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In this paper we derive the high energy evolution equation in the Gribov-Zwanziger approach for the
confinement of quarks and gluons. We demonstrate that the new equation generates an exponential
decrease of the scattering amplitude at large impact parameter and resolves the main difficulties of color
glass condensate high energy effective theory. Such behavior occurs if the gluon propagator in Gribov-
Zwanziger approach does not vanish at small momenta. Solving the nonlinear equation for deep inelastic
scattering, we show that the suggested equation leads to a Froissart disc with radius (Rz), which increases

as Ry o Y = In(1/x), and with a finite width for the distribution over |b — R|.
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I. INTRODUCTION

It is well known that the Balitsky-Kovchegov (BK)
equation [1]

0
EN(r,b,Y)
24
:&S/dzr K(r’,r—r’;r){N(r’,b—%(r—r’),Y)

T

1
+N<r—r’,b—2r’,Y> —N(r,b,Y)

—N(r—ﬂ,b—%r’,Y)N(r’,b—%(r—r’),Y) } (1)

generates a scattering amplitude which decreases as a power
of b at large impact parameter (see Ref. [2] for review).

In Eq. (1) the kernel K (¥, r — r';r) describes the decay of
the dipole of size r into two dipoles with sizes 7 and
|r — r/|, respectively. It has this form:

K(r',r—rir)=———s. (2)
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At large b we can neglect the nonlinear term in Eq. (1),
and the linear BFKL ( Balitsky,Fadin, Kuraev and Lipatov)
equation [3.4] determines the large b behavior. It is known
that the eigenfunction of this equation (the scattering
amplitude of two dipoles with sizes r and R) has the
following form [5]

r2R2

b (rR.b)= <(b+%(r—R))2(b—%(r—R))2>y
ﬁ(’;’fzyzeﬁ with .»:_1n<$>. (3)

Equation (3) shows the powerlike decrease at large b,
which leads to the violation of the Froissart theorem [6] as it
generates a cross section, which at high energies increases
as a power of energy [7,8]. The solution of this problem
requires introducing a new dimensional scale. A variety of
ideas to overcome this problem have been suggested in
Refs. [8-28]. In this paper we intend to use the Gribov-
Zwanziger approach [29-39] for the confinement of quarks
and gluons. In particular, we will use the Gribov gluon
propagator in a form which describes the recent lattice
QCD estimates [40].

The plan of this paper is as follows. In the next section
we illustrate the problem of the large impact parameter
behavior of the BK equation using as an example the first
iteration of this equation. From this example we can see that
the large impact parameter behavior of the scattering
amplitude stems from the gluon reggeization term of the
BFKL equation in momentum representation, which has a
general form depending only on the expression for the
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gluon propagator. This observation will be essential for our
generalization of the BFKL evolution to the case of the
Gribov-Zwanziger confinement.

In Sec. Il we discuss the model: non-Abelian gauge
theories with Higgs mechanism of mass generation, which
has been suggested in Ref. [24]. This model, having the
same color structure as QCD, does not have the confine-
ment of quarks and gluons. We briefly review the energy
evolution in this model, which is discussed in Ref. [24],
since it gives an instructive guide to introducing a new
dimensional scale (Higgs mass) into the evolution equation
at high energies. In Sec. IV, which is the main part of this
paper, we will heavily use both the way the BFKL equation
is derived in this model and what kind of solution we have
for the equation. It should be stressed that this model not
only leads to the exponential decrease of the scattering
amplitude at large b, but it has the same spectrum of
energies as the massless BFKL equation in QCD. In the
original part of this section we investigate the large
impact parameter behavior of the scattering amplitude
in this model and find the restoration of the Froissart
theorem. We also discuss the structure of the scattering
amplitude at high energies. In particular, we find the size of
the Froissart disc and its dependence both on the energy
and on the photon virtuality for deep inelastic scattering
processes.

Section IV is the key chapter of the paper. It contains a
discussion of the modification of the BFKL evolution
equation in accord with the Gribov-Zwanziger approach
to the confinement problem. The advantage of the Gribov-
Zwanziger confinement from the point of view of high
energy evolution is the fact that in this approach we can
introduce the dimensional parameter, which describes the
confinement of quarks and gluons, directly to the propa-
gator of gluon. Using two ingredients: the observation from
Sec. II that the large impact parameter behavior stems from
the gluon reggeization in the momentum representation and
the general expression for the gluon reggeization through
the gluon propagators [3-5], we find the behavior of the
kernel for the BFKL evolution in the case of Gribov-
Zwanziger confinement. We show that this mechanism of
confinement introduces a new dimensional parameter, and
it leads to the exponential decrease of the scattering
amplitude at large b, but only if the gluon propagator does
not vanish at zero momentum.

We are aware that the behavior of the gluon propagator in
the infra red region (at small momenta) in the Gribov-
Zwanziger (GZ) or refined Gribov-Zwanziger (RGZ)
approach, as well as generally in nonperturbative QCD,
is a subject of intensive discussions (see Refs. [41-57]). As
far as we understood, the fact that the gluon propagator
(G(q)) is not equal to zero at small momenta, does not
contradict and even follows from nonperturbative QCD
estimates. However, in our estimates we use the simple
form of Ref. [40], which we consider as a good first

approximation to introduce the dimensional scale in RGZ
keeping G(g) #0 at g — 0.

Using the approach, which we have discussed in Sec. III,
we derive the modified BFKL equation for the energy
evolution of the scattering amplitude in the momentum
representation and discuss the main features of the solution.
Finally, we suggest the evolution equation in the coordinate
representation and show that the new equation satisfies the
Froissart theorem.

In Sec. V we discuss the nonlinear equation with a
generalized kernel, which we have derived in the previous
section, and show that this equation generates the Froissart-
type behavior of the scattering amplitude with a radius
which increases as Y = In(1/x). Finally, in Sec. VI we
discuss our results and future prospects.

II. ITERATIONS OF BK EQUATION

We start illustrating the problem of large b behavior with
the first iteration of Eq. (1). At large b, we can neglect the
nonlinear term and concentrate our efforts on the solution
of the linear BFKL [3,4] equation. The general initial
condition N©) generates the Green’s function in the impact
parameter representation, which has the following form:

NO = 252)(b). (4)

Plugging this initial condition in Eq. (1), one can see that
we obtain the first iteration in the form:

_ 1 7~
NO(r,b,Y) = asY{;W —In VzN(O)("vb)}» (5)

where In 12 = %’K(r’,r —r';r) [see Eq. (1)].

Therefore, one can see that the initial conditions, which
have a sharp decrease in b, generate the powerlike
dependence of the solution to the BFKL equation. The
next iteration leads to

1 r? 1
(2) Y) = — (a.Y 2 2 -
N (r, bv ) 2 (aS ) /d r (r _r/)z (2b)2
b>rsr 1 _ b d}’/2 r2
= ey [ (©

Therefore, the powerlike decrease of the first iteration
persists in the next ones, since in the following iterations
the typical #' turns out to be much smaller than b.

