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In this paper we derive the high energy evolution equation in the Gribov-Zwanziger approach for the
confinement of quarks and gluons. We demonstrate that the new equation generates an exponential
decrease of the scattering amplitude at large impact parameter and resolves the main difficulties of color
glass condensate high energy effective theory. Such behavior occurs if the gluon propagator in Gribov-
Zwanziger approach does not vanish at small momenta. Solving the nonlinear equation for deep inelastic
scattering, we show that the suggested equation leads to a Froissart disc with radius (RF), which increases
as RF ∝ Y ¼ lnð1=xÞ, and with a finite width for the distribution over jb − RFj.
DOI: 10.1103/PhysRevD.103.014020

I. INTRODUCTION

It is well known that the Balitsky-Kovchegov (BK)
equation [1]
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generates a scattering amplitude which decreases as a power
of b at large impact parameter (see Ref. [2] for review).
In Eq. (1) the kernelKðr0; r − r0; rÞ describes the decay of

the dipole of size r into two dipoles with sizes r0 and
jr − r0j, respectively. It has this form:

Kðr0; r − r0; rÞ ¼ r2

r02ðr − r0Þ2 : ð2Þ

At large b we can neglect the nonlinear term in Eq. (1),
and the linear BFKL ( Balitsky,Fadin, Kuraev and Lipatov)
equation [3,4] determines the large b behavior. It is known
that the eigenfunction of this equation (the scattering
amplitude of two dipoles with sizes r and R) has the
following form [5]

ϕγðr;R;bÞ¼
�

r2R2

ðbþ 1
2
ðr−RÞÞ2ðb− 1

2
ðr−RÞÞ2

�
γ

⟶
b≫r;R

�
r2R2

b4

�
γ

≡eγξ with ξ¼ ln

�
r2R2

b4

�
: ð3Þ

Equation (3) shows the powerlike decrease at large b,
which leads to the violation of the Froissart theorem [6] as it
generates a cross section, which at high energies increases
as a power of energy [7,8]. The solution of this problem
requires introducing a new dimensional scale. A variety of
ideas to overcome this problem have been suggested in
Refs. [8–28]. In this paper we intend to use the Gribov-
Zwanziger approach [29–39] for the confinement of quarks
and gluons. In particular, we will use the Gribov gluon
propagator in a form which describes the recent lattice
QCD estimates [40].
The plan of this paper is as follows. In the next section

we illustrate the problem of the large impact parameter
behavior of the BK equation using as an example the first
iteration of this equation. From this example we can see that
the large impact parameter behavior of the scattering
amplitude stems from the gluon reggeization term of the
BFKL equation in momentum representation, which has a
general form depending only on the expression for the
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gluon propagator. This observation will be essential for our
generalization of the BFKL evolution to the case of the
Gribov-Zwanziger confinement.
In Sec. III we discuss the model: non-Abelian gauge

theories with Higgs mechanism of mass generation, which
has been suggested in Ref. [24]. This model, having the
same color structure as QCD, does not have the confine-
ment of quarks and gluons. We briefly review the energy
evolution in this model, which is discussed in Ref. [24],
since it gives an instructive guide to introducing a new
dimensional scale (Higgs mass) into the evolution equation
at high energies. In Sec. IV, which is the main part of this
paper, we will heavily use both the way the BFKL equation
is derived in this model and what kind of solution we have
for the equation. It should be stressed that this model not
only leads to the exponential decrease of the scattering
amplitude at large b, but it has the same spectrum of
energies as the massless BFKL equation in QCD. In the
original part of this section we investigate the large
impact parameter behavior of the scattering amplitude
in this model and find the restoration of the Froissart
theorem. We also discuss the structure of the scattering
amplitude at high energies. In particular, we find the size of
the Froissart disc and its dependence both on the energy
and on the photon virtuality for deep inelastic scattering
processes.
Section IV is the key chapter of the paper. It contains a

discussion of the modification of the BFKL evolution
equation in accord with the Gribov-Zwanziger approach
to the confinement problem. The advantage of the Gribov-
Zwanziger confinement from the point of view of high
energy evolution is the fact that in this approach we can
introduce the dimensional parameter, which describes the
confinement of quarks and gluons, directly to the propa-
gator of gluon. Using two ingredients: the observation from
Sec. II that the large impact parameter behavior stems from
the gluon reggeization in the momentum representation and
the general expression for the gluon reggeization through
the gluon propagators [3–5], we find the behavior of the
kernel for the BFKL evolution in the case of Gribov-
Zwanziger confinement. We show that this mechanism of
confinement introduces a new dimensional parameter, and
it leads to the exponential decrease of the scattering
amplitude at large b, but only if the gluon propagator does
not vanish at zero momentum.
We are aware that the behavior of the gluon propagator in

the infra red region (at small momenta) in the Gribov-
Zwanziger (GZ) or refined Gribov-Zwanziger (RGZ)
approach, as well as generally in nonperturbative QCD,
is a subject of intensive discussions (see Refs. [41–57]). As
far as we understood, the fact that the gluon propagator
(GðqÞ) is not equal to zero at small momenta, does not
contradict and even follows from nonperturbative QCD
estimates. However, in our estimates we use the simple
form of Ref. [40], which we consider as a good first

approximation to introduce the dimensional scale in RGZ
keeping GðqÞ ≠ 0 at q → 0.
Using the approach, which we have discussed in Sec. III,

we derive the modified BFKL equation for the energy
evolution of the scattering amplitude in the momentum
representation and discuss the main features of the solution.
Finally, we suggest the evolution equation in the coordinate
representation and show that the new equation satisfies the
Froissart theorem.
In Sec. V we discuss the nonlinear equation with a

generalized kernel, which we have derived in the previous
section, and show that this equation generates the Froissart-
type behavior of the scattering amplitude with a radius
which increases as Y ¼ lnð1=xÞ. Finally, in Sec. VI we
discuss our results and future prospects.

II. ITERATIONS OF BK EQUATION

We start illustrating the problem of large b behavior with
the first iteration of Eq. (1). At large b, we can neglect the
nonlinear term and concentrate our efforts on the solution
of the linear BFKL [3,4] equation. The general initial
condition Nð0Þ generates the Green’s function in the impact
parameter representation, which has the following form:

Nð0Þ ¼ r2δð2ÞðbÞ: ð4Þ

Plugging this initial condition in Eq. (1), one can see that
we obtain the first iteration in the form:

Nð1Þðr; b; YÞ ¼ ᾱSY

�
1

π

r2

ð2bÞ2 − ln r2Nð0Þðr; bÞ
�
; ð5Þ

where ln r2 ¼ R d2r0
2π Kðr0; r − r0; rÞ [see Eq. (1)].

Therefore, one can see that the initial conditions, which
have a sharp decrease in b, generate the powerlike
dependence of the solution to the BFKL equation. The
next iteration leads to

Nð2Þðr; b; YÞ ¼ 1

2
ðᾱSYÞ2

Z
d2r02

r2

ðr − r0Þ2
1

ð2bÞ2

⟶
b≫r0≫r 1

2
ðᾱSYÞ2

Z
b2

r2

dr02

r02
r2

b2
: ð6Þ

Therefore, the powerlike decrease of the first iteration
persists in the next ones, since in the following iterations
the typical r0 turns out to be much smaller than b.
It is instructive to recall that the powerlike decrease,

which comes from the integration over r0 in Eq. (5),
corresponds to the gluon reggeization term in the momen-
tum representation. Indeed, using that the scattering ampli-
tude in the momentum representation can be determined
from the following equation (see Ref. [2]):
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NðY; b; rÞ ¼ r2
Z

d2rd2beir·qþib·QTNðY; q;QTÞ: ð7Þ

We obtain that in the momentum representation the BFKL equation takes the form [3,4]:

∂NðY; q;QTÞ
∂Y ¼ ᾱS

�Z
d2q0

2π
Kemðq − q0;QTÞNðY; q0; QTÞ − Kregðq − q0;QTÞNðY; q;QTÞ

�
;

¼ ᾱS

Z
d2q0

2π
Kemðq − q0;QTÞNðY; q0; QTÞ − ωGðq0Þ − ωGðQT − q0Þ;

¼ ᾱS

Z
d2q0

2π
Kðq − q0;QTÞNðY; q0; QTÞ; ð8Þ

where ᾱS ¼ ðNc=πÞαS. The kernel Kem describes the emission of a gluon, while kernel Kreg is responsible for the
reggeization of gluons in t channel. They have these forms:

Kemðq − q0;QTÞ ¼
1

2

1

ðq − q0Þ2
�
−

Q2
Tðq − q0Þ2

ðQT − q0Þ2q02 þ 1þ ðQT − qÞ2q02
ðQT − q0Þ2q2

�
⟶
QT¼0 1

ðq − q0Þ2 ;

Kregðq − q0;QTÞ ¼
1

2

1

ðq − q0Þ2
�

q2

ðq − q0Þ2 þ q02
þ ðQT − qÞ2
ðq − q0Þ2 þ ðQT − q0Þ2

�
⟶
QT¼0 1

ðq − q0Þ2
q2

ðq − q0Þ2 þ q02
; ð9Þ

Kðq − q0;QTÞ is equal to

Kðq − q0;QTÞNðY; q0; QTÞ
¼ Kemðq − q0;QTÞNðY; q0; QTÞ
− Kregðq − q0;QTÞNðY; q;QTÞ: ð10Þ

One can see from Eq. (7) that the reggeization term in
Eq. (8) stems from the emission contribution to Eq. (1).
The gluon trajectory ωGðqÞ is equal to

ωGðqÞ ¼ ᾱS

Z
d2q0

4π

q2

q02ðq − q0Þ2

¼ ᾱSG−1ðqÞ
Z

d2q0

4π
Gðq − q0ÞGðq0Þ; ð11Þ

where GðqÞ is the gluon propagator.
The reggeization term of Eq. (8) leads to the powerlike

behavior at a large impact parameter. Therefore, we need to
understand what type of nonperturbative corrections
could change this reggeization kernel to provide the
exponential decrease of the scattering amplitude at large
impact parameters.

