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We discuss the operator product expansion (OPE) and quark-hadron duality for two-point Green
functions of tetraquark currents. We emphasize that the factorizable part of the OPE series for such Green
functions, including nonperturbative contributions described by QCD condensates, is saturated by the full
system of ordinary hadrons and therefore cannot have any relationship to the possible tetraquark bound
states. Possible tetraquark bound states may be contained in nonfactorizable parts of these Green functions.
In the framework of the 1=Nc expansion in QCDðNcÞ, nonfactorizable parts of the two-point Green
functions of tetraquark currents provide Nc-suppressed contributions compared to the Nc-leading
factorizable parts. A possible exotic tetraquark state may appear only in Nc-subleading contributions
to the QCD Green functions, in full accord with the well-known rigorous properties of large-Nc QCD.
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I. INTRODUCTION

The correlation functions of two local colorless currents
are the simplest gauge-invariant Green functions that have a
unique decomposition in terms of the physical hadron
states. These correlation functions are defined as vacuum
expectation values of the time-ordered products of two
local gauge-invariant quark currents taken at different
locations:

Πðp2Þ ¼ i
Z

d4x eipxh0jTfjðxÞj†ð0Þgj0i: ð1:1Þ

We shall discuss and compare two cases: j being a local
bilinear quark current and j being a tetraquark current. The
Dirac structure of the currents will be of no relevance for
our arguments and will not be specified; we therefore do
not explicitly write the appropriate combinations of Dirac
matrices between the quark fields. The Wilson operator
product expansion (OPE) [1] provides the following
expansion for the T-product:

TfjðxÞj†ð0Þg¼C0ðx2;μÞ1̂þ
X
n

Cnðx2;μÞ∶Ônðx¼ 0;μÞ∶;

ð1:2Þ

where μ is a renormalization scale. The two-point function
(for those cases where only light quarks are involved) is
then expanded in the form

Πðp2Þ ¼ Πpertðp2; μÞ þ
X
n

Cn

ðp2Þn h0j∶Ônðx ¼ 0; μÞ∶j0i:

ð1:3Þ

The QCD vacuum is nonperturbative, and its properties are
characterized by the condensates—nonzero vacuum expect-
ation values of gauge-invariant operators, depending, in
general, on the renormalization scaleμ, h0j∶Ôð0; μÞ∶j0i ≠ 0
[2–5]. Hereafter, we denote h0j…j0i≡ h…i. In the OPE
context, perturbative diagrams describe the contribution of
the unit operator. The Wilson coefficients of the local
operators ∶Ôð0; μÞ∶ are obtained from perturbative dia-
grams according to known rules [3]. The appropriate
diagrams will be displayed below; we show only diagrams
containing quark and gluon lines but do not show those
diagrams that contain Faddeev-Popov ghosts.
It proved efficient to generalize QCD, based on the color

gauge group SU(3), to the case of the color gauge group

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 014012 (2021)

2470-0010=2021=103(1)=014012(10) 014012-1 Published by the American Physical Society

https://orcid.org/0000-0003-3904-1734
https://orcid.org/0000-0003-4654-6933
https://orcid.org/0000-0002-2958-0120
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.014012&domain=pdf&date_stamp=2021-01-12
https://doi.org/10.1103/PhysRevD.103.014012
https://doi.org/10.1103/PhysRevD.103.014012
https://doi.org/10.1103/PhysRevD.103.014012
https://doi.org/10.1103/PhysRevD.103.014012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


SUðNcÞ and to consider the 1=Nc expansion of the Green
functions in QCDðNcÞ in the so-called ’t Hooft limit, the
strong coupling constant scaling as αs ∼ 1=Nc [6]. For the
discussion of exotic states of any structure [in QCDðNcÞ
one may have a very rich structure of colorless hadron
states] the following features of large-Nc QCD are of
special significance: as shown by Witten [7], large-Nc
Green functions are saturated by noninteracting ordinary
mesons. This means, in particular, that any possible exotic
states may appear only in Nc-subleading contributions to
the QCDðNcÞ Green functions [7,8]. This is a distinguish-
ing property of exotic tetraquark mesons compared to
ordinary quark-antiquark mesons: the latter appear already
in the Nc-leading parts of the QCDðNcÞ Green functions.
The possibility of the existence of narrow exotic states in