It is instructive to recall that the powerlike decrease,
which comes from the integration over r in Eq. (5),
corresponds to the gluon reggeization term in the momen-
tum representation. Indeed, using that the scattering ampli-
tude in the momentum representation can be determined
from the following equation (see Ref. [2]):
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N(Y:br) = 12 / Lrdber BN (Y: g Oy). (7)

We obtain that in the momentum representation the BFKL equation takes the form [3,4]:

I
R

aN(YJ], QT) /dzq/ K
oY 5 2 ©

m(@—4q.0r)N(Y;q',0r) — Ky (g —q',Qr)N(Y: q, QT)) :

afZ /
— s [ 5 Kenla ~ 4.0V (V4. 01) = 06(4') ~ 06(Qr ~ ).
T
Jz !
—as [T Klg -4,V (i 01, Q

where ag = (N /z)as. The kernel K., describes the emission of a gluon, while kernel K., is responsible for the

reggeization of gluons in ¢ channel. They have these forms:

TIPS _ 0ilg-¢) (@r—g)’q* o0 1
Kala =020 =35 (o o)
_son_ L 1 7’ (Qr -9)? o=0_ 1 7
R (P ey e e e

K(q—4q',0Qr) is equal to

K(q - ql7 QT)N<Y’ q/v QT)
= Kem(q —4'.Qr)N(Y:¢'. Or)
Kreg (q - q/’ QT)N(Y; q, QT) (10)

One can see from Eq. (7) that the reggeization term in
Eq. (8) stems from the emission contribution to Eq. (1).
The gluon trajectory wg(g) is equal to

d2q/ qZ
wG(q) = 5‘5/—7
4r q%(q-q')

2 1
—as67(0) [ GE6a-0)6(@). (1)

where G(q) is the gluon propagator.

The reggeization term of Eq. (8) leads to the powerlike
behavior at a large impact parameter. Therefore, we need to
understand what type of nonperturbative corrections
could change this reggeization kernel to provide the
exponential decrease of the scattering amplitude at large
impact parameters.

III. THE MODEL: NON-ABELIAN GAUGE
THEORIES WITH THE HIGGS MECHANISM
FOR MASS GENERATION

A. BFKL equation

In this section we wish to answer this question: what is
the large impact parameter behavior in the non-Abelian

Yang-Mills theories with a Higgs boson? In these theories,
we introduce the nonperturbative scale as the mass of the
Higgs, and we would like to see how this dimensional scale
manifests itself in the large b behavior of the scattering
amplitude. It was shown by Fadin, Lipatov and Kuraev [3],
that the high energy amplitude satisfies the BFKL equation
(see Fig. 1) which has been written for color SU(N..) (N, is
the number of colors) with the Higgs mechanism of mass
generation, in Ref. [24].

It has the form of Eq. (8), with the kernels that have the
following forms:

1

Kem(q —4'.0Or) “G=q)y+m
<q%+m2+ <QT—q>2+m2)
P rm (Qr—q)+m?
q +NN§'m2
@@ =g ) U
[ dq (¢* + m?)
wete) = [ G @)=
2|617|\/c12+4m \/q Tam? —|q|

As one can see from Eq. (12b), w(q) has singularities
at q> = —4m?, which will generate the exponential
decrease of the scattering amplitude at large b. As we
have mentioned, the reggeization terms in coordinate
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FIG. 1.

representation generate the first term in Eq. (1). Using
formulas 8.411(1), 8.411(7) and 6.532(4) of Ref. [58]) we
obtain

= Ky(rm), (13)

dq et teq'dg'Jo(rq')
/Zﬂq'2+m2_/—w 7>+ m?
where J(z) and K, (z) are the Bessel functions of the first
and second kinds, respectively (see Ref. [58]). Bearing
Eq. (13) in mind, one can see that coordinate image of the
gluon trajectory can be written as follows:

1
w6(r) = 5 (= 4 m?) K3 (rm)
1
= —§m2(2K%(mr) + K3(mr)) (14a)
m— 1
e R (14b)
r
—o 1 1 5 mr\\?\.
—>—ﬁ+§m 2—({C+1n > ; (14c)
r—o0 3m77.' 571'
2mr| _ 7" T ). 14
% ( Ar 16r2>’ (14d)

where K (z) is the Bessel functions of the second kind and
C is the Euler constant.

The emission term of BFKL equation in coordinate
representation [see Eq. (7) and the first two terms in Eq. (1)]
have the following form:

0
ﬁN(l‘,b, Y)

_ —as/f:wc(r—r’)N<r",b—%(r—r’),Y). (15)

We need to add the contribution of K.,(q —¢’,Qr) in
the coordinate representation, which leads to the term

(b)

The massive BFKL equation (a) and its kernel (b)

proportional to N(r,b,Y). Finally, the BFKL equation in
the coordinate representation has this form:

0
WN(r,b, Y)

B d*r
= —as/ . wg(r—r')

y {N(r’,b —%(r—r’),Y) —%N(r,b,Y)}. (16)

B. First iterations

Using the initial conditions of Eq. (4), one can see that
the first iteration of Eq. (15) leads to the following
expression for large b:

1 1
N(‘)(r,b,Y):—écSY—/dzr’coG(r—r’)N(O> <r’,b—§(r—r’)>,
T
1
:—&SY—a)G(Zb)4b2=6&SYmbe_4’"b. (17)
b

The second iteration gives

N®(rb,Y) ——("xSYl/dzr’a)G(r—r’)N(l) <r’,b—%(r—r’)>
p

b—L(r—r 1 1
o) (@5 g(2b)4p?
V3

r—r|~1/m 1 1
%E(asy)z—wG(|r—f|)6aSYmbe—4mb.
/4 |

NO(rb>r.Y)
(18)

Hence, the modified BFKL equation leads to the
exponential decrease of the scattering amplitude N(r,b,Y)
at large b (mb > 1).

C. Solution at a large impact parameter

We solve Eq. (16) at large b, assuming that the amplitude
N has this form:
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N(r,b,Y) = N(r,Y)B(b). (19)

We have seen that first two iterations reproduce this form,
as well as the eigenfunction of the BFKL equation [see
Eq. (3)]. From our experience with the first iteration, we
infer that there are two regions of integration that contribute
to the asymptotic behavior at large b: |b -1 (r—r)| - 0
and [r—r| < 1/m.

Plugging Eq. (19) into Eq. (16) we obtain the following
equation:

ON(r,Y)

aor 20

d2r/
— —wg(2b) / ON(b=0.7)

[b=4(r—r")|-0

- / f;/wG(r—r’){N(r’,Y)—%N(r, v)}B(). (20)

[r—r|x1/m

First, we need to solve the homogeneous equation:

OZS(;;): _/ch;(,_,/){mrc Y) —éfv(”’ Y)}'

(21)

In @ representation,

- e+ico
N(r,Y) = / 20 e ii(w, ), (22)

—ico 2ri
this equation has this form:

(e, r) = —/%wc(r‘ —r’){ﬁ(w, ’) -

N[ =

i, r)}.

(23)

This equation has been solved in Ref. [24]. The main
features of the solution can be summarized as follows:
(i) The eigenvalues of Eq. (23) are the same as for the
BFKL equation with m = 0 for (y) > —1ag and
can be parametrized in the following way:

= ag4In2 + as14¢(3) (}/ - —) ’

of() e

where (z) is the Euler psi function (see formula
8.36 in Ref. [58]).

(ii) The eigenfunctions ¢,(a;r) have the following
behavior:

r—oo el

Pl = { r—0 ot (25)

(iii) In the momentum representation for y — 1 the

2
eigenfunctions ¢(y, a; r) can be written as

_ 1 <\/q2 +dm? + \/?> y_%'
V@ +4m> \\/ @ +4m? - \/¢?

(26)

¢,(q.m)

(iv) Equation (26) means that the maximal intercepts
w(y) reaches the value 4In2as at y =1, as for
massless BFKL, and a = 2m.