III. THE MODEL: NON-ABELIAN GAUGE
THEORIES WITH THE HIGGS MECHANISM

FOR MASS GENERATION

A. BFKL equation

In this section we wish to answer this question: what is
the large impact parameter behavior in the non-Abelian

Yang-Mills theories with a Higgs boson? In these theories,
we introduce the nonperturbative scale as the mass of the
Higgs, and we would like to see how this dimensional scale
manifests itself in the large b behavior of the scattering
amplitude. It was shown by Fadin, Lipatov and Kuraev [3],
that the high energy amplitude satisfies the BFKL equation
(see Fig. 1) which has been written for color SUðNcÞ (Nc is
the number of colors) with the Higgs mechanism of mass
generation, in Ref. [24].
It has the form of Eq. (8), with the kernels that have the

following forms:

Kemðq − q0;QTÞ ¼
1

ðq − q0Þ2 þm2

×

�
q21 þm2

q02 þm2
þ ðQT − qÞ2 þm2

ðQT − q0Þ2 þm2

�

−
q2 þ N2

cþ1

N2
c
m2

ðq02 þm2ÞððQT − qÞ2 þm2Þ ; ð12aÞ

ωGðqÞ ¼
Z

d2q0

4π

ðq2 þm2Þ
ðq02 þm2Þððq − q0Þ2 þm2Þ

¼ 1

2

q2 þm2

jqj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
þ jqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 4m2
p

− jqj
: ð12bÞ

As one can see from Eq. (12b), ωGðqÞ has singularities
at q2 ¼ −4m2, which will generate the exponential
decrease of the scattering amplitude at large b. As we
have mentioned, the reggeization terms in coordinate
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representation generate the first term in Eq. (1). Using
formulas 8.411(1), 8.411(7) and 6.532(4) of Ref. [58]) we
obtainZ

d2q0

2π

eir·q
0

q02 þm2
¼
Z þ∞

−∞

q0dq0J0ðrq0Þ
q02 þm2

¼ K0ðrmÞ; ð13Þ

where J0ðzÞ and K0ðzÞ are the Bessel functions of the first
and second kinds, respectively (see Ref. [58]). Bearing
Eq. (13) in mind, one can see that coordinate image of the
gluon trajectory can be written as follows:

ωGðrÞ ¼
1

2
ð−∇2 þm2ÞK2

0ðrmÞ

¼ −
1

2
m2ð2K2

1ðmrÞ þ K2
0ðmrÞÞ ð14aÞ

⟶
m→0

−
1

r2
; ð14bÞ

⟶
r→0 −

1

r2
þ 1

2
m2

�
2 −

�
Cþ ln

�
mr
2

��
2
�
; ð14cÞ

⟶
r→∞

e−2mr

�
−
3mπ

4r
−

5π

16r2

�
; ð14dÞ

where K1ðzÞ is the Bessel functions of the second kind and
C is the Euler constant.
The emission term of BFKL equation in coordinate

representation [see Eq. (7) and the first two terms in Eq. (1)]
have the following form:

∂
∂Y Nðr;b; YÞ

¼ −ᾱS
Z

d2r0

2π
ωGðr− r0ÞN

�
r0;b−

1

2
ðr− r0Þ; Y

�
: ð15Þ

We need to add the contribution of Kemðq − q0;QTÞ in
the coordinate representation, which leads to the term

proportional to Nðr; b; YÞ. Finally, the BFKL equation in
the coordinate representation has this form:

∂
∂Y Nðr; b; YÞ

¼ −ᾱS
Z

d2r0

2π
ωGðr − r0Þ

×

�
N

�
r0; b −

1

2
ðr − r0Þ; Y

�
−
1

2
Nðr; b; YÞ

�
: ð16Þ

B. First iterations

Using the initial conditions of Eq. (4), one can see that
the first iteration of Eq. (15) leads to the following
expression for large b:

Nð1Þðr;b;YÞ¼−ᾱSY
1

π

Z
d2r0ωGðr−r0ÞNð0Þ

�
r0;b−

1

2
ðr−r0Þ

�
;

¼−ᾱSY
1

π
ωGð2bÞ4b2¼6ᾱSYmbe−4mb: ð17Þ

The second iteration gives

Nð2Þðr;b;YÞ¼−ᾱSY
1

π

Z
d2r0ωGðr−r0ÞNð1Þ

�
r0;b−

1

2
ðr−r0Þ

�

⟶
b→1

2
ðr−r0Þ

−
1

2
ðᾱSYÞ2

1

π
ωGð2bÞ4b2

þ⟶jr−r
0j≈1=m 1

2
ðᾱSYÞ2

1

π
ωGðjr−r0jÞ6ᾱSYmbe−4mb|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Nð1Þðr;b≫r;YÞ

:

ð18Þ

Hence, the modified BFKL equation leads to the
exponential decrease of the scattering amplitude Nðr; b; YÞ
at large b (mb ≫ 1).

C. Solution at a large impact parameter

We solve Eq. (16) at large b, assuming that the amplitude
N has this form:

gluon Higgs
q

q’

reggeized gluon

(b)(a)

Q  − qT

Q  − q’T

FIG. 1. The massive BFKL equation (a) and its kernel (b)

E. GOTSMAN and E. LEVIN PHYS. REV. D 103, 014020 (2021)

014020-4



Nðr; b; YÞ ¼ Ñðr; YÞBðbÞ: ð19Þ

We have seen that first two iterations reproduce this form,
as well as the eigenfunction of the BFKL equation [see
Eq. (3)]. From our experience with the first iteration, we
infer that there are two regions of integration that contribute
to the asymptotic behavior at large b∶ jb − 1

2
ðr − r0Þj → 0

and jr − r0j ∝ 1=m.
Plugging Eq. (19) into Eq. (16) we obtain the following

equation:

∂Ñðr; YÞ
ᾱS∂Y BðbÞ

¼ −ωGð2bÞ
Z

d2r0

2π
Nðr0; b ¼ 0; YÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jb−1
2
ðr−r0Þj→0

−
Z

d2r0

2π
ωGðr − r0Þ

n
Ñðr0; YÞ − 1

2
Ñðr; YÞ

o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jr−r0j∝1=m

BðbÞ: ð20Þ

First, we need to solve the homogeneous equation:

∂Ñðr; YÞ
ᾱS∂Y ¼ −

Z
d2r0

2π
ωGðr − r0Þ

�
Ñðr0; YÞ − 1

2
Ñðr; YÞ

�
:

ð21Þ

In ω representation,

Ñðr; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωYñðω; rÞ; ð22Þ

this equation has this form:

ωñðω; rÞ ¼ −
Z

d2r0

2π
ωGðr − r0Þ

�
ñðω; r0Þ − 1

2
ñðω; rÞ

�
:

ð23Þ

This equation has been solved in Ref. [24]. The main
features of the solution can be summarized as follows:

(i) The eigenvalues of Eq. (23) are the same as for the
BFKL equation with m ¼ 0 for ωðγÞ ≥ − 1

2
ᾱS and

can be parametrized in the following way:

ωðγÞ ¼ ᾱSχðγÞ ¼ ᾱSð2ψð1Þ − ψðγÞ − ψð1 − γÞÞ

⟶
γ→1

2
ω0 þD

�
γ −

1

2

�
2

þO
��

γ −
1

2

�
3
�

¼ ᾱS4 ln 2þ ᾱS14ζð3Þ
�
γ −

1

2

�
2

þO
��

γ −
1

2

�
3
�
; ð24Þ

where ψðzÞ is the Euler psi function (see formula
8.36 in Ref. [58]).

(ii) The eigenfunctions ϕγða; rÞ have the following
behavior:

ϕγða; rÞ →
�
r → ∞ ∝ e−ajrj

r → 0 ∝ r−2þ2γ
: ð25Þ

(iii) In the momentum representation for γ → 1
2

the
eigenfunctions ϕðγ; a; rÞ can be written as

ϕγðq;mÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
þ

ffiffiffiffiffi
q2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
−

ffiffiffiffiffi
q2

p �γ−1
2

:

ð26Þ

(iv) Equation (26) means that the maximal intercepts
ωðγÞ reaches the value 4 ln 2ᾱS at γ ¼ 1

2
, as for

massless BFKL, and a ¼ 2m.
Expanding ñðω; rÞ in a series of the eigenfunctions
ϕγða; rÞ: viz.