QCD at large Nc has been studied in recent years in a
number of publications [9–20]. The present paper makes
use of large-Nc arguments in a slightly different context: we
study two-point functions of bilinear quark currents and of
tetraquark currents and discuss the appearance of the
tetraquark bound states in the latter, giving further theo-
retical arguments in the derivation of the tetraquark-
adequate (T-adequate) sum rules, formulated in our recent
publications [21,22]. Here, we make the following new
steps:

(i) We show that the T-adequate sum rules in SUðNcÞ
should be based on appropriate nonfactorizable parts
of the OPE for two-point functions of the tetraquark
currents. In this way, the tetraquark contributions
are compatible with the well-known rigorous prop-
erty of QCD at large Nc: the Nc-leading Green
functions are saturated by the ordinary mesons;
any exotic states may appear only in Nc-subleading
contributions.

(ii) We discuss nonperturbative effects in two-point
functions of tetraquark currents [our analyses
[21,22] considered perturbative diagrams and did
not address nonperturbative effects] and identify
those condensate contributions that appear in
the T-adequate duality relations and T-adequate sum
rules.

The paper is organized as follows: section II recalls the
large-Nc behavior of the two-point Green functions of
bilinear quark currents and compares the OPE with the
hadron saturation of these Green functions. Section III
studies the OPE for the two-point function of tetraquark
currents including nonperturbative condensate contribu-
tions and discusses the quark-hadron duality relations that
may involve possible tetraquark states. Section IV presents
our conclusions and outlook.

II. TWO-POINT FUNCTION OF BILINEAR
QUARK CURRENTS

Let us start with some useful algebraic relations for the
group SUðNcÞ [23]. The generators TA, A ¼ 1;…; N2

c − 1,

considered in the fundamental representation, satisfy the
color Fierz rearrangement

ðTAÞii0 ðTAÞjj0 ¼
1

2
δij0δi0j −

1

2Nc
δii0δjj0 ; ð2:1Þ

where the generators are normalized according to

TrðTATBÞ ¼ 1

2
δAB: ð2:2Þ

The relation (2.1) suggests that, with respect to counting an
overall Nc-leading color factor of a Feynman diagram, any
gluon line may be replaced by a q̄q double line. To
calculate the Nc-subleading terms in the expansion of a
Green function, one has to take into account, in the gluon
lines, the second term of the right-hand side of Eq. (2.1).
We now briefly recall the properties of the 1=Nc-

expansion of the OPE series for bilinear quark currents,
j ¼ q̄q.

A. Perturbative diagrams

Figure 1 shows diagrams according to their behavior
in the framework of the 1=Nc expansion, assuming that the
strong coupling constant scales as αs ∼ 1=Nc. When
calculating the 1=Nc behavior of a diagram, we replace
the gluon line by a double q̄q line. Doing so, we pick up the
leading behavior at large Nc, but omit corrections of the
order 1=N2

c. [The second term in Eq. (2.1) contains a factor
1=Nc and, in addition, the number of color loops generated
by the second term is reduced by one compared to the first
term, thus yielding an overall suppression factor 1=N2

c]. So,
all diagrams with a specific large-Nc behavior also generate
contributions to lower orders of the 1=Nc expansion. For
instance, the OðNcÞ diagrams in Fig. 1(a) also generate
contributions to diagrams of the order OðN−1

c Þ. The Nc-
leading perturbative diagrams of Fig. 1(a) are planar
diagrams without sea-quark loops. Using the language of
intermediate states, these diagrams can be identified as
those diagrams that have intermediate valence q̄q states
plus an arbitrary number of gluons; the Nc-leading pertur-
bative QCD diagrams do not have cuts corresponding to
four quarks and an arbitrary number of gluons, six quarks
and an arbitrary number of gluons, etc. Diagrams with
multiquark intermediate states have an Nc-subleading
behavior.