Expanding 7i(w,r) in a series of the eigenfunctions
¢, (a;r): viz.

o) = [T S g @), @)

where n;,(y) is determined by the initial conditions, we
obtain the solution to Eq. (23) in this form:

~ e+ico
N(r.Y) :/ d_“’ewy
€

i 271

e+ico d}/ . 1 .
[T S ) o). 28)

_ico i w— oy

where w(y) is given by Eq. (24).
The general solution for the inhomogeneous equation
[see Eq. (20)] has the form

e+ico (]
N(r,b;Y) = —aswe(2b) / 2—w_e‘”y
€—ico Tl
e+ico dy ) 1 0
X L_im 27” ¢y(a> l") ((1) _ a)(y))2 nin(y)
+ N(r,Y)B(b). (29)

In Eq. (29), we used that N (,b =0,Y) is equal to
N(r,b=0,Y)

B e+ico do - e+ico d}, ' 1 o
_L—ioo Zﬂ'le l—ioo 2”i¢y(a’r)a)—w<}/)nm(7/)’ (30)

0 . . . . . . . .
where n; (y) is determined by the initial condition:

N(r,b=0,Y =0) =N(r).
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The last term in Eq. (30) is the solution to the
homogeneous equation, in which the function B(b) is
given by the initial condition.

Equation (29) leads to a scattering amplitude that
decreases as e~*"?. Certainly such behavior at large b,
restores the Froissart theorem.

D. The size of the Froissart disc

In the color glass condensate (CGC) approach, the
scattering amplitude reaches the black disc limit
N(r,b;Y) — 1 in the kinematic region: r*Q?(Y,b) > 1.
Hence, we can find the size of the Froissart disc R from this
equation:

r?Q}Y,R) = 1. (31)
It is well known [2, 59-63], that we do not need to know

the exact structure of the nonlinear corrections to find the
|

Equation for saddle pointygp:

Equation for constant amplitude: W(Y;¢&, b;y), = 0;

Solving Egs. (33a) and (33b) we obtain an equation for
Ysp = Y.r» Which has the form:

dy(ver) 4mb
1 _— N e h = —
X(er) + (1 =7c) dr ¢ where ¢ 2y

(34)

The solution to Eq. (34) is shown in Fig. 2(a). One can see
that the value of y.,. depends on the value of {.

0.9
0.8
—~0.7
&
506
0.5

0.4

(@)

OV (Y&, byy)

saturation scale. We only need to solve the linear BFKL
equation and determine the line on which the scattering
amplitude is constant.

The saturation momentum Q, increases with energy and,
therefore, small r ~ 1/Q, < 1/m contribute to Eq. (31). In

this kinematic region we can use the eigenfunction
¢,(a;r) < r2*% and Eq. (29) takes the form

N(r,b;Y)
etico dg  [etico dy
= ey = GV o)Y+(r-1)E,,0
‘ l—ioo 2ri e—ico 27”6 nln(y)

et+ioo oy [etioco d]/ L
=Y —_— —L ¥ (YEby) 0 (3 32
/;—icc 27Tl e—ico 271,1 € nln (y) ( )

with & = In (r*Agcp)-
Using the method of steepest descent we can find the
value of y,, from the following two equations:

. dw(?sp) A
=0 Uy ie=o; (33a)
(ysp)Y + (ysp — 1)& — 4mb = 0; (33b)

|
From Eq. (33a) we can calculate &;, which is equal to

& =In(03(Y.0)/0(Y = 0. =0))
d
dy rsp=Yer(§)
In Fig. 2(b) we plot the value &, /@Y as a function of ¢. For
¢ > 2.8, the saturation momentum starts to decrease as
function of Y. In the vicinity of the saturation scale the
scattering amplitude has the following form [63]:

FIG. 2. (a)y,, versus ¢ from Eq. (34). The red line corresponds to y., = 0.37, which is the solution of Eq. (34) at b = 0. (b) &,/agY
versus ¢, where & = In (Q%(Y,¢)/Q(Y = 0,{ = 0)). The red line shows & /agY at { = 0.
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N(r.b;Y) = No(r’Q3(Y.$))' 79, (36)

where N is a constant smaller than 1.
The radius of the Froissart disc (R) can be found from
this condition:

N(r,R;Y) = f, (37)

where f is a constant (f < 1). Introducing a new variable
z=In(r*Q3(Y,{)), Eq. (38) can be rewritten as

(1 _ycr(CR))Z - (1 _ycr)(§+§.s)
=(1=7er) (é _drlrse)

w)
ySP:}/er(é‘R)vé‘:éR

dy
=7 (38)
where f = ln(NLO). We rewrite Eq. (38) as follows:
_dx(ysp) :_i&i»)lo; ﬂz_i. (39)
d}/ rsp=Yer(Cr).C=Cr aSY asy

In Fig. 3 we plot the solution to Eq. (39) as a function of
n, while in Fig. 3(b) we see the dependence of the radius of
the Froissart disc on Y. Note that the radius increases as
ConstY, but the value of Const depends on &(7).

E. Discussion

Hence, we can conclude that in non-Abelian gauge
theories with the Higgs mechanism for mass generation,
in the CGC approach, we obtain a Froissart disc with the
radius R « Y, with a coefficient of proportionality, which
depends on the size of colliding dipole.

FIG. 3.

1. Restoration of the Froissart theorem

It is easy to demonstrate the restoration of the Froissart
theorem [6] for this approach. Using the unitarity con-
straints that N(r, b;Y) < 1, we can find the bound for the
total cross section (see for example Appendix 2.2 of
Ref. [2]):

Ot = Z/N(r,b; Y)d*b

by
< 2/ d’b +

unitarity constraints

d*bN(r,b;Y).
by

(40)

We estimate the value of b, using the following equation:

N(r,by;Y)=f < 1. (41)
Plugging in Eq. (41) the solution of the BFKL equation in
the form: N(r;Y)exp (—4mb) [see Eq. (29)] we obtain
e—4mb0

N(r¥)emh = Ny(PQ,(¥))' -
—_—————

vicinity of the saturation momentum

=f<1, (42)
where y.,. ~ 0.37 is the solution to Egs. (33a) and (33b) at
m = 0. From Eq. (42) one can see that

bO L <(1 _ycr)z_lni>’

= 43
dm N() ( )

where z = In (r2Q,(Y)) = & — @y d{d—(;’) |,—,.. Y. The depend-
ence of the radius of the Froissart disc given by Eq. (43), is
shown in Fig. 3(b) by red lines. One can see that, in spite of
the same proportionality to Y, the value of the coefficients

are quite different.

0 5 10 15 20

(b)

(a) ¢k versus n from Eq. (39). (b) The radius of the Froissart disc versus Y at different values of . The red lines show the

estimates from Eq. (43) for the radius of the Froissart disc. The value of ag is taken ag = 0.2.
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Plugging Eq. (43) into Eq. (40) one can see that

) s 1)
o < 27by =2n Im\T=y z- lnN—O (44)

For ¢ =0 Eq. (44) gives o <2r(asy(y.,Y)* and,
therefore, leads to the Froissart theorem.