ñðω; rÞ ¼
Z

ϵþi∞

ϵ−i∞

dγ
2πi

ϕγða; rÞninðγÞ; ð27Þ

where ninðγÞ is determined by the initial conditions, we
obtain the solution to Eq. (23) in this form:

Ñðr; YÞ ¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωY

×
Z

ϵþi∞

ϵ−i∞

dγ
2πi

ϕγða; rÞ
1

ω − ωðγÞ ninðγÞ; ð28Þ

where ωðγÞ is given by Eq. (24).
The general solution for the inhomogeneous equation

[see Eq. (20)] has the form

Nðr; b;YÞ ¼ −ᾱSωGð2bÞ
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωY

×
Z

ϵþi∞

ϵ−i∞

dγ
2πi

ϕγða; rÞ
1

ðω − ωðγÞÞ2 n
0
inðγÞ

þ Ñðr; YÞBðbÞ: ð29Þ

In Eq. (29), we used that N ðr0; b ¼ 0; YÞ is equal to

Nðr;b¼0;YÞ

¼
Z

ϵþi∞

ϵ−i∞

dω
2πi

eωY
Z

ϵþi∞

ϵ−i∞

dγ
2πi

ϕγða;rÞ
1

ω−ωðγÞn
0
inðγÞ; ð30Þ

where n0inðγÞ is determined by the initial condition:
Nðr; b ¼ 0; Y ¼ 0Þ ¼ N ðrÞ.
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The last term in Eq. (30) is the solution to the
homogeneous equation, in which the function BðbÞ is
given by the initial condition.
Equation (29) leads to a scattering amplitude that

decreases as e−4mb. Certainly such behavior at large b,
restores the Froissart theorem.

D. The size of the Froissart disc

In the color glass condensate (CGC) approach, the
scattering amplitude reaches the black disc limit
Nðr; b;YÞ → 1 in the kinematic region: r2Q2

sðY; bÞ ≥ 1.
Hence, we can find the size of the Froissart disc R from this
equation:

r2Q2
sðY; RÞ ¼ 1: ð31Þ

It is well known [2, 59–63], that we do not need to know
the exact structure of the nonlinear corrections to find the

saturation scale. We only need to solve the linear BFKL
equation and determine the line on which the scattering
amplitude is constant.
The saturation momentumQs increases with energy and,

therefore, small r ∼ 1=Qs ≤ 1=m contribute to Eq. (31). In
this kinematic region we can use the eigenfunction
ϕγða; rÞ ∝ r−2þ2γ and Eq. (29) takes the form

Nðr; b;YÞ

¼ e−4m;bY
Z

ϵþi∞

ϵ−i∞

dω
2πi

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eωðγÞYþðγ−1Þξn0inðγÞ

≡ Y
Z

ϵþi∞

ϵ−i∞

dω
2πi

Z
ϵþi∞

ϵ−i∞

dγ
2πi

eΨðY;ξ;b;γÞn0inðγÞ; ð32Þ

with ξ ¼ ln ðr2Λ2
QCDÞ.

Using the method of steepest descent we can find the
value of γcr from the following two equations:

Equation for saddle point γSP∶
∂ΨðY; ξ; b; γÞ

∂γ ¼ 0;
dωðγSPÞ

dγ
Y þ ξ ¼ 0; ð33aÞ

Equation for constant amplitude∶ ΨðY; ξ; b; γÞ;¼ 0; ωðγSPÞY þ ðγSP − 1Þξ − 4mb ¼ 0; ð33bÞ

Solving Eqs. (33a) and (33b) we obtain an equation for
γSP ¼ γcr, which has the form:

χðγcrÞ þ ð1 − γcrÞ
dχðγcrÞ
dγ

¼ ζ where ζ ¼ 4mb
ᾱSY

: ð34Þ

The solution to Eq. (34) is shown in Fig. 2(a). One can see
that the value of γcr depends on the value of ζ.

From Eq. (33a) we can calculate ξs, which is equal to

ξs ¼ ln ðQ2
sðY; ζÞ=Q2

sðY ¼ 0; ζ ¼ 0ÞÞ

¼ −
dχðγSPÞ

dγ

����
γSP¼γcrðζÞ

ᾱSY: ð35Þ

In Fig. 2(b) we plot the value ξs=ᾱSY as a function of ζ. For
ζ > 2.8, the saturation momentum starts to decrease as
function of Y. In the vicinity of the saturation scale the
scattering amplitude has the following form [63]:
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0.7
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0 1 2 3 4 5
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2

4

(a) (b)

FIG. 2. (a) γcr versus ζ from Eq. (34). The red line corresponds to γcr ¼ 0.37, which is the solution of Eq. (34) at b ¼ 0. (b) ξs=ᾱSY
versus ζ, where ξs ¼ ln ðQ2

sðY; ζÞ=Q2
sðY ¼ 0; ζ ¼ 0ÞÞ. The red line shows ξs=ᾱSY at ζ ¼ 0.
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Nðr; b;YÞ ¼ N0ðr2Q2
sðY; ζÞÞ1−γcrðζÞ; ð36Þ

where N0 is a constant smaller than 1.
The radius of the Froissart disc (R) can be found from

this condition:

Nðr; R;YÞ ¼ f; ð37Þ

where f is a constant (f < 1). Introducing a new variable
z ¼ ln ðr2Q2

sðY; ζÞÞ, Eq. (38) can be rewritten as

ð1− γcrðζRÞÞz¼ ð1− γcrÞðξþ ξsÞ

¼ ð1− γcrÞ
�
ξ−

dχðγSPÞ
dγ

����
γSP¼γcrðζRÞ;ζ¼ζR

ᾱSY

�
¼ f̃; ð38Þ

where f̃ ¼ lnð f
N0
Þ. We rewrite Eq. (38) as follows:

η−
dχðγSPÞ

dγ

����
γSP¼γcrðζRÞ;ζ¼ζR

¼ f̃
ᾱSY

⟶
ᾱSY≫1

0; η¼ ξ

ᾱSY
: ð39Þ

In Fig. 3 we plot the solution to Eq. (39) as a function of
η, while in Fig. 3(b) we see the dependence of the radius of
the Froissart disc on Y. Note that the radius increases as
ConstY, but the value of Const depends on ξðηÞ.

E. Discussion

Hence, we can conclude that in non-Abelian gauge
theories with the Higgs mechanism for mass generation,
in the CGC approach, we obtain a Froissart disc with the
radius R ∝ Y, with a coefficient of proportionality, which
depends on the size of colliding dipole.

1. Restoration of the Froissart theorem

It is easy to demonstrate the restoration of the Froissart
theorem [6] for this approach. Using the unitarity con-
straints that Nðr; b;YÞ ≤ 1, we can find the bound for the
total cross section (see for example Appendix 2.2 of
Ref. [2]):

σtot ¼ 2

Z
Nðr; b;YÞd2b

< 2

Z
b0
d2b|fflfflfflfflfflffl{zfflfflfflfflfflffl}

unitarity constraints

þ
Z
b0

d2bNðr; b;YÞ: ð40Þ

We estimate the value of b0, using the following equation:

Nðr; b0;YÞ ¼ f < 1: ð41Þ

Plugging in Eq. (41) the solution of the BFKL equation in
the form: Ñðr;YÞ exp ð−4mbÞ [see Eq. (29)] we obtain

Ñðr;YÞe−4mb0 ¼ N0ðr2QsðYÞÞ1−γcr|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
vicinity of the saturation momentum

e−4mb0

¼ f < 1; ð42Þ

where γcr ≈ 0.37 is the solution to Eqs. (33a) and (33b) at
m ¼ 0. From Eq. (42) one can see that

b0 ¼
1

4m

�
ð1 − γcrÞz − ln

f
N0

�
; ð43Þ

where z ¼ ln ðr2QsðYÞÞ ¼ ξ − ᾱS
dχðγÞ
dγ jγ¼γcr

Y. The depend-
ence of the radius of the Froissart disc given by Eq. (43), is
shown in Fig. 3(b) by red lines. One can see that, in spite of
the same proportionality to Y, the value of the coefficients
are quite different.
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FIG. 3. (a) ζR versus η from Eq. (39). (b) The radius of the Froissart disc versus Y at different values of η. The red lines show the
estimates from Eq. (43) for the radius of the Froissart disc. The value of ᾱS is taken ᾱS ¼ 0.2.
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Plugging Eq. (43) into Eq. (40) one can see that

σtot ≤ 2πb20 ¼ 2π

�
1

4m

�
1

1 − γcr
z − ln

f
N0

��
2

ð44Þ

For ξ ¼ 0 Eq. (44) gives σtot ≤ 2πðᾱSχðγcrYÞ2 and,
therefore, leads to the Froissart theorem.