B. Power corrections

Power corrections are shown in Fig. 2: the Wilson
coefficients describing the contribution of the appropriate
operators may be obtained from the perturbative diagrams
of Fig. 1 by breaking one or more quark and gluon lines.
For instance, the diagram of Fig. 2(a) provides the Wilson
coefficient of the operator q̄q; the diagram of Fig. 2(b)
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gives the Wilson coefficient of the operatorGG, whereG is
the gluon field strength, etc.
Power corrections scale with Nc as follows:

hq̄qi ∼ Nc; hαsGGi ∼ Nc; hq̄qq̄qi ∼ N2
c: ð2:3Þ

Obviously, nonperturbative effects described by the con-
densates contribute on the same footing as perturbative
effects at each order in 1=Nc. So, even at Nc-leading order
QCD is not fully perturbative: although the strong coupling
may be made arbitrarily small, nonperturbative effects
described by the condensates do not disappear and survive
the large-Nc limit.

C. Hadron saturation of two-point function
and sum rules

As is well known [7,8], the spectrum of states of
QCDðNcÞ in the limit Nc → ∞ contains towers of an

infinite number of free, stable and noninteracting mesons.
Meson-meson elastic scattering amplitudes are of order
1=Nc, and the decay amplitudes of mesons into two mesons
are of order 1=N1=2

c . The notion of valence quarks takes in
the above limit a precise meaning. Mesons are made of pure
q̄q states, rather than of q̄q̄qq states, which only appear at
subleading orders of Nc. Conversely, states whose Nc-
leading element is composed of q̄q̄qq states correspond to
two-meson states. These properties allow us to make a
systematic correspondence between the OPE and the
hadron saturation of two-point correlation functions.
Let us consider the two-point function of the elastic

vector current, Vμ ¼ q̄γμq, and denote it as ΠV
μνðxÞ≡

hTfVμðxÞVνð0Þgi. Obviously, we have light pseudoscalar
mesons (hereafter referred to as pions). Figures 3(a)
and 3(b) show the scaling of the hadron diagrams and
vertices at large Nc, and Fig. 3(c) shows the Nc-leading
sum rule: the sum over stable vector mesons is dual to the

(b) (c)

O(N ):
u

qq
u

q
u

(d)

u
qc

(a)

u

q

FIG. 2. Nonperturbative power corrections in hjj†i of bilinear quark currents: (a) contribution of dimension-3 quark condensate hūui;
(b) contribution of dimension-4 gluon condensate hαsGGi; (c) contribution of dimension-5 mixed condensate hūσμνGμνui, with
σμν ¼ 1

2i ½γμ; γν�, the γs being the Dirac matrices; (d) contributions emerging if q is the light quark: that of dimension-3 quark condensate
hq̄qi and that of dimension-6 four-quark condensate hūuq̄qi.

O(N ):c

cO(N )
α 2

cO(   N  ) c
3O(    N  )α2 c

4O(    N  )α3

(a)

2
c
2

c
4

c
0

c
2

c
3

O(N ):

O(    N  )α2 O(    N  )α3 O(    N  )α4 O(    N  )α
(b)

O(    N )c

c
−1O(N   ):

c
2αO(    N  )3

c
3O(    N  )α4α2

(c)

FIG. 1. Perturbative series for the two-point function of bilinear quark currents and its classification in powers of 1=Nc. (a)OðNcÞ.Nc-
leading diagrams are diagrams of planar topology without sea-quark loops (i.e., containing only the loop of valence quarks that enter the
interpolating current) and with an arbitrary number of planar gluon exchanges. No annihilation-type diagrams appear at this Nc-order.
Taking into account that αs ∼ 1=Nc, they have the overall dependenceOðNcÞ. (b)OðN0

cÞ. Diagrams with the Nc-leading contribution of
this order are shown; these diagrams are (i) planar diagrams with one sea-quark loop and an arbitrary number of gluon exchanges or
(ii) quark-annihilation diagrams. (c)OðN−1

c Þ. Diagrams with Nc-leading behavior of this order are of two different classes: (i) nonplanar
diagrams with one gluonic handle and an arbitrary number of planar gluon exchanges but no sea-quark loops and (ii) planar diagrams
containing two sea-quark loops and an arbitrary number of planar gluon exchanges.
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Nc-leading OPE. Obviously, one can include some Nc-
subleading effects on the hadron and/or on the OPE side of
this sum rule. However, for the consistency of the full
approach, it is mandatory that the Nc-leading contribution
on the hadron side matches the Nc-leading contribution on
the OPE side. In fact, the vector sum rule in real QCD [2]
looks very similar to the relation shown in Fig. 3(c) and
thus perfectly satisfies the large-Nc consistency.
Closing this discussion, we notice that the correlation

function of bilinear quark currents describes the “minimal”
colorless cluster and thus does not contain any other
factorizable colorless clusters. As a result, the hadron
saturation of the Nc-leading part of the correlation function
contains all intermediate hadron states with the appropriate
quantum numbers, starting from the one-meson state.