2. More about eigenfunctions—a recap

To learn more about the behavior of the eigenfunction at
large distances we follow Ref. [24] and consider the BFKL
equation [see Eqgs. (12a) and (12b)] at Q7 = 0. It has the
form:

k+1 \/IT—I-\/—
N T

kinetic energy term

Ep(x) = b (x)

/ dx'p(x')
Vk=&)+2(k+ 1)+ 1

potential energy term

N2+1 1 o ¢h(K')dK
c +2 ¢(/,<) K (45)
2Nz xk+1 K +1
contact term
In Eq. (45) we introduce the following notations:
2 ”
q ;4 o __agN,
= =—; EFE=——; =——. (46
. m? . m? ag s 7 (46)

Rewriting Eq. (45) in the coordinate representation, we can
see that it takes this form:

E¢(r) = He(r) (47)
with
K2 +1 \/ +4 + x| N2+1 .
-2
S ra ey Rolldm TP
2
=T®R)+V(r)+ Ne+ IP, (48)

2N?

where P is a shorthand notation for the projector onto the
state ~m?/(p? + m?)

. 1 &’k p(K')
P¢(K>_K2+1/ T K2+ 1 (49)

where k = —iV .

At large distances (r — oo) the potential energy in
the Hamiltonian (V(r) = —2Ky(rm)) is exponentially
small, the contribution from the projector P in Eq. (47)
is proportional to 1/(k*>+ 1) and is also exponentially

suppressed, so the only relevant term in the Hamiltonian is
the kinetic energy

~2 1 '\2
BR) = T() = SR (so)
[R|VRZ + \/ — |&]
for which the eigenfunctions have a form
o(r) ~eVEr k250 pr)~e VT k2 <0. (51)

The point k = 0 is special, since it separates two different
behaviors at large r. This point corresponds to the energy
E=1or o=wy=—jag (see Fig. 4). As is shown in
Ref. [24], there are qualitative changes in the shape of the
wave functions near this point. From the structure of the
kinetic energy term (50) we can see that the energy Eis
positive (w < 0) for k> > 0; however for —4 < k%> < 0, the
energy may have any value from —co up to . This means

that for x> <0 we have a discrete spectnlm with two
conditions shown in Eq. (25). Hence, the exponential
decrease of the eigenfunction is intimately related to the
behavior of the reggeization term in the BFKL equation,
and it stems from the region, where w(q) is positive.
The large b dependence is determined by the singular-
ities of this term which in turn, corresponds to the
singularities of the gluon propagator. In this model it is
a pole at the Higgs mass. Actually, the scattering amplitude

rm>>1

atlarge b N(r, b;Y)—> exp (—4mb), where ¢g*> = —4m? is
the singularity of the gluon reggeization in the momentum
space [see Eq. (12b)]. Hence, our next step will be to
understand the singularities of the gluon propagator in
QCD. Certainly, they have a nonperturbative origin, and we
have to rely on a nonperturbative approach, which is in an
embryonic stage at the moment. The only reliable infor-
mation comes from lattice QCD [64], which we will discuss
in the next section.

FIG. 4. The dependence of the kinetic energy [see Eq. (50)]
versus k2. The red line corresponds to T(k = 0).
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IV. GRIBOV-ZWANZIGER CONFINEMENT
AND THE BFKL EQUATION

Among numerous approaches to confinement, the one
proposed by Gribov [29-39], has special advantages, which
makes it most suitable for discussion of the BFKL equation
in the framework of this hypotheses. First, it is based on the
existence of Gribov copies [29]—multiple solutions of the
gauge-fixing conditions, which are the principle properties
of nonperturbative QCD. Second, the main ingredient is the
modified gluon propagator, which can be easily included in
the BFKL-type of equations. Third, in Ref. [26] (see also
Ref. [65]) it is demonstrated that the Gribov gluon
propagator originates naturally from the topological struc-
ture of nonperturbative QCD in this form:

| £ 1/ 1 |
q2 +% q4+ﬂ4 2 q2+l/42 qz_mz
(52)

where yop = u* is the topological susceptibility of QCD,
which is related to the 7’ mass by the Witten-Veneziano
relation [66,67]. This allows us to obtain the principal
nonperturbative dimensional scale, directly from the exper-
imental data.

A. The gluon propagator

As we have discussed above, to find the large impact
parameter behavior, we need to know the gluon reggeiza-
tion contribution in coordinate space. However, before
calculating it, we evaluate the behavior of the gluon
propagator. As we can see from Fig. 1, the gluon reggeiza-
tion term comes from the exchange of gluons at high
energy. It is known (see Ref. [2]) that z-channel gluons in
the BFKL equation depend only on transverse momenta of
the gluons. Hence, we need to calculate the following
integral in coordinate space:

G(r) = / s "1 G(qr). (53)

(217
)

Plugging in Eq. (53) to Eq. (52) we obtain
(54)

_ d2 qr irqr q%‘

1
G(r) = ==
) (27)? gr +u> 4

0707%7

o=

4 4
G390 r'u
0"‘(256

where Ggﬁ is the Meijer’s G function (see formula 9.3
given in Ref. [58]).

r—> o0 e v3cos (”—rzg)
G(r) — . (55)
-0 —ln(%) _c

where C denotes the Euler constant.

Hence, we see that at large values of r the gluon
propagator decreases exponentially, giving us hope that
Gribov’s confinement will lead to a scattering amplitude,
which will be exponentially small at long distances.

B. The gluon trajectory

The general expression for the gluon trajectory has the
following form [3,5,24]:

ws(q) = G (9)Z(q), where
2 1
2= [Le@6a-a). (50

Before making estimates with the gluon propagator
of Eq. (52), we need to mention that the lattice calculation
of the gluon propagator leads to G(0) #0 (see
Refs. [40,44,49] and references therein) in explicit contra-
diction to Eq. (12b). However, in Refs. [41-57]"itis proven
that Gribov’s copies generate the gluon propagator in a
more general form with G(0) # 0.

In Refs. [45,50,52,53] it is argued that in the Gribov-
Zwanziger picture the gluon can be written in the simple
form

2 2

q* + M>
Gq)=——5"— 57
(‘D (qz M2)2 /l4 ( )

by taking into account certain condensates. We are aware
that this equation is a simplified approach,2 but we believe
that it is a good approximation to start with, which
introduces two nonperturbative dimensional scales.

We consider this form as a parametrization of the sum of
Gribov’s propagators of Eq. (52), with different values of p.
In particular, in Ref. [68] it was demonstrated that the
approach suggested in Ref. [26] leads to a gluon propagator
of the following form:

11 fe . (2
- ¢
6= |

2 2 2.
VeV Erfe (58)
p vz ¢ <p’ x\/r/p

u
where z = el

As we have mentioned, at high energies ¢ is a two-
dimensional vector, which corresponds to transverse
momentum carried by the gluon. Introducing

"This list of references is not complete; you can find more
details in the reviews [38,41].

We wish to note that in our approach we do not need to
consider the running QCD coupling as well as the renormaliza-
tion procedure that is caused by this coupling [3,5].
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1
G*(q) = (RO (59)

we can rewrite Eq. (57) in this form:

2 a2
Gla) =3 (G7(0) + G () + 2 (G (g) = G~(4) = 25 (ReG* (6) + (M = M2)ImG:* (1)
2 _ Ag2 2 a2
:%{(1 + iMOTM)G’L(q) + <1 - iM(>ﬂ72M>G—(q)} = {0+ img)GH () + (1 = img)G~(x)}. (60)

where we use notation similar to Eq. (46):

2
4. w

2
q
=5 K == E=—-—;

H H as

K=

Plugging Eq. (60) into Eq. (56) one can see that

- 4

j=tl==+

asN., M2 M2 — M2
s = Sﬂ: 5 m:—2, mozio 5 5 (61)
! p
;G ()G (i — ), (62)

where the coefficient a;; can be easily calculated from the decomposition of Eq. (60). Each term of Eq. (62) can be rewritten

in the form

24! 2
Zia) = [ e )G —x) = [

Ar (124 m2) (k=) +md)’

1/1 J / dx’? 1/1 J 1 (63)
= — (04 p— (04 R
2 Jo (K —ox)? +xka(l —a) +m3—(m3—mHa)? 2Jo  «ka(l —a)+m?—(m3—ml)a

where we have introduced the Feyman parameter @ and m? = m +i and m3 = m + i.