2. More about eigenfunctions—a recap

To learn more about the behavior of the eigenfunction at
large distances we follow Ref. [24] and consider the BFKL
equation [see Eqs. (12a) and (12b)] at QT ¼ 0. It has the
form:

EϕðκÞ ¼ κ þ 1ffiffiffi
κ

p ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p þ ffiffiffi
κ

pffiffiffiffiffiffiffiffiffiffiffi
κ þ 4

p
−

ffiffiffi
κ

p ϕðκÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kinetic energy term

−
Z

∞

0

dκ0ϕðκ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ − κ0Þ2 þ 2ðκ þ κ0Þ þ 1

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
potential energy term

þ N2
c þ 1

2N2
c

1

κ þ 1

Z
∞

0

ϕðκ0Þdκ0
κ0 þ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contact term

: ð45Þ

In Eq. (45) we introduce the following notations:

κ ¼ q2

m2
; κ0 ¼ q02

m2
; E¼ −

ω

ᾱS
; ᾱS ¼

αSNc

π
: ð46Þ

Rewriting Eq. (45) in the coordinate representation, we can
see that it takes this form:

EϕðrÞ ¼ HϕðrÞ ð47Þ

with

H¼ κ2 þ 1

jκj
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4

p
þ jκjffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ 4
p

− jκj − 2K0ðjrjmÞ þN2
c þ 1

2N2
c

P̂

¼ Tðκ̂Þ þVðrÞ þN2
c þ 1

2N2
c

P̂; ð48Þ

where P̂ is a shorthand notation for the projector onto the
state ∼m2=ðp2 þm2Þ

P̂ϕðκÞ ¼ 1

κ2 þ 1

Z
d2κ0

π

ϕðκ0Þ
κ02 þ 1

; ð49Þ

where κ̂ ¼ −i∇⊥.
At large distances (r → ∞) the potential energy in

the Hamiltonian ðVðrÞ ¼ −2K0ðrmÞÞ is exponentially
small, the contribution from the projector P̂ in Eq. (47)
is proportional to 1=ðκ2 þ 1Þ and is also exponentially

suppressed, so the only relevant term in the Hamiltonian is
the kinetic energy

Eðκ̂Þ ¼ Tðκ̂Þ ¼ κ̂2 þ 1

jκ̂j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̂2 þ 4

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ̂2 þ 4

p
þ jκ̂jffiffiffiffiffiffiffiffiffiffiffiffiffi

κ̂2 þ 4
p

− jκ̂j ; ð50Þ

for which the eigenfunctions have a form

ϕðrÞ∼ei
ffiffiffiffi
κ2

p
r; κ2> 0; ϕðrÞ∼e−

ffiffiffiffiffiffi
−κ2

p
r; κ2< 0: ð51Þ

The point κ ¼ 0 is special, since it separates two different
behaviors at large r. This point corresponds to the energy
E ¼ 1

2
or ω ¼ ω0 ≡ − 1

2
ᾱS (see Fig. 4). As is shown in

Ref. [24], there are qualitative changes in the shape of the
wave functions near this point. From the structure of the
kinetic energy term (50) we can see that the energy E is
positive (ω < 0) for κ2 > 0; however for −4 < κ2 < 0, the
energy may have any value from −∞ up to 1

2
. This means

that for κ2 < 0 we have a discrete spectrum with two
conditions shown in Eq. (25). Hence, the exponential
decrease of the eigenfunction is intimately related to the
behavior of the reggeization term in the BFKL equation,
and it stems from the region, where ωðqÞ is positive.
The large b dependence is determined by the singular-

ities of this term which in turn, corresponds to the
singularities of the gluon propagator. In this model it is
a pole at the Higgs mass. Actually, the scattering amplitude

at large b Nðr; b;YÞ→rm≫1
exp ð−4mbÞ, where q2 ¼ −4m2 is

the singularity of the gluon reggeization in the momentum
space [see Eq. (12b)]. Hence, our next step will be to
understand the singularities of the gluon propagator in
QCD. Certainly, they have a nonperturbative origin, and we
have to rely on a nonperturbative approach, which is in an
embryonic stage at the moment. The only reliable infor-
mation comes from lattice QCD [64], which wewill discuss
in the next section.

4 2 0 2 4 6 8 10

1

0
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2

2

T
(

2
)

FIG. 4. The dependence of the kinetic energy [see Eq. (50)]
versus κ2. The red line corresponds to Tðκ ¼ 0Þ.
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IV. GRIBOV-ZWANZIGER CONFINEMENT
AND THE BFKL EQUATION

Among numerous approaches to confinement, the one
proposed by Gribov [29–39], has special advantages, which
makes it most suitable for discussion of the BFKL equation
in the framework of this hypotheses. First, it is based on the
existence of Gribov copies [29]—multiple solutions of the
gauge-fixing conditions, which are the principle properties
of nonperturbative QCD. Second, the main ingredient is the
modified gluon propagator, which can be easily included in
the BFKL-type of equations. Third, in Ref. [26] (see also
Ref. [65]) it is demonstrated that the Gribov gluon
propagator originates naturally from the topological struc-
ture of nonperturbative QCD in this form:

GðqÞ ¼ 1

q2 þ χtop
q2

¼ q2

q4 þ μ4
¼ 1

2

�
1

q2 þ iμ2
þ 1

q2 − iμ2

�
;

ð52Þ
where χtop ¼ μ4 is the topological susceptibility of QCD,
which is related to the η0 mass by the Witten-Veneziano
relation [66,67]. This allows us to obtain the principal
nonperturbative dimensional scale, directly from the exper-
imental data.

A. The gluon propagator

As we have discussed above, to find the large impact
parameter behavior, we need to know the gluon reggeiza-
tion contribution in coordinate space. However, before
calculating it, we evaluate the behavior of the gluon
propagator. As we can see from Fig. 1, the gluon reggeiza-
tion term comes from the exchange of gluons at high
energy. It is known (see Ref. [2]) that t-channel gluons in
the BFKL equation depend only on transverse momenta of
the gluons. Hence, we need to calculate the following
integral in coordinate space:

GðrÞ ¼
Z

d2qT
ð2πÞ2 e

ir·qTGðqTÞ: ð53Þ

Plugging in Eq. (53) to Eq. (52) we obtain

GðrÞ ¼
Z

d2qT
ð2πÞ2 e

ir·qT
q2T

q4T þ μ2
¼ 1

4
G3;0

0;4

�
r4μ4

256

���� 0; 0; 12 ; 12
�
;

ð54Þ

where G3;0
0;4 is the Meijer’s G function (see formula 9.3

given in Ref. [58]).

GðrÞ →
8<
:

r → ∞ ∝ e−
μrffiffi
2

p
cos
	

μrffiffi
2

p π
8



r → 0 ∝ − ln

	
μrffiffi
2

p


− C

; ð55Þ

where C denotes the Euler constant.

Hence, we see that at large values of r the gluon
propagator decreases exponentially, giving us hope that
Gribov’s confinement will lead to a scattering amplitude,
which will be exponentially small at long distances.

B. The gluon trajectory

The general expression for the gluon trajectory has the
following form [3,5,24]:

ωGðqÞ ¼ G−1ðqÞΣðqÞ; where

ΣðqÞ ¼
Z

d2q0

4π
Gðq0ÞGðq − q0Þ: ð56Þ

Before making estimates with the gluon propagator
of Eq. (52), we need to mention that the lattice calculation
of the gluon propagator leads to Gð0Þ ≠ 0 (see
Refs. [40,44,49] and references therein) in explicit contra-
diction to Eq. (12b). However, in Refs. [41–57]1 it is proven
that Gribov’s copies generate the gluon propagator in a
more general form with Gð0Þ ≠ 0.
In Refs. [45,50,52,53] it is argued that in the Gribov-

Zwanziger picture the gluon can be written in the simple
form

GðqÞ ¼ q2 þM2
0

ðq2 þM2Þ2 þ μ4
ð57Þ

by taking into account certain condensates. We are aware
that this equation is a simplified approach,2 but we believe
that it is a good approximation to start with, which
introduces two nonperturbative dimensional scales.
We consider this form as a parametrization of the sum of

Gribov’s propagators of Eq. (52), with different values of μ.
In particular, in Ref. [68] it was demonstrated that the
approach suggested in Ref. [26] leads to a gluon propagator
of the following form:

GðqÞ¼ 1ffiffiffi
π

p 1

q2

Z
∞

0

dζe−ζ
ζ−

1
2

1þζz

¼
ffiffiffi
π

p
μ2

e1=zErfc

�
1ffiffiffi
z

p
�
→

�
q2≫ μ2 ∝ 1=q2;

q2≪ μ2 ∝
ffiffiffi
π

p
=μ2;

ð58Þ

where z ¼ μ4

q4.

As we have mentioned, at high energies q is a two-
dimensional vector, which corresponds to transverse
momentum carried by the gluon. Introducing

1This list of references is not complete; you can find more
details in the reviews [38,41].