III. OPE FOR CORRELATORS
OF TETRAQUARK CURRENTS

Let us now turn to two-point functions of tetraquark
currents. We consider four-quark currents consisting of two
antiquarks of generic flavors b and c and two quarks of
generic flavors u and d. For the sake of argument, we make
two assumptions: first, we assume that all quark flavors are
different—this simplifies the topology of the appropriate
QCD diagrams, avoiding, in particular, the discussion of

quark annihilation diagrams. Our second assumption is that
the two antiquarks, b̄ and c̄, are heavy and therefore do not
produce quark condensates; the two quarks, u and d, are
light and therefore develop local vacuum condensates
(quark condensates hūui, hd̄di, mixed quark-gluon con-
densates hūσμνTAGA

μνui, hd̄σμνTAGA
μνdi, four-quark con-

densates hūud̄di, etc.). These assumptions simplify the
discussion but do not change any essential qualitative
feature of our analysis.
As follows from the property of cluster reducibility of

multiquark operators [24], any gauge-invariant multiquark
operator can be reduced to a combination of products of
colorless clusters. In our case of the b̄c̄ud flavor content of
the tetraquark current, colorless clusters of two different
flavor structures emerge in QCD (see [25,26]):

θb̄uc̄d ¼ jb̄ujc̄d; θb̄dc̄u ¼ jb̄djc̄u; ð3:1Þ

with jāf ¼ q̄aqf. We therefore should distinguish between
the diagrams where quark flavors in the initial and final
states are combined in the same way (direct diagrams) and
in a different way (quark-exchange or recombination
diagrams). The Feynman diagrams for the corresponding
four-point functions have different topologies and struc-
tures of their four-quark singularities and therefore require

fvfv

gv gvfv fv
V V

g4

π πg4

V
π

π
V

cc
0

c
−2O(N ) O(N  ) O(N   )

(a)

v gvgvfv
~N1/2

cV
π

πg4

π

π

π
π ~1/Nc

π
π

π

π
V ~1/N

1/2
c

~1/Ncg
(b)

fvfv

V
V

=~O(N ):c + +

+ ++ +...

(c)

FIG. 3. Duality relation for the elastic vector two-point function at large Nc. (a) Typical hadron diagrams emerging in the hadron
representation of ΠV . (b) Scaling of the hadron couplings at large Nc. (c) Nc-leading sum rule [of order OðNcÞ].
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separate analyses [21,22]. Here, we discuss the direct
Green function

ΠdirðxÞ≡ hTfθb̄uc̄dðxÞθ†b̄uc̄dð0Þgi: ð3:2Þ

A. Perturbative diagrams

Figure 4 shows perturbative diagrams in the OPE forΠdir

with different types of gluon exchanges.
Perturbative diagrams without gluon exchanges between

the quark loops have a factorizable structure, i.e., factorize,
in coordinate space, into the product of two-point functions
of bilinear quark currents, Πb̄uðxÞΠc̄dðxÞ, where

Πb̄uðxÞ≡ hTfjb̄uðxÞj†b̄uð0Þgi;
Πc̄dðxÞ≡ hTfjc̄dðxÞj†c̄dð0Þgi: ð3:3Þ

One can refer to these diagrams as “disconnected” dia-
grams, bearing in mind, however, that the vertices corre-
sponding to the initial (final) bilinear currents are connected
to each other.1 So the term “disconnected” should apply to
the internal parts of the diagrams. We will prefer to term
these diagrams “factorizable.” Since any of the quark loops
behave as ∼Nc, the factorizable diagrams are of order N2

c.