Integrating over @ we obtain

1 —k4+m2—m?+A
21.2:—{11'1( 22 21
K+m;—mi+A

A

) 2 A
)—ln<K m22+ m12+ )} (64)
—Kk —m; +my+ A

where A = \/—(x + (m; —m,)?)(x + (m; +m,)?) and « is defined in Eq. (46).

Cumbersome but simple calculations lead from Eq. (64)
to the expression for the gluon trajectory 7'(k) = 2w¢ (k)
(see Appendix A). Figure 5(a) shows the resulting T'(x) as
function of « for different values of m and m,.

At first sight, the behavior of the kinetic energy (see
Fig. 5) for the BFKL with Gribov’s confinement is not that
different from the case that we have described in Sec. III.
Indeed, T is negative for negative « [see Fig. 5(a)], and, due
to this, we expect we have a bound state as in the case of the
model, discussed in Sec. III. As in the model of Sec. III for
negative x, we expect the eigenfunction, which is small at
large r (¥ o« exp (—/|k|r)). Hence, we expect that the
scattering amplitude will decrease at large b. For example,
we see such a situation in Fig. 5(b), where the kinetic
energy is plotted for the gluon propagator, which is in

agreement with lattice QCD data [40]. However, the actual
setup is more interesting: for the propagator of Eq. (52), the
kinetic energy is positive for all values of « (see Fig. 6).

In Appendix A, we discuss the k dependence of wg in
more detail.

C. The BFKL equation in momentum representation

In the previous section we found wg(g), now we are
going to find the kernel which is responsible for gluon
emission. Using the decomposition of Eq. (52) for the
Gribov propagator, we can treat the production of the gluon
as the sum of two sets of the diagrams (see Fig. 7):
production of the gluon with mass M? = iy® and with

mass M? = —iu?.
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200
20 : —— m?=0.75m3 =2 6
15 R R m?=05mé=1 150
m? = 2 4
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10} e P24 I 1 mi= 1 100
< < .
= 5 < -
= i = 50 <
0 3 . O
. 50 .
-10 i
-100 9
4 2 0 2 4 00 -8 -6 -4 -2 0 2 4 5 — : " -
K K

(a) (b) (©

FIG. 5. (a) T(x) versus « at different values of m and my. (b) The same as (a) but for my = 5.03, m = 1.27 and p? = 0.459 GeV?,
which corresponds to the description of recent calculations in lattice QCD ([40], section II. 1). In (c) the kinetic energy T (ix) is plotted.
The red line corresponds to 7'(k) = —Agpk;, = —41n2, where Aggg; is the intercept of the BFKL Pomeron for QCD.

8 4
6 2
¢’ =
= 2 = -2
0 -4
-2 -6
-8
-4 -2 0 2 4 -4 -2 0 2 4
K K
(a) (b)

FIG. 6. wg(x) versus « for the Gribov propagator of Eq. (52). The red line corresponds to 7'(k) = —Appk;, = —41n 2, where Aggg;. is
the intercept of the BFKL Pomeron for QCD: (a) 7'(x), (b) T(ix).

We sum the first diagrams of the gluon emission shown in N L L . Pk
Fig. 7 to find the vertex I', (g, ¢') for the kernel of the BFKL Tu(4.4) = =4i = ai + P, <_G (9) Lk * P p2>
equation [see Fig. 1(b)]. Itis easy to see that the sum shown in | b1k
Fig. 7, leads to the Lipatov vertex for the production of the — Py <—G—1 (") + -4 > . (65)
gluon with mass M?, that has the following form [3,5,24] pa-k piopa

R ¥ R &

K+ P R P—g—F

q q k 1 . 1 1 . 1
R o) B B M2
2 2 2 2 " k — _ k
’ q qf @, @)
i L R g B8
+ k

R B )

FIG. 7. The first Feynman diagrams with gluon emission, whose sum leads to ', (g, ¢') (Lipatov vertex is denoted by the gray blob).
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The gluon production vertex for the gluon with the same
mass in the conjugated amplitude can be written as follows

. 1 pa-k
_ 1 1 -1
Fﬂ(ql’q/l) __ql,p_q/l,u+p1»ﬂ (_G (ql)pl k+P1 p2>

1 +”"k>. (66)

P2k pips

- (—G-1<qa>

Equations (65) and (66) allow us to calculate the
contribution of the gluon production [see the first diagram
in Fig. 1(b)] to the BFKL kernel. The procedure for taking
into account the production of the Higgs boson is discussed
in Ref. [24]. This contribution leads the contact term and
we will see below that two contact terms for productions of
the gluon with masses M and M cancels.

The BFKL kernel for one given configuration of the
masses (say, M> = +iu®) at Q7 = 0® (for forward scatter-

ing ¢ = qy, ¢ = ¢}) is given by

(G™(q"))*K(9.94)=T,(q.4)-T,.(q.4')

-1 -1,/ N2 1
(@G @)\ _,,p 1)
k>4 M? N2
gluon emission contactterm
(67)

where the contact term has been discussed in Ref. [24] and
K(q,q') is the BFKL kernel of gluon emission. N, in
Eq. (67) denotes the number of colors.

[lustrating the derivation of Eq. (67), we calculate the
diagram with the emission of one gluon in quark-antiquark
scattering, to understand the structure of the BFKL equation
(see Fig. 7). The contribution of this diagram is equal to

agN. -
> / d*qd*q'G*(q)T,(q.4') T, (q.4")G*(¢).
2r

N(Fig.7)=

The gluon emission term can be rewritten in the simple
form

2% | PacdG@6w6(e)

Ngluon emission (Fig' 7) = )

(68)

Collecting all terms, including the gluon reggeization,
which has been discussed in the previous section, and
summing the contributions with M? and M?, we obtain the
BFKL equation in this form:

op(w, q) = —205(q)¢(w, q)

+ag / 2 Glg—q)9p(w.q). (69)

T

3QT is the momentum transferred by the BFKL Pomeron, a
conjugate variable to the impact parameter.

It should be stressed that the contact terms, which are
originated by the Higgs contribution, disappear when we
sum the production of gluons with masses M and M. The
vanishing of the Higgs production terms is a direct conse-
quence of the confinement nature of Gribov’s propagator.

Assuming that ¢(g) depends only on |g|, we can
integrate the emission kernel over the angle and in terms
of the variable of Eq. (61), Eq. (69) takes this form:

EDW) = T(0) - [ &K R)pE). (70

where
L 14 imyg
K(x.) _Re{\/Z(m—f—i)(K—i-K') +<m+i)2+('<—'<'>2}’
(71)
and
G0 = fempsT K=o ()

In Egs. (70)—(72) we introduce m and m,, which are equal
to m?/u? and m3/u?, respectively [see Eq. (61)].

