation mentioned earlier is of
interest because this is the first place where the running
coupling appears in the effective interaction terms and

increases with t. General fourth-order RGPEP formulas are
available in [34]. As long as the effective coupling constant
is not too large, one can use the perturbative expansion to
learn what kinds of terms arise. Initial attempts at phe-
nomenology included only second-order formulas forHt in
QCD of heavy quarks [22], assuming that gluons gain
effective masses. One needs to understand what happens in
fourth order to see if there are any signs of development of
constituent quark masses for light quarks. If the masses
emerge and the coupling constant stays small enough,
one can take advantage of the exact model and follow its
pattern toward systematic improvement in accuracy of the
computation.
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