Factorizable diagrams can be isolated in a unique way and
provide the Nc-leading behavior of ΠdirðxÞ.
In the diagrams of Fig. 4(b) two quark loops talk to each

other via gluon exchanges. Since both quark loops re-
present colorless clusters, one needs at least two gluons to
be exchanged between the loops. Diagrams with two gluon
exchanges between the loops and an arbitrary number of
planar gluon exchanges inside each of the loops bu and cd
have cylinder topology; see Figs. 1 and 2 of Ref. [20]. Their
behavior at large Nc is N0

c.
One can also have three or more gluon exchanges

between the quark loops. All these diagrams have a
topology of a cylinder with a number of handles. Each
handle reduces the large-Nc behavior by two powers of Nc.

B. Diagrams containing condensates

Diagrams containing condensates may be obtained from
the perturbative diagrams by breaking the internal quark
and gluon lines and sending the corresponding particles to
vacuum condensates.
Let us start with the factorizable perturbative diagrams of

Fig. 4(a). By breaking a light-quark or a gluon line in these
diagrams, one obtains the contributions of condensates of
lowest dimensions, the quark condensate hq̄qi, the gluon
condensate hαsGGi, or the mixed quark-gluon condensate,
shown in Fig. 5(a). These diagrams have the same large-Nc

behavior, OðN2
cÞ, as the original perturbative diagrams of

O(N ):2 u
bb b b b

ccccc

u u u u

ddddd

c
2O(N  ) c

3αO(   N  ) c
4α2O(    N  ) c

5O(    N  )α3

c

(a)

O(   N )

c
0O(N  ):

b
u

c
d

b
u

c d

b b

bb

b

b

d d d

dddc c c

u u u

uuu

c c c

2
c

3
cα3

α2

O(    N )

(b)

FIG. 4. Typical perturbative diagrams emerging in the OPE for Πdir. (a) Planar diagrams with an arbitrary number of planar gluon
exchanges inside the bu or cd quark loops, whereas there are no gluon exchanges between the quark loops. These diagrams have a
factorizable structure, i.e., may be represented, in coordinate space, as a product of two expressions—one corresponding to the bu loop
and the other corresponding to the cd loop. They have the behavior ∼N2

c. (b) Diagrams with two-gluon exchanges between the loops bu
and cd; the two gluons may be attached to quarks/antiquarks in different quark loops in any combination. Such diagrams have a cylinder
topology and behave asN0

c at largeNc. Adding an arbitrary number of planar gluon exchanges inside the loops bu or cd does not change
the large-Nc scaling behavior.

1Notice that the terms “connected” and “disconnected” in
lattice calculations have quite different meanings; see, e.g., [11].
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Fig. 4(a). Important for us is that diagrams containing the
quark, the gluon, and the mixed quark-gluon condensates
are of the factorizable type, which is the same as that of the
original perturbative diagrams.
A new feature emerges when one calculates the

contributions (i.e., the Wilson coefficients) of higher-
dimension four-quark and four-quark–gluon condensates;
see Fig. 5(b).
Here, both light quarks, from the upper and the lower

loops, can be sent to the condensate simultaneously. For
further analysis, it is convenient to isolate factorizable
contributions from higher-dimension condensates. For
instance, the four-quark condensate may be split into
factorizable and nonfactorizable (NF) parts in a unique
way, see Fig. 6:

hūud̄di≡ hūuihd̄di þ hūud̄diNF: ð3:4Þ

The relevance of isolating factorizable parts out of the
condensates of higher dimensions will become clear
shortly.

C. Isolating the factorizable part from the OPE for
two-point functions of tetraquark currents Πdir

We are now fully prepared to isolate the factorizable part
from the OPE for the direct two-point function of the
tetraquark currents Πdir, including both perturbative and
nonperturbative condensate contributions. At the level of
diagrams, one may naively suspect the following decom-
position of the OPE for Πdir shown in Fig. 7:

ΠdirðxÞ ¼ Πb̄uðxÞΠc̄dðxÞ þ Πdir
NF;1ðxÞ þ Πdir

NF;2ðxÞ:

As we shall see, this formula contains double counting of
some of the nonperturbative contributions, and the correct
decomposition is a bit more tricky.
The factorizable part, Πb̄uðxÞΠc̄dðxÞ, including the

appropriate nonperturbative condensate contributions, is
obvious and is shown in Fig. 7(a).
More cumbersome are NF contributions. Here, we

encounter two types of such NF contributions:
(i) Πdir

NF;1ðxÞ, shown in Fig. 7(b), describes nonfactor-
izable parts of the condensates of higher dimension
corresponding to Fig. 5(b); somewhat tricky, these
NF nonperturbative power corrections are generated
by factorizable perturbative diagrams of Fig. 4(a).
Radiative corrections due to gluon exchanges inside
the loops bu and cd (and not between the loops) are
included in this class of NF contributions.