This equation appears to be similar to the BFKL equation
for a massive gluon (see Ref. [24], and Sec. III) in the non-
Abelian Yang-Mills theories with a Higgs particle, which is
responsible for generation of mass. However, we do not
have a contact term in Eq. (69), which stems in such an
approach from the mass of the gluon and from addition
Higgs production. It is instructive to note, that for the
Gribov’s propagator the contact term does not appear, even
if we assume the existence of a Higgs meson, with mass
squared +iu”>. A more general form of the gluon propa-
gator, which is given in Eq. (57) and which we view as a
sum of Gribov’s propagators, also does not generate a
contact term. Therefore, the absence of a contact term in
our equation, is a direct indication that Gribov-Zwanziger
confinement does not lead to a massive gluon.

D. The Pomeron intercept

1. General features of the equation’s spectrum

Following the general pattern of Ref. [24] we can rewrite
Eq. (70) in the form of Egs. (45)—(49) (see Sec. III E 2):

EY¥(r) = HY¥(r), (73)
with
H=T(k)—-G(r), (74)

where /& = —iV,. For large r, G(r) exponentially
decreases [see Eq. (55)]. Hence, at large r Eq. (73) takes
the following form:
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E¥Y(r) =T®&)¥Y(r), (75)

with the eigenfunctions of Eq. (51). Denoting the large

. . . . r>1/u
asymptotic behavior of the eigenfunction as W(r) —

exp (—y/ar), we see that the energy is equal to

E=T(-a). (76)

On the other hand, it is shown in Ref. [24] (see Sec. III D4)
that in the region of small r Eq. (74) reduces to the massless
QCD BFKL equation [3-5]:

E¥(r) = Ho¥(r), (77)

where [5]

Hy = Inp? +1In|r|* = 2y (1). (78)
The eigenfunctions of Eq. (77) are ¥(r) = r>(1=7), and the
eigenvalues of Eq. (77) can be parametrized as a function
of y [see Eq. (24)]. Therefore, for r — 0 we have the
eigenvalue which is equal to

E=x(y).

From Eq. (76) and Eq. (79) we can conclude that the value
of a and y are correlated, since

E=x(y) =T(=a).

Based on Eq. (80) we expect that the minimum eigenvalue
is equal to y(}) =—4In2. For the simplest Gribov’s
propagator of Eq. (52) we see from Fig. 6 that T'(x) > 0
for all values of —oco < Kk < 400 which means that y in
Eq. (80), should be such that y(y) > 0. Consequently, we
infer that Eq. (80) contradicts Eq. (79).

A possible way out of this contradiction could be that
both equations are correct for specific values of y. In Fig. 8
we plot the eigenvalues of the massless BFKL equation for
y :%+ iv. One can see that for v > 0.6 the energy is
positive. Hence, this value of v could correspond to the
Pomeron with the intercept which is equal to zero. The fact
that the so-called soft Pomeron has a small intercept is one
of the reliable results of the high energy phenomenological
attempt to describe the soft data at the LHC.

(79)

(80)

1 /
—~ 0
>
F
g -1
=

-2
0.0 0.2 0.4 0.6 0.8 1.0

"4

FIG. 8. The eigenvalues of the BFKL equation for QCD E =
x(y) versus y =1+ iv. The solid line shows the real part of E,

while the dotted line shows the imaginary part.

However, for m # 0 and m # 0 the kinetic energy could
be negative, and Eq. (80) holds for y = %, leading to the
intercept of the Pomeron which coincides with the intercept
of the massless BFKL Pomeron. In particular, this is the
case for the gluon propagator which describes the lattice
QCD data [see Ref. [40] and Fig. 5(b)].

2. Estimates from the variational method

As we have discussed above, we expect that (1) the
energy of the ground state will be close to zero for m = 0
and my = 0; and (2) it will be the same as for the massless
BFKL equation, for m? # 0 and m3 # 0. In this section we
check this using the variational approach. In this approach,
the upper bound for the ground state energy E, of the
Hamiltonian H may be found by minimizing the functional

(@ (r)[He(r))
(@ (Nlg(r))y

Equation (81) means that the functional F[{¢}] has a
minimum for the function ¢y (r), which is the eigenfunction
of the ground state with energy E,.

For our Hamiltonian in momentum space, Eq. (81) can
be rewritten in the form

Eground = E() < F{{(]ﬁ}] = (81)

Ey, = min{

¢

J6° deT ()| (k) = [5° dr [5° di'K (e, &) p () " (K’)Iz}
J5° axld(x)? '

The success of finding the value of E, depends on the choice of the trial functions in Eq. (82). We choose it in the form

Puiar (k) = (

K 14
) (82)

“In Ref. [24] it is demonstrated that for a rather general form of the wave function, the typical &’ in the integral Jak'K(k, & )p(x') is
k' ~ k for k > 1. Note, that in Eq. 51 of Ref. [24] there is a misprint: # should be replaced by x in the denominator.
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In the coordinate representation Eq. (82) corresponds to

W (1) = 2720 <F

r=1 -1 . 3 .
A L C A RS SERE RS S

')

+32F(1 — ) Py 5. 5 5.8 8 — s atr?)

The form of the trial function was suggested by the form
of Gribov’s propagator. One can see that our trial function
has the expected behavior for the case of m = 0, my = 0, if
a>0and b =2y — 1 > 0, leading to a powerlike decrease
at large r. Such a function cannot be an eigenfunction of
‘H = T(x), indicating possible difficulties with Eq. (80).

In Fig. 9(a) and 9(b) we calculate E,nq from Eq. (81),
for the case of Gribov’s propagator of Eq. (52) (m =0,
mgy = 0). In Appendix B we describe the details of the
numerical estimates.

We obtain the minimal energy corresponds to y = % in
accord with our expectation. However, Egroyng = —41n2
instead of Egronq = 0, in contradiction to our expectations.
Note that the singularities of the trial function corresponds
to k = ia. In Fig. 6(c) we plot the kinetic energy at pure
imaginary «, and we see that T'(ik) can be negative and
equal to —41n2.

For m?> # 0 and mj # 0 we face a different problem: y
turns out to be larger than expected y = %, and the energy
level is far away from the ground state energy £ = —41n2
for the massless BFKL equation [see Fig. 9(c)]. Perhaps,

this result is due to our choice of the trial function not being
satisfactory. We believe that both observations show that
we need to solve Eq. (70) numerically in the same way as it
has been done in Ref. [24]. We intend to do this in the near
future, and we will publish the results elsewhere.

E. The BFKL Kernel in the
coordinate representation

Using Eq. (13), and the decomposition of Eq. (60), we
obtain the gluon propagator of Eq. (57) in the coordinate
representation in this form:

G(r) = % <<1 —mT(z))Ko(r m? — i)
+ <1 +mT%)K0(r\/;1—217i)>. (85)

Note that we now return to using the notation m = M /u

and my = /M3 — M?/p.