2We wish to note that in our approach we do not need to
consider the running QCD coupling as well as the renormaliza-
tion procedure that is caused by this coupling [3,5].
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G�ðqÞ ¼ 1

ðq2 þM2Þ � iμ2
; ð59Þ

we can rewrite Eq. (57) in this form:

GðqÞ ¼ 1

2
ðGþðqÞ þ G−ðqÞÞ þM2

0 −M2

2μ2i
ðGþðqÞ −G−ðqÞÞ ¼ 1

μ2
ðReGþðκÞ þ ðM2

0 −M2ÞImGþðκÞÞ

¼ 1

2

��
1þ i

M2
0 −M2

μ2

�
GþðqÞ þ

�
1 − i

M2
0 −M2

μ2

�
G−ðqÞ

�
¼ 1

2
fð1þ im0ÞGþðκÞ þ ð1 − im0ÞG−ðκÞg; ð60Þ

where we use notation similar to Eq. (46):

κ ¼ q2

μ2
; κ0 ¼ q02

μ2
; E ¼ −

ω

ᾱS
; ᾱS ¼

αSNc

π
; m ¼ M2

μ2
; m0 ¼

M2
0 −M2

μ2
; ð61Þ

Plugging Eq. (60) into Eq. (56) one can see that

ΣðκÞ ¼
Z

d2κ0

4π

X
j¼�;l¼�

ajlGjðκ0ÞGlðκ − κ0Þ; ð62Þ

where the coefficient ajl can be easily calculated from the decomposition of Eq. (60). Each term of Eq. (62) can be rewritten
in the form

Σ1;2ðκÞ ¼
Z

d2κ0

4π
G1ðκ0ÞG2ðκ − κ0Þ ¼

Z
d2κ0

4π

1

ðκ02 þm2
1Þððκ − κ0Þ2 þm2

2Þ
;

¼ 1

2

Z
1

0

dα
Z

dκ02

ððκ0 − ακÞ2 þ καð1 − αÞ þm2
1 − ðm2

2 −m2
1ÞαÞ2

¼ 1

2

Z
1

0

dα
1

καð1 − αÞ þm2
1 − ðm2

2 −m2
1Þα

; ð63Þ

where we have introduced the Feyman parameter α and m2
1 ¼ m� i and m2

2 ¼ m� i.
Integrating over α we obtain

Σ1;2 ¼
1

Δ

�
ln

�
−κ þm2

2 −m2
1 þ Δ

κ þm2
2 −m2

1 þ Δ

�
− ln

�
κ −m2

2 þm2
1 þ Δ

−κ −m2
2 þm2

1 þ Δ

��
; ð64Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðκ þ ðm1 −m2Þ2Þðκ þ ðm1 þm2Þ2Þ

p
and κ is defined in Eq. (46).

Cumbersome but simple calculations lead from Eq. (64)
to the expression for the gluon trajectory TðκÞ ¼ 2ωGðκÞ
(see Appendix A). Figure 5(a) shows the resulting TðκÞ as
function of κ for different values of m and m0.
At first sight, the behavior of the kinetic energy (see

Fig. 5) for the BFKL with Gribov’s confinement is not that
different from the case that we have described in Sec. III.
Indeed, T is negative for negative κ [see Fig. 5(a)], and, due
to this, we expect we have a bound state as in the case of the
model, discussed in Sec. III. As in the model of Sec. III for
negative κ, we expect the eigenfunction, which is small at
large r (Ψ ∝ exp ð− ffiffiffiffiffijκjp

rÞ). Hence, we expect that the
scattering amplitude will decrease at large b. For example,
we see such a situation in Fig. 5(b), where the kinetic
energy is plotted for the gluon propagator, which is in

agreement with lattice QCD data [40]. However, the actual
setup is more interesting: for the propagator of Eq. (52), the
kinetic energy is positive for all values of κ (see Fig. 6).
In Appendix A, we discuss the κ dependence of ωG in

more detail.

C. The BFKL equation in momentum representation

In the previous section we found ωGðqÞ, now we are
going to find the kernel which is responsible for gluon
emission. Using the decomposition of Eq. (52) for the
Gribov propagator, we can treat the production of the gluon
as the sum of two sets of the diagrams (see Fig. 7):
production of the gluon with mass M̃2 ¼ iμ2 and with
mass M̃2 ¼ −iμ2.
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We sum the first diagrams of the gluon emission shown in
Fig. 7 to find the vertex Γμðq; q0Þ for the kernel of the BFKL
equation [see Fig. 1(b)]. It is easy to see that the sumshown in
Fig. 7, leads to the Lipatov vertex for the production of the
gluon with mass M2, that has the following form [3,5,24]

Γμðq; q0Þ ¼ −q⊥μ − q0⊥μ þ p1;μ

�
−G−1ðqÞ 1

p1 · k
þ p2 · k
p1 · p2

�

− p2;μ

�
−G−1ðq0Þ 1

p2 · k
þ p1 · k
p1 · p2

�
: ð65Þ
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FIG. 5. (a) TðκÞ versus κ at different values of m and m0. (b) The same as (a) but for m0 ¼ 5.03, m ¼ 1.27 and μ2 ¼ 0.459 GeV2,
which corresponds to the description of recent calculations in lattice QCD ([40], section II. 1). In (c) the kinetic energy TðiκÞ is plotted.
The red line corresponds to TðκÞ ¼ −ΔBFKL ¼ −4 ln 2, where ΔBFKL is the intercept of the BFKL Pomeron for QCD.

(a) (b)

FIG. 6. ωGðκÞ versus κ for the Gribov propagator of Eq. (52). The red line corresponds to TðκÞ ¼ −ΔBFKL ¼ −4 ln 2, where ΔBFKL is
the intercept of the BFKL Pomeron for QCD: (a) TðκÞ, (b) TðiκÞ.
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FIG. 7. The first Feynman diagrams with gluon emission, whose sum leads to Γνðq; q0Þ (Lipatov vertex is denoted by the gray blob).
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The gluon production vertex for the gluon with the same
mass in the conjugated amplitude can be written as follows

Γ̃μðq1;q01Þ¼−q⊥1;μ−q0⊥1;μþp1;μ

�
−G−1ðq1Þ

1

p1 ·k
þ p2 ·k
p1 ·p2

�

−p2;μ

�
−G−1ðq01Þ

1

p2 ·k
þ p1 ·k
p1 ·p2

�
: ð66Þ

Equations (65) and (66) allow us to calculate the
contribution of the gluon production [see the first diagram
in Fig. 1(b)] to the BFKL kernel. The procedure for taking
into account the production of the Higgs boson is discussed
in Ref. [24]. This contribution leads the contact term and
we will see below that two contact terms for productions of
the gluon with masses M and M̃ cancels.
The BFKL kernel for one given configuration of the

masses (say, M̃2 ¼ þiμ2) at QT ¼ 0
3 (for forward scatter-

ing q ¼ q1, q0 ¼ q01) is given by

ðG−1ðq0ÞÞ2Kðq;q0Þ¼Γμðq;q0Þ · Γ̃μðq;q0Þ

¼4

�
G−1ðqÞG−1ðq0Þ

k2þM̃2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gluonemission

−2M2

�
N2þ1

N2
c

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

contact term

;

ð67Þ
where the contact term has been discussed in Ref. [24] and
Kðq; q0Þ is the BFKL kernel of gluon emission. Nc in
Eq. (67) denotes the number of colors.
Illustrating the derivation of Eq. (67), we calculate the

diagram with the emission of one gluon in quark-antiquark
scattering, to understand the structure of the BFKL equation
(see Fig. 7). The contribution of this diagram is equal to

NðFig:7Þ¼αSNc

2π2

Z
d2qd2q0G2ðqÞΓμðq;q0Þ · Γ̃μðq;q0ÞG2ðq0Þ:

The gluon emission term can be rewritten in the simple
form

Ngluon emissionðFig: 7Þ ¼
αSNc

2π2

Z
d2qd2q0GðqÞGðkÞGðq0Þ

ð68Þ
Collecting all terms, including the gluon reggeization,

which has been discussed in the previous section, and
summing the contributions with M2 and M̃2, we obtain the
BFKL equation in this form:

ωϕðω; qÞ ¼ −2ωGðqÞϕðω; qÞ

þ ᾱS

Z
d2q0

π
Gðq − q0Þϕðω; q0Þ: ð69Þ

It should be stressed that the contact terms, which are
originated by the Higgs contribution, disappear when we
sum the production of gluons with masses M and M̃. The
vanishing of the Higgs production terms is a direct conse-
quence of the confinement nature of Gribov’s propagator.
Assuming that ϕðqÞ depends only on jqj, we can

integrate the emission kernel over the angle and in terms
of the variable of Eq. (61), Eq. (69) takes this form:

EϕðκÞ ¼ TðκÞ −
Z

dκ0Kðκ; κ0Þϕðκ0Þ; ð70Þ

where

Kðκ;κ0Þ ¼Re

�
1þ im0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðmþ iÞðκþ κ0Þþ ðmþ iÞ2þðκ− κ0Þ2
p �

;

ð71Þ
and

GðκÞ ¼ κ þmþm0

ðκ þmÞ2 þ 1
; κ ¼ q2=μ2: ð72Þ

In Eqs. (70)–(72) we introduce m and m0, which are equal
to m2=μ2 and m2

0=μ
2, respectively [see Eq. (61)].

This equation appears to be similar to the BFKL equation
for a massive gluon (see Ref. [24], and Sec. III) in the non-
Abelian Yang-Mills theories with a Higgs particle, which is
responsible for generation of mass. However, we do not
have a contact term in Eq. (69), which stems in such an
approach from the mass of the gluon and from addition
Higgs production. It is instructive to note, that for the
Gribov’s propagator the contact term does not appear, even
if we assume the existence of a Higgs meson, with mass
squared �iμ2. A more general form of the gluon propa-
gator, which is given in Eq. (57) and which we view as a
sum of Gribov’s propagators, also does not generate a
contact term. Therefore, the absence of a contact term in
our equation, is a direct indication that Gribov-Zwanziger
confinement does not lead to a massive gluon.