To understand the proper way to take into account
such contributions, let us recall that nonzero vacuum
condensates emerge due to interactions with the
nonperturbative soft gluon fields. If we look into the
anatomy of hūud̄diNF, this quantity is nonzero due

u
2
c

b
u

dc

b b b
u u

d dc c cd

u

d

u u
O(N ):

(a)

d

b
u

d c

b
u

d c

2
cO(N  ):

u

d

u

(b)

u
b

u

dc

b b b
u u u

d d d
c c c

O(N ):0
c

u u

(c)

FIG. 5. Typical diagrams belonging to different classes containing condensate contributions in the OPE for Πdir. (a) Factorizable
diagrams obtained by inserting condensate contributions in perturbative diagrams of Fig. 4(a). (b) Power corrections of the mixed type:
they are proportional to condensates of dimension-6 or higher (hūud̄di, etc.) and obtained by sending quark or gluon fields from
different quark loops of factorizable perturbative diagrams of Fig. 4(a) to vacuum condensates. In the four-quark (and higher)
condensates, factorizable and nonfactorizable parts may be isolated; see Fig. 6. (c) Power corrections of nonfactorizable type: they are
obtained by sending to the condensate quarks and gluons in nonfactorizable diagrams of Fig. 4(b).

=

b b
uu

d dc c

NF+
u

d

u

d
=

b b b
uu

d dc c c

NF+
u

dd

u

d

u u

d

FIG. 6. Splitting of the condensates of higher dimensions into
factorizable and NF parts. The factorizable parts provide the Nc-
leading contribution, whereas the nonfactorizable pieces have an
Nc-subleading behavior. For instance, hūui ∼ Nc, hd̄di ∼ Nc,
hūud̄di ∼ N2

c, whereas hūud̄diNF ∼ N0
c.
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to the interactions with the soft gluons of the type
shown in Fig. 8. Precisely the same nonperturbative
corrections emerge in the nonperturbative contribu-
tions related to the diagrams of Fig. 7(c) where
gluons are exchanged between the u quark of the bu
quark loop and the d quark of the cd quark loop.
(This actually explains the fact that the large-Nc

behaviors of hq̄qi2 and hq̄qq̄qiNF differ from each
other.)
Taking into account both effects described by

Πdir
NF;1ðxÞ and by nonperturbative corrections in those

parts of Πdir
NF;2ðxÞ which correspond to two-gluon

exchanges between u and d quarks from the different
quark loopswould be a double counting.We therefore
take the appropriate nonperturbative contributions
into account as a part of Πdir

NF;2ðxÞ and omit Πdir
NF;1ðxÞ.

(ii) Πdir
NF;2ðxÞ, Fig. 7(c), describes the “genuinely” non-

factorizable perturbative diagrams of Fig. 4(b) and

power corrections of Fig. 5(c); the latter are obtained
via the conventional rules by breaking the propa-
gating lines of light quarks and gluons in the
perturbative diagrams of Fig. 4(b).

In the end, the proper decomposition of Πdir that avoids
the double counting of the nonperturbative corrections
has the form

ΠdirðxÞ ¼ Πb̄uðxÞΠc̄dðxÞ þ Πdir
NF;2ðxÞ: ð3:5Þ

Let us insert the full system of hadron states in the
factorizable part. We then obtain