——— =055 0.0
-1.8 -20f = i
’ 325 054
- v e y=0.
20 PE-N-1 -1.0
S 2o =, ok
] Wl w -1.5}
-2.4 w
— -2.0
-26 -2.6
. -25
-2.8 -2.8
0.50 0.55 0.60 0.65 0.70 0 20 60 80 0 20 40 60 80 100
Y a a
(@) (b) (©
FIG.9. (a) E = —Pomeron intercept of the BFKL Pomeron versus y at different values of y for @ = 100 and m = 0 and m, = 0. These

values of m and my correspond to the Gribov’s propagator of Eq. (52), which stems from Refs. [29-33]. (b) The same as in (a) but at
fixed values of y as function of a. In (c) we plot the energy as function of a for the case of m = 1.27u% and m, = 3.76u2, which describes
the lattice QCD evaluation of the gluon propagator [40]. The estimates for E were performed in the framework of the variational method
with the trial function ¢;, of Eq. (82) (see Appendix B for details).
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At large r it tends to

] [ (im0
Vm?+i

2\ 2 ¢
:1 T g=rv/m+1cos0 [ o —r\/m2+1sin9+16'
2\ 2r 2
1
— m3sin (—r\/ m? 4 1sin@ +§9) ) . (86)

where

1 1
cosf = —<1—|—L>; sind = —<I—L>.
2 m>+1 2 m>+1

Hence, one can see that the gluon propagator decreases
exponentially at large r, even at m = 0. From Eq. (86) we
can conclude that

N R E: (1 —img)e~Vmir ?
G*(r)— | =4/=Re
2V 2r Vam? + i

x e "2V m>41 cost (87)

From Eq. (57) and ¢ = —iV we conclude that wg(r) is
equal to

w0g(r) = / P Ko(Molr — ) (=V2 + m2) + 1)E(F).

(88)

In Eq. (88) the behavior of wg(r) at large r stems
from the integration in two regions: Mylr—r/| <1 and

r2v/m?* + 1 cos @ < 1. The first region leads to the asymp-
totic behavior of Eq. (88), while the second region gives
w¢(r)xexp(—M,r). Hence for My <2vm?*+1cosOwg(r)
exp(—M,r). Lattice QCD leads to such behavior of @, as it
can be seen from Fig. 6. It should be stressed that the
exponential decrease depends on the value of the gluon
propagatorat g = 0 G(g = 0) o« M3/u*. In other words, the
original Gribov propagator of Eq. (52) does not give the
BFKL kernel which decreases exponentially at large b.
Indeed, at My — O instead of exp (—M,r) decrease, we

have In r behavior from the region v/m? + 17/ < 1. However,
even for my # 0 one can see from Eq. (52), that wg is a
decreasing function with oscillations. These oscillations do
not contradict the unitarity constraints, they also do not
violate the exponential decrease of the scattering amplitude at
large b.

V. NONLINEAR EQUATION AND THE SIZE
OF FROISSART DISC

The eigenfunctions of the master equation [see Eq. (70)]
at short distances are proportional to (2)'~" and, therefore,
for deep inelastic scattering, which occurs at short distances,
the solution has the form of Eq. (32). Hence, repeating the
procedure that has been discussed for Eqgs. (33a)-(34), we
obtain the same equations for the radius of the Froissart disc
[see Egs. (38) and (39)]. The variable { takes the form
{=4(m+ my)b/agY. Actually, as we have discussed in
Sec. IV E, the asymptotic exponential decrease at r > 1/u is
determined by the smaller of the two masses: m + my

and 2+/m? + u?. For the realistic case of m?> = 1.27u>
and m} = 3.76p [40] m + my < 2v/m* + pi°.

The nonlinear equation has the same form as Eq. (1) with
the kernel

2
K, ,r—r.r) —%/er”KO(M0|r—r'—r”|)
X (=, + m2)2 + DE(). (89)

It should be noted that this kernel approaches the kernel of
Eq. (1) at short distances. Generally speaking, at r > 1/u
[see Eq. (52)] we need to take into account the full kernel of
Eq. (89). However, for DIS processes the typical
roc1/Q < 1/u, where Q is the photon virtuality, and
we can safely use the kernel of Eq. (1), even in the
saturation region, where r2Q2(Y,b) > 1. Restricting
ourselves to the DIS process, we wish to consider the
following r

1, I

However, even in this region the general nonlinear
evolution of Eq. (1) is difficult to analyze analytically
for the full BFKL kernel of Eq. (2). This kernel includes the
summation over all twist contributions. We start with a
simplified version of the kernel in which we restrict
ourselves to the leading twist term only [61]. For the
leading twist term we only sum logs terms, and actually
we have two types of logs (&g In (rAgcp))” in the pertur-
bative QCD kinematic region where rQ (Y, b) =7 < 1;
and (agln(rQ,(Y,b)))" inside the saturation domain
(z> 1), where Q,(Y,b) denotes the saturation scale. To
sum these logs it is necessary to modify the BFKL kernel in
different ways in the two kinematic regions, which takes
the form

x(r)=1",

— forz=rQ; > 1 summing(In (rQ,))";

{% for 7 = rQ, < 1 summing(In (1/(rAqcp)))"™:
Iy

o1
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instead of the full expression of Eq. (2). Recall that the
solution has the form of Eq. (32).

Inside the saturation region where 7 = r>Q?(Y,b) > 1,
the logs originate from the decay of a large size dipole into
one small size dipole and one large size dipole. However,
the size of the small dipole is still larger than 1/Q,. This
observation can be translated in the following form of the
kernel:

/K(xm;xoz,xlz)dzxoz
x5 dx? X dlxg; — xo0|?
—>7r/01 —2°2+n/°‘ e = X" °2|2. (92)
1/QX(v.b) Xga 1/02(v.b) [¥o1 — %02

Inside the saturation region Eq. (1) has the form

where N(Y;&,b)= [~ dr>N(Yir',b)/r? = [€dEN(Y,E b).
Rewriting a% in terms of

__dxlrs) GgY + &= AQ)asY + & where
dYsP ySP:Yr:r(é,)
E=1In(r*Q5(Y =Yy b=0)), (94)
we obtain
o 00 AONd__ . d
oy~ ozoy S <’1<C) Cap)a =0 g 03
Introducing
ON(Y:ED) _ | pren) (96)

2

and searching for the solution that depends on z, we can
rewrite Eq. (93) in this form:

dz(}i;(izzgé) _ @ (1= e9C0), (97)

Introducing %(g) = F(¢) we can rewrite Eq. (97) in the
form

VaRg) L,
2 d¢ _K(C)(l ")
F2<¢>>=/ ¢T2C)<1—e-¢>

2

- e? .
(g)( l1+¢+e?+C(Y.b)). (98)

A

Finally,

=z+Const.  (99)

1 Z dg’
\/5%()
2 /¢o \/—1+¢’+e—¢’+c(§)

The equations of Eq. (99) type are discussed in Ref. [69]
(see formula 4.1.1.). ¢ denotes the value of ¢ at { = 0.
From Eq. (99) we see that Const is equal to 0. We need to
find ¢,(z.¢)|,—, for matching with the linear evolution,
which is given by Eqgs. (33a)—(33b). These equations for the
kernel of Eq. (91) can be rewritten in this form:

a
—2Y+E=0, (100a)

cr

%Y - (1 - 7cr)§ = 4(m + ’/”O)b7

}/Cr

(100b)

which leads to the solution for y and the expression for the
saturation momentum:

k() =4~
(101)

1
7cr:2—_éﬂ &=(2-0)l asY=A({)asY,

Therefore, for { > 1, Eq. (100b) does not have a solution
resulting in the scattering amplitude which is smaller than
unity, N(&,Y,b) < 1. Hence, { = 1 gives the radius of the
Froissart disc (Ry) in this case: Ry = agY/(4(m + my).