D. The Pomeron intercept

1. General features of the equation’s spectrum

Following the general pattern of Ref. [24] we can rewrite
Eq. (70) in the form of Eqs. (45)–(49) (see Sec. III E 2):

EΨðrÞ ¼ HΨðrÞ; ð73Þ
with

H ¼ Tðκ̂Þ −GðrÞ; ð74Þ
where

ffiffiffî
κ

p ¼ −i∇⊥. For large r, GðrÞ exponentially
decreases [see Eq. (55)]. Hence, at large r Eq. (73) takes
the following form:

3QT is the momentum transferred by the BFKL Pomeron, a
conjugate variable to the impact parameter.
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EΨðrÞ ¼ Tðκ̂ÞΨðrÞ; ð75Þ
with the eigenfunctions of Eq. (51). Denoting the large

asymptotic behavior of the eigenfunction as ΨðrÞ→r≫1=μ

exp ð− ffiffiffi
a

p
rÞ, we see that the energy is equal to

E ¼ Tð−aÞ: ð76Þ
On the other hand, it is shown in Ref. [24] (see Sec. III D4)
that in the region of small r Eq. (74) reduces to the massless
QCD BFKL equation [3–5]:

EΨðrÞ ¼ H0ΨðrÞ; ð77Þ
where [5]

H0 ¼ lnp2 þ ln jrj2 − 2ψð1Þ: ð78Þ
The eigenfunctions of Eq. (77) are ΨðrÞ ¼ r2ð1−γÞ, and the
eigenvalues of Eq. (77) can be parametrized as a function
of γ [see Eq. (24)]. Therefore, for r → 0 we have the
eigenvalue which is equal to

E ¼ χðγÞ: ð79Þ
From Eq. (76) and Eq. (79) we can conclude that the value
of a and γ are correlated, since

E ¼ χðγÞ ¼ Tð−aÞ: ð80Þ
Based on Eq. (80) we expect that the minimum eigenvalue
is equal to χð1

2
Þ ¼ −4 ln 2. For the simplest Gribov’s

propagator of Eq. (52) we see from Fig. 6 that TðκÞ > 0
for all values of −∞ < κ < þ∞ which means that γ in
Eq. (80), should be such that χðγÞ > 0. Consequently, we
infer that Eq. (80) contradicts Eq. (79).
A possible way out of this contradiction could be that

both equations are correct for specific values of γ. In Fig. 8
we plot the eigenvalues of the massless BFKL equation for
γ ¼ 1

2
þ iν. One can see that for ν ≥ 0.6 the energy is

positive. Hence, this value of ν could correspond to the
Pomeron with the intercept which is equal to zero. The fact
that the so-called soft Pomeron has a small intercept is one
of the reliable results of the high energy phenomenological
attempt to describe the soft data at the LHC.

However, form ≠ 0 andm0 ≠ 0 the kinetic energy could
be negative, and Eq. (80) holds for γ ¼ 1

2
, leading to the

intercept of the Pomeron which coincides with the intercept
of the massless BFKL Pomeron. In particular, this is the
case for the gluon propagator which describes the lattice
QCD data [see Ref. [40] and Fig. 5(b)].

2. Estimates from the variational method

As we have discussed above, we expect that (1) the
energy of the ground state will be close to zero for m ¼ 0
and m0 ¼ 0; and (2) it will be the same as for the massless
BFKL equation, for m2 ≠ 0 and m2

0 ≠ 0. In this section we
check this using the variational approach. In this approach,
the upper bound for the ground state energy E0 of the
HamiltonianHmay be found by minimizing the functional

Eground ≡ E0 ≤ F½fϕg� ¼ hϕ�ðrÞjHjϕðrÞi
hϕ�ðrÞjϕðrÞi : ð81Þ

Equation (81) means that the functional F½fϕg� has a
minimum for the function ϕ0ðrÞ, which is the eigenfunction
of the ground state with energy E0.
For our Hamiltonian in momentum space, Eq. (81) can

be rewritten in the form

E0 ¼ min
ϕ

�R∞
0 dκTðκÞjϕðκÞj2 − R∞0 dκ

R∞
0 dκ0Kðκ; κ0ÞϕðκÞϕ�ðκ0Þj2R∞

0 dκjϕðκÞj2
�
:

The success of finding the value of E0 depends on the choice of the trial functions in Eq. (82). We choose it in the form

ϕtrialðκÞ ¼
�

κ

κ2 þ a2

�
γ

: ð82Þ

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

FIG. 8. The eigenvalues of the BFKL equation for QCD E ¼
χðγÞ versus γ ¼ 1

2
þ iν. The solid line shows the real part of E,

while the dotted line shows the imaginary part.

4In Ref. [24] it is demonstrated that for a rather general form of the wave function, the typical κ0 in the integral
R
dκ0Kðκ; κ0Þϕðκ0Þ is

κ0 ≈ κ for κ ≫ 1. Note, that in Eq. 51 of Ref. [24] there is a misprint: β should be replaced by x in the denominator.
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In the coordinate representation Eq. (82) corresponds to

ΨtrialðrÞ ¼ 2−2ðγþ2Þ
�
1

a4

�
−γ
ða4Þ−γ

� ffiffiffi
π

p
2γþ3ð 1a4Þ

γ−1
2 Γðγ−1

2
Þ1F4ðγ2 þ 1

2
; 1
2
; 1
2
; 1; 3

2
− γ

2
;− 1

256
a4r4Þ

Γðγ
2
Þ

þ 32Γð1 − γÞr2γ−21F4ðγ; γ2 þ 1
2
; γ
2
þ 1

2
; γ
2
; γ
2
;− 1

256
a4r4Þ

ΓðγÞ

−
ffiffiffi
π

p
2γγr2ð 1a4Þ

γ
2
−1Γðγ

2
− 1Þ1F4ðγ2 þ 1; 1; 3

2
; 3
2
; 2 − γ

2
;− 1

256
a4r4Þ

Γðγþ1
2
Þ

�
ð83Þ

→

�
r → ∞ ∝ r−2ðγþ1Þ

r → 0 ∝ r−2þ2γ
: ð84Þ

The form of the trial function was suggested by the form
of Gribov’s propagator. One can see that our trial function
has the expected behavior for the case ofm ¼ 0,m0 ¼ 0, if
a > 0 and b ¼ 2γ − 1 > 0, leading to a powerlike decrease
at large r. Such a function cannot be an eigenfunction of
H ¼ TðκÞ, indicating possible difficulties with Eq. (80).
In Fig. 9(a) and 9(b) we calculate Eground from Eq. (81),

for the case of Gribov’s propagator of Eq. (52) (m ¼ 0,
m0 ¼ 0). In Appendix B we describe the details of the
numerical estimates.
We obtain the minimal energy corresponds to γ ¼ 1

2
in

accord with our expectation. However, Eground → −4 ln 2
instead of Eground ¼ 0, in contradiction to our expectations.
Note that the singularities of the trial function corresponds
to κ ¼ ia. In Fig. 6(c) we plot the kinetic energy at pure
imaginary κ, and we see that TðiκÞ can be negative and
equal to −4 ln 2.
For m2 ≠ 0 and m2

0 ≠ 0 we face a different problem: γ
turns out to be larger than expected γ ¼ 1

2
, and the energy

level is far away from the ground state energy E ¼ −4 ln 2
for the massless BFKL equation [see Fig. 9(c)]. Perhaps,

this result is due to our choice of the trial function not being
satisfactory. We believe that both observations show that
we need to solve Eq. (70) numerically in the same way as it
has been done in Ref. [24]. We intend to do this in the near
future, and we will publish the results elsewhere.