Πb̄uðxÞ≡ hTfjb̄uðxÞj†b̄uð0Þgi ¼
X
hb̄u

Rb̄uðxÞ; ð3:6Þ

Πc̄dðxÞ≡ hTfjc̄dðxÞj†c̄dð0Þgi ¼
X
hc̄d

Rc̄dðxÞ; ð3:7Þ

where Rb̄uðxÞ and Rc̄dðxÞ are the quantities coming from
hadron saturation, the explicit form of which is irrelevant.
Important for us is the fact that the sum runs over the full
system of hadron states with flavors b̄u (hb̄u) and c̄d (hc̄d),
respectively. Consequently, the system of the intermediate
hadron states that emerges in the factorizable part of Πdir is
just the direct product of these two systems, hb̄u ⊗ hc̄d. No
other hadron state, in particular, no exotic state, may

u

+ +
c c

d d

+...+ + +
u u u
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FIG. 7. Different types of contributions to the OPE for Πdir corresponding to the decomposition (3.5). (a) Factorizable part of the OPE
given by the product of Πb̄uðxÞ and Πc̄dðxÞ; Πb̄uðxÞ and Πc̄dðxÞ here contain both perturbative and nonperturbative condensate
contributions. (b) Typical diagrams for the nonfactorizable contribution Πdir

NF;1ðxÞ. (c) Nonfactorizable contributionΠdir
NF;2ðxÞ. Only those

diagrams where both gluons are exchanged between the quark u of the bu loop and the quark d of the dc loop are displayed. Diagrams
corresponding to other gluon exchanges between the bu and cd quark loops and the appropriate power corrections can be easily drawn.
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FIG. 8. Emergence of the nonfactorizable part of the four-quark
condensate hūud̄di through interactions with the nonperturbative
gluon background.
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contribute here. So, we conclude that an exotic state, if it
exists in the hadron spectrum of b̄uc̄d states, contributes
only to the nonfactorizable part of an exotic correlation
function.

D. T-adequate sum rule and the couplings of
tetraquark bound states to tetraquark currents

The T-adequate sum rule emerges after Eqs. (3.6) and
(3.7) have been taken into account, leading to exact
cancellations between the factorizableOðN2

cÞ contributions
on the OPE side and the hadron side of the duality relation
for the direct two-point function Πdir. Figure 9 shows the
corresponding T-adequate sum rule: its OPE side contains
nonfactorizable diagrams of order OðN0

cÞ (both perturba-
tive and condensate contributions); its hadron side contains
the assumed tetraquark contribution and nonfactorizable
meson diagrams. The contribution of the tetraquark T of
flavor content b̄c̄ud and mass M to the hadronic side in
momentum space has the form2

f2T
1

M2 − p2
ð3:8Þ

and is expressed via the tetraquark coupling to the
interpolating tetraquark current:

fT ¼ h0jθb̄uc̄djTi: ð3:9Þ

Obviously, the T-adequate sum rule implies fT ∼ N0
c. This

feature is in full agreement with the known property of
large-Nc QCD that only noninteracting ordinary mesons
saturate the Nc-leading QCD diagrams. We emphasize
once more that for the consideration of exotic states, the
factorizable part of the OPE is irrelevant.
Moreover, we would like to point out the following

qualitative difference between the correlation functions of
tetraquarks versus those of bilinear quark currents: as we
have discussed, the existence of stable vector mesons in the
hadron spectrum at large Nc is required by matching the
large-Nc behavior of the OPE side and of the hadron side of
the vector two-point function ΠV ; without vector mesons
populating theOðNcÞ part of the hadronic side no matching
may be obtained. For the two-point functions of the
tetraquark currents, the situation is qualitatively different:
the factorizable OPE and hadronic sides match each other
just due to the duality relations for the two-point functions
of the bilinear currents. The nonfactorizable OPE side and
its nonfactorizable hadronic side have the same large-Nc
behavior with or without the tetraquark bound state. So, the
existence of narrow tetraquark hadrons cannot be estab-
lished merely on the basis of the large-Nc behavior of the
exotic Green functions; large-Nc QCD does not exclude
narrow exotic states in Nc-subleading parts of the Green
functions, but also remains consistent if such exotic states
do not exist in the hadron spectrum.

IV. CONCLUSIONS AND OUTLOOK

We discussed in great detail the OPE for two-point Green
functions of the bilinear and quadrilinear colorless quark
currents at large Nc and emphasized the qualitative
differences between these two objects:

u

+

c c
d d

+
c

d

b
u

b b
u u

+

OPE side

+= +...