One can see that for ¢, < 1:

1 op(z.¢)
=1. (102
VRO s =1 0
For linear evolution at z < 0 we have
0¢p(z,
PED _(rde Ba=0-c)=dy (103
< z=0—¢

Hence the matching condition has the following form:

WO 9Ol g,

0z z=0+¢ a 0z z=0—¢
d(z2=0+¢€8)=p(z=0-¢€,{) =¢o; ate— 0.

(104)

Plugging this equation in Eq. (102) we obtain

C) =5 (1 =re)* = 1)

N = N =

¢2<<1+¢1“—7:<1i¢1*—’5>>“ ~9-1).
(105)

The explicit form of the solution at ¢ — ¢, takes this
form:

014020-16



GRIBOV-ZWANZIGER CONFINEMENT, HIGH ENERGY ...

PHYS. REV. D 103, 014020 (2021)

1.0

asY=5, =0
0.8 L asY=5, £=1
- L asY=10, =0
g 0.6 \-=-=-= asY=10, §=-3
- \“
5 0.4 \“
\
0.2 AN ‘\
0.0 Trealne
0 5 10 15 20
4(m+mg)b

FIG. 10. The solution to Eq. (99) with the boundary conditions
given by Eq. (101). ¢, is taken to be 0.01.
Z >
k()

@)

(106)

#.6) = 50 ((1-+ VAT = 7o) exo

(1= /R - mc)))exp(—

For large ¢ the denominator in Eq. (99) takes the form
/&', leading to ¢ = Const exp (—z%/(2x({))), which is
the scattering amplitude in the approach of Ref. [61] for
our simplified BFKL kernel. In Fig. 10 we present the
numerical solution to Eq. (99) which shows that a nonlinear
equation generates the impact parameter dependence which
is typical for the Froissart disc with radius (Rz) propor-
tional to ¥ and |b — R| « 1/(m + my).

VI. CONCLUSIONS

In the paper we derived the generalization of the BFKL
equation in Gribov-Zwanziger approach [29-39] to the
confinement of quarks and gluons. We found the solution to
this modified BFKL equation at large impact parameters.
This solution shows that, generally speaking, this equation
includes a dimensional scale, which provides the expo-
nential decrease of the scattering amplitude at large impact
parameters. Such behavior of the scattering amplitude leads
to the radius of interaction which at high energies increases
as In(1/x) = Y. Solving the nonlinear evolution equation
for deep inelastic scattering we calculated the x and r
dependence of this radius.

However, it turns out that for the Gribov propagator [see
Eq. (52)] of the gluon, which tends to zero at small

momenta (G(q)ﬁqQ /u®), the solution to the modified

BFKL equation does not show an exponential decrease,
leading to the scattering amplitude that decreases as a
power of the impact parameter. Fortunately, for the
general form of the gluon propagator in the Gribov-
Zwanziger approach, in which the gluon propagator is

finite at small momenta (G(q) ﬁ(mz +m3)/(m* + pu*)),

we have indeed an exponential decrease. It should be
emphasized that only such a gluon propagator of this type
can be in accord with the lattice QCD estimates [40].

We discuss the solution to a new equation, and single out
the problem that the behavior of the intercept of the BFKL
Pomeron, estimated in the variational approximation, does
not follow our expectations that we obtain on general
grounds from Eq. (80). Indeed, the general discussion in
the spirit of Ref. [24] leads to a small value of the intercept in
the case of the Gribov gluon propagator, and to the same
intercept as for the massless BFKL Pomeron, in the case that
describes the lattice QCD results [40]. The variation approxi-
mation, developed in the paper, leads to the intercept of the
massless BFKL Pomeron for the Gribov’s gluon propagator
and a sufficiently smaller intercept for the realistic case. We
consider as the next topic for us is to find the numerical
solution for the spectrum of the suggested equation.

In the paper we have investigated the impact parameter
dependence of the solutions to the master equation in the
entire kinematic region of impact parameters without the
additional assumption that the variable { < 1 [see Eq. (34)].

The shortcoming of the paper is that we considered the
simplified form of Eq. (57) of the gluon propagator in RGZ
approach. We consider this form of the gluon propagator as
the first approximation, which allows us to introduce two-
dimensional confinement scales. We intend to take into
account a more complicated form, which follows from the
theoretical consideration [41-57] in the nearest future.

We hope that this paper demonstrates why and how the
suggested modified nonlinear equation resolves the main
difficulty of the CGC approach, powerlike decrease of the
solution at large values of the impact parameter; and
clarifies the physical meaning of the nonperturbative
dimensional scale, which was introduced in addition to
the saturation scale.
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APPENDIX A: X(k)
Using Eq. (60) we can rewrite Eq. (62) in this form:
1
X(x) = 5Re ( / dk'{(1 + myi) G (= )G+ ()

+ (1 +m3)G+(K—K’)G‘(K’)}>. (A1)
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Using Eq. (64) and plugging in this equation m; = m, =
Vm+i=+/m+ 1e@'G) we obtain this:

Iy (m.x) = / dK'G* (k- )G (k')

_ 2 m( VEk+/k+4(m+1i) )
k(k+4(m+i)) \—vk++/k+4(m+i) .
(A2)
For [dk'G™"(k —x')G™ (k) we have
Ly(m,x) = / G (i — 1) G~ () = (A3)

B 1 1n</<+2m—\/4m1<—|—1<2—4)
Vamk +x* -4 K+2m+Vimk+rxr—4 .
(A4)

In Fig. 11 we plot the Rel; and 7, as a function of « at
m? = 1. The singularities of I, are easy to see from the
explicit expression in Eq. (A2): k =0 and « = 4(m + i).
However, the second singularities for the ¥ dependence of
Rel; are not obvious. The possible singularities of 7, stem
from the solution of this equation:

dmk + k> —4 = 0; Ki:2(—mi m2—|—1>. (AS)

However, it is easy to see that, both x, and x_ do not
correspond to the singularity of I, [see Fig. 11(b)].
Plugging Egs. (A2) and (A3) into Eq. (A1) we obtain

5(k) = - Re({(1 4+ moi)21, + (1 - md)1I).

: (46)

where m and m, are defined as in Egs. (70)—(72).

1.0 \
0.5 T

0.0

-0.5
-1.0 \

l>(K)

I,(m,x) (a) and I,(m,«) (b) versus « at m?> = 1.

APPENDIX B: THE NUMERICAL ESTIMATES
IN THE VARIATIONAL APPROACH

As it has been pointed out in Ref. [24]5 in the integrals in
Eq. (82) we have two problems: (i) the very large values of
k and «’ are essential; and (ii) the region of x — «’ is very
sensitive to the numerical calculation procedure. Recall that
this region in the case of massless BFKL equation leads to a
divergency. To heal all these problems we rewrite Egs. (70)
and (82) in the following form:

Ed(x) = =T (x)¢(x)

(B1)

where G (k) is given by Eq. (57). One can see that at &’ — «
the term in curly brackets vanishes, providing the smooth
integration in this dangerous region. For a better control of
the integration at large values of x in Eq. (82) we replace

T(k) = (T(x) —Ink) + Ink. (B2)

The term in parentheses vanishes at large «, leading to a
converged integral at large k, while the integral for the trial
function of Eq. (82) can be taken, leading to the following
expression:

JRCCENE

VadT (L) (@) 7T (r + 1) (27 = 1) log (L) —2)
(1-27)I(y) '

(B3)

All numerical integrations were take replacing x = ¢/ and
K = e’ and [(I') runs from —20 to 250.

>We thank Marat Siddikov for the instructions for obtaining
numerical estimates that he provided us in private communications.
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