E. The BFKL kernel in the
coordinate representation

Using Eq. (13), and the decomposition of Eq. (60), we
obtain the gluon propagator of Eq. (57) in the coordinate
representation in this form:

GðrÞ ¼ 1

2

��
1 −

m2
0

i

�
K0

	
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − i

p 

þ
�
1þm2

0

i

�
K0

	
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ i

p 
�
: ð85Þ

Note that we now return to using the notation m ¼ M=μ
and m0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 −M2
p

=μ.
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a
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(a) (b) (c)

FIG. 9. (a) E≡ −Pomeron intercept of the BFKL Pomeron versus γ at different values of γ for a ¼ 100 andm ¼ 0 andm0 ¼ 0. These
values of m and m0 correspond to the Gribov’s propagator of Eq. (52), which stems from Refs. [29–33]. (b) The same as in (a) but at
fixed values of γ as function of a. In (c) we plot the energy as function of a for the case ofm ¼ 1.27μ2 andm0 ¼ 3.76μ2, which describes
the lattice QCD evaluation of the gluon propagator [40]. The estimates for E were performed in the framework of the variational method
with the trial function ϕtrial of Eq. (82) (see Appendix B for details).
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At large r it tends to

GðrÞ⟶μr≫11

2

ffiffiffiffiffi
π

2r

r
Re

�ð1− im2
0Þe−r

ffiffiffiffiffiffiffiffi
m2þi

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ i4

p
�

¼ 1

2

ffiffiffiffiffi
π

2r

r
e−r

ffiffiffiffiffiffiffiffiffi
m2þ1

p
cosθ

�
cos

�
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ 1

p
sinθþ 1

2
θ

�

−m2
0 sin

�
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
sinθþ 1

2
θ

��
; ð86Þ

where

cosθ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ mffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þ1
p

�s
; sinθ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1−

mffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ1

p
�s
:

Hence, one can see that the gluon propagator decreases
exponentially at large r, even at m ¼ 0. From Eq. (86) we
can conclude that

ΣðrÞ ¼ G2ðrÞ⟶μr≫1

 
1

2

ffiffiffiffiffi
π

2r

r
Re

 
ð1 − im2

0Þe−
ffiffiffiffiffiffiffiffi
m2þi

p
rffiffiffi

4
p

m2 þ i

!!
2

∝ e−r2
ffiffiffiffiffiffiffiffiffi
m2þ1

p
cos θ: ð87Þ

From Eq. (57) and q ¼ −i∇ we conclude that ωGðrÞ is
equal to

ωGðrÞ ¼
Z

d2r0K0ðM0jr − r0jÞðð−∇2
r0 þm2Þ2 þ 1ÞΣðr0Þ:

ð88Þ

In Eq. (88) the behavior of ωGðrÞ at large r stems
from the integration in two regions: M0jr − r0j ≤ 1 and
r02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
cos θ ≤ 1. The first region leads to the asymp-

totic behavior of Eq. (88), while the second region gives
ωGðrÞ∝expð−M0rÞ. Hence forM0<2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ1

p
cosθωGðrÞ∝

expð−M0rÞ. Lattice QCD leads to such behavior of ωg, as it
can be seen from Fig. 6. It should be stressed that the
exponential decrease depends on the value of the gluon
propagator at q ¼ 0Gðq ¼ 0Þ ∝ M2

0=μ
4. In other words, the

original Gribov propagator of Eq. (52) does not give the
BFKL kernel which decreases exponentially at large b.
Indeed, at M0 → 0 instead of exp ð−M0rÞ decrease, we
have ln r behavior from the region

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p
r0 ≤ 1.However,

even for m0 ≠ 0 one can see from Eq. (52), that ωG is a
decreasing function with oscillations. These oscillations do
not contradict the unitarity constraints, they also do not
violate the exponential decrease of the scattering amplitude at
large b.

V. NONLINEAR EQUATION AND THE SIZE
OF FROISSART DISC

The eigenfunctions of the master equation [see Eq. (70)]
at short distances are proportional to ðr2Þ1−γ and, therefore,
for deep inelastic scattering, which occurs at short distances,
the solution has the form of Eq. (32). Hence, repeating the
procedure that has been discussed for Eqs. (33a)–(34), we
obtain the same equations for the radius of the Froissart disc
[see Eqs. (38) and (39)]. The variable ζ takes the form
ζ ¼ 4ðmþm0Þb=ᾱSY. Actually, as we have discussed in
Sec. IV E, the asymptotic exponential decrease at r ≥ 1=μ is
determined by the smaller of the two masses: mþm0

and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ μ2

p
. For the realistic case of m2 ¼ 1.27μ2

and m2
0 ¼ 3.76μ [40] mþm0 < 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ μ2

p
.

The nonlinear equation has the same form as Eq. (1) with
the kernel

Kðr0; r − r0; rÞ ¼ r2

r02

Z
d2r00K0ðM0jr − r0 − r00jÞ

× ðð−∇2
r00 þm2Þ2 þ 1ÞΣðr00Þ: ð89Þ

It should be noted that this kernel approaches the kernel of
Eq. (1) at short distances. Generally speaking, at r ≥ 1=μ
[see Eq. (52)] we need to take into account the full kernel of
Eq. (89). However, for DIS processes the typical
r ∝ 1=Q ≪ 1=μ, where Q is the photon virtuality, and
we can safely use the kernel of Eq. (1), even in the
saturation region, where r2Q2

sðY; bÞ > 1. Restricting
ourselves to the DIS process, we wish to consider the
following r

1

μ2
> r2 >

1

Q2
sðY; bÞ

: ð90Þ

However, even in this region the general nonlinear
evolution of Eq. (1) is difficult to analyze analytically
for the full BFKL kernel of Eq. (2). This kernel includes the
summation over all twist contributions. We start with a
simplified version of the kernel in which we restrict
ourselves to the leading twist term only [61]. For the
leading twist term we only sum logs terms, and actually
we have two types of logs ðᾱS ln ðrΛQCDÞÞn in the pertur-
bative QCD kinematic region where rQsðY; bÞ≡ τ ≪ 1;
and ðᾱS ln ðrQsðY; bÞÞÞn inside the saturation domain
(τ ≫ 1), where QsðY; bÞ denotes the saturation scale. To
sum these logs it is necessary to modify the BFKL kernel in
different ways in the two kinematic regions, which takes
the form

χðγÞ ¼
(

1
γ for τ ¼ rQs < 1 summingðln ð1=ðrΛQCDÞÞÞn;
1

1−γ for τ ¼ rQs > 1 summingðln ðrQsÞÞn;
ð91Þ
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instead of the full expression of Eq. (2). Recall that the
solution has the form of Eq. (32).
Inside the saturation region where τ ¼ r2Q2

sðY; bÞ > 1,
the logs originate from the decay of a large size dipole into
one small size dipole and one large size dipole. However,
the size of the small dipole is still larger than 1=Qs. This
observation can be translated in the following form of the
kernel:Z

Kðx01; x02; x12Þd2x02

→ π

Z
x2
01

1=Q2
sðY;bÞ

dx202
x202

þ π

Z
x2
01

1=Q2
sðY;bÞ

djx01 − x02j2
jx01 − x02j2

: ð92Þ

Inside the saturation region Eq. (1) has the form

∂2ÑðY; ξ; bÞ
∂Y∂ξ ¼ ᾱS

��
1 −

∂ÑðY; r; bÞ
∂ξ

�
ÑðY; ξ; bÞ

�
; ð93Þ

where ÑðY;ξ;bÞ¼R r2dr02NðY;r0;bÞ=r02¼R ξdξ0NðY;ξ0;bÞ.
Rewriting ∂

∂Y in terms of

z ¼ −
dχðγSPÞ
dγSP

����
γSP¼γcrðζÞ

ᾱSY þ ξ ¼ λðζÞᾱSY þ ξ; where

ξ ¼ ln ðr2Q2
sðY ¼ Y0; b ¼ 0ÞÞ; ð94Þ

we obtain

∂
∂Y¼ ∂

∂z
∂z
∂Y ¼ ᾱS

�
λðζÞ−ζ

dλðζÞ
dζ

�
d
dz

≡ ᾱSκðζÞ
d
dz

: ð95Þ

Introducing

∂ÑðY; ξ; bÞ
∂ξ ¼ 1 − e−ϕðY;ξ;bÞ ð96Þ

and searching for the solution that depends on z, we can
rewrite Eq. (93) in this form:

d2ϕðz; ζÞ
dz2

¼ 1

κðζÞ ð1 − e−ϕðz;ζÞÞ: ð97Þ

Introducing dϕðζÞ
dζ ¼ FðϕÞ we can rewrite Eq. (97) in the

form

1

2

dF2ðϕÞ
dϕ

¼ 1

κðζÞ ð1 − e−ϕÞ;

F2ðϕÞ ¼
Z

dϕ
2

κðζÞ ð1 − e−ϕÞ

¼ 2

κðζÞ ð−1þ ϕþ e−ϕ þ CðY; bÞÞ: ð98Þ

Finally,

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2
κðζÞ

r Z
ϕ

ϕ0

dϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þϕ0 þe−ϕ

0 þCðζÞ
q ¼ zþConst: ð99Þ

The equations of Eq. (99) type are discussed in Ref. [69]
(see formula 4.1.1.). ϕ0 denotes the value of ϕ at ζ ¼ 0.
From Eq. (99) we see that Const is equal to 0. We need to
find ϕzðz; ζÞjz¼0 for matching with the linear evolution,
which is given by Eqs. (33a)–(33b). These equations for the
kernel of Eq. (91) can be rewritten in this form:

−
ᾱS
γ2cr

Y þ ξ ¼ 0; ð100aÞ

ᾱS
γcr

Y − ð1 − γcrÞξ ¼ 4ðmþm0Þb; ð100bÞ

which leads to the solution for γ and the expression for the
saturation momentum:

γcr¼
1

2−ζ
; ξs¼ð2−ζÞ2ᾱSY≡λðζÞᾱSY; κðζÞ¼ 4−ζ2:

ð101Þ

Therefore, for ζ > 1, Eq. (100b) does not have a solution
resulting in the scattering amplitude which is smaller than
unity, Nðξ0; Y; bÞ < 1. Hence, ζ ¼ 1 gives the radius of the
Froissart disc (RF) in this case: RF ¼ ᾱSY=ð4ðmþm0Þ.
One can see that for ϕ0 < 1:

ffiffiffiffiffiffiffiffiffi
κðζÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 þ 2CðζÞ

p ∂ϕðz; ζÞ
∂z

����
z¼0þϵ

¼ 1: ð102Þ

For linear evolution at z < 0 we have

∂ϕðz;ζÞ
∂z

����
z¼0−ϵ

¼ð1−γcrÞϕ0; ϕðz¼0−ϵ;ζÞ¼ϕ0: ð103Þ

Hence the matching condition has the following form:

∂ϕðz;ζÞ
∂z

����
z¼0þϵ

¼ ∂ϕðz;ζÞ
∂z

����
z¼0−ϵ

¼ ð1− γcrÞϕ0;

ϕðz¼ 0þ ϵ;ζÞ ¼ ϕðz¼ 0− ϵ;ζÞ ¼ ϕ0; at ϵ→ 0: ð104Þ

Plugging this equation in Eq. (102) we obtain

CðζÞ ¼ 1

2
ϕ2
0ðκðζÞð1 − γcrÞ2 − 1Þ

¼ 1

2
ϕ2
0

��
1þ ζffiffiffiffiffiffiffiffiffiffiffi

1 − ζ
p ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1 − ζ
p Þ

�
ð1 − ζÞ − 1

�
:

ð105Þ

The explicit form of the solution at ϕ → ϕ0 takes this
form:
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ϕðz; ζÞ ¼ 1

2
ϕ0

�
ð1þ

ffiffiffiffiffiffiffiffiffi
κðζÞ

p
ð1 − γcrðζÞÞÞ exp

�
zffiffiffiffiffiffiffiffiffi
κðζÞp �

þ ð1 −
ffiffiffiffiffiffiffiffiffi
κðζÞ

p
ð1 − γcrðζÞÞÞ exp

�
−

zffiffiffiffiffiffiffiffiffi
κðζÞp ��

:

ð106Þ

For large ϕ the denominator in Eq. (99) takes the formffiffiffiffiffi
ϕ0p
, leading to ϕ ¼ Const exp ð−z2=ð2κðζÞÞÞ, which is

the scattering amplitude in the approach of Ref. [61] for
our simplified BFKL kernel. In Fig. 10 we present the
numerical solution to Eq. (99) which shows that a nonlinear
equation generates the impact parameter dependence which
is typical for the Froissart disc with radius (RF) propor-
tional to Y and jb − Rj ∝ 1=ðmþm0Þ.

VI. CONCLUSIONS

In the paper we derived the generalization of the BFKL
equation in Gribov-Zwanziger approach [29–39] to the
confinement of quarks and gluons. We found the solution to
this modified BFKL equation at large impact parameters.
This solution shows that, generally speaking, this equation
includes a dimensional scale, which provides the expo-
nential decrease of the scattering amplitude at large impact
parameters. Such behavior of the scattering amplitude leads
to the radius of interaction which at high energies increases
as lnð1=xÞ ¼ Y. Solving the nonlinear evolution equation
for deep inelastic scattering we calculated the x and r
dependence of this radius.
However, it turns out that for the Gribov propagator [see

Eq. (52)] of the gluon, which tends to zero at small

momenta (GðqÞ→q≪μ
q2=μ4), the solution to the modified

BFKL equation does not show an exponential decrease,
leading to the scattering amplitude that decreases as a
power of the impact parameter. Fortunately, for the
general form of the gluon propagator in the Gribov-
Zwanziger approach, in which the gluon propagator is

finite at small momenta (GðqÞ→q≪μ ðm2 þm2
0Þ=ðm4 þ μ4Þ),

we have indeed an exponential decrease. It should be
emphasized that only such a gluon propagator of this type
can be in accord with the lattice QCD estimates [40].
We discuss the solution to a new equation, and single out

the problem that the behavior of the intercept of the BFKL
Pomeron, estimated in the variational approximation, does
not follow our expectations that we obtain on general
grounds from Eq. (80). Indeed, the general discussion in
the spirit of Ref. [24] leads to a small value of the intercept in
the case of the Gribov gluon propagator, and to the same
intercept as for the massless BFKL Pomeron, in the case that
describes the lattice QCD results [40]. The variation approxi-
mation, developed in the paper, leads to the intercept of the
massless BFKL Pomeron for the Gribov’s gluon propagator
and a sufficiently smaller intercept for the realistic case. We
consider as the next topic for us is to find the numerical
solution for the spectrum of the suggested equation.
In the paper we have investigated the impact parameter

dependence of the solutions to the master equation in the
entire kinematic region of impact parameters without the
additional assumption that the variable ζ ≪ 1 [see Eq. (34)].
The shortcoming of the paper is that we considered the

simplified form of Eq. (57) of the gluon propagator in RGZ
approach. We consider this form of the gluon propagator as
the first approximation, which allows us to introduce two-
dimensional confinement scales. We intend to take into
account a more complicated form, which follows from the
theoretical consideration [41–57] in the nearest future.
We hope that this paper demonstrates why and how the

suggested modified nonlinear equation resolves the main
difficulty of the CGC approach, powerlike decrease of the
solution at large values of the impact parameter; and
clarifies the physical meaning of the nonperturbative
dimensional scale, which was introduced in addition to
the saturation scale.
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APPENDIX A: ΣðκÞ
Using Eq. (60) we can rewrite Eq. (62) in this form:

ΣðκÞ ¼ 1

2
Re

�Z
dκ0fð1þm0iÞ2Gþðκ − κ0ÞGþðκ0Þ

þ ð1þm2
0ÞGþðκ − κ0ÞG−ðκ0Þg

�
: ðA1Þ
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FIG. 10. The solution to Eq. (99) with the boundary conditions
given by Eq. (101). ϕ0 is taken to be 0.01.
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Using Eq. (64) and plugging in this equation m1 ¼ m2 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
mþ i

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
e
1
2
itan−1ð1mÞ we obtain this:

I1ðm;κÞ¼
Z

dκ0Gþðκ−κ0ÞGþðκ0Þ

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κðκþ4ðmþ iÞÞp ln

� ffiffiffi
κ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κþ4ðmþ iÞp

−
ffiffiffi
κ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κþ4ðmþ iÞp �

:

ðA2Þ

For
R
dκ0Gþðκ − κ0ÞG−ðκ0Þ we have

I2ðm; κÞ ¼
Z

dκ0Gþðκ − κ0ÞG−ðκ0Þ ¼ ðA3Þ

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mκþ κ2− 4
p ln

�
κþ 2m−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mκþ κ2 − 4

p

κþ 2mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mκþ κ2− 4

p
�
:

ðA4Þ

In Fig. 11 we plot the ReI1 and I2 as a function of κ at
m2 ¼ 1. The singularities of I1 are easy to see from the
explicit expression in Eq. (A2): κ ¼ 0 and κ ¼ 4ðmþ iÞ.
However, the second singularities for the κ dependence of
ReI1 are not obvious. The possible singularities of I2 stem
from the solution of this equation:

4mκ þ κ2 − 4 ¼ 0; κ� ¼ 2
	
−m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 1

p 

: ðA5Þ

However, it is easy to see that, both κþ and κ− do not
correspond to the singularity of I2 [see Fig. 11(b)].
Plugging Eqs. (A2) and (A3) into Eq. (A1) we obtain

ΣðκÞ¼ 1

4
Reðfð1þm0iÞ2I1þð1þm2

0ÞI2Þ; ðA6Þ

where m and m0 are defined as in Eqs. (70)–(72).

APPENDIX B: THE NUMERICAL ESTIMATES
IN THE VARIATIONAL APPROACH

As it has been pointed out in Ref. [24]5 in the integrals in
Eq. (82) we have two problems: (i) the very large values of
κ and κ0 are essential; and (ii) the region of κ → κ0 is very
sensitive to the numerical calculation procedure. Recall that
this region in the case of massless BFKL equation leads to a
divergency. To heal all these problems we rewrite Eqs. (70)
and (82) in the following form:

EϕðκÞ ¼ −TðκÞϕðκÞ

− ᾱS

Z
dκ0Kðκ; κ0Þ

�
ϕðκ0Þ − Gðκ0Þ

GðκÞ ϕðκÞ
�
;

ðB1Þ
where GðκÞ is given by Eq. (57). One can see that at κ0 → κ
the term in curly brackets vanishes, providing the smooth
integration in this dangerous region. For a better control of
the integration at large values of κ in Eq. (82) we replace

TðκÞ → ðTðκÞ − ln κÞ þ ln κ: ðB2Þ
The term in parentheses vanishes at large κ, leading to a
converged integral at large κ, while the integral for the trial
function of Eq. (82) can be taken, leading to the following
expression:Z

dκðln κÞϕ2
trialðκÞ

¼ −
ffiffiffi
π

p
4−γð 1a2Þ

1
2
−γða2Þ1−2γΓðγþ 1

2
Þðð2γ − 1Þ logð 1a2Þ− 2Þ

ð1− 2γÞ2ΓðγÞ :

ðB3Þ
All numerical integrations were take replacing κ ¼ el and
κ0 ¼ el

0
and lðl0Þ runs from −20 to 250.
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FIG. 11. I1ðm; κÞ (a) and I2ðm; κÞ (b) versus κ at m2 ¼ 1.

5We thank Marat Siddikov for the instructions for obtaining
numerical estimates that he provided us in private communications.
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