Hadronic side

T

+
c

d

b
u

+...

c
d

b

FIG. 9. T-adequate sum rule that emerges after the exact cancellations of factorizable contributions on the OPE side vs the hadronic
side have been taken into account. The OPE side contains nonfactorizable diagrams with two gluon exchanges between the quark loops
bu and cd. A typical contribution with gluon exchanges between the loops, joining bc and bd quark pairs, and the corresponding
condensate corrections are explicitly shown. [It is noteworthy that all appropriate condensate contributions are obtained according to the
known rules [3] (i.e., by breaking the lines of light quarks and gluons) from the perturbative nonfactorizable Feynman diagrams with two
or more gluon exchanges between the loops; no other condensate contributions appear.] The dots stand for other two-gluon exchanges
(i.e., joining uc and ud, bc and ud, uc and bd pairs from the different loops). All nonfactorizable diagrams scale as N0

c. The hadronic
side contains the assumed tetraquark contribution and nonfactorizable meson interaction diagrams.

2To be more precise, there are two tetraquark currents of global
b̄c̄ud flavor content: θb̄uc̄d and θb̄dc̄u [Eq. (3.1)]. Respectively,
there might be two tetraquark states of the b̄c̄ud flavor content, T1

and T2: T1 couples more strongly to the θb̄uc̄d current (the
corresponding coupling scales as N0

c) and more weakly to the
θb̄dc̄u current (the corresponding coupling scales as 1=Nc), and
vice versa for T2. So, the contribution of T1 to the correlation
function (3.2) scales like N0

c, whereas the contribution of T2 is
suppressed and scales like 1=N2

c. These subtleties are, however, a
bit outside the main discussion of this paper, so we refer, for
details, to Sec. 2 of [20].
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(i) In the case of two-point functions of bilinear quark
currents, the contributions of single-meson states
with appropriate quantum numbers emerge in the
Nc-leading part of the Green function. Matching
the large-Nc behavior of the OPE series and of the
hadron saturation series requires the existence of
stable mesons with large couplings, fV ∼

ffiffiffiffiffiffi
Nc

p
, in

the limit Nc → ∞. The typical QCD sum rule then
relates the Nc-leading OðNcÞ part of the OPE to the
OðNcÞ part of the sum over hadron states, and is
therefore fully consistent at large Nc.

(ii) In the case of two-point functions of tetraquark
currents, the Nc-leading part of the OPE factorizes
into a product of two colorless clusters. Each of them
is saturated by the ordinary hadrons that may emerge
in the quark-antiquark correlation functions with
appropriate quark-flavor content. As a result, tetra-
quark states (whatever generalization of the Nc ¼ 3
tetraquark to Nc ≠ 3 is considered) cannot contrib-
ute to the Nc-leading parts of the Green functions.
This property fully agrees with the well-known
rigorous property of large-Nc QCD: Nc-leading
Green functions are fully saturated by noninteracting
ordinary mesons. The contribution of any colorless
state with a more complicated quark structure, for
instance, of an exotic meson, may only appear in
Nc-subleading nonfactorizable parts of the Green
functions of tetraquark currents. Moreover, this
property is perfectly satisfied by the T-adequate
QCD sum rules formulated in [21,22]: one of the
outcomes of the T-adequate sum rules is the scaling
of the tetraquark coupling to the tetraquark current
fT ∼ N0

c. In the present paper, we have comple-
mented our previous analysis with a detailed dis-
cussion of the vacuum condensate contributions.

Existing typical applications of QCD sum rules to the
analysis of the tetraquark candidates (see, e.g., recent
publications [27–29]) relate the tetraquark properties to
the low-energy part of the factorizable two-point Green
functions of the tetraquark currents. Such an approach
copies the route of the sum-rule analysis of the ordinary
mesons and does not take into account the fundamental
differences between the correlation functions of the bilinear
quark currents and of the tetraquark currents. The tetra-
quark properties are then extracted exclusively from those
parts of QCD Green functions which do not have tetra-
quarks as intermediate states [27–29], a feature which does
not seem physically meaningful to us. Also, one can easily
take the large-Nc limit of the corresponding sum-rule
analytic expressions for the couplings to immediately find
that fT ∼ Nc. This would mean that, in contradiction to the
rigorous property of QCD at large Nc, tetraquark poles
appear in the Nc-leading QCD diagrams. T-adequate sum
rules of [21,22], now complemented with the appropriate
account of condensate contributions, are free from these
shortcomings and lead to fully consistent relations.
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